

1 **Transcriptome-wide association analysis of 211 neuroimaging traits identifies new
2 genes for brain structures and yields insights into the gene-level pleiotropy with other
3 complex traits**

4
5 **Running title: TWAS of brain structures**

6
7 Bingxin Zhao^{1,6}, Yue Shan^{1,6}, Yue Yang¹, Tengfei Li^{2,3}, Tianyou Luo¹, Ziliang Zhu¹, Yun
8 Li*^{1,4,5,7}, and Hongtu Zhu*^{1,3,7}

9
10 ¹Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC,
11 USA

12 ²Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,
13 USA

14 ³Biomedical Research Imaging Center, School of Medicine, University of North Carolina
15 at Chapel Hill, Chapel Hill, NC, USA

16 ⁴Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC,
17 USA

18 ⁵Department of Computer Science, University of North Carolina at Chapel Hill, Chapel
19 Hill, NC, USA

20 ⁶These authors contributed equally: Bingxin Zhao, Yue Shan.

21 ⁷These authors jointly supervised this work: Yun Li, Hongtu Zhu.

22 *Corresponding authors:

23 Yun Li

24 5090 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599.

25 E-mail address: yun_li@med.unc.edu Phone: (919) 843-2832

26
27 Hongtu Zhu

28 3105C McGavran-Greenberg Hall, 135 Dauer Drive, Chapel Hill, NC 27599.

29 E-mail address: htzhu@email.unc.edu Phone: (919) 966-7250

30
31 List of Alzheimer's Disease Neuroimaging Initiative (ADNI) and Pediatric Imaging,
32 Neurocognition and Genetics (PING) authors provided in the supplemental materials.

1 **Abstract**

2 Structural and microstructural variations of human brain are heritable and highly
3 polygenic traits, with hundreds of associated genes founded in recent genome-wide
4 association studies (GWAS). Using gene expression data, transcriptome-wide association
5 studies (TWAS) can prioritize these GWAS findings and also identify novel gene-trait
6 associations. Here we performed TWAS analysis of 211 structural neuroimaging
7 phenotypes in a discovery-validation analysis of six datasets. Using a cross-tissue
8 approach, TWAS discovered 204 associated genes (86 new) exceeding Bonferroni
9 significance threshold of $1.37*10^{-8}$ (adjusted for testing multiple phenotypes) in the UK
10 Biobank (UKB) cohort, and validated 18 TWAS or previous GWAS-detected genes. The
11 TWAS-significant genes of brain structures had been linked to a wide range of complex
12 traits in different domains. Additional TWAS analysis of 11 cognitive and mental health
13 traits detected 69 overlapping significant genes with brain structures, further
14 characterizing the genetic overlaps among these brain-related traits. Through TWAS
15 gene-based polygenic risk scores (PRS) prediction, we found that TWAS PRS gained
16 substantial power in association analysis compared to conventional variant-based PRS,
17 and up to 6.97% of phenotypic variance ($p\text{-value}=7.56*10^{-31}$) in testing datasets can be
18 explained by UKB TWAS-derived PRS. In conclusion, our study illustrates that TWAS can
19 be a powerful supplement to traditional GWAS in imaging genetics studies for gene
20 discovery-validation, genetic co-architecture analysis, and polygenic risk prediction.

21

22 **Keywords:** Gene expression; Cross-tissue TWAS; Regional brain volumes; Diffusion
23 tensor imaging; UK Biobank.

24

25

26

27

28

29

30

1 Brain structural and microstructural differences are phenotypically associated with
2 many other complex traits across different categories, such as cognitive measures¹⁻⁵,
3 neurodegenerative/neuropsychiatric traits⁶⁻⁹, alcohol and tobacco consumption¹⁰, and
4 physical bone density¹¹. Structural variations of human brain can be quantified by
5 multimodal magnetic resonance imaging (MRI). Specifically, the T1-weighted MRI
6 (T1-MRI) can provide basic morphometric information of brain tissues, such as volume,
7 surface area, sulcal depth, and cortical thickness. In region of interest (ROI)-based
8 T1-MRI analysis, images are annotated onto ROIs of pre-defined brain atlas, and then
9 both global (e.g., whole brain, gray matter, white matter) and local (e.g., basal ganglia
10 structures, limbic and diencephalic regions) markers can be generated to measure the
11 brain anatomy. On the other hand, diffusion MRI (dMRI) can capture local tissue
12 microstructure through the random movement of water. Using diffusion tensor imaging
13 (DTI) models, brain structural connectivity can be quantified by using white matter
14 tracts extracted from dMRI, which build psychical connections among brain ROIs and are
15 involved in connected networks for various brain functions^{12,13}. See Miller, et al. ¹¹ and
16 Elliott, et al. ¹⁴ for a global overview and more information about neuroimaging
17 modalities used in the present study.

