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Abstract:

The population of hippocampal neurons actively coding space continually changes across
days as mice repeatedly perform tasks. Many hippocampal place cells become inactive while
other previously silent neurons become active, challenging the belief that stable behaviors and
memory representations are supported by stable patterns of neural activity. Active cell
replacement may disambiguate unique episodes that contain overlapping memory cues, and
could contribute to reorganization of memory representations. How active cell replacement
affects the evolution of representations of different behaviors within a single task is unknown.
We trained mice to perform a Delayed Non-Match to Place (DNMP) task over multiple weeks,
and performed calcium imaging in area CA1 of the dorsal hippocampus using head-mounted
miniature microscopes. Cells active on the central stem of the maze “split” their calcium activity
according to the animal’s upcoming turn direction (left or right), the current task phase (study or
test), or both task dimensions, even while spatial cues remained unchanged. We found that
different splitter neuron populations were replaced at unequal rates, resulting in an increasing
number of cells modulated by turn direction and a decreasing number of cells with combined
modulation by both turn direction and task phase. Despite continual reorganization, the ensemble
code stably segregated these task dimensions. These results show that hippocampal memories

can heterogeneously reorganize even while behavior is unchanging.
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Significance statement:

Single photon calcium imaging using head-mounted miniature microscopes in freely
moving animals, has enabled researchers to measure the long term stability of hippocampal
pyramidal cells during repeated behaviors. Previous studies have demonstrated instability of
neural circuit components including dendritic spines and axonal boutons. It is now known that
single units in the neuronal population exhibiting behaviorally relevant activity eventually
become inactive and that previously silent neurons can quickly acquire task-relevant activity.
The function of such population dynamics is unknown. We show here that population dynamics
differ for cells coding distinct task dimensions, suggesting such dynamics are part of a
mechanism for latent memory reorganization. These results add to a growing body of work

showing that maintenance of episodic memory is an ongoing and dynamic process.

Introduction

The belief that stable behaviors and reliable memory representations are supported by
stable elements of neural circuits (Barnes et al., 1997; Thompson & Best, 1990) has been
challenged by many findings that neural circuit components across the brain are unstable over
time. Circuit instability is notable in the continual replacement of active cells with previously
silent cells (Kinsky et al., 2018; Mau et al., 2018; Ziv et al., 2013), but is also observed in the
impermanence of dendritic spines and axonal boutons (Attardo et al. 2015; Pfeiffer et al. 2018;
Grutzendler et al. 2002; De Paola et al. 2006). How circuit instability may affect neural function
is a topic of much debate (Chambers & Rumpel, 2017; Rule et al., 2019).

In the hippocampus, a hub for episodic memory and spatial navigation, change is

observed in the patterns neuronal of activity and the set of currently active cells. In behaving
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94  animals, single neurons become more sensitive to task demands during training and change their

95  firing properties to more precisely encode task demands (Kobayashi et al. 2003; Komorowski et

96 al. 2009; Lever et al. 2002). Hippocampal memory representations are also unstable even during

97  over-trained behaviors, exhibiting a decorrelation in ensemble activity relative to the elapsed

98  time between recordings (Mankin et al. 2015; Mankin et al., 2012; Rubin et al. 2015; Ziv et al.,

99  2013). These decorrelations result both from remapping of firing locations exhibited by
100  continuously active single neurons that is unrelated to changes in behavior (Mehta et al. 2000;
101 Poe etal. 2000; Lee et al. 2006; Law et al. 2016), and from population dynamics that include the
102 continual inactivation of active cells and their replacement by previously silent cells (Mau et al.,
103 2018; Ziv et al., 2013). However, these changes have primarily been observed during learning or
104  during performance of foraging tasks. How changes occur during stable performance of a multi-
105  dimensional memory task remains an open question. Previous studies have linked the long term
106  stability of a neuronal activity to different spatial locations and different task behaviors (Kentros,
107  etal., 2004; Kinsky et al., 2019; Taxidis et al., 2018). We sought to expand on these studies by
108  examining how different demands on long term memory influence the evolution of hippocampal
109  memory representations during a task where mice pass through the same spatial location under
110  multiple different task conditions.
111 To study the reorganization of hippocampal representations over time, we used in vivo
112 calcium imaging to monitor the activity of hundreds of neurons across multiple sessions in mice
113 performing a Delayed Non-Match to Place task on a figure-eight maze. We first confirmed that
114  neurons modulate their activity on the central stem according to the animal’s upcoming turn
115  direction and the current task phase (Griffin et al., 2007; Wood et al., 2000). We show that the

116  distribution of these single unit responses among the active population changes over time,
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117  resulting in an increased number of turn direction-modulated neurons and a decrease in the

118  number of neurons modulated by both the current task phase and upcoming turn direction. These
119  changes primarily result from the unequal recruitment of previously inactive cells to different
120  neuron coding types. While the distribution of single unit activity was unstable, population

121 analyses revealed a stable separation of task variables in the collective ensemble at extended lags
122 between recordings. These results demonstrate that behavior and population output can remain
123 stable while single neuron responses are unevenly reorganized.

124

125  Methods

126 Surgical Procedures

127 4 male, naive mice (C57BL6, Jackson Laboratory) underwent two stereotaxic surgeries to
128  prepare for calcium imaging. All procedures presented here were approved by the Institutional
129  Animal Care and Use Committee (IACUC) at Boston University. Mice were given 0.05mL/kg
130  buprenorphine as a pre-surgical analgesic, and were anesthetized with ~1% isofluorane delivered
131 with oxygen. The first surgery was to infuse virus to express GCaMP6f. A small craniotomy was
132 made above the dorsal hippocampus at AP -2.0mm, ML +1.5mm relative to bregma, and the

133 infusion needle was lowered at this site to DV -1.5mm. 350 nL of the viral vector AAV9-Stn-
134  GCaMP6f (University of Pennsylvania Vector Core, obtained at a titer of ~4x10e13GC/mL and
135  diluted it to ~5-6x10e12GC/mL with 0.05M phosphate buffered saline) was infused at 40nL/min
136  and allowed to diffuse for 15 minutes before the infusion needle was slowly removed.

137 The second surgery, to implant a gradient-index (GRIN) lens for imaging, was performed
138  three weeks later to allow for viral infection and GCaMP6f expression. A 2mm diameter circular
139  craniotomy was made at AP-2.25mm, ML +1.8mm, and the neocortex was aspirated until

140  rostral-caudal fiber tracts of the alveus were visible. Near-freezing 0.9% saline solution and

5
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141 GelFoam (Pfizer) were used continuously to control bleeding and to dry the base of the

142 craniotomy prior to lens implantation. The GRIN lens (1mm diameter, 4mm length, Inscopix)
143 was slowly lowered stereotaxically to 200 um dorsal to the infusion site of the virus, measured
144  relative to the skull surface. The lens was then fixed in place using a non-bioreactive silicone
145  polymer (Kwik-Sil, World Precision Instruments) to entirely cover the craniotomy, which was
146  then covered with Metabond dental cement (Parkell) to anchor the lens to the skull. The lens was
147  covered with a temporary cap made from Kwik-Cast (World Precision Instruments) until the
148  baseplate was attached.

