

1 **Title:** Hippocampal spatial memory representations in mice are heterogeneously stable

2
3 **Authors:** Levy, Samuel J; Kinsky, Nathaniel R; Mau, William; Sullivan, David W; Hasselmo,
4 Michael E

5
6 **Correspondence:** samjl@bu.edu

7
8 **Affiliation:** Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave.,
9 Boston, MA 02215

10
11 **Number of pages:** 43

12
13 **Number of figures:** 4

14
15 **Acknowledgments:**

16 This work was supported by the following grants: U.S. Office of Naval Research MURI
17 N00014-16-1-2832, National Institutes of Health R01 MH052090, National Institutes of Health
18 R01 MH 051570, and National Institutes of Health MH060013. We would like to thank Howard
19 Eichenbaum, who initially conceived of the experimental questions and design and secured
20 funding to perform them, but passed away in July of 2017 before the analysis had progressed
21 significantly. We additionally thank Ian Davison for providing extensive consultation during data
22 analysis and manuscript preparation, Jay Bladon, Dan Sheehan, and Catherine Mikkelsen for
23 input on results, analysis and interpretation, Elin Anwar and Alex Terzibachian for help with
24 data processing, and Dan Orlin, Wing Ning, Denise Parisi, Shelley Russek, and Sandra Grasso
25 for administrative support. We would like to acknowledge the GENIE Program, specifically
26 Vivek Jayaraman, PhD, Douglas S. Kim, PhD, Loren L. Looger, PhD, Karel Svoboda, PhD from
27 the GENIE Project, Janelia Research Campus, Howard Hughes Medical Institute, for providing
28 the GCaMP6f virus. Finally, we would like to acknowledge Inscopix, Inc. for making single-
29 photon calcium imaging minisscopes widely available, and specifically Lara Cardy and Vardhan
30 Dani for all their technical support throughout the experiment.

31
32 **Contributions:** Study was designed by Howard Eichenbaum and SJL. WM performed surgeries and
33 histology. SJL performed experiments and analysis. NRK, WM and DWS wrote TENASPIS. SJL and
34 MEH wrote the manuscript.

35
36 **Conflict of interest:** The authors declare no conflicts of interest.

37
38
39
40
41
42
43
44
45
46
47

48 **Abstract:**

49 The population of hippocampal neurons actively coding space continually changes across
50 days as mice repeatedly perform tasks. Many hippocampal place cells become inactive while
51 other previously silent neurons become active, challenging the belief that stable behaviors and
52 memory representations are supported by stable patterns of neural activity. Active cell
53 replacement may disambiguate unique episodes that contain overlapping memory cues, and
54 could contribute to reorganization of memory representations. How active cell replacement
55 affects the evolution of representations of different behaviors within a single task is unknown.
56 We trained mice to perform a Delayed Non-Match to Place (DNMP) task over multiple weeks,
57 and performed calcium imaging in area CA1 of the dorsal hippocampus using head-mounted
58 miniature microscopes. Cells active on the central stem of the maze “split” their calcium activity
59 according to the animal’s upcoming turn direction (left or right), the current task phase (study or
60 test), or both task dimensions, even while spatial cues remained unchanged. We found that
61 different splitter neuron populations were replaced at unequal rates, resulting in an increasing
62 number of cells modulated by turn direction and a decreasing number of cells with combined
63 modulation by both turn direction and task phase. Despite continual reorganization, the ensemble
64 code stably segregated these task dimensions. These results show that hippocampal memories
65 can heterogeneously reorganize even while behavior is unchanging.

66

67

68

69

70

71 **Significance statement:**

72 Single photon calcium imaging using head-mounted miniature microscopes in freely
73 moving animals, has enabled researchers to measure the long term stability of hippocampal
74 pyramidal cells during repeated behaviors. Previous studies have demonstrated instability of
75 neural circuit components including dendritic spines and axonal boutons. It is now known that
76 single units in the neuronal population exhibiting behaviorally relevant activity eventually
77 become inactive and that previously silent neurons can quickly acquire task-relevant activity.
78 The function of such population dynamics is unknown. We show here that population dynamics
79 differ for cells coding distinct task dimensions, suggesting such dynamics are part of a
80 mechanism for latent memory reorganization. These results add to a growing body of work
81 showing that maintenance of episodic memory is an ongoing and dynamic process.

82

83 **Introduction**

84 The belief that stable behaviors and reliable memory representations are supported by
85 stable elements of neural circuits (Barnes et al., 1997; Thompson & Best, 1990) has been
86 challenged by many findings that neural circuit components across the brain are unstable over
87 time. Circuit instability is notable in the continual replacement of active cells with previously
88 silent cells (Kinsky et al., 2018; Mau et al., 2018; Ziv et al., 2013), but is also observed in the
89 impermanence of dendritic spines and axonal boutons (Attardo et al. 2015; Pfeiffer et al. 2018;
90 Grutzendler et al. 2002; De Paola et al. 2006). How circuit instability may affect neural function
91 is a topic of much debate (Chambers & Rumpel, 2017; Rule et al., 2019).

92 In the hippocampus, a hub for episodic memory and spatial navigation, change is
93 observed in the patterns neuronal of activity and the set of currently active cells. In behaving

94 animals, single neurons become more sensitive to task demands during training and change their
95 firing properties to more precisely encode task demands (Kobayashi et al. 2003; Komorowski et
96 al. 2009; Lever et al. 2002). Hippocampal memory representations are also unstable even during
97 over-trained behaviors, exhibiting a decorrelation in ensemble activity relative to the elapsed
98 time between recordings (Mankin et al. 2015; Mankin et al., 2012; Rubin et al. 2015; Ziv et al.,
99 2013). These decorrelations result both from remapping of firing locations exhibited by
100 continuously active single neurons that is unrelated to changes in behavior (Mehta et al. 2000;
101 Poe et al. 2000; Lee et al. 2006; Law et al. 2016), and from population dynamics that include the
102 continual inactivation of active cells and their replacement by previously silent cells (Mau et al.,
103 2018; Ziv et al., 2013). However, these changes have primarily been observed during learning or
104 during performance of foraging tasks. How changes occur during stable performance of a multi-
105 dimensional memory task remains an open question. Previous studies have linked the long term
106 stability of a neuronal activity to different spatial locations and different task behaviors (Kentros,
107 et al., 2004; Kinsky et al., 2019; Taxidis et al., 2018). We sought to expand on these studies by
108 examining how different demands on long term memory influence the evolution of hippocampal
109 memory representations during a task where mice pass through the same spatial location under
110 multiple different task conditions.

111 To study the reorganization of hippocampal representations over time, we used *in vivo*
112 calcium imaging to monitor the activity of hundreds of neurons across multiple sessions in mice
113 performing a Delayed Non-Match to Place task on a figure-eight maze. We first confirmed that
114 neurons modulate their activity on the central stem according to the animal's upcoming turn
115 direction and the current task phase (Griffin et al., 2007; Wood et al., 2000). We show that the
116 distribution of these single unit responses among the active population changes over time,

117 resulting in an increased number of turn direction-modulated neurons and a decrease in the
118 number of neurons modulated by both the current task phase and upcoming turn direction. These
119 changes primarily result from the unequal recruitment of previously inactive cells to different
120 neuron coding types. While the distribution of single unit activity was unstable, population
121 analyses revealed a stable separation of task variables in the collective ensemble at extended lags
122 between recordings. These results demonstrate that behavior and population output can remain
123 stable while single neuron responses are unevenly reorganized.

124

125 **Methods**

126 *Surgical Procedures*

127 4 male, naïve mice (C57BL6, Jackson Laboratory) underwent two stereotaxic surgeries to
128 prepare for calcium imaging. All procedures presented here were approved by the Institutional
129 Animal Care and Use Committee (IACUC) at Boston University. Mice were given 0.05mL/kg
130 buprenorphine as a pre-surgical analgesic, and were anesthetized with ~1% isofluorane delivered
131 with oxygen. The first surgery was to infuse virus to express GCaMP6f. A small craniotomy was
132 made above the dorsal hippocampus at AP -2.0mm, ML +1.5mm relative to bregma, and the
133 infusion needle was lowered at this site to DV -1.5mm. 350 nL of the viral vector AAV9-Stn-
134 GCaMP6f (University of Pennsylvania Vector Core, obtained at a titer of ~4x10e13GC/mL and
135 diluted it to ~5-6x10e12GC/mL with 0.05M phosphate buffered saline) was infused at 40nL/min
136 and allowed to diffuse for 15 minutes before the infusion needle was slowly removed.

137 The second surgery, to implant a gradient-index (GRIN) lens for imaging, was performed
138 three weeks later to allow for viral infection and GCaMP6f expression. A 2mm diameter circular
139 craniotomy was made at AP-2.25mm, ML +1.8mm, and the neocortex was aspirated until
140 rostral-caudal fiber tracts of the alveus were visible. Near-freezing 0.9% saline solution and

141 GelFoam (Pfizer) were used continuously to control bleeding and to dry the base of the
142 craniotomy prior to lens implantation. The GRIN lens (1mm diameter, 4mm length, Inscopix)
143 was slowly lowered stereotactically to 200 um dorsal to the infusion site of the virus, measured
144 relative to the skull surface. The lens was then fixed in place using a non-bioreactive silicone
145 polymer (Kwik-Sil, World Precision Instruments) to entirely cover the craniotomy, which was
146 then covered with Metabond dental cement (Parkell) to anchor the lens to the skull. The lens was
147 covered with a temporary cap made from Kwik-Cast (World Precision Instruments) until the
148 baseplate was attached.

149 After allowing a week of recovery from the lens implantation surgery, mice were again
150 anesthetized and placed in the stereotaxic holder. The baseplate was magnetically attached to the
151 imaging microscope camera, which was then aligned parallel to the GRIN lens by adjusting until
152 the edge of the lens was entirely in focus in the nVista recording software (Inscopix). The
153 camera with baseplate was then lowered until GCaMP6f-expressing cells were optimally in
154 focus, and then raised by 50 um to allow for shrinkage of the dental cement used to affix the
155 baseplate. The baseplate was then fixed in place to the existing metabond around the GRIN lens
156 with Flow-It ALC Flowable Composite (Pentron), and cured with ultraviolet light. Gaps in the
157 dental cement were filled in with Metabond, the camera was removed, and a cover attached to
158 the baseplate.

159

160 ***Maze Description***

161 The maze was constructed from wood and the internal floor area measured 64.5 cm long
162 by 29.2 cm wide, and walls were 17.75 cm high. Middle maze walls separated this area into a
163 central hallway (Center Stem) and left and right Return Arms. Each hallway was 7.5 cm wide.
164 This resulted in low variability of the animals' left/right position within a hallway, although it

165 did not prevent the animals from occasionally running with their head turned towards one side.
166 Rewards were delivered through ports at the maze walls at floor level of the side arms 12 cm
167 from the delay-end of the maze. To dictate turn direction on Study Trials (see below) and to
168 contain the mouse during the delay period, arm barriers were used that were made of transparent
169 plastic. The delay barrier was made of wood. In this manuscript we only consider data from the
170 central stem and return arms.

171 For analysis of the central stem, we chose a region starting ~8 cm in front of the delay
172 barrier and extending 30cm to end ~5 cm before the choice region at the end of the middle maze
173 walls; this region was selected to encompass the region where the mouse was running similarly
174 between study and test task phases and left and right turn directions. Left and right variability in
175 the animals' head position at the end of this region was less than 2.5 times the standard deviation
176 of the animals' left/right variability for the first half of the stem, and was usually
177 indistinguishable by visual observation in behavioral recordings. We divided this 30cm long
178 region into 8 spatial bins each 3.75 cm in length. For the return arms (**Supplement**), we chose a
179 region of equal length that started after the animals had fully entered the return arms and ended
180 before they reached the reward zone, also 30cm in length and separated into 8 bins each 3.75 cm.

181

182 ***Behavior pre-training and recording sequence***

183 Mice were trained to run on a Delayed Non-Match to Place (DNMP) task shown in
184 **Figure 1**. This involved extensive pre-training in order to obtain performance at the criterion of
185 70% correct.

