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Abstract 

Multi-omics approaches focused on mass-spectrometry (MS)-based data, such as metaproteomics, 

utilize genomic and/or transcriptomic sequencing data to generate a comprehensive protein 

sequence database. These databases can be very large, containing millions of sequences, which 

reduces the sensitivity of matching tandem mass spectrometry (MS/MS) data to sequences to 

generate peptide spectrum matches (PSMs). Here, we describe a sectioning method for generating 

an enriched database for those protein sequences that are most likely present in the sample. Our 

evaluation demonstrates how this method helps to increase the sensitivity of PSMs while 

maintaining acceptable false discovery rate statistics. We demonstrate increased true positive PSM 

identifications using the sectioning method when compared to the traditional large database 

searching method, whereas it helped in reducing the false PSM identifications when compared to 

a previously described two-step method for reducing database size. The sectioning method for 

large sequence databases enables generation of an enriched protein sequence database and 

promotes increased sensitivity in identifying PSMs, while maintaining acceptable and manageable 

FDR. Furthermore, implementation in the Galaxy platform provides access to a usable and 

automated workflow for carrying out the method.  Our results show the utility of this methodology 

for a wide-range of applications where genome-guided, large sequence databases are required for 

MS-based proteomics data analysis. 
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Introduction 

Liquid chromatography tandem mass spectrometry (LC-MS/MS) is a high-throughput technique 

used to identify proteins present in complex biological samples. Experimental MS/MS spectra 

contain mass-to-charge information on amino acid sequence fragments, which are matched to 

protein sequences within a database to generate peptide spectrum matches (PSMs). The best PSM 

assignments are selected based on assigned scores which indicate confidence of the MS/MS 

spectrum matched to a corresponding peptide sequence within the database1–4. Scoring of PSM 

matches depends on factors like the fragmentation quality and signal-to-noise ratio, as well as 

inclusion of post-translational modifications, and composition of the sequences contained in the 

database, including the number of sequences4. Peptide sequences from PSMs are ultimately 

assigned to proteins or protein groups by using protein inference methods. 

For conventional single-organism, mass-spectrometry (MS)-based proteomic experiments, a 

reference database containing all known and validated proteins from the organism are used for 

matching to MS/MS spectra.   However, recently newer approaches, which utilize genomics and 

/or transcriptomics information, have emerged that utilize customized protein sequence 

databases5,6.  One such approach is metaproteomics6–8.   Metaproteomics employs LC-MS/MS to 

generate data for identification of proteins expressed by a microbial community. It offers extensive 

and conclusive inferences about the taxonomic composition and functional impacts of the 

microbial community and its surroundings (e.g. host organism, environmental ecosystem)9. 

Metaproteomics studies are actively applied in studying the microbiome of environmental 

ecosystems9–12, and also for investigating the microbiome contained in the gut13,14, oral cavity15, 

lavage16, and other sites from humans and animal-models13–19.  
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For metaproteomics studies of complex communities of microorganisms, wherein a reference 

protein sequence database is either not available or is incomplete, data-processing methods need 

to be employed to generate a customized database.  For example, metagenomic and/or 

metatranscriptomic sequencing data from same or related samples can be used to generate a 

customized database of proteins that may be expressed by the community20–24.  For such an 

approach, methods have been described for protein sequence database generation such as SixGill20, 

MOCAT21,22 and Graph2Pro23,24. Additionally, if the taxonomic composition of a sample is known, 

a composite database can be created which includes all of the reference protein sequences for the 

organisms thought to be present in the sample25,26. 

Regardless of the method used for sequence database generation in metaproteomics, it generally 

generates large databases containing orders of magnitude more protein sequences than those used 

for more conventional, single-organism studies.  Although these proteins are meant to enable more 

comprehensive identification of proteins, such large databases increase potential for PSMs that are 

“close-but-not-perfect,” thus increasing false positive identifications27,28. A target-decoy database 

approach29,30 is usually used to estimate the false discovery rate (FDR) and control the false 

identifications. Unfortunately, in controlling for false positives with increased database size more 

stringent score thresholds are needed, which decreases the number of qualifying true PSM 

identifications, effectively decreasing sensitivity of identifying peptides truly contained in the 

sample28. For example, Kumar et al. have demonstrated, using a Mycobacterium tuberculosis 

database, that increasing the protein database size can result in the decrease of true PSM 

identifications28. Thus, it is recommended to create databases that balance the composition of 

proteins potentially present in the sample with database size so that it still maximizes true positive 

PSMs. 
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Researchers have suggested some approaches in order to address the challenges in using large 

sequence databases for metaproteomics studies.  These data processing methods generally seek to 

decrease the size of the database used when matching MS/MS to sequences to increase the 

sensitivity for true positive PSMs, and include described approaches such as the multi-stage 

method and two-step method31–33. Jagtap et al. proposed a two-step database searching method to 

address the issue of large databases33 demonstrating that the method could aid in increasing the 

number of true positive PSMs.  In this method, MS/MS are first searched against the large 

database, and PSMs are accepted using very low stringency scoring in order to infer proteins 

possibly present, and create a smaller, enriched database of proteins most likely present in the 

sample.  This enriched database is then matched to MS/MS data in a second step of sequence 

database searching.  The two-step method has gained acceptance and has been used widely in 

metaproteomics studies15,24,34.    

