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Abstract: 48 

The population of hippocampal neurons actively coding space continually changes across 49 

days as mice repeatedly perform tasks. Many hippocampal place cells become inactive while 50 

other previously silent neurons become active, challenging the belief that stable behaviors and 51 

memory representations are supported by stable patterns of neural activity. Active cell 52 

replacement may disambiguate unique episodes that contain overlapping memory cues, and 53 

could contribute to reorganization of memory representations. How active cell replacement 54 

affects the evolution of representations of different behaviors within a single task is unknown. 55 

We trained mice to perform a Delayed Non-Match to Place (DNMP) task over multiple weeks, 56 

and performed calcium imaging in area CA1 of the dorsal hippocampus using head-mounted 57 

miniature microscopes. Cells active on the central stem of the maze “split” their calcium activity 58 

according to the animal’s upcoming turn direction (left or right), the current task phase (study or 59 

test), or both task dimensions, even while spatial cues remained unchanged. We found that 60 

different splitter neuron populations were replaced at unequal rates, resulting in an increasing 61 

number of cells modulated by turn direction and a decreasing number of cells with combined 62 

modulation by both turn direction and task phase. Despite continual reorganization, the ensemble 63 

code stably segregated these task dimensions. These results show that hippocampal memories 64 

can heterogeneously reorganize even while behavior is unchanging.  65 

 66 

 67 

 68 

 69 

 70 
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Significance statement: 71 

Single photon calcium imaging using head-mounted miniature microscopes in freely 72 

moving animals, has enabled researchers to measure the long term stability of hippocampal 73 

pyramidal cells during repeated behaviors. Previous studies have demonstrated instability of 74 

neural circuit components including dendritic spines and axonal boutons. It is now known that 75 

single units in the neuronal population exhibiting behaviorally relevant activity eventually 76 

become inactive and that previously silent neurons can quickly acquire task-relevant activity. 77 

The function of such population dynamics is unknown. We show here that population dynamics 78 

differ for cells coding distinct task dimensions, suggesting such dynamics are part of a 79 

mechanism for latent memory reorganization. These results add to a growing body of work 80 

showing that maintenance of episodic memory is an ongoing and dynamic process.  81 

 82 

Introduction 83 

The belief that stable behaviors and reliable memory representations are supported by 84 

stable elements of neural circuits (Barnes et al., 1997; Thompson & Best, 1990) has been 85 

challenged by many findings that neural circuit components across the brain are unstable over 86 

time. Circuit instability is notable in the continual replacement of active cells with previously 87 

silent cells (Kinsky et al., 2018; Mau et al., 2018; Ziv et al., 2013), but is also observed in the 88 

impermanence of dendritic spines and axonal boutons (Attardo et al. 2015; Pfeiffer et al. 2018; 89 

Grutzendler et al. 2002; De Paola et al. 2006). How circuit instability may affect neural function 90 

is a topic of much debate (Chambers & Rumpel, 2017; Rule et al., 2019).  91 

In the hippocampus, a hub for episodic memory and spatial navigation, change is 92 

observed in the patterns neuronal of activity and the set of currently active cells. In behaving 93 
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animals, single neurons become more sensitive to task demands during training and change their 94 

firing properties to more precisely encode task demands (Kobayashi et al. 2003; Komorowski et 95 

al. 2009; Lever et al. 2002). Hippocampal memory representations are also unstable even during 96 

over-trained behaviors, exhibiting a decorrelation in ensemble activity relative to the elapsed 97 

time between recordings (Mankin et al. 2015; Mankin et al., 2012; Rubin et al. 2015; Ziv et al., 98 

2013). These decorrelations result both from remapping of firing locations exhibited by 99 

continuously active single neurons that is unrelated to changes in behavior (Mehta et al. 2000; 100 

Poe et al. 2000; Lee et al. 2006; Law et al. 2016), and from population dynamics that include the 101 

continual inactivation of active cells and their replacement by previously silent cells (Mau et al., 102 

2018; Ziv et al., 2013). However, these changes have primarily been observed during learning or 103 

during performance of foraging tasks. How changes occur during stable performance of a multi-104 

dimensional memory task remains an open question. Previous studies have linked the long term 105 

stability of a neuronal activity to different spatial locations and different task behaviors (Kentros, 106 

et al., 2004; Kinsky et al., 2019; Taxidis et al., 2018). We sought to expand on these studies by 107 

examining how different demands on long term memory influence the evolution of hippocampal 108 

memory representations during a task where mice pass through the same spatial location under 109 

multiple different task conditions.  110 

To study the reorganization of hippocampal representations over time, we used in vivo 111 

calcium imaging to monitor the activity of hundreds of neurons across multiple sessions in mice 112 

performing a Delayed Non-Match to Place task on a figure-eight maze. We first confirmed that 113 

neurons modulate their activity on the central stem according to the animal’s upcoming turn 114 

direction and the current task phase (Griffin et al., 2007; Wood et al., 2000). We show that the 115 

distribution of these single unit responses among the active population changes over time, 116 
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resulting in an increased number of turn direction-modulated neurons and a decrease in the 117 

number of neurons modulated by both the current task phase and upcoming turn direction. These 118 

changes primarily result from the unequal recruitment of previously inactive cells to different 119 

neuron coding types. While the distribution of single unit activity was unstable, population 120 

analyses revealed a stable separation of task variables in the collective ensemble at extended lags 121 

between recordings. These results demonstrate that behavior and population output can remain 122 

stable while single neuron responses are unevenly reorganized.  123 

 124 

Methods 125 

Surgical Procedures 126 

 4 male, naïve mice (C57BL6, Jackson Laboratory) underwent two stereotaxic surgeries to 127 

prepare for calcium imaging. All procedures presented here were approved by the Institutional 128 

Animal Care and Use Committee (IACUC) at Boston University. Mice were given 0.05mL/kg 129 

buprenorphine as a pre-surgical analgesic, and were anesthetized with ~1% isofluorane delivered 130 

with oxygen. The first surgery was to infuse virus to express GCaMP6f. A small craniotomy was 131 

made above the dorsal hippocampus at AP -2.0mm, ML +1.5mm relative to bregma, and the 132 

infusion needle was lowered at this site to DV -1.5mm. 350 nL of the viral vector AAV9-Stn-133 

GCaMP6f (University of Pennsylvania Vector Core, obtained at a titer of ~4x10e13GC/mL and 134 

diluted it to ~5-6x10e12GC/mL with 0.05M phosphate buffered saline) was infused at 40nL/min 135 

and allowed to diffuse for 15 minutes before the infusion needle was slowly removed.  136 

