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Abstract. Using brain atlases to localize regions of interest is a required for making neuroscientifically valid statistical infer-
ences. These atlases, represented in volumetric or surface coordinate spaces, can describe brain topology from a
variety of perspectives. Although many human brain atlases have circulated the field over the past fifty years, limited
effort has been devoted to their standardization and specification. The purpose of standardization and specifica-
tion is to ensure consistency and transparency with respect to orientation, resolution, labeling scheme, file storage
format, and coordinate space designation. Consequently, researchers are often confronted with limited knowledge
about a given atlas’s organization, which make analytic comparisons more difficult. To fill this gap, we consolidate
an extensive selection of popular human brain atlases into a single, curated open-source library, where they are
stored following a standardized protocol with accompanying metadata. We propose that this protocol serves as
the basis for storing future atlases. To demonstrate the utility of storing and standardizing these atlases following
a common protocol, we conduct an experiment using data from the Healthy Brain Network whereby we quantify
the statistical dependence of each atlas label on several key phenotypic variables. The repository containing the
atlases, the specification, as well as relevant transformation functions is available at https://neurodata.io/mri

Background & Summary Understanding the brain’s organization is one of the key challenges in hu-
man neuroscience [1] and is critical for clinical translation [2]. Parcellation of the brain into functionally
and structurally distinct regions has seen impressive advances in recent years [3], and has grown the
field of network neuroscience [4, 5]. Through a range of techniques such as clustering [6–9], multi-
variate decomposition [10, 11] , gradient based connectivity [1, 12–16], and multimodal neuroimaging
[1], parcellations have enabled fundamental insights into the brain’s topological organization and net-
work properties [17]. In turn, these properties have allowed researchers to investigate brain-behavioral
associations with developmental [18, 19], cognitive [20, 21], and clinical phenotypes [22–24].

More recently, researchers interested in understanding brain organization are presented with a va-
riety of brain atlases that can be used to define nodes of network-based analyses [25]. While this
variety is a boon to researchers, the use of different parcellations across studies makes assessing
reproducibility of brain-behavior relationships difficult (e.g. comparing across parcellations with differ-
ent organizations and numbers of nodes; [5]). Amalgamating multiple brain parcellations into a single,
standardized, curated list would offer researchers a valuable resource for evaluating replication of neu-
roimaging studies.

Some efforts to consolidate these atlases is already underway. For example, Nilearn is a popular
Python package that provides machine-learning and informatics tools for neuroimaging [26]. Nilearn
provides several single line command line interface functions to ’fetch’ both atlases and datasets.
Nilearn includes twelve anatomically and functionally defined atlases, such as the Harvard-Oxford [27]
and Automated Anatomical Labeling (AAL) [28] parcellation. Although a promising prototype, Nilearn’s
current atlas collection represent a limited range of available atlases, and the more recent gradient
based, surface based, and multimodal parcellations have yet to be included into any central repository.
More importantly, existing atlas repositories have not attempted to systematically standardize their col-
lections following a single specification. Without well-established standards, the investigator is faced
with limited information about each atlas, so connecting neuroscientific findings to the organization of
the atlas becomes more difficult. Moreover, if the investigator requires a comparison across atlases,
some form of metadata must be available that describes the similarities and differences between them.

Neuroparc mitigates these issues by providing: (1) a detailed atlas specification which will enable
researchers to both easily understand existing atlases and generate new atlases compliant with this
specification, (2) a repository of the most commonly used atlases in neuroimaging, all stored in that
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Figure 1: A comparison of the regions present in the major atlases available in Neuroparc. These visualizations
were made using MIPAV tri-planar views on the same slice numbers. Each atlas shows a cross-section in each
of the canonical orthogonal planes (H=Horizontal, S=Sagittal, C=Coronal). For most atlases, the slice numbers
were (90, 108, 90). There are a few exceptions for visualization purposes: JHU: (90, 108, 109), Slab907: (95,
104, 95), Slab1068: (93, 105, 93) [30–40]

specification, and (3) a set of functions for transforming, comparing, and visualizing these atlases. The
Neuroparc package presented here includes 24 different adult human brain parcellations—including
surface-based and volume-based. Here, we provide an overview of the relationship between these par-
cellations via comparison of the spatial similarity between atlases, as measured by Dice coefficient. To
validate the atlases and their utility, we provide an prototypical analysis of brain-behavior relationships
in these parcellations across a range of phenotypic variables from a large publicly available develop-
mental sample: the Healthy Brain Network [29]. To facilitate replication and extension of this work, all
the data and code are available from https://neurodata.io/mri.