186 After fully recovering from surgeries, mice were extensively handled for ~15 min/day for
187 5 days. They were simultaneously food restricted to 80% of free feeding body weight, and
188 acclimated to consuming chocolate sprinkles. Over the next two weeks, mice were given time to

189 explore the maze, and were slowly shaped to run in a single direction through the maze and to
190 receive reward, with inserted walls to block paths and guide them. In the last few days of pre-
191 training, mice were guided with blocking walls to alternate between the two reward arms and
192 given experience with continuous and delayed alternation.

193 Mice were recorded performing two tasks. In the Delayed Non-Match to Place (DNMP)
194 task (Griffin et al., 2007), mice alternated between Study and Test trials. On Study trials, mice
195 were placed in the center stem in front of the delay barrier, ran to the choice point, where a
196 removable barrier forced them to take a path down one return arm where they received a reward
197 of one chocolate sprinkle. They then moved to the delay area, waited through a 20-second delay,
198 and the delay barrier was lifted to start the Test trial. On a test trial, mice again ran to the choice
199 point but there was no barrier and mice had to go down the return arm opposite to the preceding
200 study trial in order to receive a reward. They then moved to the delay area, from which they were
201 removed to their home cage to wait through a 15-25 second inter-trial interval while the next
202 Study trial was prepared. Mice completed between 25 and 40 Study-Test trial pairs per session.

203 A second task, termed the Forced-Free task, was used on other days for a different study
204 question not addressed here. On each trial in the Forced-Free task, mice were placed in front of
205 the delay barrier, proceeded to the choice point and were either forced down a particular return
206 arm or were free to choose which arm. On all trials mice received a reward regardless of which
207 arm they entered. After consuming the reward, mice entered the delay area and were
208 immediately returned to their home cage for a 15-25 second inter-trial interval while the next
209 trial was prepared. Mice typically completed 40 trials per session. Forced and free trials were
210 pseudo-randomly interleaved, as was turn direction on forced trials.

211 The full recording sequence was two rounds of the following sequence: one day of
212 Forced-Free, 3 days of DNMP, and one day of Forced-Free. This was followed by a sequence
213 with one day of Forced-Free followed by 5 days of DNMP, followed by one day of Forced-Free.
214 Gaps between Forced-Free-DNMP recording sequences ranged between 0 and 2 days (Full
215 sequence: FF-D-D-D-FF, break, FF-D-D-D-FF, break, FF-D-D-D-D-D-FF). Data from the
216 Forced-Free task are not presented here.

217 We only include data from DNMP recordings where cell registration could be reasonably
218 performed and where the animal's performance was $\geq 70\%$.

219

220 ***Imaging***

221 Imaging data were acquired using a commercially available miniaturized head-mounted
222 epifluorescence microscope (Inscopix). Microscopes were attached on awake, restrained mice,
223 and optical focus, LED gain and intensity adjusted for each individual mouse but kept stable
224 across days. Videos were captured at 20 Hz with a resolution of 1440 x 1080 pixels, spatially
225 downsampled 2x to 720 x 540 pixels. Dropped and corrupted frames were replaced with the
226 preceding good frame, and lost frames were excluded from analysis. Mosaic (Inscopix) was used
227 to pre-process recordings for motion correction and cropping (exclude pixels without GCaMP6f
228 activity), and to generate a minimum projection of the final video (image which has the same
229 height and width of each frame and each pixel is the minimum of that pixel for the entire video)
230 to be used during ROI extraction.

231 To extract neuron regions of interest (ROIs) and calcium event times, pre-processed
232 videos were then passed through custom-made MATLAB-based image segmentation software
233 (Mau et al., 2018; Kinsky et al., 2018) (TENASPIS, software available at <https://github.com/SharpWave/TENASPIS>; see D.W. Sullivan et al., 2017, Soc. Neurosci., abstract). Briefly,

235 TENASPIS applies an adaptive thresholding process on a frame-by-frame basis to a band-pass
236 filtered video to identify discrete regions of fluorescent activity (blobs). Blobs are then identified
237 as likely cells based on expected shape and size, and the software aligns these blobs together
238 over successive frames. Dynamics in calcium activity, including event duration, distance traveled
239 over successive frames, and probable spatial origin, are used to identify putative neuron ROIs.
240 Fluorescence of neuron ROIs is refined into events based on the rising phase of calcium activity.
241 Finally, neuron ROIs with significant spatial overlap and high correlations in calcium activity are
242 merged into single cells.

243 Cells were registered across sessions using a semi-automated procedure with custom
244 software developed in MATLAB that is available along with the rest of our analysis code. For
245 each animal, each session was first aligned to the same ‘base’ session, selected from the middle
246 of the recording schedule. To align sessions, a set of 25-40 ‘Anchor’ cells was chosen based on
247 the relative positions of neuron ROIs in the base session and each other session (**Supplementary**
248 **Figure 1a-b**). Centers of these ‘anchor’ cells were used to compute an affine geometric
249 transformation (‘fitgeotrans’ function in MATLAB) and then align the entire set of ROIs in the
250 sessions being registered with the base session (‘transformpointsforward’ function in
251 MATLAB). Cells with centers within 3um (translated to pixels) were identified as the same cell,
252 and when there was more than one match within that radius, the registered cell with the higher
253 spatial correlation to the base cell was chosen (**Supplementary Figure 1c**). Cells from a
254 registered session that were not partnered to the base session were added to the set of unique
255 footprints alongside base session cells so that cells in successively registered sessions could be
256 paired to them in turn. Alignment maps were validated by visual inspection: this included
257 looking at the relative alignment with other cells in the field of view, and orientation of

258 putatively mapped cells across sessions. Cells that were not aligned by the automated procedure
259 based on center-to-center distance but that shared orientation and relative alignment to
260 neighboring cells were registered manually (**Supplementary Figure 1e**, green cell). When
261 looking at the relationship for all cell pairs across all sessions, the correlation of ROIs and
262 distances between centers formed a cluster near the top of the distribution for all cell pairs
263 (**Supplementary Figure 1d**). The TENASPIS algorithm is designed to discriminate between
264 partially overlapping cells, which gives rise to in many pairs of cells that have high ROI
265 correlations and low center-to-center distances, but remain unregistered because a better matched
266 pair was found using the procedures above; in **Supplementary Figure 1d**, this manifests in the
267 black points mixed in among the red registered cell pairs.

268

269 ***Behavioral Tracking***

270 Animal position was recorded using an overhead video camera and CinePlex V2 tracking
271 software (Plexon). Tracking was performed at 30 Hz, and was synchronized with a TTL pulse to
272 the imaging data acquisition through nVista software. Tracking was validated manually and
273 errors were corrected using custom software written in MATLAB. Position was then interpolated
274 to the 20 Hz imaging time stamps.

275

276 ***Histology***

277 Mice were perfused transcardially with 10% phosphate buffered saline until outflow ran
278 clear and then with 10% phosphate buffered formalin. Brains were then extracted and post-fixed
279 in formalin for 2-4 days, and then transferred to 30% sucrose solution in phosphate buffered
280 saline for 1-2 days. Brains were then frozen and sliced into 40 um sections on a cryostat (Leica
281 CM 3050S), mounted, and coverslipped with Vectashield Hardset mounting medium with DAPI

282 (Vector Laboratories). Slides were then imaged using a Nikon Eclipse Ni-E epifluorescence
283 microscope at 10x and 20x to verify viral expression and location and GRIN lens location
284 relative to the CA1 cell layer.

285

286 ***Quantification and Statistical Analysis***

287 ***Event likelihood***

288 Calcium events were detected and analyzed to compute the likelihood of calcium events
289 occurring at a given location. The analysis software, TENASPIS, (see above) defines an event as
290 the time during the rising phase of a spike in calcium fluorescence in a cell which exceeds a local
291 threshold of that cell's session average of fluorescence activity. This returns a binary output for
292 each cell which describes whether that cell was or was not, at every imaging frame, exhibiting a
293 calcium event. We calculated event likelihood by pooling data from the set of trials of interest
294 for each cell (e.g., Study trials on the stem), and then, for each spatial bin, dividing the number of
295 frames for which an event was occurring by the number of frames when the mouse was in that
296 bin in that set of trials. This produces an output between 0 (an event never occurred in that
297 spatial bin) and 1 (an event always occurred when the mouse was in that spatial bin).

298

299 ***Active Cells***

300 For single unit analyses, cells are included on a given day when they exhibited a calcium
301 event on at least 25% of trials or 3 consecutive trials in a single trial type (e.g. Study-Left). In the
302 population analyses, we included all cells were successfully registered to the sessions being
303 compared.

304

305 ***Splitter Identification***

306 Splitter neurons are cells that exhibit a significant bias in their firing activity on the
307 central stem for trials of a particular upcoming turn direction (Left versus Right) or task phase
308 (Study versus Test) (**Figure 2**). Thus, each cell is a member of one of four mutually exclusive
309 categories, depending on whether its calcium activity is modulated by either task dimension,
310 both, or neither: turn splitter neuron, task phase splitter neuron, turn*phase splitter neuron, or
311 non-splitter. Note that turn*phase splitter neurons refer to cells splitting both turn direction and
312 task phase.

313 To identify whether each cell's activity was significantly modulated by task variables, we
314 used a permutation test to measure the significance of the difference in event activity likelihood
315 against a shuffled distribution. This was repeated separately to measure activity bias for turn
316 direction or task phase. We first separated epochs when the mouse ran through the central stem
317 according to the given task dimension (i.e. left and right turn trials, or study and test trials), and
318 computed the event likelihood (see above) for these sets of trials. Then took the difference in
319 likelihood scores by subtracting the Right trial event likelihood in each spatial bin from that for
320 Left trials, or Test trial from Study. We then repeated this for all 1000 sets of shuffled trials,
321 which were generated by shuffling the trials between trial types accordingly, to get a shuffled
322 difference distribution. Cells were determined to “split” the dimension of interest if their original
323 event likelihood difference was greater than 95% of the shuffle differences in any spatial bin.

324 In the supplemental data, this procedure was repeated in the same fashion for epochs
325 when the mouse ran down the return arms to measure selectivity for the separate (Right or Left)
326 return arms and for Study and Test task phases while on the return arms.

327

328 ***Population Vector Correlations***

329 Population vector correlations were computed in a manner similar to that described by
330 Leutgeb et al. (2005)(**Figure 3a**). We generated three sets of correlations: 1) within-condition:
331 trials of the same type (e.g. Study-Left vs. Study-Left); 2) Left vs Right, and 3) Study vs. Test.
332 First, trials were grouped for the comparison of interest and then each group was split so that
333 within condition comparisons would have the same number of trials as the other two
334 correlations. For a given half-set of trials, we computed the event likelihood in each spatial bin
335 with the method described above. We then took these spatial bin event likelihoods for the set of
336 cells included and computed a Spearman correlation for each spatial bin against the event
337 likelihoods in the same spatial bin for the trials in the different comparisons listed above. For
338 correlations computed across days, we computed all day-pair combinations for each self-
339 comparison and for each comparison between study and test trials and between left and right turn
340 trials, for example between left turn trials on day 1 and right turn trials on day 4. Cells included
341 were those present (successfully registered) on both days for each comparison (Similar results
342 were achieved using several other cell inclusion criteria, data not shown).
343

344 **Statistics**

345 All statistical tests were done with Spearman rank correlations, Wilcoxon Rank-sum tests
346 (Mann-Whitney U tests), Wilcoxon signed-rank tests, sign tests, or permutation tests with
347 threshold set at >95% of shuffles for the given test. These tests were used because data were
348 often not normally distributed.