The second surgery, to implant a gradient-index (GRIN) lens for imaging, was performed 137 

three weeks later to allow for viral infection and GCaMP6f expression. A 2mm diameter circular 138 

craniotomy was made at AP-2.25mm, ML +1.8mm, and the neocortex was aspirated until 139 

rostral-caudal fiber tracts of the alveus were visible. Near-freezing 0.9% saline solution and 140 
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GelFoam (Pfizer) were used continuously to control bleeding and to dry the base of the 141 

craniotomy prior to lens implantation. The GRIN lens (1mm diameter, 4mm length, Inscopix) 142 

was slowly lowered stereotaxically to 200 um dorsal to the infusion site of the virus, measured 143 

relative to the skull surface. The lens was then fixed in place using a non-bioreactive silicone 144 

polymer (Kwik-Sil, World Precision Instruments) to entirely cover the craniotomy, which was 145 

then covered with Metabond dental cement (Parkell) to anchor the lens to the skull. The lens was 146 

covered with a temporary cap made from Kwik-Cast (World Precision Instruments) until the 147 

baseplate was attached.  148 

After allowing a week of recovery from the lens implantation surgery, mice were again 149 

anesthetized and placed in the stereotaxic holder. The baseplate was magnetically attached to the 150 

imaging microscope camera, which was then aligned parallel to the GRIN lens by adjusting until 151 

the edge of the lens was entirely in focus in the nVista recording software (Inscopix). The 152 

camera with baseplate was then lowered until GCaMP6f-expressing cells were optimally in 153 

focus, and then raised by 50 um to allow for shrinkage of the dental cement used to affix the 154 

baseplate. The baseplate was then fixed in place to the existing metabond around the GRIN lens 155 

with Flow-It ALC Flowable Composite (Pentron), and cured with ultraviolet light. Gaps in the 156 

dental cement were filled in with Metabond, the camera was removed, and a cover attached to 157 

the baseplate.    158 

 159 

Maze Description 160 

 The maze was constructed from wood and the internal floor area measured 64.5 cm long 161 

by 29.2 cm wide, and walls were 17.75 cm high. Middle maze walls separated this area into a 162 

central hallway (Center Stem) and left and right Return Arms. Each hallway was 7.5 cm wide. 163 

This resulted in low variability of the animals’ left/right position within a hallway, although it 164 
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 7 

did not prevent the animals from occasionally running with their head turned towards one side. 165 

Rewards were delivered through ports at the maze walls at floor level of the side arms 12 cm 166 

from the delay-end of the maze. To dictate turn direction on Study Trials (see below) and to 167 

contain the mouse during the delay period, arm barriers were used that were made of transparent 168 

plastic. The delay barrier was made of wood. In this manuscript we only consider data from the 169 

central stem and return arms.  170 

For analysis of the central stem, we chose a region starting ~8 cm in front of the delay 171 

barrier and extending 30cm to end ~5 cm before the choice region at the end of the middle maze 172 

walls; this region was selected to encompass the region where the mouse was running similarly 173 

between study and test task phases and left and right turn directions. Left and right variability in 174 

the animals’ head position at the end of this region was less than 2.5 times the standard deviation 175 

of the animals’ left/right variability for the first half of the stem, and was usually 176 

indistinguishable by visual observation in behavioral recordings. We divided this 30cm long 177 

region into 8 spatial bins each 3.75 cm in length. For the return arms (Supplement), we chose a 178 

region of equal length that started after the animals had fully entered the return arms and ended 179 

before they reached the reward zone, also 30cm in length and separated into 8 bins each 3.75 cm. 180 

 181 

Behavior pre-training and recording sequence 182 

Mice were trained to run on a Delayed Non-Match to Place (DNMP) task shown in 183 

Figure 1. This involved extensive pre-training in order to obtain performance at the criterion of 184 

70% correct.  185 

After fully recovering from surgeries, mice were extensively handled for ~15 min/day for 186 

5 days. They were simultaneously food restricted to 80% of free feeding body weight, and 187 

acclimated to consuming chocolate sprinkles. Over the next two weeks, mice were given time to 188 
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explore the maze, and were slowly shaped to run in a single direction through the maze and to 189 

receive reward, with inserted walls to block paths and guide them. In the last few days of pre-190 

training, mice were guided with blocking walls to alternate between the two reward arms and 191 

given experience with continuous and delayed alternation.  192 

 Mice were recorded performing two tasks. In the Delayed Non-Match to Place (DNMP) 193 

task (Griffin et al., 2007), mice alternated between Study and Test trials. On Study trials, mice 194 

were placed in the center stem in front of the delay barrier, ran to the choice point, where a 195 

removable barrier forced them to take a path down one return arm where they received a reward 196 

of one chocolate sprinkle. They then moved to the delay area, waited through a 20-second delay, 197 

and the delay barrier was lifted to start the Test trial. On a test trial, mice again ran to the choice 198 

point but there was no barrier and mice had to go down the return arm opposite to the preceding 199 

study trial in order to receive a reward. They then moved to the delay area, from which they were 200 

removed to their home cage to wait through a 15-25 second inter-trial interval while the next 201 

Study trial was prepared. Mice completed between 25 and 40 Study-Test trial pairs per session.  202 

A second task, termed the Forced-Free task, was used on other days for a different study 203 

question not addressed here. On each trial in the Forced-Free task, mice were placed in front of 204 

the delay barrier, proceeded to the choice point and were either forced down a particular return 205 

arm or were free to choose which arm. On all trials mice received a reward regardless of which 206 

arm they entered. After consuming the reward, mice entered the delay area and were 207 

immediately returned to their home cage for a 15-25 second inter-trial interval while the next 208 

trial was prepared. Mice typically completed 40 trials per session. Forced and free trials were 209 

pseudo-randomly interleaved, as was turn direction on forced trials.  210 
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 9 

 The full recording sequence was two rounds of the following sequence: one day of 211 

Forced-Free, 3 days of DNMP, and one day of Forced-Free.  This was followed by a sequence 212 

with one day of Forced-Free followed by 5 days of DNMP, followed by one day of Forced-Free. 213 

Gaps between Forced-Free-DNMP recording sequences ranged between 0 and 2 days (Full 214 

sequence: FF-D-D-D-FF, break, FF-D-D-D-FF, break, FF-D-D-D-D-D-FF). Data from the 215 

Forced-Free task are not presented here. 216 

We only include data from DNMP recordings where cell registration could be reasonably 217 

performed and where the animal’s performance was ≥70%. 218 

 219 

Imaging 220 

 Imaging data were acquired using a commercially available miniaturized head-mounted 221 

epifluorescence microscope (Inscopix). Microscopes were attached on awake, restrained mice, 222 

and optical focus, LED gain and intensity adjusted for each individual mouse but kept stable 223 

across days. Videos were captured at 20 Hz with a resolution of 1440 x 1080 pixels, spatially 224 

downsampled 2x to 720 x 540 pixels. Dropped and corrupted frames were replaced with the 225 

preceding good frame, and lost frames were excluded from analysis. Mosaic (Inscopix) was used 226 

to pre-process recordings for motion correction and cropping (exclude pixels without GCaMP6f 227 

activity), and to generate a minimum projection of the final video (image which has the same 228 

height and width of each frame and each pixel is the minimum of that pixel for the entire video) 229 

to be used during ROI extraction.  230 

 To extract neuron regions of interest (ROIs) and calcium event times, pre-processed 231 

videos were then passed through custom-made MATLAB-based image segmentation software 232 