149 After allowing a week of recovery from the lens implantation surgery, mice were again
150  anesthetized and placed in the stereotaxic holder. The baseplate was magnetically attached to the
151  imaging microscope camera, which was then aligned parallel to the GRIN lens by adjusting until
152  the edge of the lens was entirely in focus in the nVista recording software (Inscopix). The

153  camera with baseplate was then lowered until GCaMPG6f-expressing cells were optimally in

154  focus, and then raised by 50 um to allow for shrinkage of the dental cement used to affix the

155  baseplate. The baseplate was then fixed in place to the existing metabond around the GRIN lens
156 with Flow-1t ALC Flowable Composite (Pentron), and cured with ultraviolet light. Gaps in the
157  dental cement were filled in with Metabond, the camera was removed, and a cover attached to
158  the baseplate.

159

160  Maze Description

161 The maze was constructed from wood and the internal floor area measured 64.5 cm long
162 by 29.2 cm wide, and walls were 17.75 cm high. Middle maze walls separated this area into a
163  central hallway (Center Stem) and left and right Return Arms. Each hallway was 7.5 cm wide.
164  This resulted in low variability of the animals’ left/right position within a hallway, although it

6
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165  did not prevent the animals from occasionally running with their head turned towards one side.
166  Rewards were delivered through ports at the maze walls at floor level of the side arms 12 cm

167  from the delay-end of the maze. To dictate turn direction on Study Trials (see below) and to

168  contain the mouse during the delay period, arm barriers were used that were made of transparent
169  plastic. The delay barrier was made of wood. In this manuscript we only consider data from the
170  central stem and return arms.

171 For analysis of the central stem, we chose a region starting ~8 cm in front of the delay
172 barrier and extending 30cm to end ~5 cm before the choice region at the end of the middle maze
173 walls; this region was selected to encompass the region where the mouse was running similarly
174  between study and test task phases and left and right turn directions. Left and right variability in
175  the animals’ head position at the end of this region was less than 2.5 times the standard deviation
176  of the animals’ left/right variability for the first half of the stem, and was usually

177  indistinguishable by visual observation in behavioral recordings. We divided this 30cm long

178  region into 8 spatial bins each 3.75 cm in length. For the return arms (Supplement), we chose a
179  region of equal length that started after the animals had fully entered the return arms and ended
180  before they reached the reward zone, also 30cm in length and separated into 8 bins each 3.75 cm.
181

182  Behavior pre-training and recording sequence

183 Mice were trained to run on a Delayed Non-Match to Place (DNMP) task shown in

184  Figure 1. This involved extensive pre-training in order to obtain performance at the criterion of
185  70% correct.

186 After fully recovering from surgeries, mice were extensively handled for ~15 min/day for
187 5 days. They were simultaneously food restricted to 80% of free feeding body weight, and

188  acclimated to consuming chocolate sprinkles. Over the next two weeks, mice were given time to
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189  explore the maze, and were slowly shaped to run in a single direction through the maze and to
190  receive reward, with inserted walls to block paths and guide them. In the last few days of pre-
191  training, mice were guided with blocking walls to alternate between the two reward arms and
192  given experience with continuous and delayed alternation.

193 Mice were recorded performing two tasks. In the Delayed Non-Match to Place (DNMP)
194  task (Griffin et al., 2007), mice alternated between Study and Test trials. On Study trials, mice
195  were placed in the center stem in front of the delay barrier, ran to the choice point, where a

196  removable barrier forced them to take a path down one return arm where they received a reward
197  of one chocolate sprinkle. They then moved to the delay area, waited through a 20-second delay,
198  and the delay barrier was lifted to start the Test trial. On a test trial, mice again ran to the choice
199  point but there was no barrier and mice had to go down the return arm opposite to the preceding
200  study trial in order to receive a reward. They then moved to the delay area, from which they were
201 removed to their home cage to wait through a 15-25 second inter-trial interval while the next
202  Study trial was prepared. Mice completed between 25 and 40 Study-Test trial pairs per session.
203 A second task, termed the Forced-Free task, was used on other days for a different study
204  question not addressed here. On each trial in the Forced-Free task, mice were placed in front of
205  the delay barrier, proceeded to the choice point and were either forced down a particular return
206  arm or were free to choose which arm. On all trials mice received a reward regardless of which
207  arm they entered. After consuming the reward, mice entered the delay area and were

208  immediately returned to their home cage for a 15-25 second inter-trial interval while the next
209 trial was prepared. Mice typically completed 40 trials per session. Forced and free trials were

210  pseudo-randomly interleaved, as was turn direction on forced trials.
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211 The full recording sequence was two rounds of the following sequence: one day of

212 Forced-Free, 3 days of DNMP, and one day of Forced-Free. This was followed by a sequence
213 with one day of Forced-Free followed by 5 days of DNMP, followed by one day of Forced-Free.
214  Gaps between Forced-Free-DNMP recording sequences ranged between 0 and 2 days (Full

215  sequence: FF-D-D-D-FF, break, FF-D-D-D-FF, break, FF-D-D-D-D-D-FF). Data from the

216  Forced-Free task are not presented here.

217 We only include data from DNMP recordings where cell registration could be reasonably
218  performed and where the animal’s performance was >70%.

219

220 Imaging

221 Imaging data were acquired using a commercially available miniaturized head-mounted
222 epifluorescence microscope (Inscopix). Microscopes were attached on awake, restrained mice,
223 and optical focus, LED gain and intensity adjusted for each individual mouse but kept stable
224  across days. Videos were captured at 20 Hz with a resolution of 1440 x 1080 pixels, spatially
225  downsampled 2x to 720 x 540 pixels. Dropped and corrupted frames were replaced with the

226  preceding good frame, and lost frames were excluded from analysis. Mosaic (Inscopix) was used
227  to pre-process recordings for motion correction and cropping (exclude pixels without GCaMP6f
228  activity), and to generate a minimum projection of the final video (image which has the same
229  height and width of each frame and each pixel is the minimum of that pixel for the entire video)
230  to be used during ROI extraction.

231 To extract neuron regions of interest (ROIs) and calcium event times, pre-processed

232 videos were then passed through custom-made MATLAB-based image segmentation software
233  (Mau et al., 2018; Kinsky et al., 2018) (TENASPIS, software available at https://github.