Despite its value, concerns about the potential for increased false positives and the need for 

validation, acknowledged by the original authors33 and others35,36 have been raised when using this 

traditional two-step method.  Using benchmark datasets and an entrapment database37, we have 

observed that the reduction of the database size increases the number of total PSMs. However, 

concern exists that the method biases the composition of the enriched database leading to increased 

potential for false-positives35. Although suggested by others37, an in-depth evaluation of this 

possible shortcoming of the two-step method has not been carried out to-date. 

In this work, we sought to more deeply evaluate and modify the traditional two-step method, and 

develop a method that overcomes its limitations, specifically the inherent potential for increased 

false positive PSMs.  As such, we have developed a database sectioning method [Figure 1], 

wherein a large database is randomly divided into “n” number of smaller subset databases. Each 
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sectioned subset database is searched against the complete LC-MS/MS dataset using the target-

decoy method29. Matches from each of the searches are used to create a smaller database, enriched 

for protein sequences most likely present in the sample, while still retaining an adequate number 

of random noise sequences not present in the sample to control the false positive rate. This enriched 

database is matched to the entire MS/MS dataset in a second step, using the target-decoy method29. 

We have evaluated the sectioning method using two benchmarking datasets and entrapment 

databases. Our results show that the sectioning method finds a middle ground between the two 

commonly used methods in metaproteomics, traditional large database search and traditional two-

step database search, balancing sensitivity for true PSM identifications while controlling the rate 

of false-positive PSMs.  We also demonstrate the improvements in results when using the 

sectioning method on large, previously characterized metaproteomic datasets.  The method has 

been developed in the Galaxy for proteomics (Galaxy-P) platform, which will allow for 

accessibility and flexibility in its use for a wide-variety of applications where large sequence 

databases are necessary. 
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Results 

To evaluate the effectiveness of our sectioning method, we compared it to the PSM output from 

two other methods: traditional sequence database searching against the complete protein sequence 

database (Traditional large database search) and the two-step method for metaproteomics that we 

originally described (Traditional two-step)33 [Figure 2]. These three methods all used an 

entrapment database to help estimate the rate of false positive PSMs compared to true-positive 

PSMs (see Methods section). In this evaluation, a standard PSM report used as a baseline result 

where the MS/MS dataset was searched against the database containing sequences from organisms 

known to be present in the sample.  These baseline results were used as a “gold standard” to 

compare to results when using a metaproteomic database containing sequences from many 

organisms, some of which may not be present in the sample. Organism-specific proteome(s) 

sequence databases are recommended for optimal results in MS-based proteomic studies28.  

 

Pyrococcus furiosus dataset 

As a starting point for evaluating our sectioning method, a MS/MS dataset from Pyrococcus 

furiosus (Pfu) was matched against a reference Pfu proteome database downloaded from Uniprot 

and contaminant sequences. At 1% global FDR estimated by standard target-decoy methods, this 

analysis yielded 10,770 PSMs using the standard database. Traditional large database search, 

traditional two-step method, and the sectioning methods all used entrapment database that 

contained Pfu proteome sequences, common contaminants, and human proteome sequences. Pfu 

has been established as an optimal organism for evaluating PSM results from software 

algorithms37,38, as its proteome sequence is almost completely orthogonal to higher organisms (e.g. 

human).   Therefore, when using human protein sequences as the entrapment database, true-
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positive PSMs (PSMs to Pfu sequences) can easily be distinguished from false positive PSMs 

(PSMs to human sequences).  This ground truth data can be used to estimate a more accurate FDR 

compared to the global FDR estimated by target-decoy methods.  Here, the entrapment database 

was comprised of 95601 protein sequences from human primarily, along with the common 

contaminant protein sequences commonly found in MS-based proteomics experiments. We 

considered any PSMs identified from Pfu or contaminant proteins as true PSMs whereas those 

identified from human proteins as false PSMs, as per the design of the experiment37,38.  

By using this entrapment database for traditional large database search, a decline of 502 PSMs in 

the sensitivity was observed when the results were compared with the standard search results 

against the Pfu database only (no human entrapment sequence) [Figure 3a].  On the other hand, 

the traditional two-step method identified 10,621 true PSMs to Pfu sequences, which recovered 

the sensitivity and was only 149 PSMs less than the standard search results against the Pfu database 

only [Figure 3a].  

