

1 **Multiple routes to interspecific territoriality in sister 2 species of North American perching birds**

3 Madeline C. Cowen¹, Jonathan P. Drury², and Gregory F. Grether¹

4

5 **Author Affiliations:** ¹Department of Ecology & Evolutionary Biology, UCLA, 621
6 Charles E. Young Dr. S, Los Angeles, CA, 90095, USA

7 ²Department of Biosciences, Durham University, Stockton Rd., Durham, DH1 3LE, UK

8

9 **Materials and correspondence:** Madeline C. Cowen (mcowen@g.ucla.edu)

10 **Running title:** Multiple routes to interspecific territoriality

11

12 **Author contributions:** All authors contributed to the study design and data collection
13 from the literature. MCC obtained the song exemplars and compiled song comparisons.
14 JPD designed and circulated the plumage surveys. GFG compiled indices of syntopy and
15 sympatry. MCC and JPD conducted statistical analyses. MCC wrote the first draft and all
16 authors contributed to editing the manuscript.

17 **Competing Interests:** The authors declare no competing interests.

18

19 **Acknowledgments:** We thank Alexa Sheldon, David Blake, Colette Troughton,
20 Katherine Zhou, Prrottasha Khan, Sierra Hovey, and Tarran Walter for assistance with
21 data collection. For helpful comments on early drafts of this manuscript, we thank Robert
22 Cooper, Shawn McEachin, Gaurav Kandlikar, Thomas Smith, Michael Alfaro, and Noa
23 Pinter-Wollman. This research was funded by a grant to GFG from the National Science
24 Foundation (DEB-1457844).

25

26 **Data Accessibility Statement:** All data and code will be made available on Dryad upon
27 initial acceptance.

28 **ABSTRACT**

29 Behavioral interference between species can influence a wide range of ecological
30 and evolutionary processes. Here we test foundational hypotheses regarding the origins
31 and maintenance of interspecific territoriality, and evaluate the role of interspecific
32 territoriality and hybridization in shaping species distributions and transitions from
33 parapatry to sympatry in sister species of North American perching birds (Passeriformes).
34 We found that interspecific territoriality is pervasive among sympatric sister species
35 pairs, and that interspecifically territorial species pairs have diverged more recently than
36 sympatric non-interspecifically territorial pairs. None of the foundational hypotheses
37 alone explain the observed patterns of interspecific territoriality, but our results support
38 the idea that some cases of interspecific territoriality arise from misdirected intraspecific
39 aggression while others are evolved responses to resource competition. The combination
40 of interspecific territoriality and hybridization appears to be an unstable state associated
41 with parapatry, while species that are interspecifically territorial and do not hybridize are
42 able to achieve extensive fine- and coarse-scale breeding range overlap. In sum, these
43 results suggest that interspecific territoriality has multiple origins and that interspecific
44 territoriality and hybridization together can have striking impacts on species ranges.

45

46 **Keywords:** interspecific territoriality; interference competition; misdirected aggression;
47 resource competition; passerine birds; sympatry

48

49 **INTRODUCTION**

50 Behavioral interference between species, such as interspecific courtship, mate
51 guarding, or territorial defense, can have considerable impacts on the ecology and
52 evolution of co-occurring species (Robinson and Terborgh 1995; Amarasekare 2002;
53 Gröning and Hochkirch 2008; Grether et al. 2009, 2013; Kishi and Nakazawa 2013;
54 Drury et al. 2015). Understanding the causes of different types of behavioral interference,
55 their impacts on species coexistence, and the timescale over which they operate are thus
56 active areas of research (Laiolo 2013; Martin and Ghalambor 2014; Losin et al. 2016;
57 Grether et al. 2017; Kyogoku and Sota 2017; Sottas et al. 2018). Recent empirical and
58 theoretical work has documented influences of interspecific territoriality on species
59 coexistence and evolution in diverse taxonomic systems (reviewed in Grether et al.
60 2017). For instance, interspecific territoriality can facilitate species replacements (e.g.,
61 Duckworth and Badyaev 2007), accelerate competitive exclusion (e.g., Pasch et al. 2013),
62 and foster coexistence between resource competitors that otherwise might not be
63 expected to coexist (e.g., Ovadia and Dohna 2003; Ziv and Kotler 2003). While these
64 findings highlight an important role for interspecific territoriality in fundamental
65 ecological and evolutionary processes, general explanations for the occurrence, stability,
66 and impacts of interspecific territoriality remain elusive.

67 Four sets of hypotheses provide possible explanations for interspecific
68 territoriality. The *resource competition hypothesis* posits that interspecific territoriality
69 persists due to resource competition and acts as a mechanism of spatial partitioning. In
70 some cases, interspecific territoriality persists among resource competitors through

71 adaptive convergence in territorial signals and/or competitor recognition (Cody 1969,
72 1973; Grether et al. 2009). Another hypothesis that assumes interspecific territoriality is
73 adaptive when there is resource competition is that one species gains access to more
74 resources through this behavior (MacArthur 1972). One pattern predicted by this
75 *asymmetric competition hypothesis* is that interspecific territoriality is more likely to
76 occur when one species is dominant in aggressive interactions. Third, local mate
77 competition arising from reproductive interference (e.g., indiscriminate male mate
78 recognition) could also make interspecific territorial defense adaptive and persist through
79 time (Payne 1980; Drury et al. 2015). This *reproductive interference hypothesis* predicts
80 a positive association between interspecific territoriality and indices of reproductive
81 interference (e.g., rate of cross-species mating attempts, occurrence or frequency of
82 hybridization). Fourth, if interspecific territoriality arises from misdirected intraspecific
83 aggression, it should be transient and disappear over time as species evolve mechanisms
84 to discriminate between heterospecifics and conspecifics (Murray 1971). However, it
85 could persist if the species encounter each other too infrequently to evolve discriminatory
86 mechanisms, or if hybridization prevents divergence (Murray 1971). We refer to this
87 explanation for the persistence of interspecific territoriality as the *misdirected aggression*
88 *hypothesis*.

89 Although interspecific territoriality has been documented in diverse two-species
90 systems (e.g., Kral et al. 1988; Drury et al. 2015; Reif et al. 2015), to our knowledge,
91 only one study has tested for a general explanation for interspecific territoriality across
92 numerous taxa above the genus level (Losin et al. 2016). In North American
93 representatives of the wood-warbler family (Passeriformes: Parulidae), Losin et al. (2016)

94 found that interspecific territoriality is common, suggesting that this behavior is a more
95 stable phenomenon than commonly assumed. They found that interspecific territoriality
96 was positively associated with fine-scale habitat overlap (syntopy), supporting the
97 resource competition hypothesis over the misdirected aggression hypothesis. Yet, wood-
98 warblers are broadly ecologically similar (Lovette and Hochachka 2006), so to further
99 evaluate the role of resource competition and other ecological circumstances in
100 generating or maintaining interspecific territoriality, assessing these hypotheses in a
101 dataset with greater ecological and phylogenetic diversity is key. Moreover, the diverse
102 observed effects of interspecific territoriality on species coexistence (Ovadia and Dohna
103 2003; Ziv and Kotler 2003; Duckworth and Badyaev 2007; Pasch et al. 2013) raise the
104 question of whether interspecific territoriality is adaptive for some species and
105 maladaptive for others, or whether this behavior predominantly emerges and persists
106 under one set of circumstances.

107 Characterizing the origins and persistence of interspecific territoriality is
108 important for understanding not only how it manifests between interacting species, but
109 also how it impacts their population dynamics. Research on species ranges suggests that
110 competition or interference between species may impact range limits (Case et al. 2005;
111 Price and Kirkpatrick 2009; Jankowski et al. 2010). In fact, evidence from sister taxa
112 studies across vertebrate groups supports the hypothesis that becoming sympatric after
113 allopatric speciation is constrained by ecological similarity or incomplete reproductive
114 isolation (Price 2010; Weir and Price 2011; Pigot and Tobias 2013; Laiolo et al. 2017).
115 While interspecific territoriality in some systems has led to competitive exclusion, it
116 might also serve to increase alpha-diversity by enabling competing species to coexist

117 (Robinson and Terborgh 1995; Grether et al. 2013; Grether et al. 2017); thus, the impact
118 of interspecific territoriality on coexistence across breeding ranges remains unknown. If
119 interspecific territoriality does affect the likelihood of two species coexisting, it might
120 reduce the rate at which parapatric species transition into sympatry. Alternatively,
121 interspecific territoriality might enable closely related species, strong resource
122 competitors, and/or hybridizing species to transition more rapidly into sympatry than if
123 they were not interspecifically territorial.

124 To address these knowledge gaps, here we examine interspecific territoriality in
125 sister species of perching birds (order Passeriformes) that breed in North America, a
126 group with a larger breadth of ecological and life history strategies than in any previous
127 study of interspecific territoriality. First, we document the prevalence of interspecific
128 territoriality across a large taxonomic group, spanning diverse ecologies and evolutionary
129 histories. Second, we evaluate foundational hypotheses about the emergence and
130 maintenance of interspecific territoriality, taking a step further than previous work by
131 testing whether multiple hypotheses explain the observed pattern of interspecific
132 territoriality. Third, we determine whether interspecific territoriality, alone and in
133 combination with hybridization, contributes to regional coexistence and range expansion
134 over evolutionary time.