(Mau et al., 2018; Kinsky et al., 2018) (TENASPIS, software available at https://github. 233 

com/SharpWave/TENASPIS; see D.W. Sullivan et al., 2017, Soc. Neurosci., abstract). Briefly, 234 
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TENASPIS applies an adaptive thresholding process on a frame-by-frame basis to a band-pass 235 

filtered video to identify discrete regions of fluorescent activity (blobs). Blobs are then identified 236 

as likely cells based on expected shape and size, and the software aligns these blobs together 237 

over successive frames. Dynamics in calcium activity, including event duration, distance traveled 238 

over successive frames, and probable spatial origin, are used to identify putative neuron ROIs. 239 

Fluorescence of neuron ROIs is refined into events based on the rising phase of calcium activity. 240 

Finally, neuron ROIs with significant spatial overlap and high correlations in calcium activity are 241 

merged into single cells.  242 

 Cells were registered across sessions using a semi-automated procedure with custom 243 

software developed in MATLAB that is available along with the rest of our analysis code. For 244 

each animal, each session was first aligned to the same ‘base’ session, selected from the middle 245 

of the recording schedule. To align sessions, a set of 25-40 ‘Anchor’ cells was chosen based on 246 

the relative positions of neuron ROIs in the base session and each other session (Supplementary 247 

Figure 1a-b). Centers of these ‘anchor’ cells were used to compute an affine geometric 248 

transformation (‘fitgeotrans’ function in MATLAB) and then align the entire set of ROIs in the 249 

sessions being registered with the base session (‘transformpointsforward’ function in 250 

MATLAB). Cells with centers within 3um (translated to pixels) were identified as the same cell, 251 

and when there was more than one match within that radius, the registered cell with the higher 252 

spatial correlation to the base cell was chosen (Supplementary Figure 1c). Cells from a 253 

registered session that were not partnered to the base session were added to the set of unique 254 

footprints alongside base session cells so that cells in successively registered sessions could be 255 

paired to them in turn. Alignment maps were validated by visual inspection: this included 256 

looking at the relative alignment with other cells in the field of view, and orientation of 257 
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putatively mapped cells across sessions. Cells that were not aligned by the automated procedure 258 

based on center-to-center distance but that shared orientation and relative alignment to 259 

neighboring cells were registered manually (Supplementary Figure 1e, green cell). When 260 

looking at the relationship for all cell pairs across all sessions, the correlation of ROIs and 261 

distances between centers formed a cluster near the top of the distribution for all cell pairs 262 

(Supplementary Figure 1d). The TENASPIS algorithm is designed to discriminate between 263 

partially overlapping cells, which gives rise to in many pairs of cells that have high ROI 264 

correlations and low center-to-center distances, but remain unregistered because a better matched 265 

pair was found using the procedures above; in Supplementary Figure 1d, this manifests in the 266 

black points mixed in among the red registered cell pairs.  267 

 268 

Behavioral Tracking 269 

 Animal position was recorded using an overhead video camera and CinePlex V2 tracking 270 

software (Plexon). Tracking was performed at 30 Hz, and was synchronized with a TTL pulse to 271 

the imaging data acquisition through nVista software. Tracking was validated manually and 272 

errors were corrected using custom software written in MATLAB. Position was then interpolated 273 

to the 20 Hz imaging time stamps.  274 

 275 

Histology 276 

Mice were perfused transcardially with 10% phosphate buffered saline until outflow ran 277 

clear and then with 10% phosphate buffered formalin. Brains were then extracted and post-fixed 278 

in formalin for 2-4 days, and then transferred to 30% sucrose solution in phosphate buffered 279 

saline for 1-2 days. Brains were then frozen and sliced into 40 um sections on a cryostat (Leica 280 

CM 3050S), mounted, and coverslipped with Vectashield Hardset mounting medium with DAPI 281 
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(Vector Laboratories). Slides were then imaged using a Nikon Eclipse Ni-E epifluorescence 282 

microscope at 10x and 20x to verify viral expression and location and GRIN lens location 283 

relative to the CA1 cell layer.  284 

 285 

Quantification and Statistical Analysis 286 

Event likelihood  287 

 Calcium events were detected and analyzed to compute the likelihood of calcium events 288 

occurring at a given location. The analysis software, TENASPIS, (see above) defines an event as 289 

the time during the rising phase of a spike in calcium fluorescence in a cell which exceeds a local 290 

threshold of that cell’s session average of fluorescence activity. This returns a binary output for 291 

each cell which describes whether that cell was or was not, at every imaging frame, exhibiting a 292 

calcium event. We calculated event likelihood by pooling data from the set of trials of interest 293 

for each cell (e.g., Study trials on the stem), and then, for each spatial bin, dividing the number of 294 

frames for which an event was occurring by the number of frames when the mouse was in that 295 

bin in that set of trials. This produces an output between 0 (an event never occurred in that 296 

spatial bin) and 1 (an event always occurred when the mouse was in that spatial bin).  297 

 298 

Active Cells 299 

 For single unit analyses, cells are included on a given day when they exhibited a calcium 300 

event on at least 25% of trials or 3 consecutive trials in a single trial type (e.g. Study-Left). In the 301 

population analyses, we included all cells were successfully registered to the sessions being 302 

compared. 303 

 304 

Splitter Identification  305 
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 13 

  Splitter neurons are cells that exhibit a significant bias in their firing activity on the 306 

central stem for trials of a particular upcoming turn direction (Left versus Right) or task phase 307 

(Study versus Test) (Figure 2). Thus, each cell is a member of one of four mutually exclusive 308 

categories, depending on whether its calcium activity is modulated by either task dimension, 309 

both, or neither: turn splitter neuron, task phase splitter neuron, turn*phase splitter neuron, or 310 

non-splitter. Note that turn*phase splitter neurons refer to cells splitting both turn direction and 311 

task phase.  312 

To identify whether each cell’s activity was significantly modulated by task variables, we 313 

used a permutation test to measure the significance of the difference in event activity likelihood 314 

against a shuffled distribution. This was repeated separately to measure activity bias for turn 315 

direction or task phase. We first separated epochs when the mouse ran through the central stem 316 

according to the given task dimension (i.e. left and right turn trials, or study and test trials), and 317 

computed the event likelihood (see above) for these sets of trials. Then took the difference in 318 

likelihood scores by subtracting the Right trial event likelihood in each spatial bin from that for 319 

Left trials, or Test trial from Study. We then repeated this for all 1000 sets of shuffled trials, 320 

which were generated by shuffling the trials between trial types accordingly, to get a shuffled 321 

difference distribution. Cells were determined to “split” the dimension of interest if their original 322 

event likelihood difference was greater than 95% of the shuffle differences in any spatial bin.  323 