18

19 Structural neuroimaging traits have shown moderate to high degree of heritability in
20 both twin and population-based studies¹⁴⁻²⁴. In the past ten years, genome-wide
21 association studies (GWAS)^{3,14,24-33} have been conducted to identify the associated
22 genetic variants (typically single-nucleotide polymorphisms [SNPs]) for brain structures.
23 A highly polygenic^{34,35} genetic architecture has been observed, indicating that a large
24 number of genetic variants contribute to the brain structure variations measured by
25 neuroimaging biomarkers^{21,36}. Particularly, using data from the UK Biobank (UKB³⁹)
26 cohort, two recent large-scale GWAS have identified 578 associated genes for 101
27 regional brain volumes derived from T1-MRI³⁷ (referred as ROI volumes, n=19,629) and
28 110 DTI parameters of dMRI³⁸ (referred as DTI parameters, n=17,706). Some of these
29 discovered genes had been implicated with the same or other traits such as cognition
30 and mental health diseases/disorders in previous GWAS. However, most of them have
31 not been verified and need further investigations. As a supplement to traditional GWAS,
32 recent advances of gene expression imputation methods⁴⁰⁻⁴⁶ and developments of

1 reference databases (e.g., the Genotype-Tissue Expression (GTEx) project⁴⁷) have put
2 the transcriptome-wide association studies (TWAS) forward for gene-trait association
3 analysis. Despite some challenges⁴⁸ such as interpreting causality, TWAS has successfully
4 discovered novel gene-trait associations and provided new insights into biological
5 mechanisms for many complex traits⁴⁹. Through imputed transcriptomes, TWAS can
6 reduce the multiple testing burden and leverage gene expression data to increase
7 testing power for gene-trait association detection. This is a particularly desirable feature
8 for imaging genetics studies, for which most of neuroimaging GWAS datasets continue
9 to have small sample sizes and heavy multiple testing burden⁵⁰.

10
11 Here we applied TWAS methods to 211 structural neuroimaging traits including 101 ROI
12 volumes and 110 DTI parameters. As these brain-related traits tend to be highly
13 polygenic^{21,36} and are related with many traits across different categories¹¹, we used a
14 cross-tissue (panel) TWAS approach (UTMOST⁴²) in our main analysis. UTMOST first
15 performs single-tissue gene-trait association analysis in each reference panel with both
16 within-tissue and cross-tissue statistical penalties, and then combines these single-tissue
17 results using the Generalized Berk-Jones (GBJ) test⁵¹, which is aware of
18 tissue-dependence and can account for the potential sharing of local expression
19 regulation across tissues. The UKB dataset was used in the discovery phase (n=19,629
20 for ROI volumes and 17,706 for DTI parameters, respectively). For the same UKB cohort,
21 we compared TWAS-significant genes to previous GWAS findings in gene-based
22 association analysis via MAGMA⁵² and gene-level functional mapping and annotation
23 results by FUMA⁵³. The UKB TWAS results were validated in five independent data
24 sources, including Philadelphia Neurodevelopmental Cohort (PNC⁵⁴, n=537), Alzheimer's
25 Disease Neuroimaging Initiative (ADNI⁵⁵, n=860), Pediatric Imaging, Neurocognition, and
26 Genetics (PING⁵⁶, n=461), the Human Connectome Project (HCP⁵⁷, n=334), and the
27 ENIGMA2²⁴ and ENIGMA-CHARGE collaboration³³ (n=13,193, for 8 ROI volume traits,
28 referred as ENIGMA in this paper). Additional TWAS analysis was performed on 11
29 cognitive and mental traits to explore their genetics overlaps with brain structures.
30 Chromatin interaction enrichment analysis and drug-target lookups were conducted for
31 TWAS-significant genes. Finally, we developed TWAS gene-based polygenic risk scores⁵⁸

1 (PRS) using FUSION⁴⁰ to fully assess polygenic architecture and examine the predictive
2 ability of the UKB TWAS results.