135 Among the most recently diverged passerine birds in North America, we find
136 support for the misdirected aggression and asymmetric competition hypotheses,
137 suggesting that interspecific territoriality has multiple origins and evolutionary
138 trajectories. Our work also identifies the potential for interspecific territoriality and

139 reproductive interference to determine breeding range overlap between closely related
140 species.

141 **METHODS**

142 **Species pairs identification and classification**

143 Our dataset consists of sister species of passerine birds that breed in North
144 America and that overlap in breeding range. We identified sister species by sampling 10^4
145 trees from the posterior distribution of a North American passerine phylogeny (Jetz et al.
146 2012) and selecting those that appeared as sister species in 90% or more of the
147 phylogenies. Since allopatric sister species do not have the opportunity to be
148 interspecifically territorial, we excluded species pairs that are allopatric in the breeding
149 season according to 2016 and 2017 species distribution shapefiles from BirdLife
150 International (www.birdlife.org). For each allopatric sister species pair, we selected the
151 next most closely related species in the phylogeny that is sympatric with only one of the
152 allopatric species to form a pair of closely related sympatric species. We only did this for
153 one species from each allopatric pair to avoid sampling from non-independent nodes. We
154 then created a maximum clade credibility tree from this posterior distribution in
155 TreeAnnotator v1.8.4 (Suchard et al. 2018). Next, we calculated patristic distance
156 between species from this phylogeny using the cophenetic.phylo function in the R
157 package ape (Paradis et al. 2004). Due to recent taxonomic splits, we could not calculate
158 patristic distance for all species pairs using this method. We obtained the patristic
159 distance for one such pair, *Troglodytes pacificus* and *T. hiemalis*, from the literature
160 (Toews and Irwin 2008). The other two species pairs that lacked patristic distances were
161 omitted from our analyses.

162 We determined whether each species pair is interspecifically territorial with
163 comprehensive literature searches using Web of Science, Birds of North America Online
164 (Rodewald 2015), ProQuest Theses and Dissertations, and Google Scholar. We also
165 contacted Birds of North America Online authors for additional behavioral observations.
166 As in Losin et al. (2016), we considered a study sufficient evidence for interspecific
167 territoriality if it contained at least two accounts of interspecific territorial aggression
168 between unique individuals. Behaviors that qualified as interspecific territorial aggression
169 include aggressive displays or countersinging, fighting, or chasing a heterospecific from a
170 territory. We did not consider aggression over a food source or defense of a nest from a
171 predator to be evidence of interspecific territoriality. Aggressive response to playbacks of
172 territorial song and expansion of territory in response to removal of heterospecifics
173 supported the classification of interspecific territoriality but were not required, since not
174 all species pairs had been studied with these methods. If the behavior of both species in a
175 pair had been studied together and no interspecific territoriality was reported, we
176 classified that pair as non-interspecifically territorial. We omitted from our dataset any
177 species pairs whose behavior had not been studied in sympatry (25 pairs), with two
178 exceptions: the *Empidonax* species *E. difficilis* and *E. occidentalis* and the *Troglodytes*
179 species *T. pacificus* and *T. hiemalis* have only recently been recognized as separate
180 species (Johnson 1980; Toews and Irwin 2008), and have been reported to have non-
181 overlapping territories in sympatry, so we classified them as interspecifically territorial.
182 We also excluded species pairs for which neither species in the pair was intraspecifically
183 territorial (2 species pairs), or for which we lacked data on fine-scale breeding habitat
184 overlap (1 species pair). A full list of species pairs can be found in Table S1.

185 We classified species as hybridizing in the wild or not based on McCarthy (2006)
186 and literature searches for newer reports of hybridization published in the years 2000 to
187 2018.

188 To assess whether greater study effort increased the likelihood of species pairs
189 being reported as interspecifically territorial, we used the number of records of each
190 species pair in the Zoological Records database (Thomson Reuters, New York, NY) as a
191 proxy for past research and used Mann-Whitney tests to compare interspecifically versus
192 non-interspecifically territorial species.

193 **Breeding range and habitat overlap quantification**

194 We used two metrics to represent breeding season range overlap and habitat
195 overlap of species pairs. First, we calculated the proportion of breeding range sympatry
196 by dividing the area of overlap between BirdLife shapefiles by the breeding range area of
197 the species with the smallest breeding range in each pair. However, BirdLife shapefiles
198 were missing for two species pairs. We therefore also estimated sympatry using the
199 Breeding Bird Survey (BBS; Sauer et al. 2017), a dataset of transects run across North
200 America during the breeding season since the 1960s to survey the number of birds
201 observed. Each BBS route is run annually, with 50 stops along each route. We measured
202 sympatry by dividing the number of routes shared by both species by the total number of
203 routes where the species with the fewest routes was observed. To replace the missing
204 Birdlife sympatry values with rescaled BBS sympatry estimates, we used predicted
205 values from a zero-intercept linear regression of the available Birdlife sympatry estimates
206 on the BBS sympatry estimates ($R^2 = 0.69$, $df = 85$, $P < 0.0001$).

207 Our second measure of overlap was syntopy (Rivas 1964), a fine-scale measure of
208 breeding habitat overlap within the region of sympatry, such that species with higher
209 syntopy are more likely to occur in the same habitat at the same time within their
210 breeding range. We measured syntopy by identifying BBS routes where both species in a
211 breeding season were found and dividing the number of “shared” stops (where both
212 species were observed) by the number of stops where either species was observed. For
213 two sympatric species pairs without BBS data (*Plectrophenax hyperboreus* and
214 *Plectrophenax nivalis*; *Ammodramus caudacutus* and *Ammodramus nelsoni*), we used
215 rescaled measures of syntopy from eBird records (Sullivan et al. 2009) (Supplement 1).

216 **Ecological trait quantification**

217 To determine whether interspecific territoriality can be predicted by species-level
218 traits, we collected ecomorphological data for each species and calculated the difference
219 between these traits for each species pair. We focused on male traits since males perform
220 territorial displays and defense for all territorial species in our dataset. We collected mass
221 and bill length (exposed culmen length) values from the Birds of North America Online
222 or additional references (e.g., Oberholser 1974, Dunning 2008). To account for possible
223 geographic variation in the traits, when possible we used measurements collected close to
224 the location where interspecific territoriality was studied. If the bill length measurement
225 we found for a species was a measurement from the nostril to the tip of the bill instead of
226 the exposed culmen length, we used a linear regression equation based on species for
227 which both types of measurements were available ($R^2 = 0.985$, $df = 23$, $P < 0.0001$) to
228 predict exposed culmen length from the nostril-to-tip measurement.

229 We categorized foraging guild overlap between species in a pair by calculating
230 the number of foraging guild axes on which the species overlap based on de Graaf et al.
231 (1985). Specifically, species were categorized by the food types, foraging techniques, and
232 foraging substrates used during the breeding season, and each species pair was assigned a
233 score based on the number of overlapping axes (0 to 3).

234 **Quantification of territorial signal similarity**

235 To determine whether interspecific territoriality could be predicted by overlap in
236 common territorial signals, we quantified species similarity in territorial song and
237 plumage coloration. To assess similarity in song, we downloaded high quality sound files
238 from xeno-canto (<https://www.xeno-canto.org/>) and the Cornell Macaulay Library (Table
239 S2) that matched the description in the Birds of North America of the vocalization used
240 by each species for territorial advertisement and interactions. We categorized the size of
241 the territorial repertoire for each species with descriptions in the Birds of North America,
242 and determined the number of song files needed to capture repertoires of different sizes
243 with a sensitivity analysis (Supplement 2, Figure S1). For species with relatively small
244 repertoires (fewer than 4 song types), we collected 2 representative song files, and for
245 species with relatively large repertoires (4 or more song types), we collected 4 song files.
246 We performed noise reduction on sound files with background noise in Audacity version
247 2.1.3 (<http://web.audacityteam.org/>), using starting values of noise reduction = 12,
248 sensitivity = 6, frequency smoothing = 0. We then normalized all sound files together.

249 To assess similarity in song between the species in a pair, we used two
250 approaches. First, we calculated a measure of song dissimilarity based on numerous song
251 parameters. We used the R package warbleR (Araya-Salas and Smith-Vidaurre 2016) to

252 extract acoustic parameters (Table S3) and then additionally calculated the number of
253 notes, length of the longest note, total note duration, average note duration, longest pause
254 between notes, and average pause length per song. We averaged parameters for the sound
255 files for each species and performed phylogenetic principal component analysis (pPCA;
256 Revell 2009; Figure S2) on these averaged parameters (since pPCA requires exactly one
257 data point per species in the phylogeny). We then calculated the Euclidean distance
258 between all phylogenetic principal component scores for each species pair as a measure
259 of song dissimilarity.