234 com/SharpWave/TENASPIS; see D.W. Sullivan et al., 2017, Soc. Neurosci., abstract). Briefly,

9


https://doi.org/10.1101/843037
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/843037; this version posted November 15, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

235  TENASPIS applies an adaptive thresholding process on a frame-by-frame basis to a band-pass
236 filtered video to identify discrete regions of fluorescent activity (blobs). Blobs are then identified
237  as likely cells based on expected shape and size, and the software aligns these blobs together

238  over successive frames. Dynamics in calcium activity, including event duration, distance traveled
239  over successive frames, and probable spatial origin, are used to identify putative neuron ROIs.
240  Fluorescence of neuron ROIs is refined into events based on the rising phase of calcium activity.
241  Finally, neuron ROIs with significant spatial overlap and high correlations in calcium activity are
242 merged into single cells.

243 Cells were registered across sessions using a semi-automated procedure with custom

244  software developed in MATLAB that is available along with the rest of our analysis code. For
245  each animal, each session was first aligned to the same ‘base’ session, selected from the middle
246  of the recording schedule. To align sessions, a set of 25-40 ‘Anchor’ cells was chosen based on
247  the relative positions of neuron ROIs in the base session and each other session (Supplementary
248  Figure la-b). Centers of these ‘anchor’ cells were used to compute an affine geometric

249  transformation (‘fitgeotrans’ function in MATLAB) and then align the entire set of ROIs in the
250  sessions being registered with the base session (‘transformpointsforward’ function in

251  MATLAB). Cells with centers within 3um (translated to pixels) were identified as the same cell,
252 and when there was more than one match within that radius, the registered cell with the higher
253  spatial correlation to the base cell was chosen (Supplementary Figure 1c). Cells from a

254  registered session that were not partnered to the base session were added to the set of unique

255  footprints alongside base session cells so that cells in successively registered sessions could be
256  paired to them in turn. Alignment maps were validated by visual inspection: this included

257  looking at the relative alignment with other cells in the field of view, and orientation of

10
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258  putatively mapped cells across sessions. Cells that were not aligned by the automated procedure
259  based on center-to-center distance but that shared orientation and relative alignment to

260  neighboring cells were registered manually (Supplementary Figure 1e, green cell). When

261  looking at the relationship for all cell pairs across all sessions, the correlation of ROIs and

262  distances between centers formed a cluster near the top of the distribution for all cell pairs

263  (Supplementary Figure 1d). The TENASPIS algorithm is designed to discriminate between
264  partially overlapping cells, which gives rise to in many pairs of cells that have high ROI

265  correlations and low center-to-center distances, but remain unregistered because a better matched
266  pair was found using the procedures above; in Supplementary Figure 1d, this manifests in the
267  black points mixed in among the red registered cell pairs.

268

269  Behavioral Tracking

270 Animal position was recorded using an overhead video camera and CinePlex V2 tracking
271 software (Plexon). Tracking was performed at 30 Hz, and was synchronized with a TTL pulse to
272  the imaging data acquisition through nVista software. Tracking was validated manually and

273 errors were corrected using custom software written in MATLAB. Position was then interpolated
274  tothe 20 Hz imaging time stamps.

275

276  Histology

277 Mice were perfused transcardially with 10% phosphate buffered saline until outflow ran
278  clear and then with 10% phosphate buffered formalin. Brains were then extracted and post-fixed
279  in formalin for 2-4 days, and then transferred to 30% sucrose solution in phosphate buffered

280  saline for 1-2 days. Brains were then frozen and sliced into 40 um sections on a cryostat (Leica
281  CM 3050S), mounted, and coverslipped with Vectashield Hardset mounting medium with DAPI
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282  (Vector Laboratories). Slides were then imaged using a Nikon Eclipse Ni-E epifluorescence

283  microscope at 10x and 20x to verify viral expression and location and GRIN lens location

284  relative to the CA1 cell layer.

285

286  Quantification and Statistical Analysis

287  Event likelihood

288 Calcium events were detected and analyzed to compute the likelihood of calcium events
289  occurring at a given location. The analysis software, TENASPIS, (see above) defines an event as
290 the time during the rising phase of a spike in calcium fluorescence in a cell which exceeds a local
291 threshold of that cell’s session average of fluorescence activity. This returns a binary output for
292  each cell which describes whether that cell was or was not, at every imaging frame, exhibiting a
293  calcium event. We calculated event likelihood by pooling data from the set of trials of interest
294  for each cell (e.g., Study trials on the stem), and then, for each spatial bin, dividing the number of
295  frames for which an event was occurring by the number of frames when the mouse was in that
296  binin that set of trials. This produces an output between 0 (an event never occurred in that

297  spatial bin) and 1 (an event always occurred when the mouse was in that spatial bin).

298

299  Active Cells

300 For single unit analyses, cells are included on a given day when they exhibited a calcium
301 eventon at least 25% of trials or 3 consecutive trials in a single trial type (e.g. Study-Left). In the
302  population analyses, we included all cells were successfully registered to the sessions being

303 compared.

304

305  Splitter Identification
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306 Splitter neurons are cells that exhibit a significant bias in their firing activity on the

307  central stem for trials of a particular upcoming turn direction (Left versus Right) or task phase
308  (Study versus Test) (Figure 2). Thus, each cell is a member of one of four mutually exclusive
309 categories, depending on whether its calcium activity is modulated by either task dimension,
310 both, or neither: turn splitter neuron, task phase splitter neuron, turn*phase splitter neuron, or
311 non-splitter. Note that turn*phase splitter neurons refer to cells splitting both turn direction and
312 task phase.

313 To identify whether each cell’s activity was significantly modulated by task variables, we
314  used a permutation test to measure the significance of the difference in event activity likelihood
315 against a shuffled distribution. This was repeated separately to measure activity bias for turn
316  direction or task phase. We first separated epochs when the mouse ran through the central stem
317  according to the given task dimension (i.e. left and right turn trials, or study and test trials), and
318  computed the event likelihood (see above) for these sets of trials. Then took the difference in
319 likelihood scores by subtracting the Right trial event likelihood in each spatial bin from that for
320  Left trials, or Test trial from Study. We then repeated this for all 1000 sets of shuffled trials,
321 which were generated by shuffling the trials between trial types accordingly, to get a shuffled
322  difference distribution. Cells were determined to “split” the dimension of interest if their original
323  event likelihood difference was greater than 95% of the shuffle differences in any spatial bin.
324 In the supplemental data, this procedure was repeated in the same fashion for epochs
325  when the mouse ran down the return arms to measure selectivity for the separate (Right or Left)
326  return arms and for Study and Test task phases while on the return arms.