 In the supplemental data, this procedure was repeated in the same fashion for epochs 324 

when the mouse ran down the return arms to measure selectivity for the separate (Right or Left) 325 

return arms and for Study and Test task phases while on the return arms.   326 

 327 

Population Vector Correlations  328 
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Population vector correlations were computed in a manner similar to that described by 329 

Leutgeb et al. (2005)(Figure 3a). We generated three sets of correlations: 1) within-condition: 330 

trials of the same type (e.g. Study-Left vs. Study-Left); 2) Left vs Right, and 3) Study vs. Test. 331 

First, trials were grouped for the comparison of interest and then each group was split so that 332 

within condition comparisons would have the same number of trials as the other two 333 

correlations. For a given half-set of trials, we computed the event likelihood in each spatial bin 334 

with the method described above. We then took these spatial bin event likelihoods for the set of 335 

cells included and computed a Spearman correlation for each spatial bin against the event 336 

likelihoods in the same spatial bin for the trials in the different comparisons listed above. For 337 

correlations computed across days, we computed all day-pair combinations for each self-338 

comparison and for each comparison between study and test trials and between left and right turn 339 

trials, for example between left turn trials on day 1 and right turn trials on day 4. Cells included 340 

were those present (successfully registered) on both days for each comparison (Similar results 341 

were achieved using several other cell inclusion criteria, data not shown). 342 

 343 

Statistics 344 

 All statistical tests were done with Spearman rank correlations, Wilcoxon Rank-sum tests 345 

(Mann-Whitney U tests), Wilcoxon signed-rank tests, sign tests, or permutation tests with 346 

threshold set at >95% of shuffles for the given test. These tests were used because data were 347 

often not normally distributed. 348 

 349 
 350 
 351 
 352 
 353 
 354 
 355 
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Results 356 

Heterogeneous changes in daily distribution of single-cell task-related responses 357 

We recorded calcium activity in neurons in dorsal area CA1 as mice performed a delayed 358 

non-match to place (DNMP) task over several days. In the DNMP task, mice first run a study 359 

trial where they are forced to turn into one side arm to receive reward. After a 20-second delay, 360 

mice must choose to go down the opposite arm to receive a reward (Figure 1a). We used this 361 

task because mice traverse the same section of the maze (the central stem) under each 362 

combination of Task Phase and upcoming Turn Direction. This allows us to examine 363 

hippocampal representations of the same space under four different behavioral conditions: 364 

Study-Left, Study-Right, Test-Left, Test-Right. We recorded 8256 cells in four male mice across 365 

38 sessions with a behavioral performance (opposite turn direction on Test trials relative to 366 

preceding Study trial) minimum of 70% (9 days in 3 mice, 11 days in 1) (Figure 1b), spanning 367 

up to 17 calendar days. Performance did not change over the experiment (only days above 368 

threshold: rho=-0.031, p=0.852; all days recorded: rho=0.198, p=0.210; Spearman rank 369 

correlation). We recorded activity using the virally-delivered fluorescent calcium indicator 370 

GCaMP6f and head-mounted miniature microscopes (Figure 1c), and extracted cell ROIs using 371 

custom software (example ROIs in Figure 1d-e, bottom; see Methods) (Kinsky et al., 2018; Mau 372 

et al., 2018). On average, each cell was successfully registered for 3.45 sessions, and cells often 373 

displayed stable activity profiles across sessions (Figure 1d-e, top).    374 

Single cells often modulate their spatial firing activity according to context-dependent 375 

task dimensions such as upcoming turn direction or current task phase. Turn direction responses 376 

are thought to represent specific spatial trajectories (Frank et al. 2000; Wood et al. 2000; 377 

Ferbinteanu and Shapiro 2003), while a task phase-modulated response profile reflects the 378 
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(presumably) different network activity states for encoding during the study phase and retrieval 379 

during the test phase (Griffin et al. 2007). We assessed whether these task variables were 380 

encoded in the calcium activity of neurons in our recordings using a permutation test (see 381 

Methods) and found that ~90% of cells active on the central stem (3443/3810 active on any 382 

recording day) displayed a functional phenotype described by a modulation of their calcium 383 

activity according to the animal’s upcoming turn direction (turn splitter neurons), the current task 384 

phase (phase splitter neurons), or both (turn*phase splitter neurons) (see examples in Figure 2a); 385 

these categories are mutually exclusive. Note that we found many cells which display a turn 386 

direction-modulated response on Study trials, indicating that mice could likely see the turn 387 

barrier before having reached it. 388 

On the center stem, there was no difference in the proportions of turn or phase splitter 389 

neurons (18.96±1.22% and 19.19±1.20%, respectively, z=0.016, p=0.987, Wilcoxon signed-rank 390 

test), but there were more turn*phase splitter neurons than either group (51.44±1.93%, both 391 

z=5.286, p=1.250e-07) (Figure 2b). We also observed a location bias among different splitting 392 

phenotypes of single cells: phase splitter neurons were more likely to have their activity center of 393 

mass (event activity pooled across all trial types) closer to the start of the stem than did turn 394 

splitter neurons (p=6.719e-30, Mann-Whitney U test) (Figure 2c). A bias in firing location may 395 

indicate that cells tend to fire in proximity to the behaviors they encode: for phase splitters, this 396 

could be whether the trial began in the delay area or being placed on the maze by the 397 

experimenter, while turn splitters encode an upcoming spatial turn direction.  398 

The daily distribution of splitter types was not stable: the percentage of turn*phase 399 

splitters significantly declined over the course of the experiment (rho=-0.35774, p=0.027, 400 

Spearman rank correlation), though it remained greater than other splitter types. Meanwhile, the 401 
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percentage of phase splitter neurons was stable (rho=0.084, p=0.616) and the percentage of turn 402 

splitter neurons went up (rho=0.347, p=0.033) (Figure 2d). The percentage of non-splitters 403 

displayed a small but statistically significant increase over the course of the experiment 404 

(rho=0.331, p=0.043) (Figure 2d). The proportions of each type of splitter neuron were not 405 

correlated with animals’ performance on the DNMP task (all rho absolute value <0.217, all 406 

p>0.190) (Supplementary Figure 2). These findings replicate a previous result in a new species 407 

(Griffin et al. 2007) and extend that work to show that the distribution of task-dimension 408 

modulated responses among neurons is unstable over time, even though behavioral output is 409 

reliable. In particular, the number of turn splitter neurons increases over time, whereas the 410 

number of turn*phase splitter neurons decreases over time, suggesting representations become 411 

less experience-specific over time.  412 

We applied these same analyses to determine neuronal activity modulation according to 413 

task variables to neuronal activity during the return arm epochs. Because this analysis is 414 

performed in the same way, it can be used to indicate relative distinctiveness in the way neurons 415 

code for overlapping spatial trajectories (central stem) as opposed to unique spatial locations 416 

(return arms). Many cells displayed a calcium event bias for one arm over the other (place cells, 417 

referred to here as “place splitters”), and many cells also showed selectivity for one task phase. 418 

