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ABSTRACT

The development of single cell transcriptomic technologies
yields large datasets comprising multimodal informations
such as transcriptomes and immunophenotypes. Currently
however, there is no software to easily and simultaneously
analyze both types of data. Here, we introduce Single-
Cell Virtual Cytometer, an open-source software for flow
cytometry-like visualization and exploration of multi-omics
single cell datasets. Using an original CITE-seq dataset of
PBMC from an healthy donor, we illustrate its use for
the integrated analysis of transcriptomes and phenotypes
of functional maturation in peripheral T lymphocytes from
healthy donors. So this free and open-source algorithm
constitutes a unique resource for biologists seeking for
a user-friendly analytic tool for multimodal single cell
datasets.
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INTRODUCTION

The recent development of techniques for single cell RNA
sequencing (scRNAseq) has resulted in an accrual of
scRNAseq datasets comprising thousands of cells from many
lineages, tissues, physiological conditions and species. The
classical representation of such datasets is based on their
dimensionality reduction e.g. by t-stochastic neighborhood
embedding (t-SNE) or uniform manifold approximation and
projection (UMAP). In such steps, all cells are plotted
according to their transcriptomic similarity with immediate

neighbours and the overall community of cells, forming
separate groups or clusters. The lineage, status and hallmarks
of such cells and clusters are then identified by their
expression levels of single genes, chosen for their hallmark
expression patterns, e.g. expression of the CDI4 gene for
monocytes, or of the MKI67 gene for proliferating cells.
Nevertheless, both technical noise from the data acquisition
process, and massive gene dropouts impair detection of
many genes in scRNAseq datasets. Consequently, mapping
the expression level of a single gene in a t-SNE map is
generally less informative than mapping the enrichment of a
corresponding multi-gene signature.

We recently developed Single-Cell Signature Explorer, a
tool which scores gene signatures by their UMI to total cell
UMI ratio in each single cell from large datasets (1). This
tool further overlays UMAP or t-SNE maps of the dataset
with heatmap-encoded single cell scores of the signature. By
allowing the user to see how these scores vary across all cells,
it provides a visualization of any transcriptomic hallmark in
the dataset. For example, this tool returns scores interpreted
by user for identifying B versus non-B cells among peripheral
blood mononuclear cells (PBMC). It may likewise help to
infer single cell lineages, cell hallmarks, or any metabolic and
proliferative status from collective gene expression levels (1).

However, formal identification of most cell lineages
relies upon cell surface expression of canonical protein
markers rather than on transcriptome-based inference.
This issue was addressed by incepting the Cellular
Indexing of Transcriptomes and Epitopes by Sequencing
(CITEseq) (2), which allows simultaneous detection of single
cell transcriptomes and antibody-labelled surface markers,
yielding both gene expression levels and immunophenotypes
from the same experiment. Several algorithms allow the
analysis of either multidimensional immunophenotypings, e.g.
Cytobank (3) or of single cell transcriptomes such as Seurat
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(4), iCellR, or Loupe Cell Browser (10xGenomics). However
so far, there are no tools for the simultaneous and integrated
visualization and analysis of both of these different data.

Here we introduce Single-Cell Virtual Cytometer to
visualize both cell transcriptomes and phenotypes in t-SNE
or UMAP from multimodal single cell datasets, as well as
for flow-cytometry-like gating, selection and exploration of
subsets of cells. We examplify its use to characterize the gene
signatures for stages of functional maturation of peripheral
T lymphocytes using CITEseq datasets of PBMC from
healthy individuals. Our tool, implemented as freely available
open-source software, represents a unvaluable resource to
fully exploit the expanding universe of multi-omics datasets
necessary to cancer research and care.