327

328  Population Vector Correlations

13
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329 Population vector correlations were computed in a manner similar to that described by
330 Leutgeb et al. (2005)(Figure 3a). We generated three sets of correlations: 1) within-condition:
331 trials of the same type (e.g. Study-Left vs. Study-Left); 2) Left vs Right, and 3) Study vs. Test.
332 First, trials were grouped for the comparison of interest and then each group was split so that
333 within condition comparisons would have the same number of trials as the other two

334  correlations. For a given half-set of trials, we computed the event likelihood in each spatial bin
335  with the method described above. We then took these spatial bin event likelihoods for the set of
336  cells included and computed a Spearman correlation for each spatial bin against the event

337  likelihoods in the same spatial bin for the trials in the different comparisons listed above. For
338  correlations computed across days, we computed all day-pair combinations for each self-

339  comparison and for each comparison between study and test trials and between left and right turn
340 trials, for example between left turn trials on day 1 and right turn trials on day 4. Cells included
341 were those present (successfully registered) on both days for each comparison (Similar results
342  were achieved using several other cell inclusion criteria, data not shown).

343

344  Statistics

345 All statistical tests were done with Spearman rank correlations, Wilcoxon Rank-sum tests
346  (Mann-Whitney U tests), Wilcoxon signed-rank tests, sign tests, or permutation tests with

347  threshold set at >95% of shuffles for the given test. These tests were used because data were

348  often not normally distributed.

349
350
351
352
353
354
355
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356  Results

357  Heterogeneous changes in daily distribution of single-cell task-related responses

358 We recorded calcium activity in neurons in dorsal area CA1 as mice performed a delayed
359  non-match to place (DNMP) task over several days. In the DNMP task, mice first run a study
360 trial where they are forced to turn into one side arm to receive reward. After a 20-second delay,
361  mice must choose to go down the opposite arm to receive a reward (Figure 1a). We used this
362  task because mice traverse the same section of the maze (the central stem) under each

363  combination of Task Phase and upcoming Turn Direction. This allows us to examine

364  hippocampal representations of the same space under four different behavioral conditions:

365  Study-Left, Study-Right, Test-Left, Test-Right. We recorded 8256 cells in four male mice across
366 38 sessions with a behavioral performance (opposite turn direction on Test trials relative to

367  preceding Study trial) minimum of 70% (9 days in 3 mice, 11 days in 1) (Figure 1b), spanning
368  up to 17 calendar days. Performance did not change over the experiment (only days above

369  threshold: rho=-0.031, p=0.852; all days recorded: rh0=0.198, p=0.210; Spearman rank

370  correlation). We recorded activity using the virally-delivered fluorescent calcium indicator

371 GCaMP6f and head-mounted miniature microscopes (Figure 1c), and extracted cell ROIs using
372 custom software (example ROIs in Figure 1d-e, bottom; see Methods) (Kinsky et al., 2018; Mau
373  etal., 2018). On average, each cell was successfully registered for 3.45 sessions, and cells often
374  displayed stable activity profiles across sessions (Figure 1d-e, top).

375 Single cells often modulate their spatial firing activity according to context-dependent
376  task dimensions such as upcoming turn direction or current task phase. Turn direction responses
377  are thought to represent specific spatial trajectories (Frank et al. 2000; Wood et al. 2000;

378  Ferbinteanu and Shapiro 2003), while a task phase-modulated response profile reflects the
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379  (presumably) different network activity states for encoding during the study phase and retrieval
380  during the test phase (Griffin et al. 2007). We assessed whether these task variables were

381  encoded in the calcium activity of neurons in our recordings using a permutation test (see

382  Methods) and found that ~90% of cells active on the central stem (3443/3810 active on any

383  recording day) displayed a functional phenotype described by a modulation of their calcium

384  activity according to the animal’s upcoming turn direction (turn splitter neurons), the current task
385  phase (phase splitter neurons), or both (turn*phase splitter neurons) (see examples in Figure 2a);
386  these categories are mutually exclusive. Note that we found many cells which display a turn

387  direction-modulated response on Study trials, indicating that mice could likely see the turn

388  barrier before having reached it.

389 On the center stem, there was no difference in the proportions of turn or phase splitter
390  neurons (18.96+1.22% and 19.19+1.20%, respectively, z=0.016, p=0.987, Wilcoxon signed-rank
391  test), but there were more turn*phase splitter neurons than either group (51.44+1.93%, both

392  z=5.286, p=1.250e-07) (Figure 2b). We also observed a location bias among different splitting
393  phenotypes of single cells: phase splitter neurons were more likely to have their activity center of
394  mass (event activity pooled across all trial types) closer to the start of the stem than did turn

395  splitter neurons (p=6.719e-30, Mann-Whitney U test) (Figure 2c). A bias in firing location may
396 indicate that cells tend to fire in proximity to the behaviors they encode: for phase splitters, this
397  could be whether the trial began in the delay area or being placed on the maze by the

398  experimenter, while turn splitters encode an upcoming spatial turn direction.

399 The daily distribution of splitter types was not stable: the percentage of turn*phase

400  splitters significantly declined over the course of the experiment (rho=-0.35774, p=0.027,

401  Spearman rank correlation), though it remained greater than other splitter types. Meanwhile, the
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402  percentage of phase splitter neurons was stable (rho=0.084, p=0.616) and the percentage of turn
403  splitter neurons went up (rho=0.347, p=0.033) (Figure 2d). The percentage of non-splitters

404  displayed a small but statistically significant increase over the course of the experiment

405  (rho=0.331, p=0.043) (Figure 2d). The proportions of each type of splitter neuron were not

406  correlated with animals’ performance on the DNMP task (all rho absolute value <0.217, all

407  p>0.190) (Supplementary Figure 2). These findings replicate a previous result in a new species
408  (Griffin et al. 2007) and extend that work to show that the distribution of task-dimension

409  modulated responses among neurons is unstable over time, even though behavioral output is
410  reliable. In particular, the number of turn splitter neurons increases over time, whereas the

411  number of turn*phase splitter neurons decreases over time, suggesting representations become
412 less experience-specific over time.

413 We applied these same analyses to determine neuronal activity modulation according to
414  task variables to neuronal activity during the return arm epochs. Because this analysis is

415  performed in the same way, it can be used to indicate relative distinctiveness in the way neurons
416  code for overlapping spatial trajectories (central stem) as opposed to unique spatial locations
417  (return arms). Many cells displayed a calcium event bias for one arm over the other (place cells,
418  referred to here as “place splitters”), and many cells also showed selectivity for one task phase.
419  The proportions of place and phase splitter neurons on the return arms did not individually

420  change over time, though there was an increase in the number of cells which were active on the
421  return arms but did not show place or task phase selectivity (Supplementary Figure 3). These
422  results show that changes in the representation of the task and environment are modulated by

423 memory load, which is low on the return arms and high in the central stem.
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424 In summary, by demonstrating that the distribution of task variable responses among

425  single units is unstable, we show that representations for various task dimensions experienced in
426  the same spatial location and during a similar behavior are heterogeneously stable, with

427  divergent changes based on their coding of the behavioral context.