3

4 RESULTS

5 Overview of TWAS discovery-validation in the six datasets

6 We conducted a two-phase discovery-validation TWAS analysis for 211 neuroimaging
7 traits by using the UKB cohort for discovery and the other datasets (ADNI, HCP, PING,
8 PNC, and ENIGMA) for validation. We applied the UTMOST gene expression imputation
9 models trained on 44 GETx (v6) reference panels, and used GWAS summary statistics
10 generated from previous GWAS as inputs. In the rest of this paper, we refer 1.37×10^{-8}
11 (that is, $5 \times 10^{-2} / 17,290 / 211$, adjusted for all candidate genes and traits performed) as
12 the significance threshold for gene-trait associations unless otherwise stated.

13

14 The UKB discovery phase identified 614 significant gene-trait associations
15 (**Supplementary Table 1**) between 204 genes and 135 neuroimaging traits (53 ROI
16 volumes, 82 DTI parameters). Of the 204 TWAS-significant genes, 61 (29.9%) had
17 significant associations with more than two neuroimaging traits, 25 (12.3%) had more
18 than five significant associations, and 12 (5.9%) had at least ten, including *OSER1*, *XRCC4*,
19 *PLEKHM1*, *ZKSCAN4*, *EIF4EBP3*, *MAPT*, *LRRC37A*, *CRHR1*, *FOXF1*, *TREH*, *ARHGAP27*, and
20 *C6orf100*. These 12 genes together contributed 195 (31.8%) of the 614 gene-trait
21 associations, indicating their widespread influences on brain structures. Specifically, we
22 identified 123 genes whose imputed gene expression levels were significantly associated
23 with one of more of the 53 ROI volumes (215 associations in total, 115 new,
24 **Supplementary Fig. 1**), and 103 significantly associated genes (22 overlapping) for one
25 or more of the 82 DTI parameters (399 associations in total, 219 new, **Supplementary**
26 **Fig. 2**). **Figure 1** illustrates that TWAS prioritized previous GWAS findings of MAGMA and
27 FUMA and also discovered many new associations and genes. Moreover, some genes
28 were associated with both ROI volumes and DTI parameters, while others were more
29 specifically related to certain structures (**Supplementary Fig. 3**). For example, *XRCC4*,
30 *ZKSCAN4*, *EIF4EBP3*, and *CD14* were associated with DTI parameters but not ROI
31 volumes, *DEFB124*, *COX4I2*, *HCK*, *HM13*, and *REM1* showed associations with putamen
32 and pallidum volumes, and the associations of *PLEKHM1*, *LRRC37A*, *MAPT*, *CNNM2*,

1 *NT5C2*, *ARHGAP27*, and *CRHR1* were spread widely across DTI parameters and total
2 brain volume.

3

4 We validated the UKB results in the other five independent cohorts. For each dataset,
5 we applied the Bonferroni-corrected significance threshold accounting for all candidate
6 genes and traits analyzed (that is, $5*10^{-2}/17,290/\text{number of traits}$, **Supplementary**
7 **Tables 2-6**). We found that 13 UKB TWAS-significant genes and 5 more previous
8 GWAS-significant genes can be validated in one or more of the five validation datasets
9 (**Supplementary Fig. 4**) including *ANKRD42*, *DCC*, *DCTPP1*, *DLGAP5*, *HCK*, *LGALS3*, *UBE2C*,
10 *KLRD1*, *LRRC37A*, *OSER1*, *PRPF3*, *TREH*, *TGM7*, *NUP210L*, *DOK5*, *KRTAP5-1*, *C20orf166*,
11 and *DPP4*. The TWAS novel findings and validated genes were discussed further in
12 details below.