Use of human entrapment database helped in defining false-positive PSMs which were present 

even after utilizing the 1% global FDR cut-off. The false-positive PSMs identifications (human 

PSMs) from traditional large database search and traditional two-step method were evaluated and 

compared. Traditional large database search was able to restrict the human PSM identification rate 

at 1% (in line with the 1% global FDR estimation by the target-decoy method used in the PSM 

filtering), identifying 102 PSMs from human protein sequences. However, the traditional two-step 

method had a higher rate of human PSMs (2.8%), indicating an inflated false-positive rate even at 

an estimated global 1% FDR. 
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As a comparison, we performed sectioning method in three different ways, dividing the full 

database (Pfu plus human entrapment sequences) into two, five, or 10 equal-sized sections 

respectively. In all cases, the sectioning method yielded a more number of true positive PSMs 

(matches to Pfu sequences) when compared with the traditional large database search and 

controlled the number of false-positive PSMs (matches to human sequences) compared to the 

traditional two-step method [Figure 3b]. When evaluating the effect of the number of database 

sections used, ten sections best minimized false PSMs compared the other two (two and five 

sections), while maintaining a similar number of true positive PSMs as compared to the standard 

approach using the Pfu sequence database alone. These results established that sectioning of the 

database serves to minimize false positive PSMs, with more sections providing a more dramatic 

decrease, while still maintaining sensitivity for true positive PSMs – at least for a somewhat simple 

database containing a small number of true positive sequences (Pfu) compared to a large number 

of entrapment sequences (human). 

 

SIHUMI dataset 

With evaluation results in hand using the single organism data from Pfu, we next sought to evaluate 

the sectioning method on a more complex dataset, one which more closely mimics the situation 

encountered in metaproteomics, while still offering an assessment of sensitivity and false-positive 

rates. Here, we used the SImplified HUman Intestinal MIcrobiota (SIHUMI) dataset39. The 

publicly available dataset was recently generated for the purpose of evaluating new methods 

related to metaproteomics analysis39.   The SIHUMI dataset was generated from proteins extracted 

from eight microorganisms (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium 

longum, Blautia producta, Clostridium butyricum, Clostridium ramosum, Escherichia coli, 
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Lactobacillus plantarum) grown in a bioreactor. We first conducted a baseline standard database 

search against the available database39 composed of protein sequences from only the eight 

organisms contained in the sample. Results from the standard search yielded 50,651 PSMs at 1% 

global FDR.  

We next used the traditional large database search, traditional two-step, and sectioning methods 

for analysis of the SIHUMI dataset.  Here, we appended protein sequences from Archaea to the 

sequences from the eight organisms contained in the sample, with the Archaea sequences acting 

as a large entrapment database (see Methods).  This mimics the situation in many metaproteomics 

analyses, where a relatively small proportion of organisms in the database are expressing proteins, 

while most of the sequences in the database are not contained in the sample.  In this case, PSMs to 

the Archaea protein sequences represent false-positives, while PSMs to the eight organisms are 

true-positives. Results from the traditional large database search showed a loss of more than 10% 

true PSMs (44,375 true-positive PSMs) compared to the results from searching the database 

containing only the eight organisms. Meanwhile, the traditional two-step method was able to 

recover this number and yield 50,246 true-positive PSMs. Sectioning methods, with 5, 10, 20, and 

30 sections, were also able to increase the number of true-positive PSMs (48313, 47927, 47564, 

and 47232, respectively) when compared with the numbers from the traditional large database 

search [Figure 4a].  

Evaluation of false-positive PSMs, those matched to the Archaea proteins, revealed that the 

traditional large database search method yielded about 1% false PSMs at 1% global FDR cutoff, 

whereas the traditional two-step method inflated the false PSMs to more than 11% [Figure 4b]. 

The sectioning method with 30 sections was again able to control the number of false-positive 

PSMs at around 1.5% when evaluated at 1% global FDR. We also noticed that in general the 
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Archaea PSMs had a trend of scoring slightly worse in terms of the PSM confidence score assigned 

by PeptideShaker compared to most of the matches to the proteins from the eight organisms within 

the SIHUMI sample.  As such, applying a slightly more stringent score cutoff can be used to 

control the global FDR and reduce the false-positive PSMs to 1%, determined by PSM matches to 

Archaea sequences. For example, for the 30-section results increasing stringency to a PSM score 

of 85 reduced the observed false-positive rate to 1% [Figure 5]. 

Figure 6 shows results from a deeper exploration of the relationship between global FDR, 

observed false positive PSMs, and sensitivity for true positive PSMs.  As shown in Figure 6, when 

using a cut-off of 0.60% global FDR we were still able to identify 46,771 true PSMs while bringing 

the observed false-positive identifications down to 0.98% based on hits to the Archaea sequences. 

At 0.65% global FDR, observed false-positive identifications were 1.05%. Increasing the 

stringency decreased the number of true-positive PSMs only a negligible amount. Decreasing the 

global FDR from 1% to 0.60% global FDR, reduced the true PSMs by 1.7%, whereas it dropped 

the false PSMs by 38% (see Supplementary Table S1). 

Another observation related to these results was the different sizes of sequence databases uses for 

the generation of PSMs, depending on the method employed. The traditional large database search 

used a database containing 1.47 million sequences, whereas the enriched database used by 

traditional two-step method contained only 17,179 sequences. Meanwhile, the enriched databases 

generated by the sectioning method (using 5, 10, 20, or 30 sections) contained 238,191, 396,255, 

578,785, and 723,243 sequences, respectively. The size of the database used inversely 

corresponded to the number of false-positive PSMs [Figure 7]. 