Methods

Data Compilation Neuroparc contains atlases from several locations. As previously noted, there is
no current standard for atlas storage, so all gathered datasets are converted into a single format. We
define this human brain atlas specification in detail within Data Records.

Dice Coefficient The Dice coefficient is a measure of similarity between two sets [41]. Specifically, it
measures a coincidence index (CI) between two sets, normalized by the size of the sets. Let h be the
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number of points overlapping in the sets A and B, and a and b are the sizes of their corresponding sets.
If the two sets are labelled regions in segmented images, then the Dice coefficient between any pair of
regions between the images is given by

(0.1) CIij =
2hij
ai + bj

where i is the region in image 1 and j is the region in image 2. The result is a similarity matrix,
as shown in Figure 2. Since this map visualizes similarity between two regions in two atlases, the
information provided by the Dice map can be used quantify which regions in a given atlas are most
similar to regions in another atlas.
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Figure 2: Dice Score Map between the Yeo 17 Networks atlas and the 300 parcellation Schaefer atlas. The
strong symmetry of the Yeo atlas is apparent here.

Adjusted Mutual Information Adjusted mutual information is another measure of the similarity of two
labelled sets, quantifying how well a particular point can be identified as belonging to a region given
another region. It differs from the Dice coefficient in that it tends to be more sensitive to region size and
position relative to other measures. [42]

Similar to the Dice coefficient, Adjusted mutual information is not dependent on a region’s label [43].
Volumes that share many points are likely to be have a higher mutual information score all else being
equal [44].

To assure that all atlas comparisons were on the same scale, Neuroparc computes the adjusted
mutual information score. Let H(·) denote entropy, N be the number of elements (voxels) in total,
and E(MIAB) denote the expected mutual information for sets of size a and b. Here, PA(i) is the
probability that a point chosen randomly from the set A will belong to region i. [45]

(0.2) H(A) = −
N∑
i=1

PA(i)log(PA(i))

(0.3) MIAB =
∑
a,b

PA,B(a, b) · log
PA,B(a, b)

PA(a) · PB(b)
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Figure 3: The adjusted mutual information between atlases contained within Neuroparc. The Schaefer atlases
contain a high degree of mutual information as expected as they were built using the same algorithm.

where PA,B(a, b) is the probability that a voxel will belong to region a in set A and region b in set B.
(0.4)

E[MI(A,B)] =
N∑
i=1

N∑
j=1

min(ai,bj)∑
nij=(ai+bj−N)+

nij
N

log

(
N · nij
aibj

)
ai!bj !(N − ai)!(N − bj)!

N !nij !(ai − nij)!(N − ai − bj + nij)!

where ai is the number of voxels in region i of set A and bj is the number of voxels in region j of set B.
(ai + bj −N)+ = max(1, ai + bj −N).

(0.5) AMIAB =
MIAB − E(MIAB)

mean(H(A), H(B))− E(MIAB)

as provided in [46].
Figure 3 shows the adjusted mutual information between all pairs of atlases. The information pro-

vided for this score is atlas-wide, while the Dice score was computed per region to generate a map. The
similarity between groups of atlases, such as the various Schaefer atlases, and the Yeo liberal atlases,
is immediately apparent.

Code availability Code for processing is publicly available and can be found on GitHub under the
scripts folder (https://github.com/neurodata/neuroparc). Examples of useful functions include center
calculation for regions and scripts to save files in the NIfTI format. All code is provided under the
Apache 2.0 License.

Visualizations are generated using both MIPAV 8.0.2 and FSLeyes 5.0.10 to view the brain volumes
in 2D and 3D spaces [47, 48]. Figure 1 can be created using MIPAV triplanar views of each atlases with
a striped LUT.
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Data Records All data records described in this paper are available primarily through a Github reposi-
tory; a link is available from https://neurodata.io/mri. Several file types are contained in this location and
are necessary for fully describing an atlas. Neuroparc introduces an atlas specification that includes a
reference brain, an atlas file, and atlas metadata.