349
350
351
352
353
354
355

356 **Results**

357 ***Heterogeneous changes in daily distribution of single-cell task-related responses***

358 We recorded calcium activity in neurons in dorsal area CA1 as mice performed a delayed
359 non-match to place (DNMP) task over several days. In the DNMP task, mice first run a study
360 trial where they are forced to turn into one side arm to receive reward. After a 20-second delay,
361 mice must choose to go down the opposite arm to receive a reward (**Figure 1a**). We used this
362 task because mice traverse the same section of the maze (the central stem) under each
363 combination of Task Phase and upcoming Turn Direction. This allows us to examine
364 hippocampal representations of the same space under four different behavioral conditions:
365 Study-Left, Study-Right, Test-Left, Test-Right. We recorded 8256 cells in four male mice across
366 38 sessions with a behavioral performance (opposite turn direction on Test trials relative to
367 preceding Study trial) minimum of 70% (9 days in 3 mice, 11 days in 1) (**Figure 1b**), spanning
368 up to 17 calendar days. Performance did not change over the experiment (only days above
369 threshold: $\rho = -0.031$, $p = 0.852$; all days recorded: $\rho = 0.198$, $p = 0.210$; Spearman rank
370 correlation). We recorded activity using the virally-delivered fluorescent calcium indicator
371 GCaMP6f and head-mounted miniature microscopes (**Figure 1c**), and extracted cell ROIs using
372 custom software (example ROIs in **Figure 1d-e**, bottom; see Methods) (Kinsky et al., 2018; Mau
373 et al., 2018). On average, each cell was successfully registered for 3.45 sessions, and cells often
374 displayed stable activity profiles across sessions (**Figure 1d-e**, top).

375 Single cells often modulate their spatial firing activity according to context-dependent
376 task dimensions such as upcoming turn direction or current task phase. Turn direction responses
377 are thought to represent specific spatial trajectories (Frank et al. 2000; Wood et al. 2000;
378 Ferbinteanu and Shapiro 2003), while a task phase-modulated response profile reflects the

379 (presumably) different network activity states for encoding during the study phase and retrieval
380 during the test phase (Griffin et al. 2007). We assessed whether these task variables were
381 encoded in the calcium activity of neurons in our recordings using a permutation test (see
382 Methods) and found that ~90% of cells active on the central stem (3443/3810 active on any
383 recording day) displayed a functional phenotype described by a modulation of their calcium
384 activity according to the animal's upcoming turn direction (turn splitter neurons), the current task
385 phase (phase splitter neurons), or both (turn*phase splitter neurons) (see examples in **Figure 2a**);
386 these categories are mutually exclusive. Note that we found many cells which display a turn
387 direction-modulated response on Study trials, indicating that mice could likely see the turn
388 barrier before having reached it.

389 On the center stem, there was no difference in the proportions of turn or phase splitter
390 neurons ($18.96 \pm 1.22\%$ and $19.19 \pm 1.20\%$, respectively, $z=0.016$, $p=0.987$, Wilcoxon signed-rank
391 test), but there were more turn*phase splitter neurons than either group ($51.44 \pm 1.93\%$, both
392 $z=5.286$, $p=1.250e-07$) (**Figure 2b**). We also observed a location bias among different splitting
393 phenotypes of single cells: phase splitter neurons were more likely to have their activity center of
394 mass (event activity pooled across all trial types) closer to the start of the stem than did turn
395 splitter neurons ($p=6.719e-30$, Mann-Whitney U test) (**Figure 2c**). A bias in firing location may
396 indicate that cells tend to fire in proximity to the behaviors they encode: for phase splitters, this
397 could be whether the trial began in the delay area or being placed on the maze by the
398 experimenter, while turn splitters encode an upcoming spatial turn direction.

399 The daily distribution of splitter types was not stable: the percentage of turn*phase
400 splitters significantly declined over the course of the experiment ($\rho=-0.35774$, $p=0.027$,
401 Spearman rank correlation), though it remained greater than other splitter types. Meanwhile, the

402 percentage of phase splitter neurons was stable ($\rho=0.084$, $p=0.616$) and the percentage of turn
403 splitter neurons went up ($\rho=0.347$, $p=0.033$) (**Figure 2d**). The percentage of non-splitters
404 displayed a small but statistically significant increase over the course of the experiment
405 ($\rho=0.331$, $p=0.043$) (**Figure 2d**). The proportions of each type of splitter neuron were not
406 correlated with animals' performance on the DNMP task (all ρ absolute value <0.217 , all
407 $p>0.190$) (**Supplementary Figure 2**). These findings replicate a previous result in a new species
408 (Griffin et al. 2007) and extend that work to show that the distribution of task-dimension
409 modulated responses among neurons is unstable over time, even though behavioral output is
410 reliable. In particular, the number of turn splitter neurons increases over time, whereas the
411 number of turn*phase splitter neurons decreases over time, suggesting representations become
412 less experience-specific over time.

413 We applied these same analyses to determine neuronal activity modulation according to
414 task variables to neuronal activity during the return arm epochs. Because this analysis is
415 performed in the same way, it can be used to indicate relative distinctiveness in the way neurons
416 code for overlapping spatial trajectories (central stem) as opposed to unique spatial locations
417 (return arms). Many cells displayed a calcium event bias for one arm over the other (place cells,
418 referred to here as "place splitters"), and many cells also showed selectivity for one task phase.
419 The proportions of place and phase splitter neurons on the return arms did not individually
420 change over time, though there was an increase in the number of cells which were active on the
421 return arms but did not show place or task phase selectivity (**Supplementary Figure 3**). These
422 results show that changes in the representation of the task and environment are modulated by
423 memory load, which is low on the return arms and high in the central stem.

424 In summary, by demonstrating that the distribution of task variable responses among
425 single units is unstable, we show that representations for various task dimensions experienced in
426 the same spatial location and during a similar behavior are heterogeneously stable, with
427 divergent changes based on their coding of the behavioral context.

428

429 ***Population-level separation of task dimensions is stable over experience***

430 We next asked how these patterns of activity manifested in the activity state of CA1 as a
431 whole. This population analysis was designed to measure the similarity in the pattern of activity
432 among the population of neurons within and across recording sessions. We computed Spearman
433 correlations for the activity in each spatial bin from the start of the stem to the choice point for a
434 given trial type using the calcium event likelihood for each trial type of all cells present in the
435 session pair (**Figure 3a**) (see Methods). We generated three sets of correlations: 1) trials of the
436 same turn direction and task phase (within-condition; e.g. Study-Left vs. Study-Left), 2) trials of
437 different turn directions (Left vs. Right, abbreviated as LvR), and 3) trials of different task
438 phases (Study vs. Test, abbreviated as SvT).

439 We found a stable ensemble activity pattern when examining the population vector
440 correlations for trials occurring on the same day. Activity states for trials of the same type were
441 significantly more correlated than those both for trials of different direction and trials of different
442 task phase, showing a discrimination in the ensemble-level code for different trial types (see
443 **Supplementary data table 2** for detailed statistics) As shown in **Figure 3b**, the correlations
444 between trials of the same type did not change across spatial bins ($\rho=0.045$, $p=0.116$;
445 Spearman rank correlation). In contrast, activity states for left and right trials grew more
446 decorrelated as animals approached the choice point ($\rho=-0.678$, $p=4.946e-83$), and study and

447 test trials were most discriminable at the start of the stem ($\rho=0.332$, $p=4.418e-17$). The
448 correlation change along the stem follows the center-of-mass distribution for splitter cell firing
449 fields (**Figure 2c**). This pattern of correlations across spatial bins was stable over the course of
450 recordings (all ρ absolute value < 0.313 , all $p > 0.056$; Spearman rank correlation of 2-bin
451 mean for each type of population vector correlation value against recording day number)
452 (Examples for bins 1-2 and 7-8 in **Figure 3c-d**). This result demonstrates that, in spite of the
453 changing distribution of single-neuron encoding properties (**Figure 1d**), the population-level
454 distinction between activity states (**Figure 3b**) and its relationship to spatial position is stable
455 over time (**Figure 3c-d**).

456 We next assessed the correlations within and between trial types for trials on different
457 days. It may be expected that population activity states would diverge with respect to time (i.e.,
458 become less correlated) due to cell replacement and changes in the splitter neuron distribution
459 (**Figure 2**). To assess this, we examined the mean population vector correlations at the beginning
460 and end of the stem between sessions recorded 1 to 16 days apart. We observed that all three
461 types of correlations significantly decreased with increasing day lag at both ends of the stem,
462 (**Figure 3e-f**). However, even as correlations decreased, LvR and SvT correlations were
463 significantly lower than those between trials of the same type for at least a week between
464 sessions and in many cases longer (see detailed statistics in **Supplementary Data Table 3,4**).
465 These results show that constant cell turnover minimally impacts the ability of the population to
466 represent different experiences of the same space over many days of recording and that this
467 representational structure is preserved over time. However, the extent to which the population
468 distinguishes between task dimensions depends on the dimensions being compared, the animals'
469 physical location, and the temporal lag between experiences.

470

471 ***Evolution of single-unit to responses is attributable to changing distribution of new cell***

472 ***activity types***

473 We next assessed the origin of the changes in the distribution of splitter neuron types
474 over time. There are several possible sources of change in the splitter neuron distribution:
475 different splitter neuron types could be persistently active for different amounts of time before
476 becoming silent (variable stability); neurons could change their splitter type (splitter type
477 transition); or previously silent neurons could be preferentially allocated to certain splitter types
478 (unequal allocation of newly active cells). We found no evidence of variable stability: cells were
479 equally likely to stay active in later recording days regardless of splitting type (all $p > 0.05$,
480 Wilcoxon rank-sum test between each pair of splitting phenotypes at each day lag) (**Figure 4a**).

481 We next tracked the history of all cells to determine the origin or “source” of each splitter
482 neuron in the preceding session. For each splitter neuron from the second included session
483 onwards, we tracked whether that cell was a splitter neuron of any type in the preceding session
484 or was inactive (neurons below the activity threshold or undetected by our ROI extraction
485 algorithm). We found that previously inactive cells were the largest source category to all types
486 of splitter neurons in 85.39% of recording sessions, and contributed an average of 55.37% of
487 splitter neurons per session (**Figure 4b**). Turn*phase splitter neurons were the second largest
488 category contributor to splitter neurons of all types, contributing on average 22.83% of all splitter
489 neurons. In addition to showing the immediate integration of newly active cells into the coding
490 population, this result suggests that representation of task variables in single units becomes less
491 specific over time, where each cell becomes less likely to encode both task phase and turn
492 direction.

493 The above result on splitter neuron sources suggests that changes in the distribution of
494 single unit responses are, to a large degree, driven by the splitting type a newly active neuron
495 assumes rather than transitions between different splitting types. Indeed, the proportion of splitter
496 types of newly active cells closely matched the distribution of splitter types overall: new cells
497 were more likely to become turn*phase splitter neurons rather than turn-only or phase-only
498 splitter neurons (Turn*Phase vs. Turn: $z=4.898$, $p=9.665e-07$; Turn*Phase vs. Phase: $z=4.804$,
499 $p=1.554e-06$; Wilcoxon signed-rank test) (**Figure 4c**). Additionally, the changes in this
500 distribution of newly active cells over the course of recordings closely matched those observed
501 for all splitter neurons (**Figure 2d**): while newly active cells on all days were more likely to be
502 turn*phase splitter neurons than other types, this likelihood significantly decreased over time
503 ($\rho=0.419$, $p=0.014$) and the proportion of new cells allocated to turn splitter neurons on the
504 stem significantly increased ($\rho=0.373$, $p=0.030$; Spearman rank correlation), while those for
505 phase splitter neurons and non-splitters were stable ($\rho=0.209$, $p=0.237$ and $\rho=0.203$, $p=0.249$
506 respectively) (**Figure 4d**).

507 Splitter and place neurons on the return arms were also found to be equally stable and
508 primarily derived from newly active cells, but the distribution of cells newly active on the return
509 arms among splitter types did not change over time, again suggesting the redistribution of splitter
510 neurons is related to memory load (**Supplementary Figure 4**).

511 These results show that the changing distribution of single unit responses is primarily
512 attributable to changes in the allocation of new cells to encode task variables, rather than unequal
513 stability of different splitter types.