260 Second, we used spectral cross-correlation analysis (Clark et al. 1987) to quantify
261 similarity in the frequency-time structure of song files. Spectral cross-correlation
262 incrementally time-shifts spectrograms and calculates the cross-correlation between the
263 frequency-time matrices of the spectrograms at each increment. We used the xcor
264 function in warbleR to perform spectral cross-correlation analysis between all song files
265 in a species pair, and averaged the maximum cross-correlation value from those
266 comparisons as a second metric of song similarity. These two song measures are
267 significantly correlated but not strongly enough to be considered redundant measures ($r =$
268 -0.37 , $N = 45$, $P = 0.011$).

269 To quantify similarity in plumage coloration and pattern, we recruited volunteers
270 to score images of birds based on how similar they appeared. We obtained digital images
271 of each species from two field guides (Sibley 2000; Dunn and Alderfer 2006) and asked
272 participants to rank the plumage similarity of each species pair on a 0-4 scale using those
273 images. We partitioned the images into seven surveys that we distributed with Survey
274 Gizmo (<https://www.surveygizmo.com>) through social media and birding groups. Each

275 survey contained approximately 30 pairs of images, with images repeated across surveys
276 and within surveys, and a test for colorblindness. We filtered out incomplete responses
277 and responses from participants who failed the color vision test. After obtaining at least
278 10 complete responses per survey, we calculated the mean similarity score for each
279 species pair. Plumage similarity scores were strongly correlated between field guides ($\rho =$
280 0.79, $N = 14$), within surveys ($\rho = 0.92$, $N = 14$), and across surveys ($\rho = 0.85$, $N = 14$).

281 **Assessing ecological predictors of interspecific territoriality**

282 We first used univariate tests to determine whether the trait differences (such as
283 song similarity or bill length difference) within interspecifically territorial species pairs
284 differed from non-interspecifically territorial species pairs. Because the potential to detect
285 such differences depends on the level of variability among sister species, we calculated
286 coefficients of variation for traits measured on a ratio scale and coefficients of nominal
287 variation for binary traits (Kvålseth 1995).

288 To assess whether a single hypothesis explained the observed pattern of
289 interspecific territoriality, we ran a generalized linear model with interspecific
290 territoriality as a binomial response variable and the ecological, phenotypic, and
291 behavioral traits in Table 1 as the predictor variables: hybridization (presence or
292 absence), syntopy, ecomorphological differences, the number of overlapping foraging
293 niche axes (0-3), song similarity (pPCA distance and maximum spectral cross-
294 correlation), and plumage similarity. We also examined whether habitat complexity and
295 species symmetries in dominance and aggression help explain the observed patterns
296 (Supplement 3).

297 To evaluate whether interspecific territoriality has multiple origins, we included
298 interactions between syntopy and other relevant predictor variables in the generalized
299 linear model. Maladaptive interspecific territoriality, arising from misdirected aggression,
300 should not persist between highly synoptic species that overlap extensively in breeding
301 habitat and encounter each other frequently, whereas interspecific territoriality that is
302 adaptive could persist between such species (Losin et al. 2016). To evaluate whether the
303 misdirected aggression hypothesis and the reproductive interference hypothesis each
304 explain a subset of the cases of interspecific territoriality, we included an interaction term
305 between syntopy and hybridization. Under these two hypotheses, interspecific
306 territoriality should primarily occur between non-hybridizing species with infrequent
307 encounters or between hybridizing species that encounter each other frequently (Figure
308 1A). To test whether the misdirected aggression hypothesis and the resource competition
309 hypothesis each explain a subset of the cases of interspecific territoriality, we included an
310 interaction term between syntopy and the number of overlapping foraging guild axes.
311 Under these two hypotheses, interspecific territoriality should primarily occur between
312 species that encounter each other infrequently or between species with very similar
313 ecological niches and breeding habitats (Figure 1B). Size asymmetry could be a proxy for
314 exploitative resource competition (Losin et al. 2016), but also for whether one species is
315 likely to dominate the other in aggressive interactions (Martin and Ghalambor 2014;
316 Martin et al. 2017; Chock et al. 2018). Since sister species are on average very
317 phenotypically similar, mass difference may not be a strong proxy for species differences
318 in niche overlap, but even a small difference in size could impact aggressive interactions.
319 Thus, we assume that size asymmetry is a better proxy for asymmetry in aggressive

320 dominance than for resource competition in our dataset, and include an interaction term
321 between syntopy and mass difference to test whether the misdirected aggression and
322 asymmetric competition hypotheses each explain a subset of the cases of interspecific
323 territoriality. Under these two hypotheses, interspecific territoriality should primarily
324 occur between species that encounter each other infrequently or that occupy the same
325 breeding habitats and are asymmetric in size (Figure 1C). For each of these linear models,
326 we ran a second generalized linear model that included patristic distance as a predictor
327 variable to control for phylogenetic non-independence.

328 While the syntopy metric captures variation among species pairs in fine-scale
329 breeding habitat overlap in sympatry, the degree to which species are sympatric across
330 their respective ranges might also affect whether interspecific territoriality persists in the
331 zone of overlap. For example, gene flow from allopatry might swamp local adaptation in
332 sympatry if the species are only sympatric in a small portion of their ranges. Thus, we
333 examined whether controlling for breeding range sympatry impacted the results of each
334 pair of phylogenetically controlled and non-phylogenetically controlled linear models
335 examining ecological predictors of interspecific territoriality.

336 **Modeling transitions to sympatry**

337 To test the hypothesis that behavioral interference shapes coarse-scale
338 distributional patterns, we ran five generalized linear models with percent breeding range
339 overlap as the response variable (using the R package betareg; Cribari-Neto and Zeileis
340 2010). In the first model, we used only patristic distance as a predictor to test whether
341 breeding range overlap is related to divergence time. In subsequent models, we examined
342 whether interspecific territoriality, hybridization, the combination of those two variables,

343 or the interaction of those two variables predicted the percent breeding range overlap
344 (Table S11). We compared these models with AICc.

345 Finally, to evaluate the effects of behavioral interference on regional coexistence
346 with a more explicit evolutionary framework, we used two recent sister taxa approaches
347 for modeling factors that impact the probability of species occurring in sympatry. These
348 approaches assume allopatric speciation, which is thought to be the predominant mode of
349 speciation in birds (Mayr 1942; Coyne and Orr 2004; Phillimore et al. 2008), and that
350 following speciation, species transition from an allopatric phase to a parapatric phase
351 before coming into broadly overlapping secondary sympatry (Cooney et al. 2017). First,
352 we used a maximum likelihood approach to compare three types of models modified
353 from Shi et al. (2018), in which the probability of occurring in sympatry depends on
354 several parameters that describe how divergence time or other covariates relate to the
355 probability of sympatry. The first model tests a null hypothesis that the probability of
356 sympatry is based on the percent of species in sympatry and is unrelated to divergence
357 time, while the two remaining models use different functions to associate divergence
358 time, covariates, and the probability of sympatry (Supplement 4). Second, we
359 implemented a multi-state Markov modeling approach (Pigot and Tobias 2013; Cooney
360 et al. 2017) to assess whether interspecific territoriality impacts the rate at which species
361 pairs transition from parapatry to sympatry. This approach assumes that the waiting time
362 before transitioning to sympatry is associated with divergence time, but that there is a lag
363 before sympatry is attained, which can represent species needing to diverge enough to be
364 able to coexist in sympatry. We conducted simulations to determine whether the results
365 we found were likely to occur by chance (Supplement 5). For both the multi-state

366 Markov and the maximum likelihood approaches, we tested a range of values of
367 continuous breeding range overlap (in 5% increments between 20% and 65%) as a cutoff
368 between parapatric and sympatric distributions, as in Cooney et al. (2017). We did not
369 consider the effect of interspecific territoriality or hybridization on transitions from
370 allopatry to sympatry since it is not possible for allopatric species pairs to exhibit
371 behavioral interference. For each approach, we compared models for which the rate or
372 likelihood of transitioning between geographic states was determined only by
373 phylogenetic distance to models that included interspecific territoriality, hybridization, or
374 both as a covariate.

375 Finally, since the range of divergence times in a dataset can impact the
376 generalization of how divergence time relates to sympatry from that dataset to other
377 systems, we examined the range of phylogenetic distances in our dataset relative to other
378 studies of sympatry in avian sister species (Supplement 6). To determine whether the
379 species pairs in our dataset are older than average passerine sister species, we compared
380 the phylogenetic distances between species pairs in our dataset to those of randomly
381 sampled passerine sister species pairs (Supplement 6, Figure S4).

382 All data processing and statistical analyses were performed in R version 3.5.0.

383 **RESULTS**

384 **Data Summary**

385 In our dataset of true North American passerine sister species ($n = 75$), 63 (84%)
386 pairs overlap in breeding range, and 35 (56%) of those are sympatric, defined as having
387 at least 20% breeding range overlap. Only 12 sister species pairs are allopatric, and the
388 remaining 28 are parapatric (< 20% breeding range overlap). After replacing allopatric

389 sister species with the most closely related sympatric or parapatric species pairs, we were
390 left with 71 phylogenetically independent pairs of closely related species. We were able
391 to classify 48 of the 71 species pairs as interspecifically territorial or not. Excluding
392 species that lacked information on patristic distance or breeding range overlap, our final
393 dataset consisted of 45 sympatric or parapatric species pairs. Of those, approximately 21
394 pairs (47%) are interspecifically territorial.