MATERIALS AND METHODS
Single-Cell Virtual Cytometer

Single-Cell Virtual Cytometer is a new tool, part of Single-
Cell Signature Explorer software package (1) dedicated to
high throughput signature exploration in single-cell analysis.
It brings the flow cytometry software capabilities to single
cell analysis. It is able to define and gate cell populations
based on the 2D plot of, for example two antibodies or
genes, and to display simultaneously the selected cells on
a UMAP or t-SNE map. There is no limit to the number
of antibodies, genes or other criteria possibly used to define
the plot, including combinations of transcriptomic, proteomic
and signature scores (1). Single-Cell Virtual Cytometer takes
a data table as input, using tab-separated text file format,
with the cells tag in rows and genes expression, antibodies
detection levels, signature scores in columns and at least two
columns with x,y coordinates for a map such as t-SNE or
UMAP. Once the data table loaded, the user can then select
two criteria, such as two antibodies. With such criteria, a flow
cytometry-like contour plot of the entire dataset is drawn.
Using a lasso or a box selection tool, the user can select
some cells and immediately see these on a t-SNE/UMAP map.
Single-Cell Virtual Cytometer supports an unlimited level of
successive gatings. Selected cells can be exported for further
use. Quadrant gates display the number and % of cells in each
quadrant, and trigger their location on the t-SNE/UMAP.

CITE-seq counter

We developed CITE-seq-counter software to count the UMI
of antibodies tags in raw sequencing reads. CITE-seq-
counter has been developed for Single Cell CITE-seq samples
processed with 10XGenomics technologies. It takes as input
fastq files R1 and R2 from the sequencer, the antibodies
barcodes, and a white list of cells obtained from Seurat (4).
Cell and antibody barcode positions are adjustable as well
as UMI positions. Since sequencers can produce errors, one
mismatch is allowed in the barcode and in the UMI. PCR
duplicates (same UMI + barcode) are excluded from the
counts. The software is written in Go, it is fast and the memory
usage is as low as possible. Only the result table and two
sequences R1 R2 are stored in RAM at the same time.

Code availability.

Single-Cell Virtual Cytometer was developed in pure
javascript using the graphical libraries plotly.js (5) and Bulma.
It only needs a web browser with javascript enabled to be
executed, with tab-separated text files as input. Files can be
accessed on the GitHub Single-Cell Virtual Cytometer web
page.

CITE-seq-counter was developed in Go and pre-compiled
static binaries are available for Linux and Windows.

Generation and Preprocessing of PBMC CITE-seq data.

Procedures for cell isolation, labeling, CITE-seq experiment,
sequencing, and preprocessing of the resulting dataset are
described in Supplementary Information section.

RESULT

Single-Cell Virtual Cytometer for analysis of CITE-seq
datasets

Currently, there is a growing demand for analytic tools for
exploration of CITE-seq datasets based on flow cytometry-
like visualization of the cells. Thus we designed Single-Cell
Virtual Cytometer, a software to explore scRNAseq datasets
with user-friendly and flow cytometry-like tools. It can be run
immediately in a web browser without requiring any complex
installation. The user can immediately explore his data without
mastering command line instructions. The data must consist in
csv tables with cells in row and columns for genes, antibodies,
signature scores, or any other quantitative single cell readout.
Importantly, this table must have for each cell at least one set
of map (x,y) coordinates from any dimensionality reduction
method. Single-Cell Virtual Cytometer typically displays both
a flow cytometry-like density plot of cell phenotypes (left
panel) and the corresponding dimensionally-reduced map of
cells based on their transcriptomes (right panel). Based on
any user-defined criteria, the cells selected on the phenotype
density plot by gates or quadrants are interactively displayed
on the corresponding t-SNE /UMAP (Supplementary data
demo video). Setting quadrants in the phenotype panel
automatically triggers display of both percentages and counts
of cells from each quadrant. Hence from a CITE-seq dataset
analyzed with Single-Cell Virtual Cytometer, it is possible
to select two antibodies to get their density plot across the
cell population. Using gates or quadrants from this plot, the
user can select further a subset of cells to visualize on the
transcriptomic map. The cell tags of any selected subset
of cells can be exported as a txt file. Downstream sub-
gating and analysis with other antibodies of selected cells
can be reiterated without limits. Delineating quadrants on
the plot returns both the % and absolute count of cells from
each quadrant, as well as their respective localization on
the corresponding right side map. The plots and maps from
Single-Cell Virtual Cytometer can be exported in low and high
resolution. Importantly, the Single-Cell Virtual Cytometer is
very versatile. Its two-panels displays are interactive and based
on any (x,y) parameters selected by the user from the drop-
down list. Hence this enables users to select not only any mAb
or cell hashtag (Biolegend), but also any other parameter such
as cluster number, sample annotation index, or dimensionality
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reduction axis. Hence instead of the above-depicted phenotype
left and transcriptome right panels, the selection of (tSNE-1,
tSNE-2) as left panel parameters allows user to gate, quadrant,
and select cells from a transcriptomic cluster standpoint to
further visualize their respective phenotypes on the right
panel.