514
515 **Discussion**

516 We recorded cells in dorsal CA1 of the hippocampus in mice performing a Delayed Non-
517 Match to Place task over several sessions. In tracking the same populations of cells, we found
518 that there was heterogeneity in the stability of task-related representations. Many single cells
519 exhibited context-dependent modulation in their calcium activity while the animal was in the
520 same spatial location, replicating earlier findings that demonstrate that hippocampal place cells
521 encode the behavioral context in addition to spatial position (Griffin et al., 2007). We found that
522 the distribution of context-dependent responses among neurons was not stable over the course of
523 recordings: the proportion of task phase splitter neurons was stable, the proportion of turn
524 direction splitter neurons increased, and the proportion of turn*phase splitter neurons decreased.
525 We found this change was not attributable to variable stability of each splitter phenotype, but
526 instead appeared to be due to how newly active cells were allocated to different splitter types. In
527 spite of cell turnover and changes in the representation of task features among single neurons,
528 ensemble-level population representations for different trial types were stably segregated over
529 many recording sessions. These data demonstrate that the hippocampal representation of ongoing
530 experience can undergo reorganization at the single neuron level while minimally impacting
531 population level coding.

532 Representations may change in different ways over time during stable behavior based on
533 competing demands on memory reorganization. Generalization emphasizes the similarities
534 across experiences to aid in the transfer of learning across contexts, while orthogonalization
535 makes representations more distinct to mitigate interference between contexts. Both mechanisms
536 are important for spatial navigation and episodic memory (Hasselmo & Wyble, 1997; Kumaran
537 & McClelland, 2012; McNaughton & Morris, 1987; Norman & O'Reilly, 2003; Schapiro, Turk-
538 Browne, Botvinick, & Norman, 2017; Treves & Rolls, 1994; Winocur, Moscovitch, &

539 Bontempi, 2010), and both processes are observed in fMRI studies using behavioral tasks with
540 multiple demands (Brown and Stern 2014; Chanales et al. 2017). However, the interplay of
541 generalization and orthogonalization in the long term reorganization of memory has not been
542 previously studied at the single neuron level in a dynamically evolving neural circuit.
543 Representations of different trial types may become more orthogonalized and distinct, following
544 the precedent set by many studies on learning (Komorowski et al. 2009; McKenzie et al. 2013;
545 Chanales et al. 2017). Alternatively, representations could become more schematic through
546 generalization as the animals become over-trained on the task, perhaps preserving only those
547 distinctions relevant to performing the task. At the single neuron level, we observed a result
548 consistent with the generalization hypothesis: a decreasing number of turn*phase splitter neurons
549 (which encode a single experience: a route to a single destination during a single task phase) and
550 an increasing number of turn splitter neurons (which encode multiple experiences: routes to the
551 same destination during multiple task phases). But at the population level, we instead observed a
552 highly stable representational structure.

553 Studies which report orthogonalizing change in hippocampal coding properties typically
554 examine an initial learning phase, comparing data from before and after a subject reaches a
555 performance criterion, often in a single session (Kobayashi et al. 2003; Komorowski, et al. 2009;
556 McKenzie et al. 2013). Because our recordings began after animals had received considerable
557 experience with the maze environment during the pre-training phase, we may have captured a set
558 of operational demands unlike initial learning. To reconcile our finding of generalization with
559 previous reports of orthogonalization, we propose that both mechanisms act on the organization
560 of memory but at different timescales: orthogonalization dominates an early, fast encoding
561 process which emphasizes the uniqueness of current experiences, while generalization acts as a

562 slower refinement of existing memory representations by finding statistical regularities; both of
563 these processes likely involve regions outside the hippocampus (Ghosh & Gilboa, 2013; Koster
564 et al., 2018; Lewis, Knoblich, & Poe, 2018). This distinction suggests that it is more appropriate
565 for our work to be framed in terms of long-term mechanisms of memory stability, rather than
566 those which are relevant to shaping the initial learning and encoding process.

567 Divergent expectations for short and long-term memory organization are apparent when
568 comparing our results to a previous report which employed a similar task to ours in which human
569 participants navigated partially overlapping trajectories in a virtual environment (Chanales et al.,
570 2017). The authors found that the hippocampal voxel activity patterns for overlapping trajectory
571 segments grew more distinct from each other over the course of learning, while patterns for non-
572 overlapping segments did not change in their representational similarity. Our results parallel this
573 finding in showing that conflicts between behavioral responses in overlapping locations
574 (experienced on the central stem in the DNMP task) can drive changes in the neural
575 representation while representations for non-overlapping segments remain stable (return arms,
576 **Supplementary Figure 3,4**). However, unlike Chanales and colleagues, we did not observe a
577 population-level increase in discriminability of overlapping segments, which could be explained
578 by the fact that their study was conducted in a single session while ours ran for multiple weeks.

579 Prior studies have attributed a working memory role to the hippocampus in DNMP and
580 other alternation tasks. Working memory accounts propose that on short, behaviorally relevant
581 timescales the hippocampus maintains a representation of the previous trial to inform future
582 behavior. This interpretation was prompted by findings that hippocampal lesions produce
583 performance deficits in alternation tasks which involve a delay (Hampson et al. 1999;
584 Dudchenko et al. 2000) and by correspondence between during delay period neural activity and

585 upcoming turn directions (Deadwyler et al. 1996). However, alternation tasks cannot distinguish
586 between prospective and retrospective coding (see Frank et al. 2000), meaning delay and central
587 stem activity could represent a previous trial or upcoming trajectory.

588 We suggest instead that continued involvement of the hippocampus in distinctly
589 representing overlapping spatial trajectories may be appropriate for self-localization within an
590 existing spatial memory map (Redish & Touretzky, 1998). It was previously assumed that task
591 splitter neurons reflected respective encoding and retrieval demands for Study and Test trials
592 (Griffin et al. 2007); the self-localization interpretation suggests instead that task phase splitters
593 instead encode immediate history of the stem traversal, whether the current trial began by being
594 placed in the maze by the experimenter (Study) or being released from the delay area (Test).
595 Self-localization assumes neither that the animals are sensitive to our conception of the task nor
596 that encoding and retrieval “modes” be expressed as measurably different patterns of activity in
597 CA1. The lack of neurons that code exclusively for Task Phase on the return arms
598 (**Supplementary Figure 3**), where the trial-start behavioral cue is less salient, is consistent with
599 this hypothesis. The strictest interpretation of task phase splitting as self-localization suggests it
600 acts as a code to distinguish slightly different routes to the same reward destination (Grieves et
601 al. 2016). Task phase splitting (**Figure 2**) and delay period splitting (Deadwyler et al. 1996)
602 could together contribute to self-localization within a cognitive map of the task that links longer
603 sequences of events through the maze, wherein overlapping trajectories begin on the central
604 stem, pass down one side arm, linger in the delay area, and then pass again through the stem and
605 onto the other side arm (Hasselmo, 2008). Task phase splitting on the central stem is similar to
606 many other findings of context-dependent place-cell activity (Ferbinteanu & Shapiro, 2003;
607 Frank et al., 2000; Hasselmo, 2008; Sun, Yang, Martin, & Tonegawa, 2019). Disambiguating the

608 working-memory and self-localization accounts of splitter neuron activity will require designing
609 tasks that use behavioral and spatial cues that are consistent across distinct but overlapping
610 behaviors.

611 Our results here show that the stability of hippocampal representations is heterogeneous,
612 displaying different rates of change in task-relevant activity across cognitive demands, maze
613 locations, and levels of analysis. These changes are largely attributable to cells' changes in the
614 allocation of newly active cells among task-modulated activity types, as well as individual cells'
615 transitioning from coding both task dimensions to just coding for one. Together, the results
616 suggest that reorganization of memory representations actively reshapes hippocampal memories.
617 Future studies should seek to clarify the behavioral parameters which predict the rate of cell
618 replacement, the allocation of newly active cells, and the cellular and network mechanisms
619 which mediate them.

620

621 **Supplementary Data Tables**

	z, STEM	p, STEM	z, ARM	p, ARMS
Turn vs. Phase	0.016379	0.98693	5.3731	7.7397e-08***
Turn vs. Conj.	5.2861	1.2497e-07***	2.9222	0.0034756**
Phase vs. Conj.	5.2861	1.2497e-07***	5.3731	7.7397e-08***
Conj. vs. Neither	5.3586	8.3874e-08***	5.3732	7.7337e-08***
Turn vs. Neither	4.111	3.9373e-05***	5.3731	7.7397e-08***
Phase vs. Neither	4.5033	6.69e-06***	0.65823	0.51039

622 **Table 1:** Proportion comparisons splitter neurons, Wilcoxon signed-rank test, on STEM and
623 ARMS
624

Spatial Bin:	VS Self vs LvR z-value	VS Self vs LvR p-value	VS Self vs SvT z-value	VS Self vs SvT p-value	LvR vs SvT z-value	LvR vs SvT p-value
1	8.312	9.44E-17***	9.653	4.75E-22***	2.924	0.004***
2	9.807	1.05E-22***	8.855	8.39E-19***	-0.518	0.605
3	10.782	4.18E-27***	8.22	2.03E-16***	-3.831	0.0001***
4	11.464	2.01E-30***	7.345	2.06E-13***	-6.137	8.40E-10***

5	11.79	4.41E-32***	0.612	3.79E-11***	-0.755	8.84E-15***
6	11.82	3.10E-32***	5.941	2.83E-09***	-8.599	8.05E-18***
7	12.086	1.26E-33***	5.108	3.25E-07***	-9.222	2.93E-20***
8	12.177	4.11E-34***	5.164	2.42E-07***	-9.491	2.30E-21***

625

626 **Table 2:** Wilcoxon rank-sum test statistics for comparisons between population vector
627 correlations in each spatial bin

628

Day Lag	Vs Self vs LvR z Values	Vs Self vs LvR p Values	Vs Self vs SvT z Values	Vs Self vs SvT p Values	LvR vs SvT z Values	LvR vs SvT p Values
1	8.088	6.09E-16***	7.657	1.90E-14***	-0.187	0.852
2	6.893	5.48E-12***	6.062	1.35E-09***	-0.614	0.54
3	5.527	3.25E-08***	4.446	8.77E-06***	-1.106	0.269
4	5.29	1.22E-07***	4.721	2.35E-06***	-1.467	0.143
5	5.0951	3.49E-07***	5.139	2.77E-07***	-0.255	0.799
6	4.47	7.82E-06***	4.47	7.82E-06***	-0.125	0.9
7	5.018	5.23E-07***	4.283	1.84E-05***	-0.465	0.643
8	3.715	0.0002***	3.028	0.003**	-0.473	0.637
9	3.541	0.0004***	3.575	0.0004***	0.622	0.5341
10	3.152	0.002**	3.727	0.0002***	0.63779	0.524
11	4.37	1.25E-05***	2.738	0.006**	-1.254	0.21
12	3.285	0.001***	1.749	0.08	-1.556	0.12
13	2.88	0.004**	2.235	0.026*	-0.437	0.663
14	2.67	0.008**	2.203	0.028*	-0.302	0.763
15	2.339	0.019*	1.143	0.253	-0.844	0.399
16	0.855	0.393	0.479	0.633	-0.5	0.617

629 **Table 3:** Wilcoxon rank-sum test z and p values comparing each population vector

630 correlation type across day lags for means of correlations in bins 1 and 2.