The proportions of place and phase splitter neurons on the return arms did not individually 419 

change over time, though there was an increase in the number of cells which were active on the 420 

return arms but did not show place or task phase selectivity (Supplementary Figure 3). These 421 

results show that changes in the representation of the task and environment are modulated by 422 

memory load, which is low on the return arms and high in the central stem.  423 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/843037doi: bioRxiv preprint 

https://doi.org/10.1101/843037
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

In summary, by demonstrating that the distribution of task variable responses among 424 

single units is unstable, we show that representations for various task dimensions experienced in 425 

the same spatial location and during a similar behavior are heterogeneously stable, with 426 

divergent changes based on their coding of the behavioral context.  427 

 428 

Population-level separation of task dimensions is stable over experience 429 

We next asked how these patterns of activity manifested in the activity state of CA1 as a 430 

whole. This population analysis was designed to measure the similarity in the pattern of activity 431 

among the population of neurons within and across recording sessions. We computed Spearman 432 

correlations for the activity in each spatial bin from the start of the stem to the choice point for a 433 

given trial type using the calcium event likelihood for each trial type of all cells present in the 434 

session pair (Figure 3a)(see Methods). We generated three sets of correlations: 1) trials of the 435 

same turn direction and task phase (within-condition; e.g. Study-Left vs. Study-Left), 2) trials of 436 

different turn directions (Left vs. Right, abbreviated as LvR), and 3) trials of different task 437 

phases (Study vs. Test, abbreviated as SvT). 438 

We found a stable ensemble activity pattern when examining the population vector 439 

correlations for trials occurring on the same day. Activity states for trials of the same type were 440 

significantly more correlated than those both for trials of different direction and trials of different 441 

task phase, showing a discrimination in the ensemble-level code for different trial types (see 442 

Supplementary data table 2 for detailed statistics) As shown in Figure 3b, the correlations 443 

between trials of the same type did not change across spatial bins (rho=0.045, p=0.116; 444 

Spearman rank correlation). In contrast, activity states for left and right trials grew more 445 

decorrelated as animals approached the choice point (rho=-0.678, p=4.946e-83), and study and 446 
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test trials were most discriminable at the start of the stem (rho=0.332, p=4.418e-17). The 447 

correlation change along the stem follows the center-of-mass distribution for splitter cell firing 448 

fields (Figure 2c). This pattern of correlations across spatial bins was stable over the course of 449 

recordings (all rho absolute value < 0.313, all p > 0.056; Spearman rank correlation of 2-bin 450 

mean for each type of population vector correlation value against recording day number) 451 

(Examples for bins 1-2 and 7-8 in Figure 3c-d). This result demonstrates that, in spite of the 452 

changing distribution of single-neuron encoding properties (Figure 1d), the population-level 453 

distinction between activity states (Figure 3b) and its relationship to spatial position is stable 454 

over time (Figure 3c-d). 455 

We next assessed the correlations within and between trial types for trials on different 456 

days. It may be expected that population activity states would diverge with respect to time (i.e., 457 

become less correlated) due to cell replacement and changes in the splitter neuron distribution 458 

(Figure 2). To assess this, we examined the mean population vector correlations at the beginning 459 

and end of the stem between sessions recorded 1 to 16 days apart. We observed that all three 460 

types of correlations significantly decreased with increasing day lag at both ends of the stem, 461 

(Figure 3e-f). However, even as correlations decreased, LvR and SvT correlations were 462 

significantly lower than those between trials of the same type for at least a week between 463 

sessions and in many cases longer (see detailed statistics in Supplementary Data Table 3,4). 464 

These results show that constant cell turnover minimally impacts the ability of the population to 465 

represent different experiences of the same space over many days of recording and that this 466 

representational structure is preserved over time. However, the extent to which the population 467 

distinguishes between task dimensions depends on the dimensions being compared, the animals’ 468 

physical location, and the temporal lag between experiences.     469 

 470 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/843037doi: bioRxiv preprint 

https://doi.org/10.1101/843037
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Evolution of single-unit to responses is attributable to changing distribution of new cell 471 

activity types 472 

We next assessed the origin of the changes in the distribution of splitter neuron types 473 

over time. There are several possible sources of change in the splitter neuron distribution: 474 

different splitter neuron types could be persistently active for different amounts of time before 475 

becoming silent (variable stability); neurons could change their splitter type (splitter type 476 

transition); or previously silent neurons could be preferentially allocated to certain splitter types 477 

(unequal allocation of newly active cells). We found no evidence of variable stability: cells were 478 

equally likely to stay active in later recording days regardless of splitting type (all p>0.05, 479 

Wilcoxon rank-sum test between each pair of splitting phenotypes at each day lag) (Figure 4a). 480 

We next tracked the history of all cells to determine the origin or “source” of each splitter 481 

neuron in the preceding session. For each splitter neuron from the second included session 482 

onwards, we tracked whether that cell was a splitter neuron of any type in the preceding session 483 

or was inactive (neurons below the activity threshold or undetected by our ROI extraction 484 

algorithm). We found that previously inactive cells were the largest source category to all types 485 

of splitter neurons in 85.39% of recording sessions, and contributed an average of 55.37% of 486 

splitter neurons per session (Figure 4b). Turn*phase splitter neurons were the second largest 487 

category contributor to splitter neurons of all types, contributing on average 22.83% of all splitter 488 

neurons. In addition to showing the immediate integration of newly active cells into the coding 489 

population, this result suggests that representation of task variables in single units becomes less 490 

specific over time, where each cell becomes less likely to encode both task phase and turn 491 

direction. 492 
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The above result on splitter neuron sources suggests that changes in the distribution of 493 

single unit responses are, to a large degree, driven by the splitting type a newly active neuron 494 

assumes rather than transitions between different splitting types. Indeed, the proportion of splitter 495 

types of newly active cells closely matched the distribution of splitter types overall: new cells 496 

were more likely to become turn*phase splitter neurons rather than turn-only or phase-only 497 

splitter neurons (Turn*Phase vs. Turn: z=4.898, p=9.665e-07; Turn*Phase vs. Phase: z=4.804, 498 

p=1.554e-06; Wilcoxon signed-rank test) (Figure 4c). Additionally, the changes in this 499 

distribution of newly active cells over the course of recordings closely matched those observed 500 

for all splitter neurons (Figure 2d): while newly active cells on all days were more likely to be 501 

turn*phase splitter neurons than other types, this likelihood significantly decreased over time 502 

(rho=0.419, p=0.014) and the proportion of new cells allocated to turn splitter neurons on the 503 

stem significantly increased (rho=0.373, p=0.030; Spearman rank correlation), while those for 504 

phase splitter neurons and non-splitters were stable (rho=0.209, p=0.237 and rho=0.203, p=0.249 505 

respectively) (Figure 4d).  506 

Splitter and place neurons on the return arms were also found to be equally stable and 507 

primarily derived from newly active cells, but the distribution of cells newly active on the return 508 

arms among splitter types did not change over time, again suggesting the redistribution of splitter 509 

neurons is related to memory load (Supplementary Figure 4).  510 

These results show that the changing distribution of single unit responses is primarily 511 

attributable to changes in the allocation of new cells to encode task variables, rather than unequal 512 

stability of different splitter types.  513 

 514 
Discussion  515 
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We recorded cells in dorsal CA1 of the hippocampus in mice performing a Delayed Non-516 