Comparison with existing scRNAseq and flow cytometry
visualization tools

Seurat 3.0 (4)1s an R package designed for QC preprocessing,
analysis, and exploration of single cell RNA-seq data.
Seurat enables users to identify and interpret sources of
heterogeneity from single-cell transcriptomic measurements,
and to integrate diverse types of single-cell data, performing
the so-called multimodal integration. Seurat is a command line
tool able to generate dimensionality reduction maps from t-
SNE or UMAP, allowing users to select clusters and subsets
of cells using thresholds using command lines. Hence the
use of Seurat requires bioinformatics skills that are however
not necessary for using Single-Cell Virtual Cytometer, which
was rather designed for end users more accustomed to flow
cytometry.

Loupe Cell browser 3.1.1 is a dedicated visualization
and analysis tool for scRNAseq developed for analysing
scRNAseq datasets mostly produced by 10xGenomic
platforms. It allows importing datasets and visualizing
custom projections of either gene expression or antibody-only
datasets,across t-SNE or UMAP computed by the Cell Ranger
3.1 pipeline. Despite its ease of use however, this tool only
displays a single dimensionality reduced map featuring the
dataset clusters and heatmaps of the graph-based differentially
expressed genes or mAbs. Although this tool may export
images and selection of cells, it lacks the dual displays of
phenotypes and transcriptomes to perform any simultaneous
exploration of CITEseq data.

iCellR is a R package for scRNAseq analysis able to
produce interactive graphs for either of transcriptome or
immunophenotype data, but not both simultaneously. To
our knowledge iCellR does not reproduce a flow cytometry
interface and, similarly to Seurat, is accessible for users skilled
inR.

CytoBank (3) and some other flow cytometry softwares can
import single cell data files after adequate file conversions,
and can be used for visualizing single cell phenotype data.
CytoBank is also able to produce t-SNE but its limited
capacity to process a maximum of 818 parameters is not
compatible with current scRNAseq transcriptomic datasets.
Furthermore, Cytobank does not display interactively the
density plot subpopulations in the t-SNE, nor does it allow
users to export the cell tags for further use.

So currently, there are no other software than Single-Cell
Virtual Cytometer to analyze CITE-seq or related multimodal
single cell datasets as easily as with flow cytometry softwares.
In addition, the computing time to display the user-selected
plots and maps is extremely short. For example the time to plot
a density plot or to display a mAb-labelled subpopulation on a
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t-SNE map is < 1sec with 10k cells when running Single-Cell
Virtual Cytometer with an Intel(R) Xeon(R) CPU E5-2630 v4
@ 2.20GHz.

Simultaneous visualisation of single cell phenotypes and
transcriptomes from an healthy donor’s PBMC CITEseq
dataset

Single-Cell Virtual Cytometer was primarily applied to
analyse an original CITE-seq dataset of human PBMC. So
the PBMC from a healthy individual were primarily labelled
with a mix of 12 TotalSeq™-B ADT (Supplementary
Table 1) at 5 concentrations respectively labelled by 5 HTO
(Supplementary Table 2). The stained PBMC were analyzed
for CITE-seq using a 10XGenomics 3’ chemistry V3 platform,
sequenced, pre-processed, and dimensionality reduction of
the transcriptome datasets was performed with UMAP. As
QC of the transcriptomic part of the CITE-seq dataset, the
single cells with outlier counts of total UMI or number of
genes were discarded. For the QC of the phenotypic part
of the CITE-seq dataset, cells labelled with over-diluted
ADT (Supplementary Figure 1) and cells displaying
mutually exclusive phenotypes (e.g. CD3TCD19TCDI14T)
were discarded. This finally yielded a CITE-seq dataset
encompassing the phenotype and transcriptome of n= 5,559
PBMC. Importantly, analysing this dataset by either the flow
cytometry tool Cytobank or by Single-Cell Virtual Cytometer
yielded the same plots and rates of CD3CD4 T and CD3CDS8
T cells from the PBMC (Figure 1).