428

429  Population-level separation of task dimensions is stable over experience

430 We next asked how these patterns of activity manifested in the activity state of CAl as a
431  whole. This population analysis was designed to measure the similarity in the pattern of activity
432 among the population of neurons within and across recording sessions. We computed Spearman
433 correlations for the activity in each spatial bin from the start of the stem to the choice point for a
434  given trial type using the calcium event likelihood for each trial type of all cells present in the
435  session pair (Figure 3a)(see Methods). We generated three sets of correlations: 1) trials of the
436  same turn direction and task phase (within-condition; e.g. Study-Left vs. Study-Left), 2) trials of
437  different turn directions (Left vs. Right, abbreviated as LVR), and 3) trials of different task

438  phases (Study vs. Test, abbreviated as SvT).

439 We found a stable ensemble activity pattern when examining the population vector

440  correlations for trials occurring on the same day. Activity states for trials of the same type were
441  significantly more correlated than those both for trials of different direction and trials of different
442  task phase, showing a discrimination in the ensemble-level code for different trial types (see
443  Supplementary data table 2 for detailed statistics) As shown in Figure 3b, the correlations
444  between trials of the same type did not change across spatial bins (rho=0.045, p=0.116;

445  Spearman rank correlation). In contrast, activity states for left and right trials grew more

446  decorrelated as animals approached the choice point (rho=-0.678, p=4.946e-83), and study and
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447  test trials were most discriminable at the start of the stem (rh0=0.332, p=4.418e-17). The

448  correlation change along the stem follows the center-of-mass distribution for splitter cell firing
449  fields (Figure 2c). This pattern of correlations across spatial bins was stable over the course of
450  recordings (all rho absolute value < 0.313, all p > 0.056; Spearman rank correlation of 2-bin
451  mean for each type of population vector correlation value against recording day number)

452  (Examples for bins 1-2 and 7-8 in Figure 3c-d). This result demonstrates that, in spite of the
453  changing distribution of single-neuron encoding properties (Figure 1d), the population-level
454  distinction between activity states (Figure 3b) and its relationship to spatial position is stable
455  over time (Figure 3c-d).

456 We next assessed the correlations within and between trial types for trials on different
457  days. It may be expected that population activity states would diverge with respect to time (i.e.,
458  become less correlated) due to cell replacement and changes in the splitter neuron distribution
459  (Figure 2). To assess this, we examined the mean population vector correlations at the beginning
460 and end of the stem between sessions recorded 1 to 16 days apart. We observed that all three
461  types of correlations significantly decreased with increasing day lag at both ends of the stem,
462  (Figure 3e-f). However, even as correlations decreased, LVR and SvT correlations were

463  significantly lower than those between trials of the same type for at least a week between

464  sessions and in many cases longer (see detailed statistics in Supplementary Data Table 3,4).
465  These results show that constant cell turnover minimally impacts the ability of the population to
466  represent different experiences of the same space over many days of recording and that this

467  representational structure is preserved over time. However, the extent to which the population
468  distinguishes between task dimensions depends on the dimensions being compared, the animals’
469  physical location, and the temporal lag between experiences.

470
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471  Evolution of single-unit to responses is attributable to changing distribution of new cell

472 activity types

473 We next assessed the origin of the changes in the distribution of splitter neuron types
474  over time. There are several possible sources of change in the splitter neuron distribution:

475  different splitter neuron types could be persistently active for different amounts of time before
476  becoming silent (variable stability); neurons could change their splitter type (splitter type

477  transition); or previously silent neurons could be preferentially allocated to certain splitter types
478  (unequal allocation of newly active cells). We found no evidence of variable stability: cells were
479  equally likely to stay active in later recording days regardless of splitting type (all p>0.05,

480  Wilcoxon rank-sum test between each pair of splitting phenotypes at each day lag) (Figure 4a).
481 We next tracked the history of all cells to determine the origin or “source” of each splitter
482  neuron in the preceding session. For each splitter neuron from the second included session

483  onwards, we tracked whether that cell was a splitter neuron of any type in the preceding session
484  or was inactive (neurons below the activity threshold or undetected by our ROI extraction

485 algorithm). We found that previously inactive cells were the largest source category to all types
486  of splitter neurons in 85.39% of recording sessions, and contributed an average of 55.37% of
487  splitter neurons per session (Figure 4b). Turn*phase splitter neurons were the second largest
488  category contributor to splitter neurons of all types, contributing on average 22.83% of all splitter
489  neurons. In addition to showing the immediate integration of newly active cells into the coding
490  population, this result suggests that representation of task variables in single units becomes less
491  specific over time, where each cell becomes less likely to encode both task phase and turn

492  direction.
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493 The above result on splitter neuron sources suggests that changes in the distribution of
494  single unit responses are, to a large degree, driven by the splitting type a newly active neuron
495  assumes rather than transitions between different splitting types. Indeed, the proportion of splitter
496  types of newly active cells closely matched the distribution of splitter types overall: new cells
497  were more likely to become turn*phase splitter neurons rather than turn-only or phase-only

498  splitter neurons (Turn*Phase vs. Turn: z=4.898, p=9.665e-07; Turn*Phase vs. Phase: z=4.804,
499  p=1.554e-06; Wilcoxon signed-rank test) (Figure 4c). Additionally, the changes in this

500 distribution of newly active cells over the course of recordings closely matched those observed
501  for all splitter neurons (Figure 2d): while newly active cells on all days were more likely to be
502  turn*phase splitter neurons than other types, this likelihood significantly decreased over time

503  (rh0o=0.419, p=0.014) and the proportion of new cells allocated to turn splitter neurons on the
504  stem significantly increased (rho=0.373, p=0.030; Spearman rank correlation), while those for
505  phase splitter neurons and non-splitters were stable (rho=0.209, p=0.237 and rh0=0.203, p=0.249
506  respectively) (Figure 4d).

507 Splitter and place neurons on the return arms were also found to be equally stable and
508  primarily derived from newly active cells, but the distribution of cells newly active on the return
509 arms among splitter types did not change over time, again suggesting the redistribution of splitter
510 neurons is related to memory load (Supplementary Figure 4).

511 These results show that the changing distribution of single unit responses is primarily

512  attributable to changes in the allocation of new cells to encode task variables, rather than unequal
513  stability of different splitter types.