Match to Place task over several sessions. In tracking the same populations of cells, we found 517 

that there was heterogeneity in the stability of task-related representations. Many single cells 518 

exhibited context-dependent modulation in their calcium activity while the animal was in the 519 

same spatial location, replicating earlier findings that demonstrate that hippocampal place cells 520 

encode the behavioral context in addition to spatial position (Griffin et al., 2007). We found that 521 

the distribution of context-dependent responses among neurons was not stable over the course of 522 

recordings: the proportion of task phase splitter neurons was stable, the proportion of turn 523 

direction splitter neurons increased, and the proportion of turn*phase splitter neurons decreased. 524 

We found this change was not attributable to variable stability of each splitter phenotype, but 525 

instead appeared to be due to how newly active cells were allocated to different splitter types. In 526 

spite of cell turnover and changes in the representation of task features among single neurons, 527 

ensemble-level population representations for different trial types were stably segregated over 528 

many recording sessions. These data demonstrate that the hippocampal representation of ongoing 529 

experience can undergo reorganization at the single neuron level while minimally impacting 530 

population level coding. 531 

Representations may change in different ways over time during stable behavior based on 532 

competing demands on memory reorganization. Generalization emphasizes the similarities 533 

across experiences to aid in the transfer of learning across contexts, while orthogonalization 534 

makes representations more distinct to mitigate interference between contexts. Both mechanisms 535 

are important for spatial navigation and episodic memory (Hasselmo & Wyble, 1997; Kumaran 536 

& McClelland, 2012; McNaughton & Morris, 1987; Norman & O’Reilly, 2003; Schapiro, Turk-537 

Browne, Botvinick, & Norman, 2017; Treves & Rolls, 1994; Winocur, Moscovitch, & 538 
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Bontempi, 2010), and both processes are observed in fMRI studies using behavioral tasks with 539 

multiple demands (Brown and Stern 2014; Chanales et al. 2017). However, the interplay of 540 

generalization and orthogonalization in the long term reorganization of memory has not been 541 

previously studied at the single neuron level in a dynamically evolving neural circuit. 542 

Representations of different trial types may become more orthogonalized and distinct, following 543 

the precedent set by many studies on learning (Komorowski et al. 2009; McKenzie et al. 2013; 544 

Chanales et al. 2017). Alternatively, representations could become more schematic through 545 

generalization as the animals become over-trained on the task, perhaps preserving only those 546 

distinctions relevant to performing the task. At the single neuron level, we observed a result 547 

consistent with the generalization hypothesis: a decreasing number of turn*phase splitter neurons 548 

(which encode a single experience: a route to a single destination during a single task phase) and 549 

an increasing number of turn splitter neurons (which encode multiple experiences: routes to the 550 

same destination during multiple task phases). But at the population level, we instead observed a 551 

highly stable representational structure. 552 

Studies which report orthogonalizing change in hippocampal coding properties typically 553 

examine an initial learning phase, comparing data from before and after a subject reaches a 554 

performance criterion, often in a single session (Kobayashi et al. 2003; Komorowski, et al. 2009; 555 

McKenzie et al. 2013). Because our recordings began after animals had received considerable 556 

experience with the maze environment during the pre-training phase, we may have captured a set 557 

of operational demands unlike initial learning. To reconcile our finding of generalization with 558 

previous reports of orthogonalization, we propose that both mechanisms act on the organization 559 

of memory but at different timescales: orthogonalization dominates an early, fast encoding 560 

process which emphasizes the uniqueness of current experiences, while generalization acts as a 561 
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slower refinement of existing memory representations by finding statistical regularities; both of 562 

these processes likely involve regions outside the hippocampus (Ghosh & Gilboa, 2013; Koster 563 

et al., 2018; Lewis, Knoblich, & Poe, 2018). This distinction suggests that it is more appropriate 564 

for our work to be framed in terms of long-term mechanisms of memory stability, rather than 565 

those which are relevant to shaping the initial learning and encoding process.  566 

Divergent expectations for short and long-term memory organization are apparent when 567 

comparing our results to a previous report which employed a similar task to ours in which human 568 

participants navigated partially overlapping trajectories in a virtual environment (Chanales et al., 569 

2017). The authors found that the hippocampal voxel activity patterns for overlapping trajectory 570 

segments grew more distinct from each other over the course of learning, while patterns for non-571 

overlapping segments did not change in their representational similarity. Our results parallel this 572 

finding in showing that conflicts between behavioral responses in overlapping locations 573 

(experienced on the central stem in the DNMP task) can drive changes in the neural 574 

representation while representations for non-overlapping segments remain stable (return arms, 575 

Supplementary Figure 3,4). However, unlike Chanales and colleagues, we did not observe a 576 

population-level increase in discriminability of overlapping segments, which could be explained 577 

by the fact that their study was conducted in a single session while ours ran for multiple weeks.  578 

Prior studies have attributed a working memory role to the hippocampus in DNMP and 579 

other alternation tasks. Working memory accounts propose that on short, behaviorally relevant 580 

timescales the hippocampus maintains a representation of the previous trial to inform future 581 

behavior. This interpretation was prompted by findings that hippocampal lesions produce 582 

performance deficits in alternation tasks which involve a delay (Hampson et al. 1999; 583 

Dudchenko et al. 2000) and by correspondence between during delay period neural activity and 584 
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upcoming turn directions (Deadwyler et al. 1996). However, alternation tasks cannot distinguish 585 

between prospective and retrospective coding (see Frank et al. 2000), meaning delay and central 586 

stem activity could represent a previous trial or upcoming trajectory. 587 

We suggest instead that continued involvement of the hippocampus in distinctly 588 

representing overlapping spatial trajectories may be appropriate for self-localization within an 589 

existing spatial memory map (Redish & Touretztky, 1998). It was previously assumed that task 590 

splitter neurons reflected respective encoding and retrieval demands for Study and Test trials 591 

(Griffin et al. 2007); the self-localization interpretation suggests instead that task phase splitters 592 

instead encode immediate history of the stem traversal, whether the current trial began by being 593 

placed in the maze by the experimenter (Study) or being released from the delay area (Test). 594 

Self-localization assumes neither that the animals are sensitive to our conception of the task nor 595 

that encoding and retrieval “modes” be expressed as measurably different patterns of activity in 596 

CA1. The lack of neurons that code exclusively for Task Phase on the return arms 597 