We also tested whether or not the exact composition of the database sections used in the sectioning 

method had an effect on results.  As described in the Methods above, this method sections the large 
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database into randomly composed databases of a specific size. We performed ten repetitions of 5, 

10, 20, and 30 sections, each time randomly assigning sequences from the large database to each 

section. Consistent results were observed across repeated analyses with very low coefficient of 

variation [supplementary Figure S1], demonstrating that our initial findings with the sectioning 

method were not due to an artifact related to database composition. 

 

Glacial meltwater dataset 

After the evaluation of the sectioning method using model datasets, we next used it on a complex 

microbiome dataset, representative of the scope of most MS-based metaproteomics studies. This 

dataset was derived from a protein sample extracted from a microorganism community contained 

in the meltwater from a glacier40,41. The protein database was generated using SixGill20 and 

MOCAT22 tools using the whole genome sequencing of the metagenomes extracted from the same 

meltwater samples. The database contained over five million protein sequences. We compared the 

results from the traditional large database search (matching the complete 5 million sequences 

database to MS/MS data), with the results from the sectioning method, using 5-sections. The 

sectioning method helped to reduce the database size to 204,608 sequences in the enriched 

database. 

We were able to identify 20% more microbial PSMs from the meltwater sample (excluding 

common contaminants), at a global FDR of 1% when compared with the similar output from the 

traditional large database search. We used all the peptides from these PSMs to perform Unipept 

4.0 analysis42, which helps in assigning metapeptides to specific taxonomic groups, functional 

classes, and protein-level enzyme commission (EC) numbers. The increased PSMs from the 

sectioning method resulted in increased assignment across all categories (taxonomy, functional 
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classes, EC numbers) compared to the traditional method. The results from the sectioning method 

was able to identify most of the terms identified by the traditional method, showing substantial 

overlap [Figure 8]. Analysis of the assigned taxa, functions and EC numbers that were found by 

both methods revealed that sectioning increased the depth of data supporting these assignments 

[Figure 8].  Put another way, the increased the number of PSMs from sectioning provided more 

confidence in taxa and functional group assignments reported by Unipept, providing deeper insight 

into interpretations of the results.  
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Discussion 

To evaluate our sectioning method, we used model MS/MS datasets (Pfu and SIHUMI).  These 

datasets mimicked the situation encountered in larger databases used in metaproteomics 

applications, where a relatively small proportion of protein sequences within the database are 

detected by the mass spectrometer and contained within the collected MS/MS data.  We first 

matched the MS/MS spectra to the standard organism-specific protein databases and then 

compared these results to these same databases appended to a much larger entrapment database. 

As others have shown33,34, when including a large entrapment database the sensitivity for detecting 

PSMs to the known proteins within the samples decreases when using traditional sequence 

database searching methods [Figure 3, 4]. This sensitivity loss is a concern for metaproteomics, 

or any application where large protein sequence databases are employed (e.g. generating protein 

databases for proteogenomics).  

We then tested the traditional two-step method33 that generated an enriched, much smaller database 

for matching MS/MS data. We observed that in both the datasets, the traditional two-step method 

helped in increasing the sensitivity, generating an increased number of PSMs passing the 1% 

global FDR threshold. However, our tests also confirmed that the enriched database generated by 

the traditional two-step method overcompensates, producing a database so small that it increases 

the potential for false positive PSMs significantly (even at 1% global FDR estimated using 

standard target-decoy methods) [Figure 5, 7].  Our prior publications on the two-step method 

recognized this potential for increased false positives and suggested utilizing post-processing 

filtering and spectral quality validation of PSMs to further ensure accuracy33,43.  Here, we have 

confirmed the false-positives are a real concern with the traditional two-step method. 
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We developed the sectioning method to address the limitations above -- the sensitivity loss when 

using a traditional database searching methods against a large database, and the observed increase 

in false-positive PSM when using the traditional two-step method. Therefore, the sectioning 

method is an improvisation of the traditional two-step method, with an intention to find a method 

that balances sensitivity while controlling for false-positive PSM identifications. 

The results from the Pfu and SIHUMI datasets both showed the benefit of our sectioning method.  

For both datasets, generating an enriched database from sequence database searching of sections 

increased the sensitivity compared to the traditional large-database method, while significantly 

decreasing false-positives compared to the traditional two-step method.  The magnitude of this 

effect was a bit less for the Pfu dataset (derived from a single organism with a simple proteome) 

compared to the more complex SIHUMI dataset (derived from eight model organisms), suggesting 

that the benefit of the sectioning method may increase with size and the complexity of the database 

being used.  It was also clear that dividing the initial database into more sections helped control 

false-positive PSMs more effectively [Figure 9].  Not coincidentally, the enriched database size 

also increased with more sections used, likely contributing to the reduced false-positive rate by 

including more competing protein sequences for MS/MS matching, leading to better scoring 

separation between false PSMs and true PSMs. However, the enriched database is still significantly 

smaller than the initial large database, such that PSM sensitivity is also maintained.  Therefore, 

our results indicate the sectioning method offers an optimal balance in database size to provide 

sensitive PSM identification while controlling false-positives. 