631

Day Lag	Vs Self vs LvR z Values	Vs Self vs LvR p Values	Vs Self vs SvT z Values	Vs Self vs SvT p Values	LvR vs SvT z Values	LvR vs SvT p Values

1	12.903	4.35E-38***	4.072	4.66E-05***	-9.439	3.78E-21***
2	10.476	1.11E-25***	3.037	0.002**	-8.697	3.41E-18***
3	7.34	2.14E-13***	2.804	0.005**	-5.973	2.33E-09***
4	7.416	1.21E-13***	1.39	0.165	-6.366	1.94E-10***
5	8.991	2.46E-19***	1.846	0.065	-7.198	6.12E-13***
6	9.679	3.72E-22***	2.196	0.028*	-7.527	5.19E-14***
7	10.237	1.36E-24***	2.077	0.0378*	-7.262	3.83E-13***
8	8.245	1.65E-16***	1.841	0.066	-5.763	8.25E-09***
9	8.638	5.71E-18***	2.59	0.01*	-6.263	3.77E-10***
10	6.828	8.62E-12***	2.926	0.003**	-5.123	3.02E-07***
11	6.675	2.47E-11***	0.878	0.38	-5.334	9.61E-08***
12	6.045	1.49E-09***	1.294	0.196	-4.937	7.95E-07***
13	6.952	3.60E-12***	1.154	0.248	-4.881	1.06E-06***
14	6.074	1.25E-09***	1.084	0.278	-4.424	9.68E-06***
15	5.091	3.57E-07***	0.489	0.625	-3.761	0.0002***
16	3.505	0.0005***	1.529	0.126	-1.258	0.209

632 **Table 4:** Wilcoxon rank-sum test z and p values comparing each population vector

633 correlation type across day lags for means of correlations in bins 7 and 8.

634

635 **Software and Data availability**

636 Software used in our analysis is freely available on GitHub. TENASPIS is available at
637 <https://github.com/SharpWave/TENASPIS>, and all other analysis software is available at
638 <https://github.com/samjlevy/CaImageRelated>. Data can be made available from the authors upon
639 reasonable request.

640

641 **References**

642 Attardo, A., Fitzgerald, J. E., & Schnitzer, M. J. (2015). Impermanence of dendritic spines in live
643 adult CA1 hippocampus. *Nature*, 523(7562), 592–596. <https://doi.org/10.1038/nature14467>

644 Barnes, C. A., Suster, M. S., Shen, J., & Mcnaughton, B. L. (1997). Multistability of cognitive

645 maps in the hippocampus of old rats. *Nature*, 388(August 1996), 272–275.

646 Brown, T. I., & Stern, C. E. (2014). Contributions of medial temporal lobe and striatal memory

647 systems to learning and retrieving overlapping spatial memories. *Cerebral Cortex*, 24(7),

648 1906–1922. <https://doi.org/10.1093/cercor/bht041>

649 Chambers, A. R., & Rumpel, S. (2017). A stable brain from unstable components: Emerging

650 concepts and implications for neural computation. *Neuroscience*, 357, 172–184.

651 <https://doi.org/10.1016/j.neuroscience.2017.06.005>

652 Chanales, A. J. H., Oza, A., Favila, S. E., & Kuhl, B. A. (2017). Overlap among Spatial

653 Memories Triggers Repulsion of Hippocampal Representations. *Current Biology*, 27(15),

654 2307-2317.e5. <https://doi.org/10.1016/j.cub.2017.06.057>

655 De Paola, V., Holtmaat, A., Knott, G., Song, S., Wilbrecht, L., Caroni, P., & Svoboda, K. (2006).

656 Cell type-specific structural plasticity of axonal branches and boutons in the adult

657 neocortex. *Neuron*, 49(6), 861–875. <https://doi.org/10.1016/j.neuron.2006.02.017>

658 Deadwyler, S. a, Bunn, T., & Hampson, R. E. (1996). Hippocampal ensemble activity during

659 spatial delayed-nonmatch-to-sample performance in rats. *The Journal of Neuroscience : The*

660 *Official Journal of the Society for Neuroscience*, 16(1), 354–372.

661 Dudchenko, P. A., Wood, E. R., & Eichenbaum, H. (2000). Neurotoxic hippocampal lesions

662 have no effect on odor span and little effect on odor recognition memory but produce

663 significant impairments on spatial span, recognition, and alternation. *The Journal of*

664 *Neuroscience : The Official Journal of the Society for Neuroscience*, 20(8), 2964–2977.

665 Retrieved from <http://www.ncbi.nlm.nih.gov/pubmed/10751449>

666 Ferbinteanu, J., & Shapiro, M. L. (2003). Prospective and retrospective memory coding in the

667 hippocampus. *Neuron*, 40(6), 1227–1239. [https://doi.org/10.1016/S0896-6273\(03\)00752-9](https://doi.org/10.1016/S0896-6273(03)00752-9)

668 Frank, L. M., Brown, E. N., & Wilson, M. (2000). Trajectory encoding in the hippocampus and
669 entorhinal cortex. *Neuron*, 27(1), 169–178. [https://doi.org/10.1016/S0896-6273\(00\)00018-0](https://doi.org/10.1016/S0896-6273(00)00018-0)

670 Ghosh, V. E., & Gilboa, A. (2013). What is a memory schema? A historical perspective on
671 current neuroscience literature. *Neuropsychologia*, 53, 104–114.
672 <https://doi.org/10.1016/j.neuropsychologia.2013.11.010>

673 Grieves, R. M., Wood, E. R., & Dudchenko, P. A. (2016). Place cells on a maze encode routes
674 rather than destinations. *eLife*, 1–24. <https://doi.org/10.7554/eLife.15986>

675 Griffin, A. L., Eichenbaum, H., & Hasselmo, M. E. (2007). Spatial Representations of
676 Hippocampal CA1 Neurons Are Modulated by Behavioral Context in a Hippocampus-
677 Dependent Memory Task. *Journal of Neuroscience*, 27(9), 2416–2423.
678 <https://doi.org/10.1523/jneurosci.4083-06.2007>

679 Grutzendler, J., Kasthuri, N., & Gan, W. (2002). Long-term spine dendritic spine stability in the
680 adult cortex. *Letters to Nature*, 420(December), 812–816.
681 <https://doi.org/10.1038/nature01151.1>

682 Hampson, R. E., Jarrard, L. E., & Deadwyler, S. A. (1999). Effects of Ibotenate Hippocampal
683 and Extrahippocampal Destruction on Delayed-Match and -Nonmatch-to-Sample Behavior
684 in Rats. *The Journal of Neuroscience*, 19(4), 1492–1507.
685 <https://doi.org/10.1523/jneurosci.19-04-01492.1999>

686 Hasselmo, M. E. (2008). Grid cell mechanisms and function: Contributions of entorhinal
687 persistent spiking and phase resetting. *Hippocampus*, 18(12), 1213–1229.
688 <https://doi.org/10.1002/hipo.20512.Grid>

689 Hasselmo, M. E., & Wyble, B. P. (1997). Free recall and recognition in a network model of the
690 hippocampus: simulating effects of scopolamine on human memory function. *Behavioural*

691 *Brain Research*, 89, 1–34. <https://doi.org/10.1080/00268977500102411>

692 Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D., & Kandel, E. R. (2004). Increased

693 Attention to Spatial Context Increases Both Place Field Stability and Spatial Memory.

694 *Neuron*, 42(2), 283–295. [https://doi.org/10.1016/S0896-6273\(04\)00192-8](https://doi.org/10.1016/S0896-6273(04)00192-8)

695 Kinsky, N. R., Mau, W., Sullivan, D. W., Levy, S. J., Ruesch, E. A., & Hasselmo, M. E. (2019).

696 Persistent trajectory-modulated hippocampal neurons support memory-guided navigation.

697 *BioarXiv*. <https://doi.org/10.1101/781107415324.004>

698 Kinsky, N. R., Sullivan, D. W., Mau, W., Hasselmo, M. E., & Eichenbaum, H. B. (2018).

699 Hippocampal Place Fields Maintain a Coherent and Flexible Map across Long Timescales.

700 *Current Biology*, 28(22), 3578–3588. <https://doi.org/10.1016/j.cub.2018.09.037>

701 Kobayashi, T., Tran, A. H., Nishijo, H., Ono, T., & Matsumoto, G. (2003). Contribution of

702 hippocampal place cell activity to learning and formation of goal-directed navigation in rats.

703 *Neuroscience*, 117(4), 1025–1035. [https://doi.org/10.1016/S0306-4522\(02\)00700-5](https://doi.org/10.1016/S0306-4522(02)00700-5)

704 Komorowski, R. W., Manns, J. R., & Eichenbaum, H. (2009). Robust conjunctive item-place

705 coding by hippocampal neurons parallels learning what happens where. *The Journal of*

706 *Neuroscience : The Official Journal of the Society for Neuroscience*, 29(31), 9918–9929.

707 <https://doi.org/10.1523/JNEUROSCI.1378-09.2009>

708 Koster, R., Chadwick, M. J., Chen, Y., Berron, D., Banino, A., Düzel, E., ... Kumaran, D.

709 (2018). Big-Loop Recurrence within the Hippocampal System Supports Integration of

710 Information across Episodes. *Neuron*, 99(6), 1342-1354.e6.

711 <https://doi.org/10.1016/j.neuron.2018.08.009>

712 Kumaran, D., & McClelland, J. L. (2012). Generalization through the recurrent interaction of

713 episodic memories: A model of the hippocampal system. *Psychological Review*, 119(3),

714 573–616. <https://doi.org/10.1037/a0028681>

715 Law, L. M., Bulkin, D. A., & Smith, D. M. (2016). Slow stabilization of concurrently acquired
716 hippocampal context representations. *Hippocampus*, 26(12), 1560–1569.

717 <https://doi.org/10.1002/hipo.22656>

718 Lee, I., Griffin, A. L., Zilli, E. A., Eichenbaum, H., & Hasselmo, M. E. (2006). Gradual
719 Translocation of Spatial Correlates of Neuronal Firing in the Hippocampus toward
720 Prospective Reward Locations, 639–650. <https://doi.org/10.1016/j.neuron.2006.06.033>

721 Lever, C., Wills, T., Cacucci, F., Burgess, N., & Keefe, J. O. (2002). Long-term plasticity in
722 hippocampal place-cell representation of environmental geometry. *Letters to Nature*,
723 416(March), 236–238. <https://doi.org/10.1038/416090a>

724 Lewis, P. A., Knoblich, G., & Poe, G. (2018). How Memory Replay in Sleep Boosts Creative
725 Problem-Solving. *Trends in Cognitive Sciences*, 22(6), 491–503.
726 <https://doi.org/10.1016/j.tics.2018.03.009>

727 Mankin, E. A., Diehl, G. W., Sparks, F. T., Leutgeb, S., & Leutgeb, J. K. (2015). Hippocampal
728 CA2 Activity Patterns Change over Time to a Larger Extent than between Spatial Contexts.
729 *Neuron*, 85(1), 190–201. <https://doi.org/10.1016/j.neuron.2014.12.001>

730 Mankin, E. A., Sparks, F. T., Slayyeh, B., Robert, J., Leutgeb, S., & Leutgeb, J. K. (2012).
731 Correction for Mankin et al., Neuronal code for extended time in the hippocampus: Fig. 5.
732 *Proceedings of the National Academy of Sciences*, 102(47), 19462–19467.
733 <https://doi.org/10.1073/pnas.007660070019>

734 Mau, W., Sullivan, D. W., Kinsky, N. R., Hasselmo, M. E., Howard, M. W., & Eichenbaum, H.
735 (2018). The Same Hippocampal CA1 Population Simultaneously Codes Temporal
736 Information over Multiple Timescales. *Current Biology*, 28(10), 1499-1508.e4.

737 <https://doi.org/10.1016/j.cub.2018.03.051>

738 McKenzie, S., Robinson, N. T. M., Herrera, L., Churchill, J. C., & Eichenbaum, H. (2013).

739 Learning Causes Reorganization of Neuronal Firing Patterns to Represent Related

740 Experiences within a Hippocampal Schema. *Journal of Neuroscience*, 33(25), 10243–

741 10256. <https://doi.org/10.1523/JNEUROSCI.0879-13.2013>

742 McNaughton, B. L., & Morris, R. G. M. (1987). Hippocampal synaptic enhancement and

743 information storage within a distributed memory system. *Trends*, 10(10), 408–415.