(Supplementary Figure 3), where the trial-start behavioral cue is less salient, is consistent with 598 

this hypothesis. The strictest interpretation of task phase splitting as self-localization suggests it 599 

acts as a code to distinguish slightly different routes to the same reward destination (Grieves et 600 

al. 2016). Task phase splitting (Figure 2) and delay period splitting (Deadwyler et al. 1996) 601 

could together contribute to self-localization within a cognitive map of the task that links longer 602 

sequences of events through the maze, wherein overlapping trajectories begin on the central 603 

stem, pass down one side arm, linger in the delay area, and then pass again through the stem and 604 

onto the other side arm (Hasselmo, 2008). Task phase splitting on the central stem is similar to 605 

many other findings of context-dependent place-cell activity (Ferbinteanu & Shapiro, 2003; 606 

Frank et al., 2000; Hasselmo, 2008; Sun, Yang, Martin, & Tonegawa, 2019). Disambiguating the 607 
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working-memory and self-localization accounts of splitter neuron activity will require designing 608 

tasks that use behavioral and spatial cues that are consistent across distinct but overlapping 609 

behaviors.  610 

Our results here show that the stability of hippocampal representations is heterogeneous, 611 

displaying different rates of change in task-relevant activity across cognitive demands, maze 612 

locations, and levels of analysis. These changes are largely attributable to cells’ changes in the 613 

allocation of newly active cells among task-modulated activity types, as well as individual cells’ 614 

transitioning from coding both task dimensions to just coding for one. Together, the results 615 

suggest that reorganization of memory representations actively reshapes hippocampal memories. 616 

Future studies should seek to clarify the behavioral parameters which predict the rate of cell 617 

replacement, the allocation of newly active cells, and the cellular and network mechanisms 618 

which mediate them. 619 

 620 

Supplementary Data Tables 621 

 z, STEM p, STEM z, ARM p, ARMS 

Turn vs. Phase 0.016379 0.98693 5.3731 7.7397e-08*** 

Turn vs. Conj. 5.2861 1.2497e-07*** 2.9222 0.0034756** 

Phase vs. Conj. 5.2861 1.2497e-07*** 5.3731 7.7397e-08*** 

Conj. vs. Neither 5.3586 8.3874e-08*** 5.3732 7.7337e-08*** 

Turn vs. Neither 4.111 3.9373e-05*** 5.3731 7.7397e-08*** 

Phase vs. Neither 4.5033 6.69e-06*** 0.65823 0.51039 

Table 1: Proportion comparisons splitter neurons, Wilcoxon signed-rank test, on STEM and 622 
ARMS  623 

 624 

Spatial 

Bin: 

VS Self 

vs LvR 

z-value 

VS Self vs 

LvR 

p-value 

VS Self 

vs SvT 

z-value 

VS Self vs SvT 

p-value 

LvR vs SvT 

z-value 

LvR vs SvT 

p-value 

1 8.312 9.44E-17*** 9.653 4.75E-22*** 2.924 0.004*** 

2 9.807 1.05E-22*** 8.855 8.39E-19*** -0.518 0.605 

3 10.782 4.18E-27*** 8.22 2.03E-16*** -3.831 0.0001*** 

4 11.464 2.01E-30*** 7.345 2.06E-13*** -6.137 8.40E-10*** 
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5 11.79 4.41E-32*** 0.612 3.79E-11*** -0.755 8.84E-15*** 

6 11.82 3.10E-32*** 5.941 2.83E-09*** -8.599 8.05E-18*** 

7 12.086 1.26E-33*** 5.108 3.25E-07*** -9.222 2.93E-20*** 

8 12.177 4.11E-34*** 5.164 2.42E-07*** -9.491 2.30E-21*** 

 625 

Table 2: Wilcoxon rank-sum test statistics for comparisons between population vector 626 

correlations in each spatial bin 627 

 628 

Day  

Lag 

Vs Self 

vs LvR 

z 

Values 

Vs Self vs 

LvR p Values 

Vs 

Self vs 

SvT z 

Values 

Vs Self vs SvT p 

Values 

LvR  vs SvT 

z Values 

LvR  vs SvT 

p Values 

1 8.088 6.09E-16*** 7.657 1.90E-14*** -0.187 0.852 

2 6.893 5.48E-12*** 6.062 1.35E-09*** -0.614 0.54 

3 5.527 3.25E-08*** 4.446 8.77E-06*** -1.106 0.269 

4 5.29 1.22E-07*** 4.721 2.35E-06*** -1.467 0.143 

5 5.0951 3.49E-07*** 5.139 2.77E-07*** -0.255 0.799 

6 4.47 7.82E-06*** 4.47 7.82E-06*** -0.125 0.9 

7 5.018 5.23E-07*** 4.283 1.84E-05*** -0.465 0.643 

8 3.715 0.0002*** 3.028 0.003** -0.473 0.637 

9 3.541 0.0004*** 3.575 0.0004*** 0.622 0.5341 

10 3.152 0.002** 3.727 0.0002*** 0.63779 0.524 

11 4.37 1.25E-05*** 2.738 0.006** -1.254 0.21 

12 3.285 0.001*** 1.749 0.08 -1.556 0.12 

13 2.88 0.004** 2.235 0.026* -0.437 0.663 

14 2.67 0.008** 2.203 0.028* -0.302 0.763 

15 2.339 0.019* 1.143 0.253 -0.844 0.399 

16 0.855 0.393 0.479 0.633 -0.5 0.617 

 Table 3: Wilcoxon rank-sum test z and p values comparing each population vector 629 

correlation type across day lags for means of correlations in bins 1 and 2. 630 

 631 

Day  

Lag 

Vs 

Self vs 

LvR z 

Values 

Vs Self vs LvR p 

Values 

Vs 

Self vs 

SvT z 

Values 

Vs Self vs SvT p 

Values 

LvR  vs 

SvT z 

Values 

LvR  vs SvT 

p Values 
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1 12.903 4.35E-38*** 4.072 4.66E-05*** -9.439 3.78E-21*** 

2 10.476 1.11E-25*** 3.037 0.002** -8.697 3.41E-18*** 

3 7.34 2.14E-13*** 2.804 0.005** -5.973 2.33E-09*** 

4 7.416 1.21E-13*** 1.39 0.165 -6.366 1.94E-10*** 

5 8.991 2.46E-19*** 1.846 0.065 -7.198 6.12E-13*** 

6 9.679 3.72E-22*** 2.196 0.028* -7.527 5.19E-14*** 

7 10.237 1.36E-24*** 2.077 0.0378* -7.262 3.83E-13*** 

8 8.245 1.65E-16*** 1.841 0.066 -5.763 8.25E-09*** 

9 8.638 5.71E-18*** 2.59 0.01* -6.263 3.77E-10*** 

10 6.828 8.62E-12*** 2.926 0.003** -5.123 3.02E-07*** 

11 6.675 2.47E-11*** 0.878 0.38 -5.334 9.61E-08*** 

12 6.045 1.49E-09*** 1.294 0.196 -4.937 7.95E-07*** 

13 6.952 3.60E-12*** 1.154 0.248 -4.881 1.06E-06*** 

14 6.074 1.25E-09*** 1.084 0.278 -4.424 9.68E-06*** 

15 5.091 3.57E-07*** 0.489 0.625 -3.761 0.0002*** 

16 3.505 0.0005*** 1.529 0.126 -1.258 0.209 

Table 4: Wilcoxon rank-sum test z and p values comparing each population vector 632 