395 In general, the species pairs in our dataset have similar plumage and song and
396 overlap greatly in foraging guild, and also have low coefficients of variation for these
397 variables (Table 2). The paired species vary most in morphological trait differences,
398 syntopy, and sympatry (Table 2), and are relatively evenly divided across the categories
399 of interspecifically territorial/non-interspecifically territorial and hybridizing/non-
400 hybridizing (coefficient of nominal variation = 0.93 and 0.8, respectively). The average
401 divergence time between species pairs is 4.7 Myr (range = 0.4 Myr – 34 Myr; Figure 2).

402 There were more records in the Zoological Records database for species pairs
403 classified as interspecifically territorial than for species pairs classified as non-
404 interspecifically territorial, suggesting that there could be unreported cases of
405 interspecific territoriality (range₁ = 0 – 53; range₂ = 3 – 105; median₁ = 7; median₂ = 15;
406 Mann-Whitney test, $n_1 = 24$, $n_2 = 21$, $P = 0.015$).

407 **Ecological predictors of interspecific territoriality**

408 Interspecifically territorial species pairs are more closely related than non-
409 interspecifically territorial species pairs (Table 2; Figure 2) but species pairs in these two
410 categories do not differ significantly in other measured traits and behaviors (Table 2; 15

411 of 21 interspecifically territorial species pairs vs. 12 of 24 non-interspecifically territorial
412 species pairs hybridize; Fisher's exact test, $P = 0.22$).

413 The generalized linear models without interaction terms that we used to assess
414 support for the four hypotheses separately (Table 1) yielded no significant predictors of
415 interspecific territoriality (Tables S4, S5). However, in models with an interaction
416 between hybridization and syntopy, the interaction term was significant: among
417 hybridizing species, interspecifically territorial species are less syntopic than non-
418 interspecifically territorial species, whereas among non-hybridizing species,
419 interspecifically territorial species are more syntopic than non-interspecifically territorial
420 species (Figure 3A, Table 3, S6). The results for hybridizing species are consistent with
421 the misdirected aggression hypothesis but not with the reproductive interference
422 hypothesis, while the results for the non-hybridizing species are consistent with the
423 resource competition or the asymmetric competition hypotheses (Figure 1).

424 The models with an interaction between foraging guild overlap and syntopy
425 yielded no significant terms (Tables S7, S8). In the models with an interaction between
426 mass difference and syntopy, however, the interaction term emerged as positively
427 associated with interspecific territoriality, regardless of phylogenetic correction,
428 suggesting support for the misdirected aggression and the asymmetric competition
429 hypotheses (Figure 3B, Tables 4, S9).

430 Controlling for sympatry did not affect which terms were significant in any of the
431 models, but in several cases the AICc score decreased (Table S10), i.e., sympatry
432 improved the model fit.

433 **Transitions to sympatry**

434 Regression models built to examine factors associated with breeding range
435 sympatry suggest that the interaction of interspecific territoriality and hybridization may
436 predict the degree of breeding range overlap, whereas the amount of time since
437 divergence does not. Although the model with only patristic distance as an independent
438 variable had the best AICc value, the effect size of patristic distance was small and its
439 association with sympatry was non-significant (Table S11). The next best model (ΔAICc
440 = 0.35) for predicting percent breeding range overlap included the interaction between
441 interspecific territoriality and hybridization and did not include patristic distance (Table
442 S11). In this model, the interaction between both forms of behavioral interference had a
443 large effect size, although this was not statistically significant ($P = 0.07$; Table S11).
444 Species that are both interspecifically territorial and hybridized appear to have narrower
445 breeding range overlap relative to other species in the dataset (Figure 4).

446 Further modeling of a categorical index of sympatry yielded similar results: the
447 best model in the maximum likelihood approach for predicting sympatry includes the
448 interaction between interspecific territoriality and hybridization and does not include
449 patristic distance, regardless of the threshold of parapatry-sympatry considered (Tables
450 S12-S18).

451 When explicitly modeling the transition rates in sympatry using the multi-state
452 Markov models, results depended on the breeding range cutoff (Table S19). However,
453 the confidence intervals around these waiting time estimates overlapped, indicating that
454 none of the covariates significantly predicts the time it takes species to transition from
455 parapatry to sympatry (Figures S3 and S4), and simulations on randomly shuffled data

456 yielded similar results, suggesting that the observed results are likely to occur by chance
457 (Supplement 5).

458 The species pairs in our true sister species dataset are not significantly older than
459 random samples of passerine sister species pairs worldwide (Figure S5; Supplement 6).

460 **DISCUSSION**

461 In the most phylogenetically diverse survey of interspecific territoriality
462 completed so far, we found that interspecific territoriality occurs in almost half of all
463 sympatric sister species of North American passerine birds. This finding alone suggests
464 that interspecific interference competition ought to be an important consideration for
465 researchers studying distributional patterns and diversification in birds. Whether
466 interspecific territoriality is a maladaptive byproduct of intraspecific territoriality that
467 reduces the prospects of species coexisting (Murray 1971) or instead is an evolved
468 mechanism of spatial resource partitioning that stabilizes coexistence (Grether et al.
469 2013) is of obvious relevance for predicting its ecological and evolutionary effects.

470 Consistent with all four hypotheses (Table 1), we found that interspecifically
471 territorial sister species are more closely related than non-interspecifically territorial sister
472 species, despite the shallow timescale involved. Beyond that, however, none of the
473 hypotheses' specific predictions held up across the entire clade. As a whole,
474 interspecifically territorial sister species are not less syntopic (i.e., do not overlap less in
475 breeding habitat) than non-interspecifically territorial species, as the misdirected
476 aggression hypothesis predicts, nor are they more syntopic, as the resource competition
477 and reproductive interference hypotheses predict. Likewise, neither foraging guild
478 overlap, morphological divergence, nor hybridization predict interspecific territoriality

479 across the clade. In short, none of the foundational hypotheses alone accounts for the
480 distribution of interspecific territoriality among sister species of North American
481 perching birds.

482 To evaluate whether multiple hypotheses together could explain the distribution
483 of interspecific territoriality, we included interactions between syntopy and other key
484 predictor variables in the models. The logic behind this approach is that maladaptive
485 interspecific territoriality should be eliminated quickly by selection if the species overlap
486 broadly in breeding habitat, but it might persist indefinitely if the species rarely encounter
487 each other (Losin et al. 2016). By contrast, adaptive forms of interspecific territoriality
488 are more likely to evolve, and be maintained by selection, if the species are highly
489 syntopic (Losin et al. 2016). Therefore, if both maladaptive and adaptive cases of
490 interspecific territoriality occur in our dataset, we would expect to find significant
491 interactions between syntopy and proxies for adaptive processes operating in these
492 systems (Figure 1). We did indeed find such interactions (Figure 3).

493 Our results are consistent with the misdirected aggression and asymmetric
494 competition hypotheses each explaining a subset of cases: we found that interspecifically
495 territorial species that are low in syntopy are more similar in size, on average, than
496 interspecifically territorial species that are high in syntopy (Figure 3B). Our findings
497 from examining the interaction between syntopy and hybridization are also consistent
498 with the misdirected aggression hypothesis and the asymmetric competition or resource
499 competition hypotheses: the presence of hybridizing interspecifically territorial species
500 that do not often encounter each other in breeding habitat may indicate that these species
501 pairs engage in high levels of behavioral interference that might eventually be eliminated

502 by agonistic character displacement (Grether et al. 2017), and the presence of non-
503 hybridizing interspecifically territorial species that frequently co-occur in time and
504 habitat suggests that interspecific territoriality may also arise as an adaptive response to
505 resource competition among species that overlap broadly in breeding habitat. The finding
506 that hybridizing species are more likely to be interspecifically territorial only when they
507 are narrowly syntopic (Figure 3A) suggests that interspecific territoriality is not generally
508 an adaptive response to reproductive interference among sister taxa. Instead, the
509 combination of hybridization and interspecific territoriality in closely related species
510 appears to be an unstable state that only persists when species have low encounter rates,
511 but in the absence of hybridization, interspecific territoriality can mediate resource
512 partitioning among highly syntopic species.

513 In combination, the misdirected aggression hypothesis and the resource
514 competition hypothesis predict an interaction between foraging guild overlap and syntopy
515 because the former hypothesis predicts that interspecific territoriality is associated with
516 low syntopy while the latter predicts that interspecific territoriality is associated with high
517 syntopy and high foraging guild overlap. We did not find such an association, but this
518 might be due to low variation in the foraging guild metric; most species pairs in our
519 dataset overlapped in all three foraging guild axes. While not all of the highly syntopic,
520 interspecifically territorial species overlap in all three foraging axes, in theory even
521 moderate levels of niche overlap can be sufficient to maintain interspecific territoriality
522 (Grether et al. 2009).