Figure 7 shows this effect of number of sections on the enriched database size.  The more sections 

used means a smaller number of sequences in each section and a more restricted search space for 

the first round of matching MS/MS to these sequences.  Using our permissive scoring cutoffs in 
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the first round of matching of MS/MS spectra to each section leads to more proteins qualifying as 

potential members of the samples when using more sections.  As such, more sections lead to an 

overall larger enriched database for the second step of sequence database searching.   However, as 

shown in Figure 7, even the larger enriched databases generated with more sections are still 

significantly smaller than the initial database.   

Despite the demonstrated ability of the sectioning method to significantly decrease the observed 

false-positive PSMs compared to the traditional two-step method, we did observe a slightly 

increased potential for false-positives.  For example, even with the best-case scenario of 30-

sections, the SIHUMI dataset showed a measured false-positive rate of about 1.5% when counting 

the PSMs to Archaeal peptides, which is higher than the estimated global false positive of 1% 

using the target-decoy method [Figure 5].  When analyzing these PSMs to Archaea more closely, 

we did notice the trend that the false-positive PSMs generally had lower scores as assigned by 

PeptideShaker, indicating that these are slightly lower confident data, even though they passed the 

1% global FDR threshold.  As such, when employing the sectioning method, we would suggest 

that extra stringency be considered for qualifying PSMs, such as using a lower global FDR to 

effectively increase stringency on PSMs qualifying as correct.  As we showed in Figure 6 and also 

Supplemental Table S1, lowering the global FDR threshold to a value such as 0.6% reduced the 

observed false-positive PSMs to below 1% while only minimally decreasing the sensitivity of 

detecting true-positive PSMs. 

Some recent studies have focused on quantification of metaproteomics datasets44. However, 

software suites that can perform quantification along with identification (such as MaxQuant45 

MaxLFQ46), function optimally only when intermediate or small database size is used. In such 

cases, the number of sections used could be selected in order to maintain an enriched database of 
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manageable size, with the caveat that there may be an increased potential for false-positives with 

a smaller database. This might require an additional step of filtering peptides/PSMs at a lower 

global FDR as described earlier.  However, for quantification methods that are independent of 

identification (such as moFF47 and FlashLFQ48), and do not have constraints on database size, a 

larger number of sections would be recommended to control for false positives. 

After evaluating and understanding the benefits of the sectioning method on model datasets (Pfu 

and SIHIMU), we applied the method to data from a representative metaproteomics study of 

microbial proteins expressed in a glacier meltwater sample.  Here, we observed a significant 

decrease in the size of the protein sequence database used for MS/MS matching when using the 

sectioning method to generate the enriched database (reduction from five million sequences to 

about 200,000 sequences).  Accordingly, this enriched database enabled a significant increase in 

the identified PSMs when compared with the results from the traditional database search.   We 

were encouraged that a vast majority of the additional PSMs identified using the sectioning method 

mapped to the same taxa and functional classes (determined by Unipept analysis) as those initially 

identified using the traditional database searching method.  This supports the assertion that the 

sectioning method is adding accurate PSMs, which provide deeper coverage and more confident 

assignments of taxa and functional pathways represented by the metaproteomics data.  As such, 

we are confident that the sectioning method will provide improved information from diverse 

applications of metaproteomics. 

Proteogenomics, where customized protein sequence databases are generated from genomic or 

transcriptomic data, also suffers from issues related to large databases for MS/MS matching5,49.  

The sectioning method described here should also benefit proteogenomic applications.  However, 

proteogenomics has some unique features different from metaproteomics, such as the need to 
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match MS/MS to specific classes of sequence variants and estimate class-dependent FDR values. 

Therefore, demonstrating the value of sectioning for proteogenomics will take a dedicated 

evaluation and optimization study of its own. 

Finally, implementing the sectioning method requires multiple complex steps, 

including “n+1” number of database searches when using “n” sections, as well as the need to 

aggregate results to generate the enriched database for further matching to MS/MS. In order to 

facilitate the use of this method and make this method accessible to the community, a workflow 

automating these steps, with default parameters defined, in a usable platform is a necessity.  As 

such, we have developed this method in the flexible Galaxy platform50, as part of the Galaxy for 

proteomics (Galaxy-P) development project. The complete and automated workflow can be 

accessed from the European Galaxy public server 

(https://usegalaxy.eu/u/galaxyp/w/sectioningworkflowgalaxyp) and Metaproteomics gateway51–53 

(http://129.114.16.192/u/pravs/w/sectioningworkflowgalaxyp).   Supplemental Information 

provides instructions on accessing and using this workflow, along with demonstration input data.  