correlation type across day lags for means of correlations in bins 7 and 8. 633 

 634 

Software and Data availability 635 

Software used in our analysis is freely available on GitHub. TENASPIS is available at 636 

https://github. com/SharpWave/TENASPIS, and all other analysis software is available at 637 

https://github.com/samjlevy/CaImageRelated. Data can be made available from the authors upon 638 

reasonable request. 639 
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Figure 1.      A, Task outline: each trial has a Study and Test Phase, separated by a 20-second delay. Each 
trial is followed by a 15-25s inter-trial interval in the mouse’s home cage, adjacent to the alternation 
maze (not shown). B, Performance of individual mice (separate colors) over all days of recording. Only 
sessions with performance above 70% were included, excluded sessions are marked in red. C, Example 
viral expression and lens placement in dorsal CA1. Green is GCaMP6f-EYFP, blue is DAPI. D, Top: Activity 
maps for one cell (a turn splitter neuron; see Figure 2) over five days of recording. Each plot represents 
the average activity map for one task condition combination, ordered clockwise from top-left: Study-
Left, Study-Right, Test-Right, Test-Left. In each plot, the black trace is the animal’s recorded position, and 
colored dots indicate frames where the cell was active. Dots are colored based on the local event 
likelihood, normalized by local occupancy, where red is the highest event likelihood within that day and 
blue is the lowest. Bottom: Cell ROI masks for that recording day. Cell of interest is colored in green, and 
indicated with red arrow on first day shown. Masks were aligned across days based on relative positions 
of cells and cells were aligned based on the distance between cell centers and correlation of masks (see 
Methods). E, Same as D but for a cell with an activity field on one return arm. 
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Figure 2.      A, Example activity maps for each type of splitter on the central stem. Warmer colors 
indicate higher transient likelihood. B, Proportions of splitter cells out of the total active cell 
population on each day for all animals. Box shows inter-quartile range and middle line shows median. 
Statistic: Wilcoxon signed-rank test. C, Distribution of centers-of-mass of event activity for Turn and 
Phase splitter neurons. Statistic: Mann-Whitney U-test. D, Proportion of splitter neurons in individual 
animals (unique colors) and group regression (black) over the course of the experiment.  Color of box 
indicates cell type as described by y-axis label. Significance calculated with Spearman rank correlation 
between proportion of splitters and recording day number for all included sessions (n=38).  
* p<0.05, ** p<0.01, ***p<0.001 
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Figure 3.    A, Method for making population vector correlations. B, Population vector correlations between trials 

of the same turn direction and task phase (gray), different turn directions (red) and different task phases(blue). 

Correlations in this panel B are generated from trials that occur on the same day. Shaded patch indicates 95% of 

points for the indicated correlation type in that spatial bin, trend line indicates mean. Statistic: Wilcoxon rank-

sum test on all points for these groups. C,D, Mean correlation for pairs of spatial bins over the course of 

recordings. Thin lines indicate individual animals’ correlations, bold lines are best fit regression. Statistic: 

Spearman rank correlation on points from all recording days. E,F, Correlations between trials on separate 

recording days for indicated pairs of spatial bins. See text and supplementary data tables for statistics.  

* p<0.05, ** p<0.01, ***p<0.001 
 

*p<0.05, **p<0.01, ***p<0.001 
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Figure 4.      A, Proportion of cells that are still present at increasing day lags. Statistic: Wilcoxon signed-rank 
test. B, Proportion of each splitter type by what that cell was on the prior day of recording. C, Proportion of 
each splitting phenotype among each recording day’s set of previously inactive cells (from second recording 
day forward). Statistic: Wilcoxon signed-rank test. D, Changes in the distribution of splitting phenotypes 
among previously inactive over the course of recordings. Colored lines are individual animals, black line is 
best fit regression. Color of box indicates cell type as described by y-axis label. Statistic is indicated at right 
(Permutation test).  
* p<0.05, ** p<0.01, ***p<0.001 
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Supplementary Figure 1.      A,B Cell ROI outlines for the base session (A) and one registered session (B) for 
one mouse. Green filled-in cells are manually selected “anchor cells” used to compute the affine 
transformation for alignment. C, Overlaid base session in red and registered session in blue, same as A,B. 
“Anchor cells” filled in green, and other registered cells are filled in purple. D, Scatter plot showing 
relationship between ROI correlation and center-to-center distance for every pair of cells in each base-
registered session pair. Registered cells are marked in red. Green dashed line indicates 3 um threshold used 
during registration. X-axis is log-scaled. E, Enlarged section of a registered session from a different mouse 
from A-C illustrating a manually registered cell (filled in green). This cell was skipped by the algorithm 
because the centers in the base and registered sessions were further apart than the 3um threshold 
(3.316um, ROI correlation 0.757). This cell was added manually based on its relative alignment to other cells 
successfully registered and the similarity of ROI outlines.  
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Supplementary Figure 2.      Correlation between proportions of splitter cells out of total active cells with 
animal’s performance in that session. Dot color refers to each mouse, each point is a single session. Black 
line is best fit linear regression. Box color indicates splitter type detailed in y-axis. Significance is calculated 
with a spearman rank correlation between the proportion of splitter cells and session accuracy.  
Turn rho=-0.210, p=0.206. Phase rho=0.217, p=0.190. Turn*Phase rho=-0.030, p=0.857. Non-splitter rho=-
0.136, p=0.417. 
* p<0.05, ** p<0.01, ***p<0.001 
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Supplementary Figure 3.      A, Example activity maps for each type of splitter on the return arms. Warmer 
colors indicate higher transient likelihood. B, Proportions of splitter cells out of the total active cell 
population on each day for all animals. Box shows inter-quartile range and middle line shows median. 
Statistic: Wilcoxon signed-rank test. C, Distribution of centers-of-mass of event activity for Turn and Phase 
splitter neurons. Statistic: Mann-Whitney U-test. D, Proportion of splitter neurons in individual animals 
(unique colors) and group regression (black) over the course of the experiment.  Significance indicates 
between all included recording sessions (n=38). Statistic: Spearman rank correlation (Proportion of splitters 
by recording day number).  
*p<0.05, **p<0.01, ***p<0.001 
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Supplementary Figure 4.      A, Proportion of cells that are still present at increasing day lags. Statistic: 
Wilcoxon signed-rank test. B, Proportion of each splitter type by what that cell was on the prior day of 
recording. C, Proportion of each splitting phenotype among each recording day’s set of previously inactive 
cells (from second recording day forward). Statistic: Wilcoxon signed-rank test. D, Changes in the 
distribution of splitting phenotypes among previously inactive over the course of recordings. Colored lines 
are individual animals, black line is best fit regression. Statistic is indicated at right (Permutation test).  
* p<0.05, ** p<0.01, ***p<0.001 
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