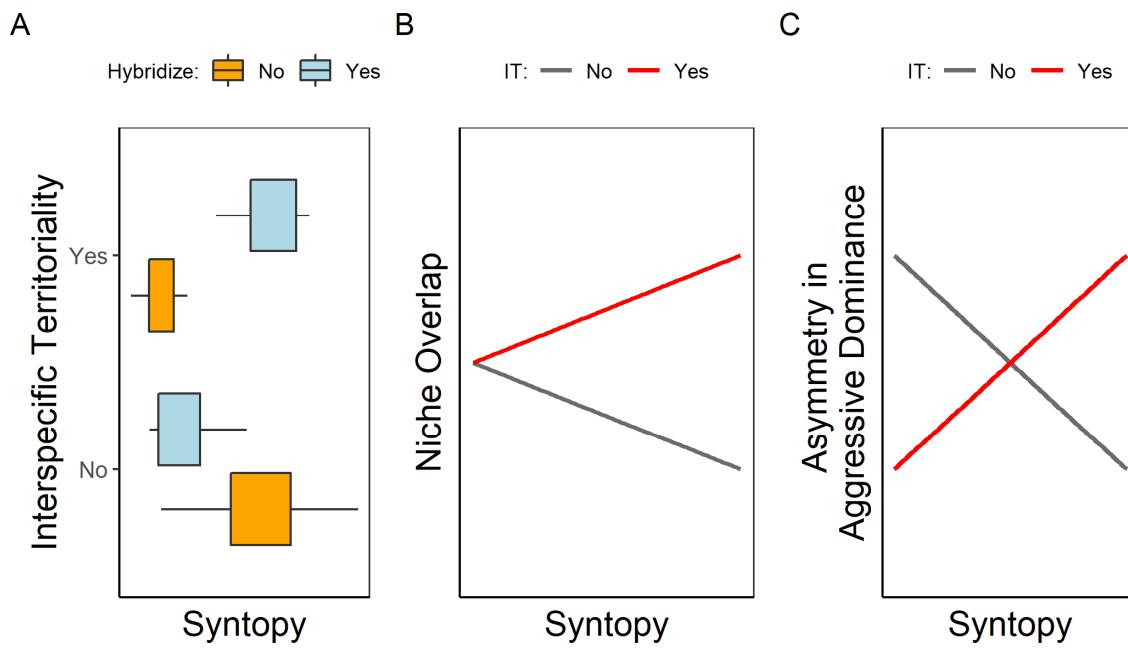
523 Being larger in body size can provide an advantage in aggressive interactions
524 between closely related species (Martin and Ghalambor 2014; Martin et al. 2017; Chock

525 et al. 2018; Freeman 2019). Indeed, we found that, among highly syntopic species pairs
526 in our dataset, those that are interspecifically territorial differ more in size than species
527 that are not interspecifically territorial. Whether asymmetries in aggression explain this
528 finding remains unresolved, however, because in many cases we were unable to
529 determine whether one species was consistently the aggressor or victor (Supplement 3).
530 Such asymmetries could be important for predicting evolutionary and ecological
531 outcomes of interspecific interactions, just as asymmetries in exploitative competition or
532 reproductive interference are recognized as critical for predicting outcomes of species
533 coexistence (Tilman 1980; Amarasekare 2002; Kishi and Nakazawa 2013).

534 Even if size difference is unrelated to asymmetries in interspecific aggression
535 among closely related North American passernines, size could still play an important role
536 in the emergence of interspecific territoriality as an adaptive response to resource
537 competition that permits coexistence between closely related species. For example, large
538 differences in size could indicate asymmetric efficiency at exploiting a common limiting
539 resource (Persson 1985), and interspecific territoriality could provide enough of an
540 advantage to the less efficient resource exploiter for the two species to coexist (Grether et
541 al. 2013). Alternatively, the increase in size difference between interspecifically
542 territorial species across increasing levels of syntopy could represent divergence in
543 morphology driven by ecological character displacement.

544 Interspecific territoriality can occur between species that identify heterospecific
545 competitors via the same characters used to identify conspecific competitors, but may
546 also occur between species that have evolved in competitor recognition and identify
547 heterospecifics using a different character (Cody 1969, 1973; Grether et al. 2009).

548 Although we could not directly measure competitor recognition for the species in our
549 dataset, we tested whether characters commonly used by birds to identify conspecifics are
550 associated with interspecific territoriality. Indeed, we found that song similarity likely
551 plays a role in competitor recognition, since species that are interspecifically territorial
552 are more similar in song than non-interspecifically territorial species, although this
553 finding was marginally non-significant (Table 2).

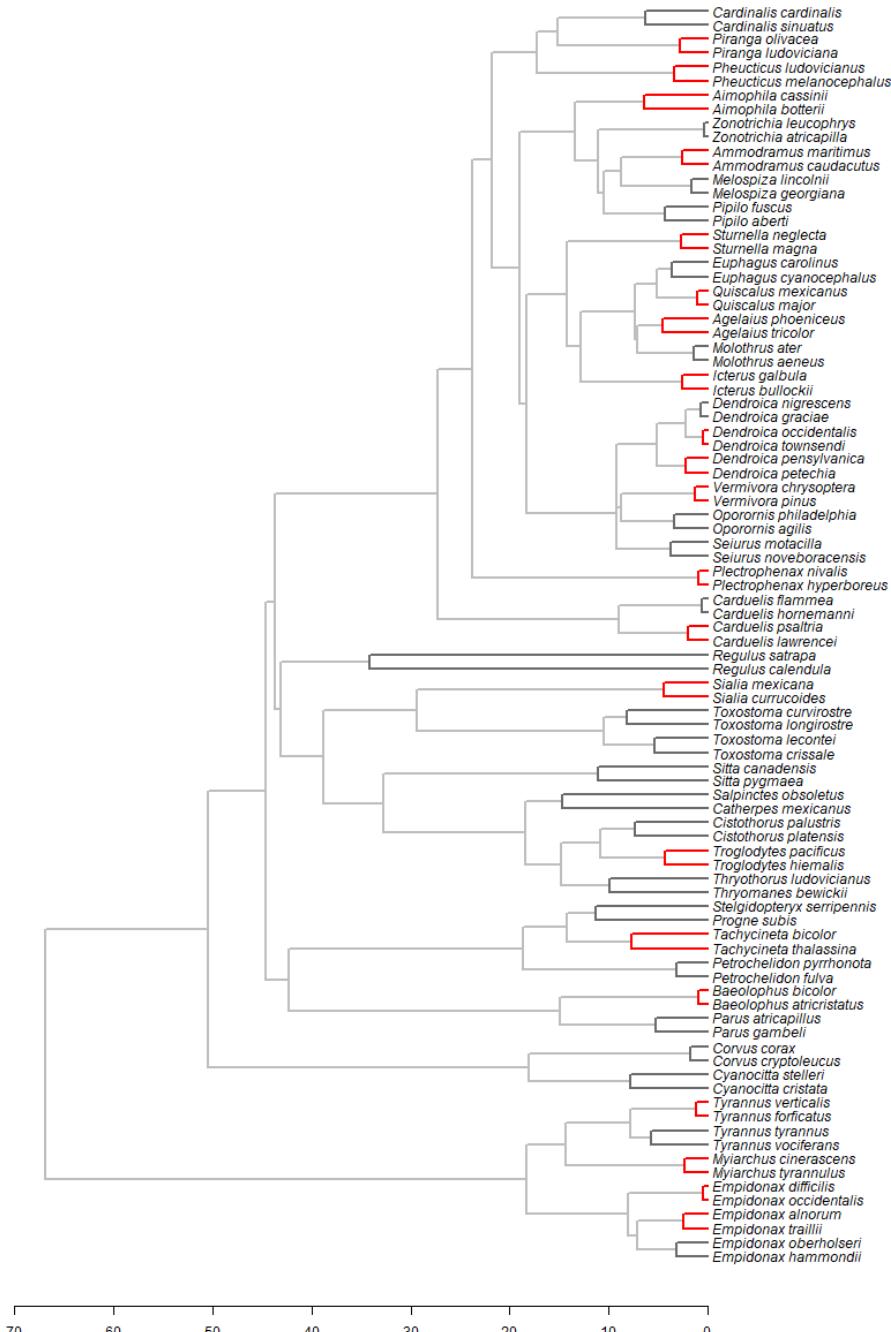

554 Our study is similar in approach to a recent study of wood-warblers (Losin et al.
555 2016), but has distinct findings. Losin et al. (2016) inferred that interspecific territoriality
556 is likely an adaptive response to competition in wood-warblers, but they were unable to
557 determine whether hybridization or resource competition drives interspecific
558 territoriality. In our study of closely related passerines, we found some evidence in
559 support of the asymmetric competition hypothesis, but we also found that a subset of
560 species pairs is best explained by the mistaken identity hypothesis. The most likely
561 explanation for these differences is the average divergence time between species in the
562 two datasets. Because wood-warbler species pairs on average have diverged less recently
563 than the sister species in our dataset, interspecific territoriality in wood-warblers that may
564 have at one point been the result of misdirected intraspecific aggression could have
565 disappeared as species evolved mechanisms to discriminate between heterospecifics and
566 conspecifics. Secondary contact between distantly related species is also unlikely to lead
567 to mistaken species identity since plumage and song characteristics are more likely to be
568 different with increased divergence time, so interspecific territoriality may never have
569 developed as a maladaptive phenomenon for many of the wood-warbler species pairs.