13

14 **Novel TWAS discoveries and validated genes**

15 Of the 204 UKB TWAS-significant genes, 90 were not discovered in previous GWAS of
16 the same UKB dataset (**Supplementary Table 7**). TWAS resulted in 60 new associated
17 genes for 53 ROI volumes (106 associations, **Supplementary Fig. 5**), and 52 new genes
18 for 82 DTI parameters (139 associations, **Supplementary Fig. 6**). According to NHGRI-EBI
19 GWAS catalog⁵⁹, the 90 TWAS-significant genes replicated four previous findings on
20 brain structures, including *JPH3*⁶⁰ for hippocampal volume in mild cognitive impairment,
21 *CNNM2*⁶¹ for white matter lesion progression, *FOXF1*⁶² for hippocampal volume in
22 Alzheimer's disease progression, and *C1QL1*⁶³ for white matter hyperintensity burden.
23 The other 86 genes had not been linked to brain structure previously and thus can be
24 regarded as novel genes for these 211 neuroimaging traits. To explore the genetic
25 overlaps with other traits in different domains, we performed association lookups for
26 the 90 TWAS-significant genes on the NHGRI-EBI GWAS catalog (**Supplementary Table**
27 **8**). **Figure 2** shows that these genes were widely associated with physical measures (e.g.,
28 height, waist-to-hip ratio, heel bone mineral density, body mass index), cognitive traits
29 (e.g., cognitive function, intelligence, math ability), neuropsychiatric and
30 neurodegenerative diseases/disorders (e.g., schizophrenia, bipolar disorder, Alzheimer's
31 disease), coronary artery disease, mean corpuscular hemoglobin, neuroticism,

1 education, reaction time, chronotype, smoking behavior and alcohol use, such as
2 *CDK2AP1*⁶⁴⁻⁶⁷, *ELL*⁶⁸⁻⁷⁰, *CTTNBP2*⁷¹⁻⁷³, and *SH2B1*^{72,74-76}.

3
4 For the 18 TWAS-validated genes shown in **Supplementary Fig. 4**, 8 (*ANKRD42*, *DCC*,
5 *LRRC37A*, *NUP210L*, *DOK5*, *KRTAP5-1*, *C20orf166*, and *DPP4*) of them had been
6 discovered in the previous UKB GWAS and were implicated in brain-related complex
7 traits, such as neuroticism⁶⁴, major depression⁷⁷, schizophrenia⁷⁸⁻⁸⁰, Intelligence⁸¹, math
8 ability⁷³, reaction time⁷⁵, and insomnia⁸². The left ten genes, which were novel findings
9 of TWAS, also had known associations with many cognitive and mental health traits. For
10 example, previous GWAS reported that *HCK* was associated with chronotype⁸², *LGALS3*
11 with schizophrenia⁸³, *UBE2C* with reaction time⁷⁵, *KLRD1* with adolescent idiopathic
12 scoliosis⁸⁴, *OSER1* with cognitive performance⁷⁷ and Alzheimer's disease⁷⁶, and *PRPF3*
13 with chronotype^{76,85} and neuropsychiatric disorders⁸⁶. In summary, TWAS novel and
14 validated genes expand the overview of gene-level pleiotropy across these traits,
15 suggesting that neuroimaging-derived biomarkers could be useful in studying a wide
16 range of complex traits.

17
18 **Compared to brain tissue-specific TWAS analysis**
19 As a comparison, we performed a brain tissue-specific version of TWAS that only
20 combines brain tissues in UTMOST (Method). This brain tissue-specific TWAS detected
21 308 significant gene-trait associations (**Supplementary Table 9**) between 107 unique
22 genes and 96 neuroimaging traits, including 64 associated genes for one or more of 37
23 ROI volumes (104 associations, **Supplementary Fig. 7**), and 53 genes (10 overlapping) for
24 one or more of 59 DTI parameters (204 associations, **Supplementary Fig. 8**).

25
26 Most (101/107) of the tissue-specific genes have been identified by either the
27 cross-tissue TWAS (95/107) or previous GWAS (70/107). The 6 genes that were uniquely
28 identified by tissue-specific analysis included *KNCN*, *LHFPL3*, *MBD2*, *TBK1*, *C3orf62*, and
29 *TMEM173*. *LHFPL3* showed associations with education⁸⁷, social behavior^{88,89}, cognitive
30 ability⁷⁵, schizophrenia⁹⁰, and bipolar disorder⁹¹. *MBD2* was associated with reaction
31 time⁷⁵, *TBK1* with amyotrophic lateral sclerosis^{92,93}, and *C3orf62* with intelligence⁸².
32 Compared to tissue-specific TWAS, cross-tissue analysis clearly identified more signals.