Reference Brain To allow direct comparison between different atlases, a standard reference brain
must be used for all involved atlases. Within Neuroparc, a single reference brain is provided, yielding
a coordinate space. Neuroparc uses Montreal Neurological Institute 152 Nonlinear 6th generation
reference brain, abbreviated MNI152NLin6 in the file naming structure [49].

The brain is stored in a GNU-zipped NIfTI file format of a T1 weighted MRI.Three image resolutions
are available in Neuroparc (1mm, 2mm, and 4mm) for flexibility. The naming convention for these files
is: MNI152Nlin6_res-<resolution>_T1W.nii.gz. The format of the resolution input would be 1x1x1 for
the 1 mm3 resolution.

Atlas Image The atlas image is also a GNU-zipped NifTi file containing the parcellated reference brain
according to the specifications of the atlas. The file indicates to which region each voxel belongs. Each
region of interest (ROI) within this parcellated image is denoted by a unique integer ranging from 1 to
n where n is the total number of ROIs. The naming convention for the atlas is: <atlas_name>_space-
MNI152NLin6_res–<resolution>.nii.gz. The atlas_name field is unique for each atlas image, ideally no
more than two words long without a space in between (e.g. yeo-17, princetonvisual, HarvardOxford).

For simplicity, only the 1 mm3 resolution parcellation is stored within the repository, but other reso-
lutions can be calculated from the reference brain images.

Atlas Metadata The metadata corresponding to the atlas is contained within a JSON file format. This
file is split into two sections: region-wide and atlas-wide information.

The region-wide data must contain the number, label, center, and size for that region. The center
and size can be calculated using provided code in Neuroparc.

Although label must be specified, this information is not relevant for all atlases. In that case, NULL
should be used for the labels of the regions. For hierarchical regions, the naming should be in order of
largest region to smallest with a ’.’ in between each name. An example of this is in the Talairach atlas,
which contains the region with label "Right Cerebrum.Parietal Lobe.Sub-Gyral.Gray Matter.Brodmann
area 40".

Optional fields in the region-wide data include description and color. Description can be used to
provide more information than the region label if necessary. An example of this use is in the Yeo-7
Networks atlas. The label for this atlas is in the form ’7Networks_2’, but the description for that label is
the corresponding functional network, ’Somatomotor’ in this case. The color field must be given in the
form [R, G, B] and is only used if the user wants to specify the colors of the regions upon visualization.

Brain-wide data must include the name, description, native coordinate space, and source of the
atlas. The name field allows for more elaboration than in the name of the file. The description is more
flexible, allowing the creator of an atlas to briefly describe important information for users of their atlas.
The intended use case or the method of generation are examples of information provided in this field.
Since all atlases in Neuroparc are stored in the same coordinate space, the coordinate space used
during the creation of the atlas must be specified.

Finally, the publication detailing the atlas should be included in the source field so users can have a
more full understanding of the atlas being used. Optional fields for brain-wide data can all be calculated,
including the number of regions, the average volume per region, whether the segmented regions are
hierarchical, and if the atlas is symmetrical.

The naming convention for this file is as follows:
<atlas_name>_space-MNI152NLin6_res-1x1x1.json

Again, this metadata is only relevant to the 1 mm3 resolution, but other data is easily calculated when
necessary.

The full description and format of the atlas specification is available within Neuroparc at https:
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Figure 4: An example json file storing atlas metadata

//neurodata.io/mri. Figure 4 shows an example json file.

Technical Validation All atlases included in Neuroparc have been pulled from reputable published
sources [30–40] and modified to fit the above described atlas specification. Specifically, all of the atlas
images were converted into the Montreal Neurological Institute 152 Nonlinear 6th generation coordinate
space. All of the atlases were applied to the single T1 weighted MRI scan so that each atlas is directly
comparable.