570 Our work on sister species of North American perching birds also uncovered
571 several noteworthy distributional patterns. Although several studies find that co-
572 occurrence in secondary sympatry is associated with greater phylogenetic distance (Price
573 2010; Pigot and Tobias 2013), approximately 84% (71/85) of sister species in our dataset
574 are sympatric, with an average breeding range overlap of 44.2% of the range of the
575 species with the smaller range. We found that time since divergence does not predict
576 whether species are in sympatry, which contrasts with patterns found in other avian
577 groups (e.g., ovenbirds, Tobias et al. 2014; Old World warblers, Price 2010), but might
578 be consistent with evidence that waiting times to sympatry are relatively short in
579 temperate North America (Weir and Price 2011; Weir and Price 2019). Our results
580 instead suggest that the combination of territoriality and hybridization between closely
581 related species may limit their ability to coexist in extensive sympatry. The difference
582 between our results and the findings of other studies is not because the species pairs in
583 our dataset are significantly older (i.e., sharing a more distant common ancestor) than
584 avian sister taxa tend to be; the species we included in these analyses are not significantly
585 older than passerine sister species around the world and are similar in divergence time to
586 species in several other studies (Supplement 6).

587 Taken together, our findings lend insight into the important role of behavioral
588 interference in the early stages of secondary contact following allopatric speciation. Our
589 results point to a possible stage in the speciation process of secondary contact between
590 closely related species that treat each other as competitors and mates, thus remaining in
591 parapatry until they diverge sufficiently in competitor and mate recognition. Other
592 closely related species, however, have achieved breeding range sympatry and extensive

593 fine-scale breeding range overlap along with, and perhaps in part because of, interspecific
594 territorial aggression. We found that interspecific territoriality is common among closely
595 related species of passerine birds, but that even at the tips of the songbird phylogeny, the
596 ecological circumstances associated with interspecific territoriality are diverse. Our work
597 suggests that the evolutionary stability of interspecific territoriality may also vary across
598 taxa, and calls for additional empirical research to further improve our understanding of
599 how interspecific territoriality arises and contributes to the ecologies and coexistence of
600 animal species.

601 **Figures and Tables**



602

603 Figure 1. Predicted results if more than one hypothesis explains patterns of interspecific
604 territoriality among closely related species. If the misdirected aggression and
605 reproductive interference hypotheses each account for a subset of cases of interspecific
606 territoriality (A), interspecific territoriality should primarily be found between
607 hybridizing species that encounter each other frequently (high syntopy) or between
608 species that rarely encounter each other (low syntopy). Under the misdirected aggression
609 and the resource competition hypotheses (B), interspecific territoriality should primarily
610 be found between species that encounter each other infrequently (low syntopy) or
611 between species with very similar ecological niches and breeding habitats (high syntopy).
612 The resource competition hypothesis further predicts that highly syntopic non-
613 interspecifically territorial species occupy different ecological niches. Under the
614 misdirected aggression and asymmetric competition hypotheses (C), interspecific
615 territoriality occurs when species are low in syntopy or high in syntopy and one species
616 dominates aggressive interactions.

617

618

619

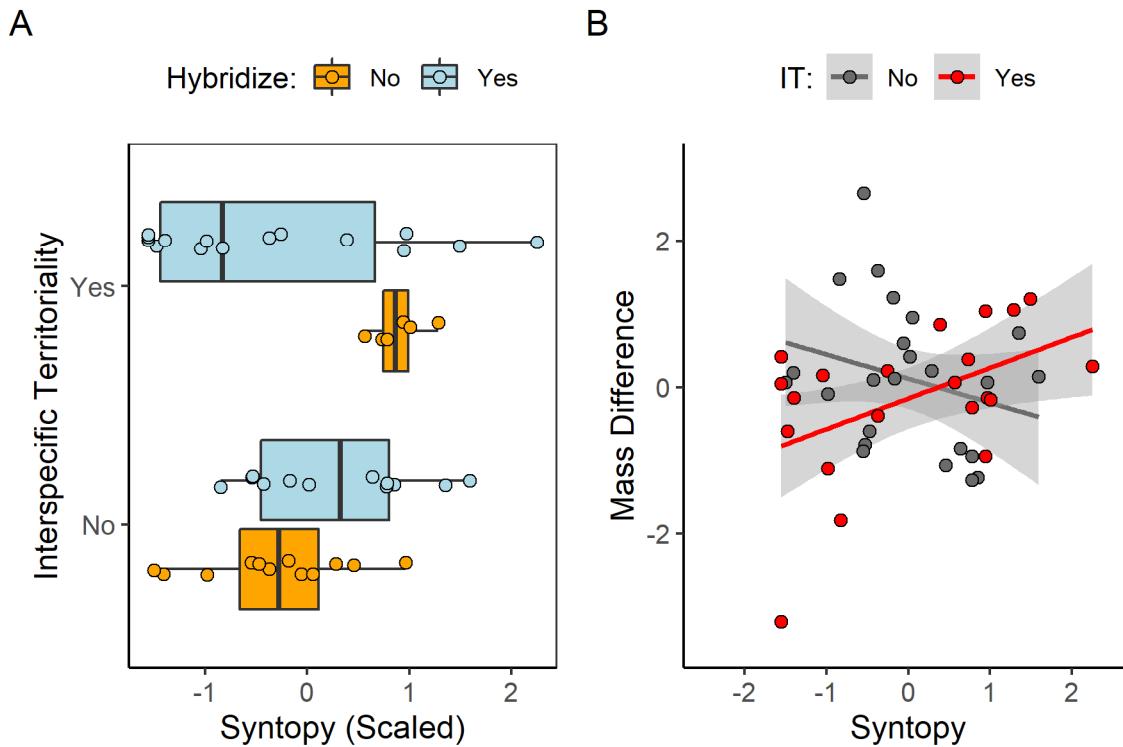
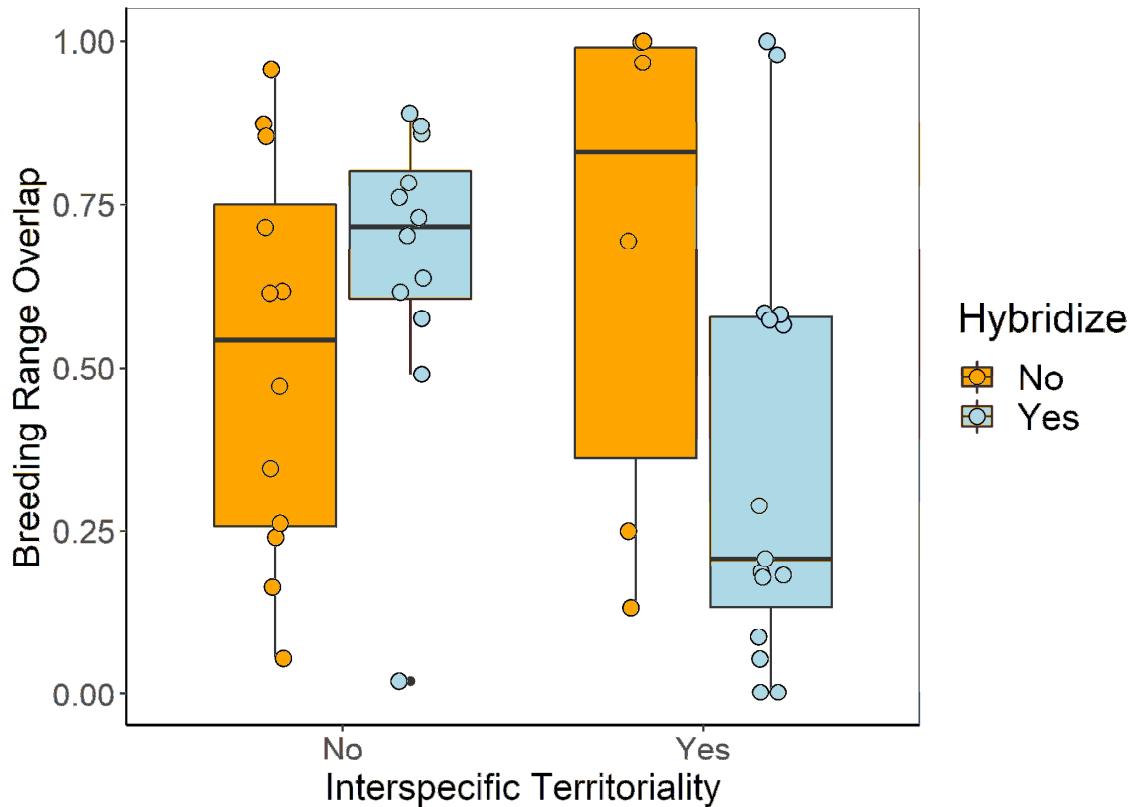

620

Figure 2. Interspecifically territorial sister species (red) are separated by shorter patristic distances (shaded branches; Myr), on average, than non-interspecifically territorial sister species (dark gray).