1 For example, of the 215 gene-trait associations identified by cross-tissue analysis of ROI
2 volumes, 100 had been identified in GWAS, 28 can be additionally identified by
3 tissue-specific TWAS, and 87 can only be detected by cross-tissue analysis
4 (**Supplementary Fig. 9**). Similarly, 180 of the 399 cross-tissue TWAS associations for DTI
5 can be identified in GWAS, 69 can be additionally identified by tissue-specific TWAS, and
6 150 were cross-tissue TWAS only (**Supplementary Fig. 10**). These results illustrate the
7 advantage of cross-tissue analysis over brain tissue-specific TWAS for discovering
8 association signals that are difficult to be identified in traditional GWAS. We further
9 compared their results in a few follow-up analyses below.

10

11 **Comparison with GWAS variant-level signals and conditional analysis**

12 For each of the 614 gene-trait associations detected in cross-trait TWAS, we used
13 previous GWAS summary statistics to check the most significant variant within the gene
14 region (with a 1MB window on each side) that was pinpointed in the same UKB dataset
15 (Method). The GWAS p-value of the most significant variant was greater than $1*10^{-6}$ for
16 any associations of 13 genes (**Supplementary Table 10**). None of them had been
17 identified by MAGMA or FUMA, indicating that it can be difficult to detect these genes
18 by GWAS or post-GWAS screening for any of these neuroimaging traits. Of the 13 genes,
19 7 (*OSER1*, *TREH*, *PRPF3*, *KLRD1*, *TGM7*, *DCTPP1*, *UBE2C*) were validated in one or more
20 of the five validation datasets and were discussed in previous section. For the other 6
21 genes (*CELSR3*, *MYO9A*, *DNAJC24*, *GYPE*, *TMEM136*, *MOB4*) genes, *MOB4* was reported
22 for major depression⁹⁴ and autism spectrum disorder/schizophrenia⁹⁵, *DNAJC24* was
23 linked to adolescent idiopathic scoliosis⁸⁴, and *CELSR3* was associated with education⁶⁵
24 and cognitive ability^{64,81}. The same checking was then performed for the 308 significant
25 gene-trait associations of brain tissue-specific TWAS. We found that only one gene
26 *DCTPP1* had minimum GWAS p-value greater than $1*10^{-6}$ (**Supplementary Table 11**).

27

28 We next performed a conditional analysis to see whether the TWAS signals remained
29 significant after adjustment for the most significant genetic variant used in UTMOST
30 gene expression imputation models (Method). Although our cross-tissue analysis
31 combined information from many genetic variants across various human tissues, we
32 found that 418 of the 614 associations may indeed be dominated by the strongest

1 GWAS signal of the imputation model, as their conditional p-values were larger than
2 0.05 (**Supplementary Table 12**). However, the conditional p-values of four genes (*XRCC4*,
3 *OBFC1*, *C15orf56*, *NMT1*) were smaller than $1*10^{-6}$ for 18 gene-trait associations,
4 suggesting that these associations were unlikely to be driven by a signal genetic variant.
5 When the p-value threshold was relaxed to $1*10^{-3}$, 66 associations of 20 genes persisted
6 after conditional analysis. The conditional analysis was also performed on significant
7 associations of brain tissue-specific TWAS. Their conditional p-values were smaller than
8 $1*10^{-6}$ for three genes (*XRCC4*, *C15orf56*, *NMT1*) with 15 associations, and were smaller
9 than $1*10^{-3}$ for 10 genes with 42 associations (**Supplementary Table 13**).

10

11 **Additional TWAS analysis for cognitive and mental health traits**

12 To further explore the gene-level genetic overlaps among brain structure and other
13 brain-related traits, we performed cross-tissue TWAS analysis for 11 cognitive and
14 mental health traits (**Supplementary Table 14**). We found that 69 of the 204
15 TWAS-significant genes of neuroimaging traits were also significantly associated with
16 one or more of the 11 cognitive and mental health traits (**Figure 3**). These results
17 suggest the genes involved in brain structure changes are often also active in brain
18 functions and mental disorder/diseases. For example, we found 33 overlapping genes
19 with cognitive function, 32 with education, 26 with numerical reasoning, 25 with
20 intelligence, 23 with neuroticism, 19 with drinking behavior, and 13 with schizophrenia.
21 A large proportion (48/69) of these genes were associated with more than one cognitive
22 or mental health traits, and 11 genes were linked to at least five traits, including *SCML4*,
23 *C16orf54*, *DCC*, *NFATC2IP*, *NPIP87*, *NPIP9*, *SH2B1*, *CRHR1*, *LRRC37A*, *HIST1H2BO*, and
24 *NKAPL*, indicating the high degree of statistical pleiotropy⁹⁶ of these genes.