744 Mehta, M. R., Quirk, M. C., & Wilson, M. A. (2000). Experience-dependent asymmetric shape

745 of hippocampal receptive fields. *Neuron*, 25(3), 707–715. [https://doi.org/10.1016/S0896-6273\(00\)81072-7](https://doi.org/10.1016/S0896-6273(00)81072-7)

746

747 Norman, K. A., & O'Reilly, R. C. (2003). Modeling Hippocampal and Neocortical Contributions

748 to Recognition Memory: A Complementary-Learning-Systems Approach. *Psychological*

749 *Review*, 110(4), 611–646. <https://doi.org/10.1037/0033-295X.110.4.611>

750 Pfeiffer, T., Poll, S., Bancelin, S., Angibaud, J., Inavalli, V. K., Keppler, K., ... Nägerl, U. V.

751 (2018). Chronic 2P-STED imaging reveals high turnover of dendritic spines in the

752 hippocampus in vivo. *ELife*, 7, 1–17. <https://doi.org/10.7554/elife.34700>

753 Poe, G. R., Nitz, D. A., McNaughton, B. L., & Barnes, C. A. (2000). Experience-dependent

754 phase-reversal of hippocampal neuron firing during REM sleep. *Brain Research*, 855(1),

755 176–180. [https://doi.org/10.1016/S0006-8993\(99\)02310-0](https://doi.org/10.1016/S0006-8993(99)02310-0)

756 Redish, A. D., & Touretzky, D. S. (1998). The Role of the Hippocampus in the Morris Water

757 Maze. *Computational Neuroscience*, 10(1), 73–111. https://doi.org/10.1007/978-1-4615-4831-7_17

758

759 Rubin, A., Geva, N., Sheintuch, L., & Ziv, Y. (2015). Hippocampal ensemble dynamics

760 timestamp events in long-term memory. *ELife*, 4(DECEMBER2015), 1–16.

761 <https://doi.org/10.7554/eLife.12247>

762 Rule, M. E., O’Leary, T., & Harvey, C. D. (2019). Causes and consequences of representational

763 drift. *Current Opinion in Neurobiology*, 58, 141–147.

764 <https://doi.org/10.1016/j.conb.2019.08.005>

765 Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M., & Norman, K. A. (2017).

766 Complementary learning systems within the hippocampus: A neural network modelling

767 approach to reconciling episodic memory with statistical learning. *Philosophical*

768 *Transactions of the Royal Society B: Biological Sciences*, 372(1711).

769 <https://doi.org/10.1098/rstb.2016.0049>

770 Sun, C., Yang, W., Martin, J., & Tonegawa, S. (2019). CA1 pyramidal cells organize an episode

771 by segmented and ordered events. *BioRxiv Preprint*, 565689.

772 <https://doi.org/10.1101/565689>

773 Taxidis, J., Pnevmatikakis, E., Mylavarapu, A. L., Arora, J. S., Samadian, K. D., Hoffberg, E. A.,

774 & Golshani, P. (2018). Emergence of stable sensory and dynamic temporal representations

775 in the hippocampus during working memory. *BioRxiv*, 474510.

776 <https://doi.org/10.1101/474510>

777 Thompson, L. T., & Best, P. J. (1990). Long-term stability of the place-field activity of single

778 units recorded from the dorsal hippocampus of freely behaving rats. *Brain Research*,

779 509(2), 299–308. [https://doi.org/10.1016/0006-8993\(90\)90555-P](https://doi.org/10.1016/0006-8993(90)90555-P)

780 Treves, A., & Rolls, E. T. (1994). Computational Analysis of the role of hippocampus in memor.

781 *Hippocampus*, 4(3), 374–391.

782 Winocur, G., Moscovitch, M., & Bontempi, B. (2010). Memory formation and long-term

783 retention in humans and animals: Convergence towards a transformation account of
784 hippocampal-neocortical interactions. *Neuropsychologia*, 48(8), 2339–2356.
785 <https://doi.org/10.1016/j.neuropsychologia.2010.04.016>
786 Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. B. (2000). Hippocampal
787 Neurons Encode Information about Different Types of Memory Episodes Occurring in the
788 Same Location. *Neuron*, 27, 623–633. [https://doi.org/10.1016/s0896-6273\(00\)00071-4](https://doi.org/10.1016/s0896-6273(00)00071-4)
789 Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., Ghosh, K. K., Kitch, L. J., ... Schnitzer, M. J.
790 (2013). Long-term dynamics of CA1 hippocampal place codes. *Nature Neuroscience*, 16(3),
791 264–266. <https://doi.org/10.1038/nn.3329>
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

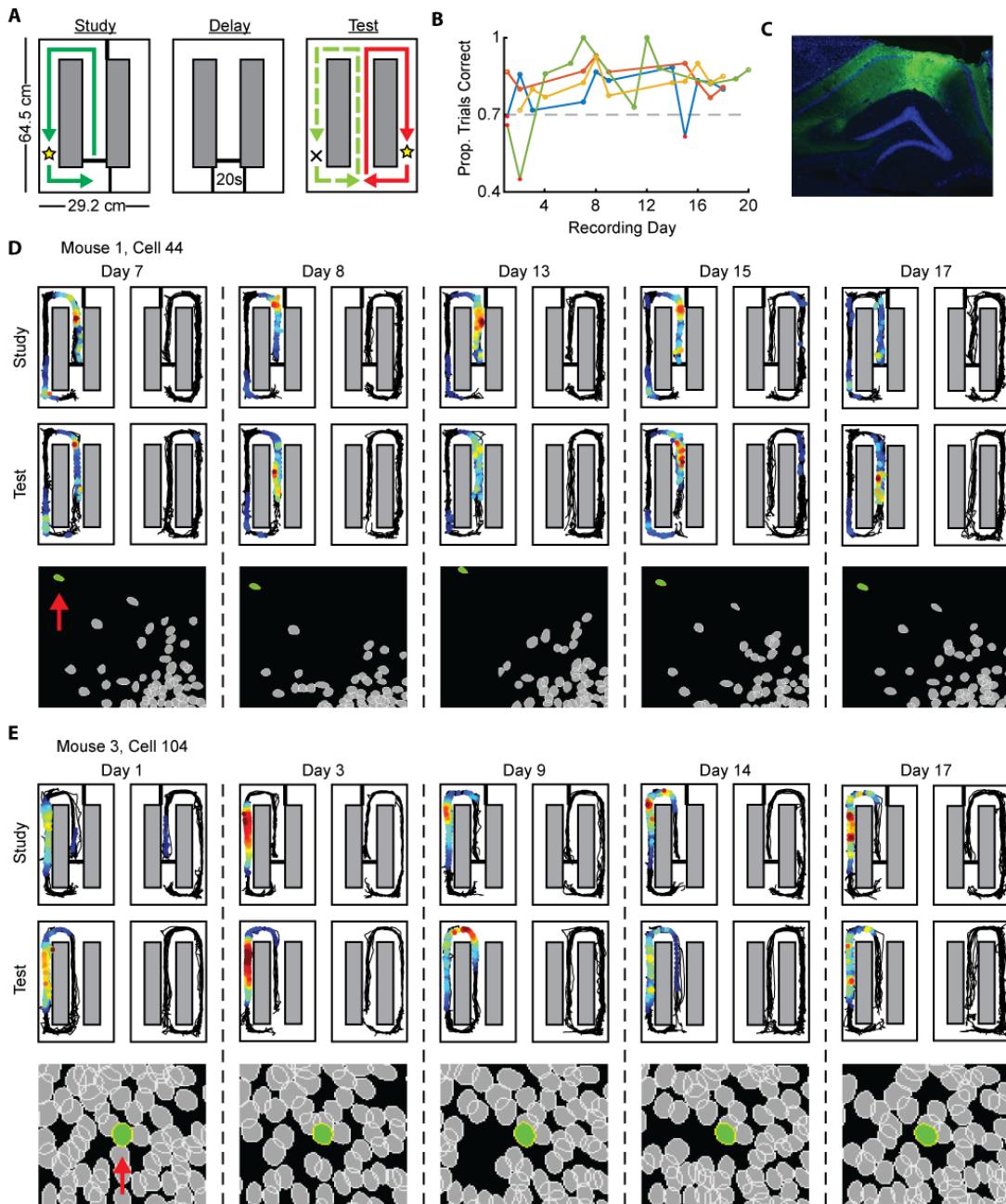


Figure 1. **A**, Task outline: each trial has a Study and Test Phase, separated by a 20-second delay. Each trial is followed by a 15-25s inter-trial interval in the mouse's home cage, adjacent to the alternation maze (not shown). **B**, Performance of individual mice (separate colors) over all days of recording. Only sessions with performance above 70% were included, excluded sessions are marked in red. **C**, Example viral expression and lens placement in dorsal CA1. Green is GCaMP6f-EYFP, blue is DAPI. **D**, Top: Activity maps for one cell (a turn splitter neuron; see **Figure 2**) over five days of recording. Each plot represents the average activity map for one task condition combination, ordered clockwise from top-left: Study-Left, Study-Right, Test-Right, Test-Left. In each plot, the black trace is the animal's recorded position, and colored dots indicate frames where the cell was active. Dots are colored based on the local event likelihood, normalized by local occupancy, where red is the highest event likelihood within that day and blue is the lowest. Bottom: Cell ROI masks for that recording day. Cell of interest is colored in green, and indicated with red arrow on first day shown. Masks were aligned across days based on relative positions of cells and cells were aligned based on the distance between cell centers and correlation of masks (see Methods). **E**, Same as **D** but for a cell with an activity field on one return arm.

843

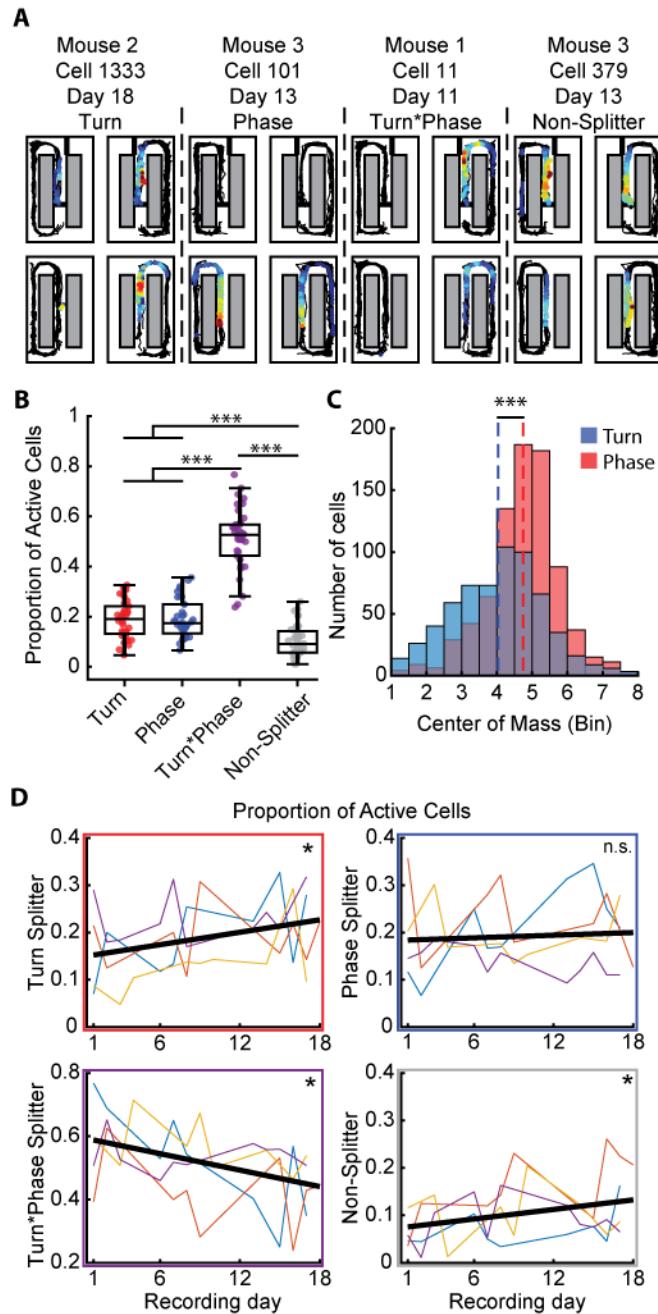


Figure 2. **A**, Example activity maps for each type of splitter on the central stem. Warmer colors indicate higher transient likelihood. **B**, Proportions of splitter cells out of the total active cell population on each day for all animals. Box shows inter-quartile range and middle line shows median. Statistic: Wilcoxon signed-rank test. **C**, Distribution of centers-of-mass of event activity for Turn and Phase splitter neurons. Statistic: Mann-Whitney U-test. **D**, Proportion of splitter neurons in individual animals (unique colors) and group regression (black) over the course of the experiment. Color of box indicates cell type as described by y-axis label. Significance calculated with Spearman rank correlation between proportion of splitters and recording day number for all included sessions (n=38).