 

Conclusion 

We have demonstrated the value of using database sectioning for large database searching, with a 

focus on metaproteomic applications.  Coupled with the accessibility to the automated workflow 

and tools necessary to carry-out this method within Galaxy, we believe that this method should 

provide researchers a highly valuable approach to generate improved results in large database 

applications in MS-based proteomics – from metaproteomics and beyond. 
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Methods 

Sectioning Method overview 

Database sectioning method was implemented as a workflow on Galaxy platform. It can, however, 

be implemented on other platforms as well. Based on the complexity and number of steps and tools 

required, it was an ideal fit for implement within Galaxy, where it can be automated and made 

accessible to others. The Sectioning method, as illustrated in [Figure 1], divides large databases 

into more manageable sections, each of which are matched to the MS/MS data.  Any sequences 

matched, even at very low score and without applying any FDR filtering step, are mapped to their 

inferred proteins and used to generate a reduced database that is enriched for proteins most likely 

present in the sample. In addition to the selected sequences, equal number of randomly selected 

sequences from the original database are also added to the enriched database. The randomly 

selected sequences help to provide sufficient background “noise” proteins that are not detectable 

in the sample and allow for improved FDR evaluation. For example, if “x” number of sequences 

were selected through first-step search, “x” number of additional randomly selected protein 

sequences are selected from the original large database and included in the enriched database. The 

enriched database is then matched to the MS/MS dataset for generating PSMs. The sectioning 

method workflow can be accessed through European Galaxy Server 

(https://usegalaxy.eu/u/galaxyp/w/sectioningworkflowgalaxyp), Metaproteomics Gateway51–53 

(http://129.114.16.192/u/pravs/w/sectioningworkflowgalaxyp). Workflow shared here can be 

downloaded as GA file (.ga) and can be uploaded onto any other Galaxy instance provided all the 

required software tools are installed on that instance.  Also provided in the Supplemental 

Information is the instructions on accessing this workflow.  For sequence database searching and 
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PSM generation and scoring, this workflow uses SearchGUI54 and PeptideShaker55.  These two 

programs were used for the evaluation of the sectioning method as described below. 

For Pfu dataset, we used SearchGUI54 (SG) (version 3.2.13) and PeptideShaker55 (PS) (version 

1.16.9) to match the MS/MS spectra with FASTA databases along with contaminants from cRAP 

database56. Although SG has the option to use as many as 9 search algorithms, but for this 

evaluation purpose, only four search algorithms (X!tandem, OMSSA, MSGF+, and Comet) were 

used.  

Search parameters for the Pfu dataset used were trypsin digestion where two missed cleavages 

were allowed. Carbamidomethylation of Cysteine was selected as a fixed modification. Oxidation 

of methionine, phosphorylation of serine, threonine, and tyrosine were selected as variable 

modifications. The accepted precursor mass tolerance was set to 10 ppm and the fragment mass 

tolerance to 0.5 Da with minimum charge as 2 and maximum charge as 4. Peptide length ranging 

from 8 – 50 amino acids were used for filtering in PeptideShaker. 

For SIHUMI dataset, we used SearchGUI54 (SG) (version 3.3.10) and PeptideShaker55 (PS) 

(version 1.16.36.2). Four search algorithms (X!tandem, OMSSA, MSGF+, and Comet) were in 

SG. Search parameters for the SIHUMI dataset used were trypsin digestion with two missed 

cleavages was allowed. Carbamidomethylation of Cysteine was selected as a fixed modification 

and methionine oxidation was selected as a variable modification. The accepted precursor mass 

tolerance was set to 5 ppm and the fragment mass tolerance to 0.02 Da with minimum charge as 2 

and maximum charge as 4. For Peptide Shaker, the accepted peptide length ranged from 8 - 50 

amino acids. 
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For meltwater dataset, we used SearchGUI54 (SG) (version 3.3.10) and PeptideShaker55 (PS) 

(version 1.16.36.2). Four search algorithms (X!tandem, OMSSA, MSGF+, and Comet) were in 

SG. The search parameters for the meltwater dataset were trypsin digestion with three missed 

cleavages were allowed. Carbamidomethylation of Cysteine was selected as a fixed modification. 

Oxidation of methionine and deamidation of glutamine and asparagine were selected as a variable 

modification. The accepted precursor mass tolerance was set to 10 ppm and the fragment mass 

tolerance to 0.02 Da with minimum charge as 2 and maximum charge as 6. For Peptide Shaker, 

the peptide length ranging from 8 - 50 amino acids were accepted. 

 

Sectioning Method Evaluation 

For evaluation of the sectioning method, we used two standard datasets (Pyrococcus furiosus and 

SImplified HUman Intestinal MIcrobiota datasets).  Both provided “ground truth” data for 

matching PSMs to organism-specific proteins. In order to accurately assess the identification of 

false PSMs, entrapment databases were created for both the datasets (see methods below). As a 

first baseline standard step, the MS/MS datasets were matched with the corresponding standard 

protein sequence database that contained proteome sequences of the expected organism(s) and 

contaminants. The numbers from this standard search was further used to compare it with the 

results from the other methods, traditional large database search method, traditional two-step 

method, and sectioning methods. Target-decoy method was used to evaluate global FDR cutoff 

and to qualify PSMs for comparison. PSMs qualifying at a global FDR cutoff of 1% and resulting 

from the expected organism’s proteome were considered as true positives, whereas those PSMs 

qualifying at the global 1% FDR cutoff matching to proteins in the entrapment proteome were 

considered false positive identifications.  
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Pyrococcus furiosus (Pfu) data and creation of entrapment database 

Pfu dataset was used from a previously published dataset37, downloaded from the publicly shared 

files on EBI-PRIDE Archive (Project ID: PXD001077). Proteome sequences of Pfu was 

downloaded from Uniprot and contained 2045 unique protein sequences). Contaminants (116 

sequences) [Ref: 56] was added to the Pfu proteome sequences using Galaxy tool called “Protein 

Database Downloader” (https://github.com/galaxyproject/tools-iuc/tree/master/tools/dbbuilder). 