We reasoned that the above-depicted possibility to explore
at the same time phenotype data and single gene expressions
opens the possibility to explore likewise phenotype data
and multi-gene signatures. Any multi-gene signature can be
robustly scored for each single cell across the scRNAseq
dataset by computing its summed expression ratio to that
cell’s transcriptome (1). So the above CITEseq PBMC dataset
from one donor was then analysed in more details through
both gene signatures and cell surface markers, by computing
(Methods) and plotting the single cell scores of a myeloid
cell-specific gene signature (1) versus ADT staining for the T
cell surface marker CD3. The T lymphocytes were then gated
and visualized across the UMAP of the entire dataset (Figure
2A). These gated T cells were further analyzed likewise for
cell surface CD4 versus CD8 markers, which yielded the
subsets of CD4 T (n=1796), CD8 T (n=885), CD4CDS double
positive T cells (n=52) and the CD4CD8 double negative
T cells (n=99) including v T lymphocytes (6). These four
subsets were readily delineated in the dimension-reduced
UMAP of the PBMC dataset (Figure 2B). Parallel analyses
of CD19 and CD16 phenotypes in the non-T cell subsets
of PBMC identified the B lymphocytes (CD19TCDI167)
(n=157), the NK cells (CDI19~CDI16") (n=902) and
monocytes (CD197CD167) (n=1341) , including their

classic CD14TCD16™ and non-classic CD14itCD16t/+
subsets (Figure 2C).

So, Single-Cell Virtual Cytometer allows the simultaneous
analysis and visualization of cell surface transcriptomes and
phenotypes at the single cell level.
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Figure 1. A: The PBMC from a healthy individual were labeled with ADT and studied by CITE-seq prior to analysis of the cell phenotype results by either the
flow cytometry software Cytobank or by Single-Cell Virtual Cytometer. B: Examples of phenotype analysis by either software, illustrating the consistence of their

displays and results.

Consistence of gene signatures and cell surface phenotype
of peripheral T cell differentiation at the single cell level

Peripheral T lymphocytes evolve through successive
differentiation stages comprising naive (Tn), central memory
(Tcem), effector memory (Tem) and terminally differentiated
(Temra) lymphocytes (7). These respective stages are
classically defined through cell surface expression of markers
such as CD45RA and CD62L, IL7Ra, and CCR7 (Tn),
CD45RO, CD62L, IL7Ra and CCR7 (Tcm), CD45RO
(Tem), and CD45RA (Temra) proteins, but their respective
transcriptome signatures have remained unclear as cell surface
markers and transcriptomes have never been studied on the
same cells so far.

In a test experiment with the above CITE-seq dataset and
Single-Cell Virtual Cytometer, we now aimed at defining
these differentiation signatures. The cell surface expression
of CD4 and CD8 markers indicated that T lymphocytes
comprised n= 1796 CD4 T cells, n= 885 CD8 T cells, n=
52 CD4CD8 double positive T lymphocytes, and n= 99
double negative T lymphocytes, embedded in distinct areas of
the PBMC dataset UMAP (Figure 2B). These four subsets
of T lymphocytes were then subdivided within Tn, Tcm,
Tem, and Temra based on their cell surface CD45RA and
CDG62L phenotypes (Figure 3). In CD4 T cells, this identified
CD45RA and CD62L-double positive cells corresponding
to CD4 Tn lymphocytes, CD45RA-negative CD62L-positive
cells corresponding to CD4 Tcm lymphocytes, n= 438
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CD45RA and CD62L-double negative cells corresponding
to CD4 Tem lymphocytes, and n= 10 cells that were both
CD45RA-positive and CD62L-negative, corresponding to
the CD4 Temra lymphocytes. The genes selectively and
differentially up-regulated by Tcm versus Tn cells, by Tem
versus Tcm cells, and by Temra versus Tem cells, and by Tn
versus all other cells were selected (BH-corrected Wilcoxon
P < 0.001). This defined four differentiation signatures
which were refined by discarding genes with intra-group
mean <(0.1 and relative variance >1. These differentiation
signatures were then scored across each single cell of CD4 T
lymphocyte, and the same procedure was applied separately
for the differentiation signatures of CD8 T lymphocytes,
double positive T lymphocytes, and double negative T
lymphocytes (Supplementary Tables 3-6). For each of these
gated T cell subsets, these differentiation signatures were
consistent with the corresponding cell surface CD45RA and
CD62L phenotype (Figure 3).