* p<0.05, ** p<0.01, ***p<0.001

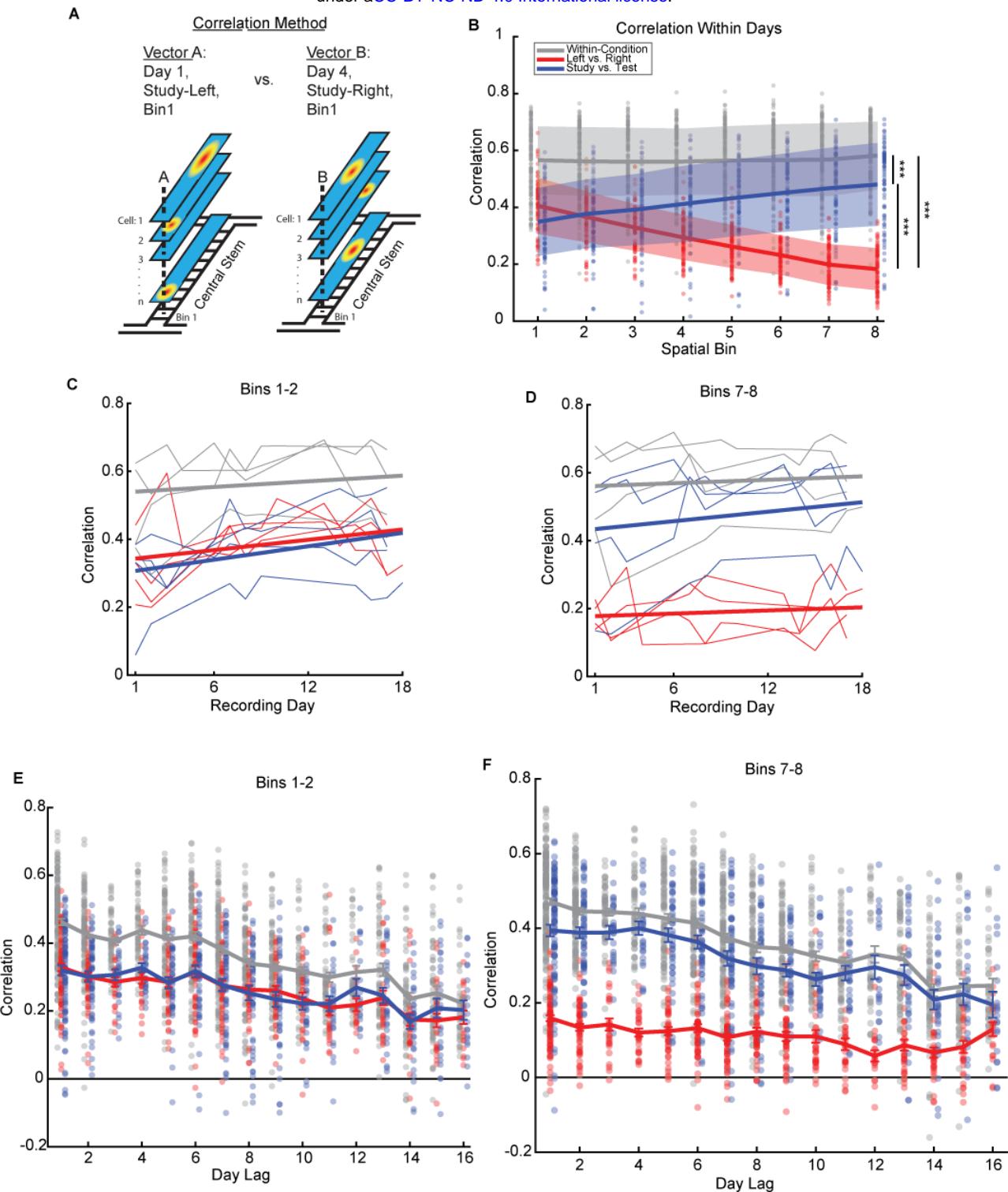


Figure 3. **A**, Method for making population vector correlations. **B**, Population vector correlations between trials of the same turn direction and task phase (gray), different turn directions (red) and different task phases (blue). Correlations in this panel B are generated from trials that occur on the same day. Shaded patch indicates 95% of points for the indicated correlation type in that spatial bin, trend line indicates mean. Statistic: Wilcoxon rank-sum test on all points for these groups. **C,D**, Mean correlation for pairs of spatial bins over the course of recordings. Thin lines indicate individual animals' correlations, bold lines are best fit regression. Statistic: Spearman rank correlation on points from all recording days. **E,F**, Correlations between trials on separate recording days for indicated pairs of spatial bins. See text and supplementary data tables for statistics.

84

845
846
847
848

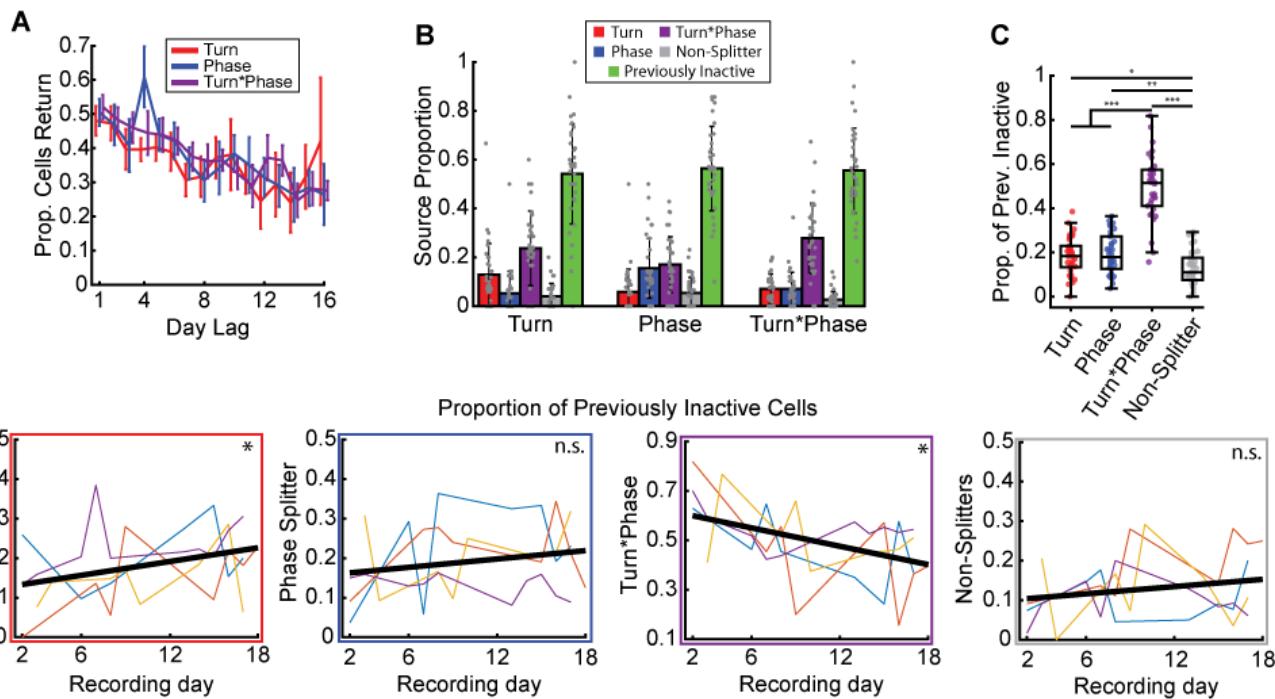
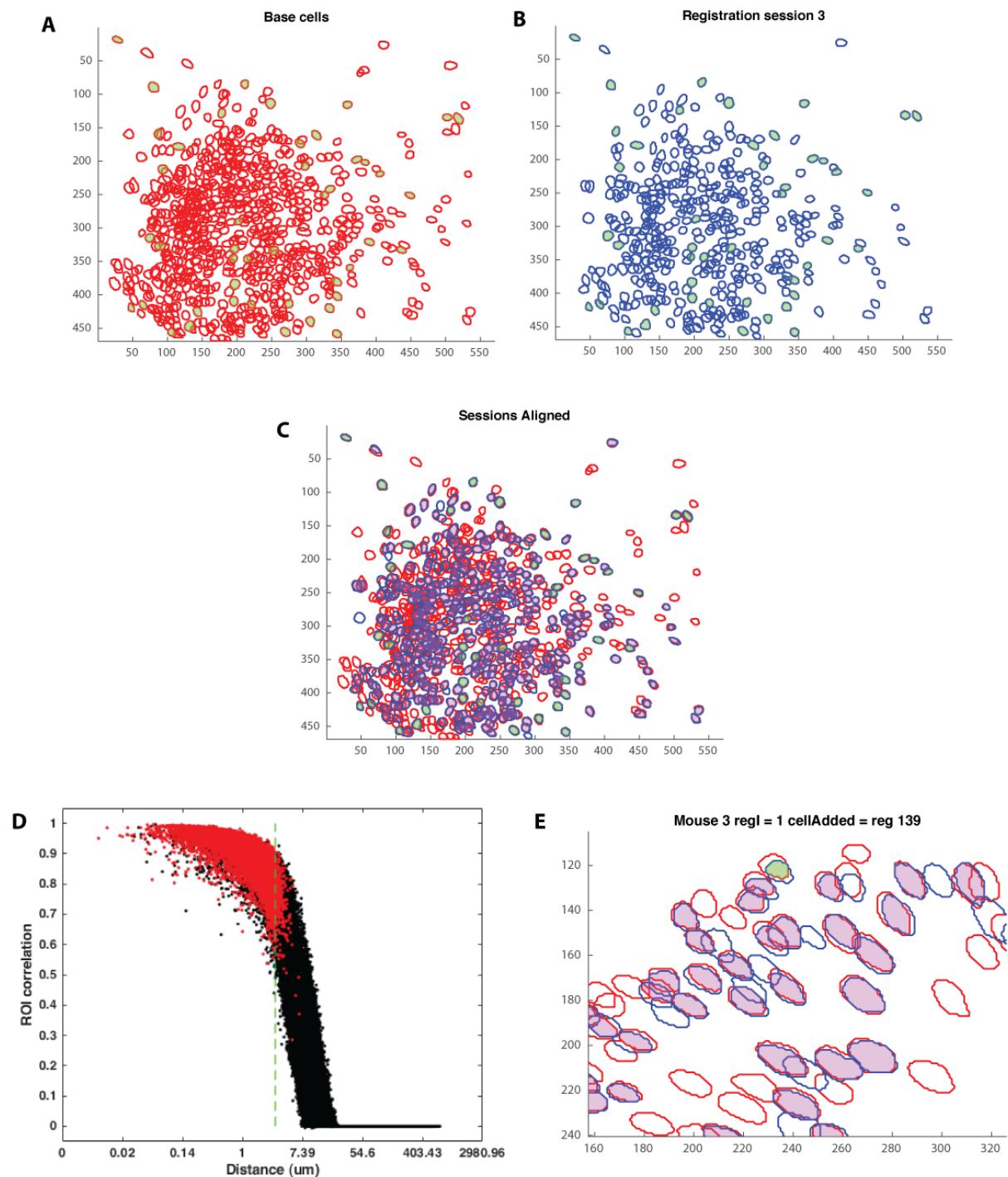


Figure 4. **A**, Proportion of cells that are still present at increasing day lags. Statistic: Wilcoxon signed-rank test. **B**, Proportion of each splitter type by what that cell was on the prior day of recording. **C**, Proportion of each splitting phenotype among each recording day's set of previously inactive cells (from second recording day forward). Statistic: Wilcoxon signed-rank test. **D**, Changes in the distribution of splitting phenotypes among previously inactive over the course of recordings. Colored lines are individual animals, black line is best fit regression. Color of box indicates cell type as described by y-axis label. Statistic is indicated at right (Permutation test).