The entrapment database was created by adding human proteome sequences (93,502 sequences) 

to the Pfu sequence and contaminant sequences. Human proteome sequences were downloaded 

from Uniprot database using Galaxy tool “Protein Database Downloader”.  

 

SImplified HUman Intestinal MIcrobiota (SIHUMI) data and creation of entrapment database 

Proteins from eight microorganisms (Anaerostipes caccae, Bacteroides thetaiotaomicron, 

Bifidobacterium longum, Blautia producta, Clostridium butyricum, Clostridium ramosum, 

Escherichia coli, Lactobacillus plantarum) grown in a bioreactor were extracted to generated 

SIHUMI dataset. The raw file can be accessed from (https://files.ufz.de/~molsyb-ims-

2018/ORNL_Easy_nLC1200_contest2_C1_2ug_UHPLC_gradient240min_ac50cm.raw) The 

dataset was publicly shared at 3rd International Metaproteome Symposium 

(https://www.ufz.de/index.php?en=44639). The proteome sequences of these eight 

microorganisms were also shared through on the symposium page 

(https://www.ufz.de/export/data/2/211671_Contest_Sample_1_SIHUMI.fasta). The protein 

sequence database was then merged with contaminant sequences and the archaeal proteome 

sequences (containing 1.44 million sequences downloaded from the NCBI-NR database). This 
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merged database was used as an entrapment database where any PSM matching SIHUMI or 

contaminants were considered as true positive identifications whereas those matching to Archaea 

sequences were considered false positives. 

 

Metaproteomic meltwater data 

The protein samples were extracted from the microbiome of meltwaters on the surface of and 

underneath a glacier40,41. For our work, data from a single collection timepoint was used. The 

collection of metaproteomic MS/MS data files (accessible from 

https://arcticdata.io/catalog/view/doi:10.18739/A2VX06340) were used to match against a protein 

sequence database generated from whole genome metagenomics data derived from the same 

meltwater sample. Metagenomes were assembled using MOCAT21 and then translated into protein 

sequences. Additionally, the SixGill tool20 was used to generate an alignment-free metapeptide 

sequence database. A merged protein sequence database was used containing protein sequences 

from MOCAT and SixGill, as well as common contaminants detected in MS-based proteomics 

experiments. The protein sequence database contained 5,117,895 sequences. MS/MS data was first 

matched with complete 5.1 million sequence (traditional method) and then sectioning method was 

used – using 5 equal sized sections of approximately 1.02 million sequences each – to create an 

enriched database. All PSMs to peptides, excluding contaminant peptides, from both traditional 

and sectioning method were further analyzed through Unipept42 

(https://unipept.ugent.be/datasets). Unipept allowed assignment of identified peptides to enzyme 

commission numbers (EC numbers), taxonomy, and gene ontology terms like biological processes 

and molecular functions.   
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Figure 1: Overview of sectioning method 
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Figure 2 

 

 

Figure 2: Overview of evaluation method.  For each evaluation dataset, the MS/MS spectra were 

first matched to peptides within a database containing only sequences from organisms known to 

be present in the sample.  Then, using a larger entrapment database, the MS/MS were matched to 

peptides using the traditional large sequence database searching method, the traditional two-step 

method, or the sectioning method, using differing numbers of database sections of equal size. 
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Figure 3 

 

 

 

Figure 3: Observations using Pfu data. We considered PSMs that matched to a Pfu or cRAP protein 

as true, whereas those matched exclusively to entrapment Human proteins were considered as false 

PSMs. (a) 10770 PSMs were identified when LC-MS/MS data was matched against Pfu + cRAP 

database. We observed a drop in true PSMs when LC-MS/MS data was matched against an 

entrapment database (Pfu + cRAP + Human protein sequences) using the Traditional Large 

database search. The Traditional Two-Step method recovered most of the lost PSMs, as well as 

the sectioning method. (b) The Traditional Large database search controlled the observed false 

identifications (PSMs matching to Human protein) at a rate of 1%, consistent with the 1% global 

FDR threshold (orange dashed line). On the contrary, The Traditional Two-Step method inflated 

the number of false PSMs identified (purple dashed line). Meanwhile, using the sectioning method, 

we observed decrease in the false PSM identifications when compared with the traditional two-

step method (colored bars). We also saw significantly decreased false positive PSMs with 
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increasing number of sections used. Overall, the best balance between PSM sensitivity and false 

positive reduction was observed when using 10 sections. 
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Figure 4 