621

622


623

624

625 Figure 3. Interaction plots showing that (A) interspecifically territorial species that
626 hybridize are less syntopic than non-interspecifically territorial species that hybridize,
627 while interspecifically territorial species that do not hybridize are more syntopic than
628 non-interspecifically territorial species that do not hybridize; (B) interspecifically
629 territorial species (red) are more similar in size when low in syntopy than when high in
630 syntopy, while the reverse is true for non-interspecifically territorial species (gray).
631 Shading represents 95% confidence intervals. Mass difference and syntopy are both
632 scaled to have a mean of zero and standard deviation of 1.

633

634

635

Figure 4. The best regression model for predicting percent breeding range overlap

636

included the interaction between interspecific territoriality and hybridization (also see

637

Table S11).

638

639

640

641 Table 1. Direction of association[†] between predictor variables and interspecific
 642 territoriality, as predicted by four hypotheses.

	Misdirected aggression	Adaptive for resource competition	Adaptive for reproductive interference	Adaptive for asymmetric competition
Patristic distance	–	–	–	–
Plumage similarity	+	+	+	
Song similarity	+	+	+	
Foraging guild overlap		+		+
Bill length difference		–		–
Mass difference		–		+
Hybridization	+		+	
Syntopy	–	+	+	+

643 [†]+, positive association; –, negative association

644

645

646 Table 2. Univariate comparisons between interspecifically territorial (I.T.) species pairs
 647 (N = 20) and non-interspecifically territorial (non-I.T.) species pairs (N = 25), and
 648 coefficients of variation.

Variable	Transformation	Non-I.T. pairs		I.T. pairs		t	P _{t-test}	CV
		Mean	SE	Mean	SE			
Patristic distance	log	2.10	0.04	1.44	0.04	2.35	0.012	117.86
Song similarity (SPCC)		0.34	0.01	0.40	0.01	-1.61	0.058	35.68
Song dissimilarity (pPCA)		14.52	0.19	12.44	0.27	1.37	0.089	37.9
Mass difference	log(x + 0.01)	1.16	0.07	0.69	0.08	0.89	0.189	332.87
Plumage dissimilarity		1.76	0.04	1.78	0.04	-0.09	0.535	49.85
Syntopy	log(x + 0.01)	-3.59	0.02	-3.57	0.04	-0.09	0.536	95.49
		Median	Range	Median	Range	P _{Mann-Whitney}	CV	
		0.19	-4.61 – 2.94	-0.06	-4.61 – 1.51		0.14	159.06
Bill difference	log(x + 0.01)	0.79	0.14 – 0.98	0.52	0.05 – 1		0.17	61.93
Sympathy	sqrt	3	1 – 3	3	0 – 3		0.58	28.88
Foraging guild overlap								

649

650

651 Table 3. Generalized linear model predicting interspecific territoriality with interaction
652 between syntopy and hybridization.

Variable	Estimate	SE	<i>z</i>	<i>P</i>
(Intercept)	1.19	3.04	0.39	0.696
Syntopy	5.88	2.64	2.23	0.026
Hybridization	3.63	1.78	2.04	0.042
Plumage dissimilarity	0.20	0.44	0.46	0.647
Song dissimilarity (pPCA)	-0.70	0.58	-1.20	0.230
Song similarity (SPCC)	-0.88	0.66	-1.33	0.184
Mass difference	-0.16	0.40	-0.40	0.691
Bill length difference	-0.31	0.47	-0.65	0.514
Guild overlap	-1.69	1.05	-1.61	0.108
Syntopy x hybridization	-6.69	2.74	-2.44	0.015

653

654 Table 4. Generalized linear model predicting interspecific territoriality with interaction
655 between syntopy and size difference PC.

Variable	Estimate	SE	<i>z</i>	<i>P</i>
(Intercept)	0.58	1.66	0.35	0.728
Syntopy	-0.049	0.38	-0.13	0.899
Mass difference	-0.13	0.57	-0.23	0.821
Guild overlap	-0.51	0.62	-0.82	0.414
Hybridization	0.79	0.86	0.93	0.353
Plumage dissimilarity	0.43	0.42	1.03	0.306
Song dissimilarity (pPCA)	-0.45	0.43	-1.03	0.302
Song similarity (SPCC)	0.13	0.49	0.26	0.791
Bill length difference	0.042	0.50	0.084	0.933
Syntopy x mass difference	1.78	0.75	2.37	0.018

656

657 References

658
659 Amarasekare, P. 2002. Interference competition and species coexistence. *Proceedings of*
660 *the Royal Society B: Biological Sciences* 269:2541–2550. The Royal Society.
661 Araya-Salas, M., and G. Smith-Vidaurre. 2016. warbleR: An R package to streamline
662 analysis of animal acoustic signals. *Methods in Ecology and Evolution* 8:184–
663 191. Wiley.
664 Case, T. J., Holt, R. D., McPeek, M. A. and Keitt, T. H. 2005. The community context of
665 species' borders: Ecological and evolutionary perspectives. *Oikos* 108:28–46.
666 Chock, R. Y., D. M. Shier, and G. F. Grether. 2018. Body size, not phylogenetic
667 relationship or residency, drives interspecific dominance in a little pocket mouse
668 community. *Animal Behaviour* 137:197–204. Elsevier BV.

669 Clark, C. W., P. Marler, and K. Beeman. 1987. Quantitative analysis of animal vocal
670 phonology: An application to swamp sparrow song. *Ethology* 76:101–115. Wiley.
671 Cody, M. L. 1973. Character convergence. *Annual Review of Ecology and Systematics*
672 4:189–211. Annual Reviews.
673 Cody, M. L. 1969. Convergent characteristics in sympatric species: A possible relation to
674 interspecific competition and aggression. *The Condor* 71:223–239. JSTOR.
675 Cooney, C. R., J. A. Tobias, J. T. Weir, C. A. Botero, and N. Seddon. 2017. Sexual
676 selection, speciation and constraints on geographical range overlap in birds.
677 *Ecology Letters* 20:863–871. Wiley.
678 Coyne, J. A., and H. A. Orr. 2004. *Speciation*. Sinauer, Sunderland, MA.
679 Cribari-Neto, F., A. Zeileis. 2010. Beta regression in R. *Journal of Statistical Software*
680 34:1-24.
681 Drury, J. P., K. W. Okamoto, C. N. Anderson, and G. F. Grether. 2015. Reproductive
682 interference explains persistence of aggression between species. *Proceedings of the*
683 *the Royal Society B: Biological Sciences* 282:20142256–20142256. The Royal
684 Society.
685 Duckworth, R. A., and A. V. Badyaev. 2007. Coupling of dispersal and aggression
686 facilitates the rapid range expansion of a passerine bird. *Proceedings of the*
687 *National Academy of Sciences* 104:15017–15022. *Proceedings of the National*
688 *Academy of Sciences*.
689 Dunn, J., and J. Alderfer. 2006. *National Geographic Field Guide to the Birds of North*
690 *America*. National Geographic Books.
691 Dunning, J. 2008. *CRC Handbook of Avian Body Masses*. 2nd ed. CRC Press, Boca
692 Raton, FL.
693 Freeman, B. 2019. Lower elevation animal species do not tend to be better competitors
694 than their higher elevation relatives. *Global Ecology and Biogeography* 00:1-11.
695 Wiley.
696 Graaf, R. M. D., N. G. Tilghman, and S. H. Anderson. 1985. Foraging guilds of North
697 American birds. *Environmental Management* 9:493–536. Springer Nature.
698 Grether, G. F., C. N. Anderson, J. P. Drury, A. N. G. Kirschel, N. Losin, K. Okamoto,
699 and K. S. Peiman. 2013. The evolutionary consequences of interspecific
700 aggression. *Annals of the New York Academy of Sciences* 1289:48–68. Wiley.
701 Grether, G. F., N. Losin, C. N. Anderson, and K. Okamoto. 2009. The role of
702 interspecific interference competition in character displacement and the evolution
703 of competitor recognition. *Biological Reviews* 84:617–635. Wiley.
704 Grether, G. F., K. S. Peiman, J. A. Tobias, and B. W. Robinson. 2017. Causes and
705 consequences of behavioral interference between species. *Trends in Ecology &*
706 *Evolution* 32:760–772. Elsevier BV.
707 Gröning, J., and A. Hochkirch. 2008. Reproductive interference between animal species.
708 *The Quarterly Review of Biology* 83:257–282. University of Chicago Press.
709 Hackett, S. J., R. T. Kimball, S. Reddy, R. C. K. Bowie, E. L. Braun, M. J. Braun, J. L.
710 Chojnowski, W. A. Cox, K.-L. Han, J. Harshman, C. J. Huddleston, B. D. Marks,
711 K. J. Miglia, W. S. Moore, F. H. Sheldon, D. W. Steadman, C. C. Witt, and T.
712 Yuri. 2008. A phylogenomic study of birds reveals their evolutionary history.
713 *Science* 320:1763–1768. American Association for the Advancement of Science
714 (AAAS).