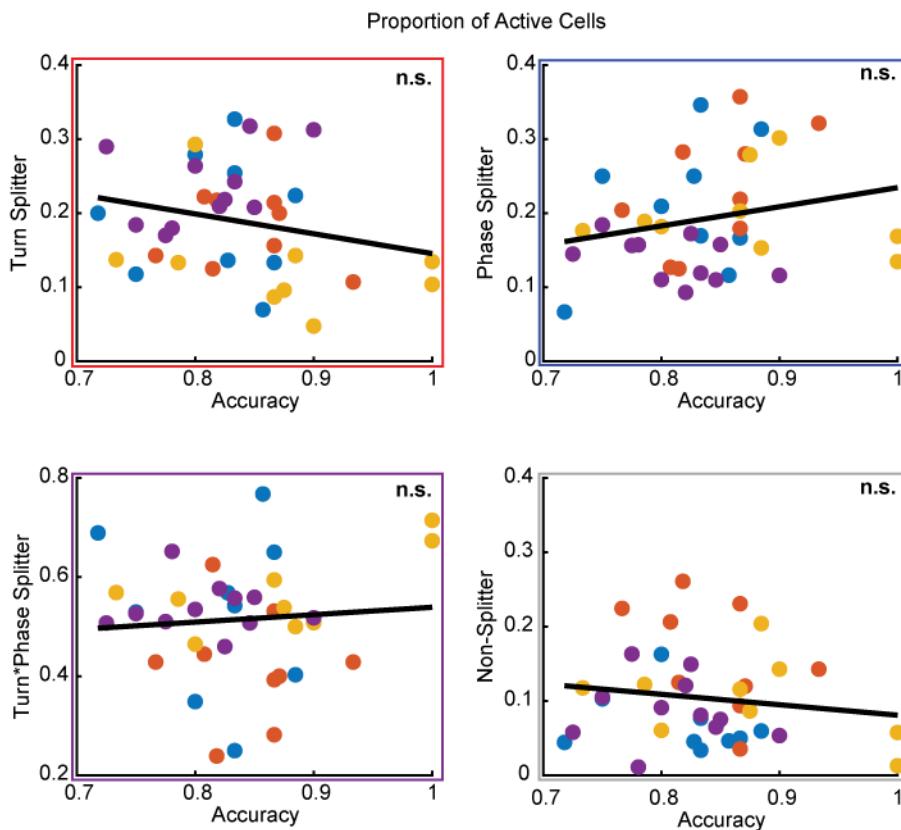
* p<0.05, ** p<0.01, ***p<0.001

849
850
851
852
853
854
855
856
857
858
859
860
861



Supplementary Figure 1. **A, B** Cell ROI outlines for the base session (**A**) and one registered session (**B**) for one mouse. Green filled-in cells are manually selected “anchor cells” used to compute the affine transformation for alignment. **C**, Overlaid base session in red and registered session in blue, same as **A, B**. “Anchor cells” filled in green, and other registered cells are filled in purple. **D**, Scatter plot showing relationship between ROI correlation and center-to-center distance for every pair of cells in each base-registered session pair. Registered cells are marked in red. Green dashed line indicates 3 μm threshold used during registration. X-axis is log-scaled. **E**, Enlarged section of a registered session from a different mouse from **A-C** illustrating a manually registered cell (filled in green). This cell was skipped by the algorithm because the centers in the base and registered sessions were further apart than the 3 μm threshold (3.316 μm , ROI correlation 0.757). This cell was added manually based on its relative alignment to other cells successfully registered and the similarity of ROI outlines.

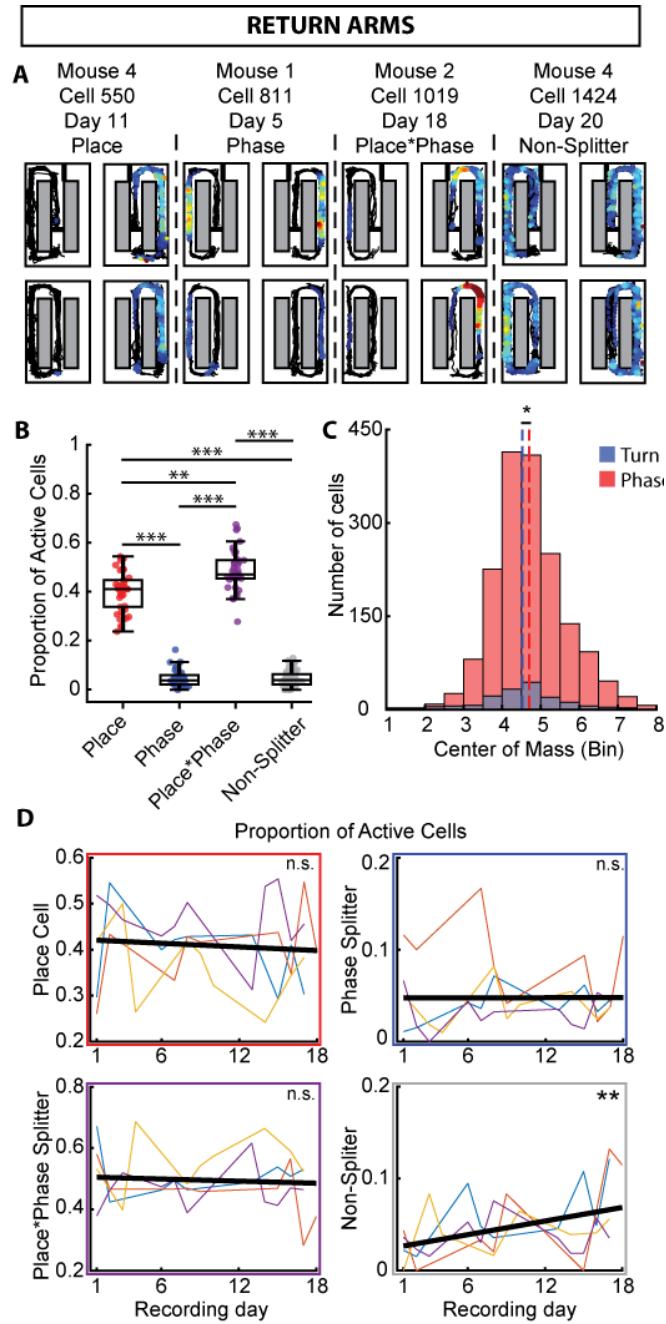
863
864
865
866
867
868



Supplementary Figure 2. Correlation between proportions of splitter cells out of total active cells with animal's performance in that session. Dot color refers to each mouse, each point is a single session. Black line is best fit linear regression. Box color indicates splitter type detailed in y-axis. Significance is calculated with a spearman rank correlation between the proportion of splitter cells and session accuracy.
Turn rho=-0.210, p=0.206. Phase rho=0.217, p=0.190. Turn*Phase rho=-0.030, p=0.857. Non-splitter rho=-0.136, p=0.417.
* p<0.05, ** p<0.01, ***p<0.001

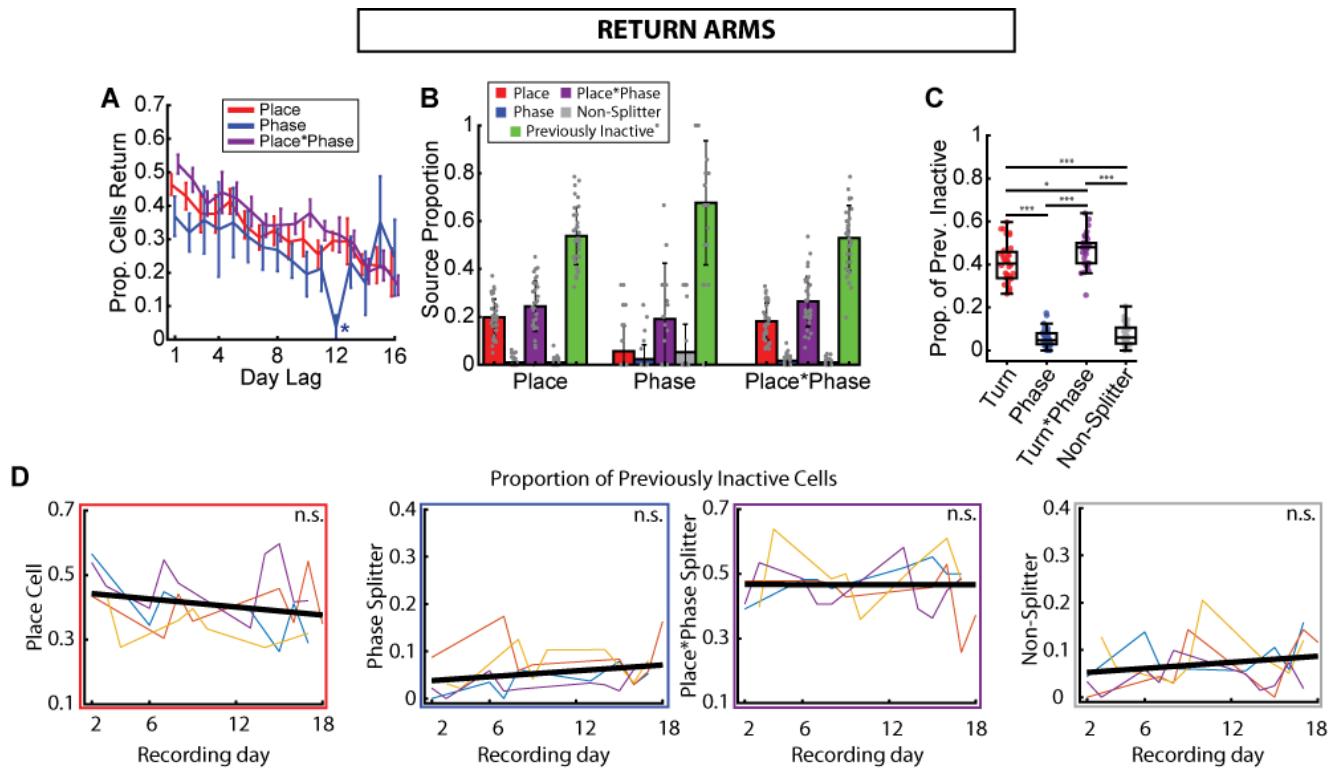
869
870
871
872
873
874
875
876

877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913



Supplementary Figure 3. **A**, Example activity maps for each type of splitter on the return arms. Warmer colors indicate higher transient likelihood. **B**, Proportions of splitter cells out of the total active cell population on each day for all animals. Box shows inter-quartile range and middle line shows median. Statistic: Wilcoxon signed-rank test. **C**, Distribution of centers-of-mass of event activity for Turn and Phase splitter neurons. Statistic: Mann-Whitney U-test. **D**, Proportion of splitter neurons in individual animals (unique colors) and group regression (black) over the course of the experiment. Significance indicates between all included recording sessions (n=38). Statistic: Spearman rank correlation (Proportion of splitters by recording day number).

*p<0.05, **p<0.01, ***p<0.001



Supplementary Figure 4. **A**, Proportion of cells that are still present at increasing day lags. Statistic: Wilcoxon signed-rank test. **B**, Proportion of each splitter type by what that cell was on the prior day of recording. **C**, Proportion of each splitting phenotype among each recording day's set of previously inactive cells (from second recording day forward). Statistic: Wilcoxon signed-rank test. **D**, Changes in the distribution of splitting phenotypes among previously inactive over the course of recordings. Colored lines are individual animals, black line is best fit regression. Statistic is indicated at right (Permutation test).
 * p<0.05, ** p<0.01, ***p<0.001

914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924