 

 

 

Figure 4: Observations using SIHUMI data, where we considered PSM(s) that matched to a 

SIHUMI or cRAP protein as true, while those matching to an Archaea protein were considered as 

false. (a) 50561 PSMs were identified when LC-MS/MS data was matched against SIHUMI + 

cRAP database. LC-MS/MS data when matched against an entrapment database (SIHUMI + cRAP 

+ Archaea protein sequences) using the Traditional Large database search showed a decrease in 

true PSMs by more than 10%. The Traditional Two-Step method recovered almost all of these 

PSMs. The sectioning method also recovered a significant number of PSMs. (b) The Traditional 

Large database search was seen to control the false identifications (PSMs matching to Archaea 

protein, green dashed line), whereas the Traditional Two-Step  increased the identification of false 

PSMs by over an order of magnitude (red dashed line). Using the sectioning method, we observed 

a significant decrease in the false PSM identifications when compared with the Traditional Two-

Step method. This effect was greater with increasing number of sections used.  
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Figure 5 

 

 

Figure 5: Percentage of false positive identifications in the SIHUMI dataset with corresponding 

PSM confidence scores. Based on an estimated global FDR of 1%, we expected matches to false 

sequences (derived from Archaea proteins) to approximate this rate of false positives. We observed 

that Traditional Large database search showed identification of about 1% false PSM 

identifications. The Traditional Two-Step method produced a rate 10% of false positive PSMs 

matching Archaea sequences, such that a very strict PeptideShaker confidence score cutoff of 

higher than 99 will be required to control the false positive rate. Meanwhile, the sectioning method 

yielded slightly higher false positives compared to the Traditional Large database search, but 

significantly lower compared to Traditional Two-Step method. The observed false positive PSMs 

also decreased as the number of sections were increased.  We also observed that most of the PSMs 

to Archaea were assigned slightly lower confidence scores by PeptideShaker compared to those 
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true positive PSMs.  Thus, by slightly increasing stringency of qualifying PSM scores (e.g. setting 

a threshold of 85), the false positive rate could be significantly reduced while minimally sacrificing 

true positive PSMs. 
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Figure 6 

 

 

 

Figure 6: Percentage of Archaea PSM identifications at a given target-decoy global FDR for the 

SIHUMI dataset (30-sections). At 1% global FDR (red dashed line), the sectioning method had a 

1.5% rate of PSMs to Archaea sequences. Using a slightly stricter global FDR cutoff helps in 

decreasing the number of false-positive identifications, for example reaching below 1% (0.98 %) 

false-positives at 0.60% global FDR. 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/843078doi: bioRxiv preprint 

https://doi.org/10.1101/843078
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7 

 

 

 

Figure 7: Database size used for each method for the SIHUMI dataset and its importance. The 

ideal protein sequence database for matching this SIHUMI dataset would include known protein 

sequences from the 8 organisms (29,635). To mimic a metaproteomic database, an entrapment 

database (1.47 Million sequences) was created by adding Archaea protein sequences. The 

Traditional Two-Step method reduced the database size very significantly, but to an extent such 

that false positive PSMs increased significantly. The sectioning method generated an enriched 

database of reduced size compared to the starting large database, but also contained a significant 

amount of proteins not detected in the sample to help control false positives.  Utilizing more 

sections also increased the size of the database accordingly, contributing to the reduction in false-

positive PSMs observed with increasing sections used. 
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Figure 8 
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Figure 8: Meltwater dataset: Comparison of Unipept outputs from sectioning method and 

traditional large database searching method. 

(a) Protein enzyme commission (EC) assignment report from Unipept shows that the sectioning 

method was able to assign majority of the EC numbers identified by Traditional Large database 

searching method, as well as some additional EC numbers. For the sectioning method, more 

PSMs were assigned to each EC number compared to the Traditional Large database searching 

method, improving the confidence in the assignments. 

(b) The sectioning method was able to identify more taxonomy groups using Unipept compared to 

the Traditional Large database searching method. Also, more PSMs were assigned to each of 

the top ranking taxonomy groups when sectioning method was used, improving confidence.  

(c) Similar to EC number and taxonomy, PSMs from the sectioning method were assigned to more 

gene ontology groups, both biological processes (i) and molecular functions (ii). Also, more 
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PSMs were assigned to each of the top-ranking gene ontology terms in both biological 

processes and molecular functions when the sectioning method was used.  
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Figure 9 

 

 

 

Figure 9: A summary of the findings from the evaluation of the sectioning method for 

metaproteomics databases. While increasing the number of sections decreases the false-positive 

potential, it comes with the trade-off of generating enriched databases of increasing size.  PSM 

scores of lower quality but passing the 1% global FDR threshold can be assumed as true with more 

sections.  Meanwhile, a lower number of sections provides a smaller-sized enriched database, but 

with a cost of increasing potential for false positive identifications.  Stricter cut-offs of PSM scores 

and/or stricter global FDR thresholds (< 1%) is suggested.  
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