715 Jankowski, J. E., Robinson, S. K. and Levey, D. J. 2010. Squeezed at the top:
716 Interspecific aggression may constrain elevational ranges in tropical birds.
717 *Ecology* 91:1877–1884.

718 Jetz, W., G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012. The global
719 diversity of birds in space and time. *Nature* 491:444–448. Springer Nature.

720 Johnson, N. K. 1980. Character Variation and Evolution of Sibling Species in the
721 *Empidonax difficilis-flavescens* Complex (Aves, Tyrannidae). Berkeley,
722 University of California Press.

723 Kishi, S., and T. Nakazawa. 2013. Analysis of species coexistence co-mediated by
724 resource competition and reproductive interference. *Population Ecology* 55:305–
725 313. Springer Nature.

726 Kral, M., Jarvi, T., and V. Bicik. 1988. Inter-specific aggression between the collared
727 flycatcher and the pied flycatcher: the selective agent for the evolution of light-
728 coloured male pied flycatcher populations? *Ornis Scandinavia* 19:287–289.

729 Kvålseth, T. O. 1995. Coefficients of variation for nominal and ordinal categorical data.
730 *Perceptual and Motor Skills* 80:843–847. SAGE Publications.

731 Kyogoku, D., and T. Sota. 2017. The evolution of between-species reproductive
732 interference capability under different within-species mating regimes. *Evolution*
733 71:2721–2727. Wiley.

734 Laiolo, P. 2013. From inter-specific behavioural interactions to species distribution
735 patterns along gradients of habitat heterogeneity. *Oecologia* 171:207–215.
736 Springer Nature.

737 Laiolo, P., J. Seoane, J. R. Obeso, and J. C. Illera. 2017. Ecological divergence among
738 young lineages favours sympatry, but convergence among old ones allows
739 coexistence in syntopy. *Global Ecology and Biogeography* 26:601–608. Wiley.

740 Losin, N., J. P. Drury, K. S. Peiman, C. Storch, and G. F. Grether. 2016. The ecological
741 and evolutionary stability of interspecific territoriality. *Ecology Letters* 19:260–
742 267. Wiley.

743 Lovette, I., and W. M. Hochachka. 2006. Simultaneous effects of phylogenetic niche
744 conservatism and competition on avian structure. *Ecology* 87:S14–S28.
745 Ecological Society of America.

746 MacArthur, R. H. 1972. *Geographical Ecology: Patterns in the Distribution of Species*.
747 Harper & Row, Publishers, Inc., New York, NY.

748 Martin, P. R., and C. K. Ghalambor. 2014. When David beats Goliath: The advantage of
749 large size in interspecific aggressive contests declines over evolutionary time.
750 *PLoS ONE* 9:e108741. Public Library of Science.

751 Martin, P. R., C. Freshwater, and C. K. Ghalambor. 2017. The outcomes of most
752 aggressive interactions among closely related bird species are asymmetric. *PeerJ*
753 5:e2847. PeerJ.

754 Mayr, E. 1942. *Systematics and the Origin of Species*. Columbia University Press, New
755 York, NY.

756 McCarthy, B. 2006. *Handbook of Avian Hybrids of the World*. Oxford University Press,
757 New York, NY.

758 Murray, B. G. 1971. The ecological consequences of interspecific territorial behavior in
759 birds. *Ecology* 52:414–423. Wiley.

760 Oberholser, H. 1974. *The Bird Life of Texas*. The University of Texas Press, Austin.

761 Orians, G. H., and M. F. Willson. 1964. Interspecific territories of birds. *Ecology* 45:736–
762 745. Wiley.

763 Ovadia, O., and H. zu Dohna. 2003. The effect of intra- and interspecific aggression on
764 patch residence time in Negev Desert gerbils: A competing risk analysis.
765 *Behavioral Ecology* 14:583–591. Oxford University Press.

766 Paradis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of phylogenetics and
767 evolution in r language. *Bioinformatics* 20:289–290. Oxford University Press.

768 Pasch, B., B. M. Bolker, and S. M. Phelps. 2013. Interspecific dominance via vocal
769 interactions mediates altitudinal zonation in neotropical singing mice. *The*
770 *American Naturalist* 182:E161–E173. University of Chicago Press.

771 Payne, R. B. 1980. Behavior and songs of hybrid parasitic finches. *Auk* 97:118–134.
772 American Ornithological Society.

773 Persson, L. 1985. Asymmetrical competition: Are larger animals competitively superior?
774 *The American Naturalist* 126:261–266. University of Chicago Press.

775 Phillimore, A. B., C. D. L. Orme, G. H. Thomas, T. M. Blackburn, P. M. Bennett, K. J.
776 Gaston, and I. P. F. Owens. 2008. Sympatric speciation in birds is rare: Insights
777 from range data and simulations. *The American Naturalist* 171:646–657.
778 University of Chicago Press.

779 Pigot, A. L., and J. A. Tobias. 2013. Species interactions constrain geographic range
780 expansion over evolutionary time. *Ecology Letters* 16:330–338. Wiley.

781 Price, T. D. and Kirkpatrick, M. 2009. Evolutionarily stable range limits set by
782 interspecific competition. *Proceedings of the Royal Society B: Biological*
783 *Sciences* 276:1429–1434.

784 Price, T. D. 2010. The roles of time and ecology in the continental radiation of the Old
785 World leaf warblers (*Phylloscopus* and *Seicercus*). *Philosophical Transactions of*
786 *the Royal Society B: Biological Sciences* 365:1749–1762. The Royal Society.

787 Reif, J., Jiran, M., Reifov, R., Vokurkov, J., Dolata, P. T., Petrusek, A., and T. Petruskov.
788 2015. Interspecific territoriality in two songbird species: potential role of song
789 convergence in male aggressive interactions. *Animal Behaviour* 104:131–136.

790 Revell, L. J. 2009. Size correction and principal components for interspecific
791 comparative studies. *Evolution* 63:3258–3268. Wiley.

792 Rivas, L. R. 1964. A reinterpretation of the concepts “sympatric” and “allopatric” with
793 proposal of the additional terms “syntopic” and “allotopic”. *Systematic Biology*
794 13:42–43. JSTOR.

795 Robinson, S. K., and J. Terborgh. 1995. Interspecific aggression and habitat selection by
796 amazonian birds. *The Journal of Animal Ecology* 64:1. JSTOR.

797 Rodewald, P. (ed). 2015. *The Birds of North America*: <https://birdsna.org>. Cornell
798 Laboratory of Ornithology, Ithaca, NY.

799 Sauer, J., D. Niven, J. Hines, K. Pardieck, J. Fallon, W. Link, and J. D.J.J. Ziolkowski.
800 2017. *The North American Breeding Bird Survey, Results and Analysis 1966 –*
801 *2015*. Version 12.23.2015. USGS Patuxent Wildlife Research Center, Laurel,
802 MD.

803 Shi, J. J., E. P. Westeen, N. T. Katilein, E. R. Dumont, and D. L. Rabosky. 2018.
804 Ecomorphological and phylogenetic controls on sympatry across extant bats.
805 *Journal of Biogeography* 45:1560–1570. Wiley.

806 Sibley, D. 2000. *The Sibley Guide to Birds*. Alfred A. Knopf, New York, NY.

807 Sottas, C., J. Reif, L. Kuczyński, and R. Reifová. 2018. Interspecific competition
808 promotes habitat and morphological divergence in a secondary contact zone
809 between two hybridizing songbirds. *Journal of Evolutionary Biology* 31:914–923.
810 Wiley.

811 Suchard, M. A., P. Lemey, G. Baele, D. L. Ayres, A. J. Drummond, and A. Rambaut.
812 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST
813 1.10. *Virus Evolution* 4:vey016. Oxford University Press.

814 Sullivan, B., C. Wood, M. Iliff, R. Bonney, D. Fink, and S. Kelling. 2009. eBird: A
815 citizen-based bird observation network in the biological sciences. *Biological
816 Conservation* 142:2282–2292.

817 Tilman, D. 1980. Resources: A graphical-mechanistic approach to competition and
818 predation. *The American Naturalist* 116:362–393. University of Chicago Press.

819 Toews, D. P. L., and D. E. Irwin. 2008. Cryptic speciation in a Holarctic passerine
820 revealed by genetic and bioacoustic analyses. *Molecular Ecology* 17:2691–2705.
821 Wiley.

822 Weir, J. T., and T. D. Price. 2011. Limits to speciation inferred from times to secondary
823 sympatry and ages of hybridizing species along a latitudinal gradient. *The
824 American Naturalist* 177:462–469. University of Chicago Press.

825 Ziv, Y., and B. P. Kotler. 2003. Giving-up densities of foraging gerbils: The effect of
826 interspecific competition on patch use. *Evolutionary Ecology* 17:333–347.
827 Springer Nature.