To demonstrate the validity of these atlases, we conduct the following case study. The Healthy Brain
Network (HBN) is a relatively new dataset that consists of over 1,000 children and adolescents in New
York City. HBN was created to study mental health and learning disorders. HBN includes phenotypic
data in the form of tests on psychiatric, behavioral, cognitive, and lifestyle, as well as multimodal brain
imaging, electroencephalography, digital voice and video recordings, genetics, and actigraphy. In this
analysis, ’MGC’, an independence test implemented in the python package ’mgcpy’ was used to test
for correlation between functional connectomes and phenotypic data [50, 51]. We ran the NDMG
pipeline on every individuals’ resting state functional MRI data to obtain connectomes for each. [52].
We then selected 23 assays to test for a dependence between the connectomes on various phenotypic
properties. Doing so required carefully cleaning and purging the subject level questionnaire answers to
eliminate missing data and spurious entries. The number of individuals whose data were available per
test are outlined in Table 1.

For each phenotypic test and each atlas, we ran MGC to test whether connectomes and cognitive
assays were statistically dependent on one another (Figure 5). Assays generally had either multiple
atlases which found a significant correlation (α ≤ 0.05), or none. The assays which had a significant
correlation for some atlases were APQ_SR, ASSQ, CELF_5_Screen, MFQ_P, PAQ_C, and SWAN.
APQ_P, MFQ_SR, and PAQ_A which are the same tests but for a different age group as APQ_SR,
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Test #Subjects Category
ACE 16 Family Structure, Stress and Trauma

APQ_SR 288 Family Structure, Stress and Trauma
ARI_P 307 Depression and Mood
ARI_S 306 Depression and Mood
ASR 12 Multiple Disorders

ASSQ 313 Autism Spectrum Disorder
AUDIT 135 Substance Abuse/Addictive Behavior
Barratt 322 Background Information and Demographics

CELF_5_Screen 279 Verbal Learning
Digit_Span 126 Cognitive and Executive Functioning

IAT 93 Substance Abuse/Addictive Behavior
MFQ_P 118 Depression and Mood

MFQ_SR 125 Depression and Mood
PAQ_A 64 Physical
PAQ_C 155 Physical
PCIAT 136 Substance Abuse/Addictive Behavior
PSI_P 98 Family Structure, Stress and Trauma

SCARED_P 237 Anxiety
SCARED_SR 226 Anxiety

SDS 121 Sleep
STAI 15 Anxiety

SWAN 301 Attention-Deficit/Hyperactivity Disorder
YSR 93 Multiple Disorders

Table 1: This table shows the number of subjects analyzed for each assay as well as the category of the corre-
sponding test.

MFQ_P, and PAQ_C. The APQ, ASSQ, CELF_5_Screen, MFQ, PAQ, and SWAN are in the categories
Family Structure Stress and Trauma, ASD, Verbal Learning, Depression and Mood, Physical, and ADHD
as given by the Child Mind Institute. There does not appear to be a strong connection from this alone
between category of test and whether significant correlation is found. ACE, a questionnaire on the oc-
currence various traumatic childhood events, SCARED_P, an anxiety test for preschoolers, and PAQ_A,
a questionnaire on physical activity all also showed extremely high p-values.

Interestingly, the same tests but given in the regular version or the preschooler version frequently
had very different results. This appears to indicate that such tests might have more correlation with
brain connectivity and structure within different age groups.

Medians over all atlases show the results discussed above. Medians over all tests are all fairly
high and not very distinct. The tissue atlas has the highest average p-value, and the HarOxCort atlas
has the lowest, ranging from about 0.35 to 0.55. This does not account for whether or not the atlas
is correctly finding correlations and is an average over relatively few tests, so it is hard to interpret. It
would be interesting to investigate this variation more, possibly when averaging over a higher number
of tests than this analysis.

Usage Notes The Usage Notes should contain brief instructions to assist other researchers with reuse
of the data. This may include discussion of software packages that are suitable for analysing the assay
data files, suggested downstream processing steps (e.g. normalization, etc.), or tips for integrating or
comparing the data records with other datasets. Authors are encouraged to provide code, programs or
data-processing workflows if they may help others understand or use the data. Please see our code
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Figure 5: This plot shows the p-value calculated by ’mgc’ between each phenotypic test and the functional
connectomes for each atlas. It is in the form of a heatmap with range 0 to 1, using a log scale. On the far right
and far bottom, the median values over the rows and columns are shown.

availability policy for advice on supplying custom code alongside Data Descriptor manuscripts.
For studies involving privacy or safety controls on public access to the data, this section should

describe in detail these controls, including how authors can apply to access the data, what criteria will
be used to determine who may access the data, and any limitations on data use.
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