514
515  Discussion
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516 We recorded cells in dorsal CA1 of the hippocampus in mice performing a Delayed Non-
517  Match to Place task over several sessions. In tracking the same populations of cells, we found
518 that there was heterogeneity in the stability of task-related representations. Many single cells

519  exhibited context-dependent modulation in their calcium activity while the animal was in the
520  same spatial location, replicating earlier findings that demonstrate that hippocampal place cells
521  encode the behavioral context in addition to spatial position (Griffin et al., 2007). We found that
522  the distribution of context-dependent responses among neurons was not stable over the course of
523  recordings: the proportion of task phase splitter neurons was stable, the proportion of turn

524  direction splitter neurons increased, and the proportion of turn*phase splitter neurons decreased.
525  We found this change was not attributable to variable stability of each splitter phenotype, but
526  instead appeared to be due to how newly active cells were allocated to different splitter types. In
527  spite of cell turnover and changes in the representation of task features among single neurons,
528  ensemble-level population representations for different trial types were stably segregated over
529  many recording sessions. These data demonstrate that the hippocampal representation of ongoing
530  experience can undergo reorganization at the single neuron level while minimally impacting

531  population level coding.

532 Representations may change in different ways over time during stable behavior based on
533  competing demands on memory reorganization. Generalization emphasizes the similarities

534  across experiences to aid in the transfer of learning across contexts, while orthogonalization

535  makes representations more distinct to mitigate interference between contexts. Both mechanisms
536  are important for spatial navigation and episodic memory (Hasselmo & Wyble, 1997; Kumaran
537 & McClelland, 2012; McNaughton & Morris, 1987; Norman & O’Reilly, 2003; Schapiro, Turk-

538  Browne, Botvinick, & Norman, 2017; Treves & Rolls, 1994; Winocur, Moscovitch, &

22


https://doi.org/10.1101/843037
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/843037; this version posted November 15, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

539  Bontempi, 2010), and both processes are observed in fMRI studies using behavioral tasks with
540  multiple demands (Brown and Stern 2014; Chanales et al. 2017). However, the interplay of

541  generalization and orthogonalization in the long term reorganization of memory has not been
542  previously studied at the single neuron level in a dynamically evolving neural circuit.

543  Representations of different trial types may become more orthogonalized and distinct, following
544  the precedent set by many studies on learning (Komorowski et al. 2009; McKenzie et al. 2013;
545  Chanales et al. 2017). Alternatively, representations could become more schematic through

546  generalization as the animals become over-trained on the task, perhaps preserving only those
547  distinctions relevant to performing the task. At the single neuron level, we observed a result

548  consistent with the generalization hypothesis: a decreasing number of turn*phase splitter neurons
549  (which encode a single experience: a route to a single destination during a single task phase) and
550 an increasing number of turn splitter neurons (which encode multiple experiences: routes to the
551  same destination during multiple task phases). But at the population level, we instead observed a
552 highly stable representational structure.

553 Studies which report orthogonalizing change in hippocampal coding properties typically
554  examine an initial learning phase, comparing data from before and after a subject reaches a

555  performance criterion, often in a single session (Kobayashi et al. 2003; Komorowski, et al. 2009;
556  McKenzie et al. 2013). Because our recordings began after animals had received considerable
557  experience with the maze environment during the pre-training phase, we may have captured a set
558  of operational demands unlike initial learning. To reconcile our finding of generalization with
559  previous reports of orthogonalization, we propose that both mechanisms act on the organization
560  of memory but at different timescales: orthogonalization dominates an early, fast encoding

561  process which emphasizes the uniqueness of current experiences, while generalization acts as a
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562  slower refinement of existing memory representations by finding statistical regularities; both of
563  these processes likely involve regions outside the hippocampus (Ghosh & Gilboa, 2013; Koster
564 etal.,, 2018; Lewis, Knoblich, & Poe, 2018). This distinction suggests that it is more appropriate
565  for our work to be framed in terms of long-term mechanisms of memory stability, rather than
566  those which are relevant to shaping the initial learning and encoding process.

567 Divergent expectations for short and long-term memory organization are apparent when
568  comparing our results to a previous report which employed a similar task to ours in which human
569  participants navigated partially overlapping trajectories in a virtual environment (Chanales et al.,
570 2017). The authors found that the hippocampal voxel activity patterns for overlapping trajectory
571  segments grew more distinct from each other over the course of learning, while patterns for non-
572  overlapping segments did not change in their representational similarity. Our results parallel this
573  finding in showing that conflicts between behavioral responses in overlapping locations

574  (experienced on the central stem in the DNMP task) can drive changes in the neural

575  representation while representations for non-overlapping segments remain stable (return arms,
576  Supplementary Figure 3,4). However, unlike Chanales and colleagues, we did not observe a
577  population-level increase in discriminability of overlapping segments, which could be explained
578 by the fact that their study was conducted in a single session while ours ran for multiple weeks.
579 Prior studies have attributed a working memory role to the hippocampus in DNMP and
580  other alternation tasks. Working memory accounts propose that on short, behaviorally relevant
581  timescales the hippocampus maintains a representation of the previous trial to inform future

582  behavior. This interpretation was prompted by findings that hippocampal lesions produce

583  performance deficits in alternation tasks which involve a delay (Hampson et al. 1999;

584  Dudchenko et al. 2000) and by correspondence between during delay period neural activity and
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585  upcoming turn directions (Deadwyler et al. 1996). However, alternation tasks cannot distinguish
586  between prospective and retrospective coding (see Frank et al. 2000), meaning delay and central
587  stem activity could represent a previous trial or upcoming trajectory.

588 We suggest instead that continued involvement of the hippocampus in distinctly

589  representing overlapping spatial trajectories may be appropriate for self-localization within an
590  existing spatial memory map (Redish & Touretztky, 1998). It was previously assumed that task
591  splitter neurons reflected respective encoding and retrieval demands for Study and Test trials
592  (Griffin et al. 2007); the self-localization interpretation suggests instead that task phase splitters
593 instead encode immediate history of the stem traversal, whether the current trial began by being
594  placed in the maze by the experimenter (Study) or being released from the delay area (Test).
595  Self-localization assumes neither that the animals are sensitive to our conception of the task nor
596 that encoding and retrieval “modes” be expressed as measurably different patterns of activity in
597  CAL. The lack of neurons that code exclusively for Task Phase on the return arms

598  (Supplementary Figure 3), where the trial-start behavioral cue is less salient, is consistent with
599 this hypothesis. The strictest interpretation of task phase splitting as self-localization suggests it
600  acts as a code to distinguish slightly different routes to the same reward destination (Grieves et
601 al. 2016). Task phase splitting (Figure 2) and delay period splitting (Deadwyler et al. 1996)

602  could together contribute to self-localization within a cognitive map of the task that links longer
603  sequences of events through the maze, wherein overlapping trajectories begin on the central

604  stem, pass down one side arm, linger in the delay area, and then pass again through the stem and
605  onto the other side arm (Hasselmo, 2008). Task phase splitting on the central stem is similar to
606  many other findings of context-dependent place-cell activity (Ferbinteanu & Shapiro, 2003;

607  Frank et al., 2000; Hasselmo, 2008; Sun, Yang, Martin, & Tonegawa, 2019). Disambiguating the
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608  working-memory and self-localization accounts of splitter neuron activity will require designing
609  tasks that use behavioral and spatial cues that are consistent across distinct but overlapping

610  behaviors.