In a further validation experiment, the T cells from
another PBMC CITE-seq dataset were analyzed with
Single-Cell Virtual Cytometer as above. The 10k PBMC
CITE-seq (3’ chemistry V3) dataset was downloaded from
the 10XGenomics website, pre-processed with Seurat as
above. The CD4, CD8, DN, and DP T lymphocytes were
identified by their CD3, CD4, and CD8 phenotype, and scored
for the above differentiation signatures. Within this second
PBMC dataset, all the transcriptome signatures of T cell
differentiation were also consistent with the differentiation
phenotypes, here defined by the cell surface expression of
IL7R (CD127) and CD45RA (Supplementary Figure 2).

Together, these results validated the simultaneous analysis
and visualization of gene expression and cell surface
phenotype from CITE-seq datasets with Single-Cell Virtual
Cytometer.

DISCUSSION

The advent of Cellular Indexing of Transcriptome and
Epitopes by sequencing (CITE-seq) has brought the
possibility to jointly obtain both gene expression and
immunophenotypes at the single cell level (2). However,
this development does not provide a user-friendly interface
allowing biologists to readily visualize any combination of
gene, immunophenotype marker and combination signature
from the datasets.

Our report illustrates the potential of Single-Cell Virtual
Cytometer for the exploration of both transcriptomic and
phenotype from CITE-seq datasets. This simple and rapid
software does not intervene on the pre-processing integration,
clusterization and QC of data however, in contrast to pre-
existing algorithms and platforms that analyze either of
phenotypes or transcriptomes separately. This unique tool
is particularly relevant for fully exploiting approaches that
measure distinct modalities within single cells, since each
readout such as gene, protein or signature score is directly
plotted across the dataset plot. By pinpointing here the gene
signatures of functional differentiation stages in peripheral
T lymphocytes from healthy individuals, we showed that it
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permits straightforward analyses of bimodal data such as
mRNA and cell surface proteins.

Likewise, Single-Cell Virtual Cytometer is broadly
applicable to the visualization of any kind of readout from
any multimodal single cell technology, after adequate
integration of the data sets (8). Its versatility enables users
to analyze likewise any kind of single cell data about
chromatin accessibility (9, 10), epigenomics (11), mutations
(12), chromosome conformation (13), RNA modification
(14), spatial transcriptomics (15, 16) and spatial proteomics
(17, 18). Hence, Single-Cell Virtual Cytometer represents a
unvaluable resource for integrated analyses of multimodal
datasets at the single cell level.
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Figure 2. Simultaneous visualization by Single-Cell Virtual Cytometer of cell surface phenotype, gene signatures and cell subsets in the UMAP of 6k PBMC
isolated from an healthy individual and stained with TotalSeq-AT™ADT. A: Left panel: The scores for a myeloid gene signature (CD14, LYZ, ANPEP, FUT4,
S100A2,5100A4-S100A6, S100A8-S100A13, S100B genes) versus CD3 staining levels of 6k PBMC define the T lymphocytes (purple gate) further shown in the
transcriptome UMAP (right panel). B: The CD4 and CDS8 phenotype of the above-gated T lymphocytes (left panel) defines four T cell subsets shown in the
corresponding transcriptome UMAP (right panel). C: CD19 and CD16 phenotype of non-T cells from PBMC (left panel) defines the B, NK, and myeloid cell
subsets respectively shown in the corresponding transcriptome UMAP (right panel).
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Figure 3. Cell surface phenotype (top) and gene signatures (bottom) of differentiation stages in T lymphocytes among 6k PBMC from an healthy individual.
The gated CD3-positive cells were subdivided according to cell surface markers as CD4 T, CD8 T, double negative T, and double positive T lymphocytes. Each
of these subset was then gated and analyzed for expression of the cell surface CD62L and CD45RA markers. This dataset did not encompass Tem cells among
the DP T lymphocytes.
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