611 Our results here show that the stability of hippocampal representations is heterogeneous,
612  displaying different rates of change in task-relevant activity across cognitive demands, maze
613  locations, and levels of analysis. These changes are largely attributable to cells’ changes in the
614  allocation of newly active cells among task-modulated activity types, as well as individual cells’
615 transitioning from coding both task dimensions to just coding for one. Together, the results

616  suggest that reorganization of memory representations actively reshapes hippocampal memories.
617  Future studies should seek to clarify the behavioral parameters which predict the rate of cell

618  replacement, the allocation of newly active cells, and the cellular and network mechanisms

619  which mediate them.

620

621  Supplementary Data Tables

z, STEM p, STEM z, ARM | p, ARMS
Turn vs. Phase 0.016379 0.98693 5.3731 7.7397e-08***
Turn vs. Conj. 5.2861 1.2497e-07*** 2.9222 0.0034756**
Phase vs. Conj. 5.2861 1.2497e-07*** 5.3731 7.7397e-08***
Conj. vs. Neither 5.3586 8.3874e-08*** 5.3732 7.7337e-08***
Turn vs. Neither 4.111 3.9373e-05*** 5.3731 7.7397e-08***
Phase vs. Neither 4.5033 6.69e-06*** 0.65823 | 0.51039

622  Table 1: Proportion comparisons splitter neurons, Wilcoxon signed-rank test, on STEM and
623 ARMS

624
Spatial ySSL?/eFIQf I\_/\?RSelf v ysssf/?rlf VS Self vs SVT | LVRvs SVT | LVR vs SvT
Bin: p-value z-value p-value
z-value | p-value z-value

1 8.312 | 9.44E-17*** 9.653 4. 75E-22*** 2.924 0.004***
2 9.807 | 1.05E-22*** 8.855 8.39E-19*** -0.518 0.605
3 10.782 | 4.18E-27*** 8.22 2.03E-16*** -3.831 0.0001***
4 11.464 | 2.01E-30*** 7.345 2.06E-13*** -6.137 8.40E-10***
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5 11.79 | 4.41E-32*** 0.612 3.79E-11*** -0.755 8.84E-15***

6 11.82 | 3.10E-32*** 5.941 2.83E-09*** -8.599 8.05E-18***

7 12.086 | 1.26E-33*** 5.108 3.25E-Q07*** -9.222 2.93E-20***

8 12.177 | 4.11E-34*** 5.164 2.42E-Q7*** -9.491 2.30E-21***
625
626 Table 2: Wilcoxon rank-sum test statistics for comparisons between population vector

627  correlations in each spatial bin

628
Day Vs Self Vs
Lag vs LVR | Vs Self vs Selfvs | VsSelfvs SvTp | LVR vs SVT | LVR vsSvT
z LvVR p Values | SvT z | Values z Values p Values
Values Values

1| 8.088| 6.09E-16*** 7.657 1.90E-14*** -0.187 0.852

2| 6.893 5.48E-12*** | 6.062 1.35E-09*** -0.614 0.54

3| b5.527 3.25E-08*** | 4.446 8.77E-06*** -1.106 0.269

4 5.29 1.22E-07*** | 4.721 2.35E-06*** -1.467 0.143

5| 5.0951 3.49E-07*** | 5.139 2. TTE-Q7*** -0.255 0.799

6 4.47 7.82E-06*** 4.47 7.82E-06*** -0.125 0.9

7| 5.018 5.23E-07*** | 4.283 1.84E-05*** -0.465 0.643

8| 3.715 0.0002*** | 3.028 0.003** -0.473 0.637

9| 3541 0.0004*** | 3.575 0.0004*** 0.622 0.5341

10| 3.152 0.002** | 3.727 0.0002*** 0.63779 0.524

11 4.37 1.25E-05*** | 2.738 0.006** -1.254 0.21

12| 3.285 0.001*** | 1.749 0.08 -1.556 0.12

13 2.88 0.004** | 2.235 0.026* -0.437 0.663

14 2.67 0.008** | 2.203 0.028* -0.302 0.763

15| 2.339 0.019* | 1.143 0.253 -0.844 0.399

16 | 0.855 0.393 | 0.479 0.633 -0.5 0.617

629 Table 3: Wilcoxon rank-sum test z and p values comparing each population vector

630  correlation type across day lags for means of correlations in bins 1 and 2.

631
Day | Vs Vs LVR Vs
Lag | Selfvs | VsSelfvs LVRp | Selfvs | Vs Selfvs SvT p LVvR vs SvT
SvT z
LVvR z | Values SvT z | Values p Values
Values
Values Values
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1] 12.903 4.35E-38*** [ 4.072 4.66E-05*** -9.439 | 3.78E-21***
2 10.476 1.11E-25*** | 3.037 0.002** -8.697 | 3.41E-18***
3 7.34 2.14E-13*** | 2.804 0.005** -5.973 | 2.33E-09***
4 7.416 1.21E-13*** 1.39 0.165 -6.366 | 1.94E-10***
S| 8.991 2.46E-19*** | 1.846 0.065 -7.198 | 6.12E-13***
6| 9.679 3.72E-22*** | 2,196 0.028* -7.527 | 5.19E-14***
71 10.237 1.36E-24*** | 2.077 0.0378* -7.262 | 3.83E-13***
8| 8.245 1.65E-16*** | 1.841 0.066 -5.763 | 8.25E-09***
9| 8.638 5.71E-18*** 2.59 0.01* -6.263 | 3.77E-10***
10| 6.828 8.62E-12*** | 2.926 0.003** -5.123 | 3.02E-07***
11| 6.675 2.47E-11*** | 0.878 0.38 -5.334 | 9.61E-08***
12| 6.045 1.49E-09*** | 1.294 0.196 -4.937 | 7.95E-07***
13| 6.952 3.60E-12*** | 1.154 0.248 -4.881 | 1.06E-06***
141 6.074 1.25E-09*** | 1.084 0.278 -4.424 | 9.68E-06***
15| 5.001 3.57E-07*** | 0.489 0.625 -3.761 |  0.0002***
16 | 3.505 0.0005*** | 1.529 0.126 -1.258 0.209
632 Table 4: Wilcoxon rank-sum test z and p values comparing each population vector

633  correlation type across day lags for means of correlations in bins 7 and 8.

634

635  Software and Data availability

636  Software used in our analysis is freely available on GitHub. TENASPIS is available at

637  https://github. com/SharpWave/TENASPIS, and all other analysis software is available at

638  https://github.com/samjlevy/CalmageRelated. Data can be made available from the authors upon
639  reasonable request.
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Figure 1. A, Task outline: each trial has a Study and Test Phase, separated by a 20-second delay. Each
trial is followed by a 15-25s inter-trial interval in the mouse’s home cage, adjacent to the alternation
maze (not shown). B, Performance of individual mice (separate colors) over all days of recording. Only
sessions with performance above 70% were included, excluded sessions are marked in red. C, Example
viral expression and lens placement in dorsal CAl. Green is GCaMP6f-EYFP, blue is DAPI. D, Top: Activity
maps for one cell (a turn splitter neuron; see Figure 2) over five days of recording. Each plot represents
the average activity map for one task condition combination, ordered clockwise from top-left: Study-
Left, Study-Right, Test-Right, Test-Left. In each plot, the black trace is the animal’s recorded position, and
colored dots indicate frames where the cell was active. Dots are colored based on the local event
likelihood, normalized by local occupancy, where red is the highest event likelihood within that day and
blue is the lowest. Bottom: Cell ROl masks for that recording day. Cell of interest is colored in green, and
indicated with red arrow on first day shown. Masks were aligned across days based on relative positions
of cells and cells were aligned based on the distance between cell centers and correlation of masks (see
Methods). E, Same as D but for a cell with an activity field on one return arm.
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Figure 2. A, Example activity maps for each type of splitter on the central stem. Warmer colors
indicate higher transient likelihood. B, Proportions of splitter cells out of the total active cell
population on each day for all animals. Box shows inter-quartile range and middle line shows median.
Statistic: Wilcoxon signed-rank test. C, Distribution of centers-of-mass of event activity for Turn and
Phase splitter neurons. Statistic: Mann-Whitney U-test. D, Proportion of splitter neurons in individual
animals (unique colors) and group regression (black) over the course of the experiment. Color of box
indicates cell type as described by y-axis label. Significance calculated with Spearman rank correlation
between proportion of splitters and recording day number for all included sessions (n=38).

* p<0.05, ** p<0.01, ***p<0.001
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Figure 3. A, Method for making population vector correlations. B, Population vector correlations between trials
of the same turn direction and task phase (gray), different turn directions (red) and different task phases(blue).
Correlations in this panel B are generated from trials that occur on the same day. Shaded patch indicates 95% of
points for the indicated correlation type in that spatial bin, trend line indicates mean. Statistic: Wilcoxon rank-
sum test on all points for these groups. C,D, Mean correlation for pairs of spatial bins over the course of
recordings. Thin lines indicate individual animals’ correlations, bold lines are best fit regression. Statistic:
Spearman rank correlation on points from all recording days. E,F, Correlations between trials on separate
recording days for indicated pairs of spatial bins. See text and supplementary data tables for statistics.

* p<0.05, ** p<0.01, ***p<0.001
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Figure 4.

A, Proportion of cells that are still present at increasing day lags. Statistic: Wilcoxon signed-rank
test. B, Proportion of each splitter type by what that cell was on the prior day of recording. C, Proportion of
each splitting phenotype among each recording day’s set of previously inactive cells (from second recording
day forward). Statistic: Wilcoxon signed-rank test. D, Changes in the distribution of splitting phenotypes
among previously inactive over the course of recordings. Colored lines are individual animals, black line is
best fit regression. Color of box indicates cell type as described by y-axis label. Statistic is indicated at right
(Permutation test).
* p<0.05, ** p<0.01, ***p<0.001
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Supplementary Figure 1.  A,B Cell ROl outlines for the base session (A) and one registered session (B) for
one mouse. Green filled-in cells are manually selected “anchor cells” used to compute the affine
transformation for alignment. C, Overlaid base session in red and registered session in blue, same as A,B.
“Anchor cells” filled in green, and other registered cells are filled in purple. D, Scatter plot showing
relationship between ROI correlation and center-to-center distance for every pair of cells in each base-
registered session pair. Registered cells are marked in red. Green dashed line indicates 3 um threshold used
during registration. X-axis is log-scaled. E, Enlarged section of a registered session from a different mouse
from A-C illustrating a manually registered cell (filled in green). This cell was skipped by the algorithm
because the centers in the base and registered sessions were further apart than the 3um threshold
(3.316um, ROI correlation 0.757). This cell was added manually based on its relative alignment to other cells
successfully registered and the similarity of ROl outlines.
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Supplementary Figure 2.  Correlation between proportions of splitter cells out of total active cells with
animal’s performance in that session. Dot color refers to each mouse, each point is a single session. Black
line is best fit linear regression. Box color indicates splitter type detailed in y-axis. Significance is calculated
with a spearman rank correlation between the proportion of splitter cells and session accuracy.
Turn rho=-0.210, p=0.206. Phase rho=0.217, p=0.190. Turn*Phase rho=-0.030, p=0.857. Non-splitter rho=-
0.136, p=0.417.
* p<0.05, ** p<0.01, ***p<0.001
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Supplementary Figure 3. A, Example activity maps for each type of splitter on the return arms. Warmer
colors indicate higher transient likelihood. B, Proportions of splitter cells out of the total active cell
population on each day for all animals. Box shows inter-quartile range and middle line shows median.
Statistic: Wilcoxon signed-rank test. C, Distribution of centers-of-mass of event activity for Turn and Phase
splitter neurons. Statistic: Mann-Whitney U-test. D, Proportion of splitter neurons in individual animals
(unique colors) and group regression (black) over the course of the experiment. Significance indicates
between all included recording sessions (n=38). Statistic: Spearman rank correlation (Proportion of splitters
by recording day number).

*p<0.05, **p<0.01, ***p<0.001
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Supplementary Figure 4. A, Proportion of cells that are still present at increasing day lags. Statistic:
Wilcoxon signed-rank test. B, Proportion of each splitter type by what that cell was on the prior day of
recording. C, Proportion of each splitting phenotype among each recording day’s set of previously inactive
cells (from second recording day forward). Statistic: Wilcoxon signed-rank test. D, Changes in the
distribution of splitting phenotypes among previously inactive over the course of recordings. Colored lines
are individual animals, black line is best fit regression. Statistic is indicated at right (Permutation test).

* p<0.05, ** p<0.01, ***p<0.001
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