25

26 **Chromatin interaction enrichment analysis and drug-target lookups**

27 To explore the biological interpretations of TWAS and GWAS-significant genes, we
28 performed enrichment analysis in promoter-related chromatin interactions of four types
29 of brain neurons⁹⁷ (iPSC-induced excitatory neurons, iPSC-derived hippocampal DG-like
30 neurons, iPSC-induced lower motor neurons, and primary astrocytes), and also in high
31 confident interactions of adult and fetal cortex⁹⁸ (Method). The raw p-values of
32 Wilcoxon rank test for enrichment were summarized in **Supplementary Table 15**. We

1 found that cross-tissue TWAS-significant genes of the 11 cognitive and mental health
2 were significantly enriched in chromatin interactions from all of the five validation
3 datasets (p-value range=[4.91*10⁻¹¹, 3.03*10⁻⁵]), suggesting that TWAS-significant genes
4 actively interacted with other chromatin regions and played a more important role in
5 regulating gene expressions as compared with other genes. The cross-tissue
6 TWAS-significant genes of neuroimaging traits also showed significant enrichments
7 (p-value range=[1.38*10⁻³, 2.44*10⁻²]). Merging the two sets of genes resulted in smaller
8 p-value in each dataset (p-value range=[2.93*10⁻¹¹, 2.77*10⁻⁵]). The most significant
9 enrichment was observed in iPSC-induced lower motor neurons. These results remained
10 significant after adjusting for multiple testing by using Benjamini-Hochberg (B-H)
11 procedure at 0.05 level (**Supplementary Table 16**). In contrast, GWAS-significant genes
12 were only significantly enriched in primary astrocytes and high confident interactions
13 (p-value range=[5.11*10⁻³, 1.48*10⁻²]), and brain tissue-specific TWAS-significant genes
14 did not show any significant enrichments after B-H adjustment.

15
16 We carried out drug-target lookups using a recently published drug-target database⁹⁹ to
17 see whether any of the TWAS and GWAS-significant genes were known targets of
18 existing drugs. We focused on nervous system drugs with Anatomical Therapeutic
19 Chemical (ATC) code started with “N”, yielding 2,285 drug-gene pairs between 273
20 drugs and 241 targeted genes. We found that 12 TWAS-significant genes of the 11
21 cognitive and mental health traits were known targets for 64 drugs, including *CACNA1I*,
22 *ESR1*, *ALDH2*, *CACNA1C*, *GRM2*, *KCNJ3*, *SCN3A*, *CACNA1D*, *KCNK3*, *CHRNA3*, *CHRNA6*,
23 and *SLC6A4*. Of the 64 drugs, 27 were anti-depressants (ATC: N06A) to treat major
24 depressive disorder and other conditions, and 10 were anti-psychotics (ATC: N05A) to
25 manage psychosis such as schizophrenia and bipolar disorder (**Supplementary Table 17**).
26 In addition, 3 more drug-target genes (*GABBR1*, *HTR2B*, *CREB1*) were detected by GWAS
27 or TWAS of neuroimaging traits (**Supplementary Table 18**). These 3 genes were
28 targets for 19 more drugs, 6 of which were anti-Parkinson drugs (ATC: N04) for
29 treatment of Parkinson’s disease and related conditions, and 5 were anti-migraine
30 preparations (ATC: N02C) used in prophylaxis and treatment of migraine. These results
31 may suggest that TWAS-significant genes could be considered as new targets in future
32 drug development.

1
2 **TWAS gene-based polygenic risk scores analysis**

3 To fully assess the polygenic genetic architecture of neuroimaging traits and examine
4 the predictive ability of UKB TWAS results, we constructed TWAS gene-based PRS on
5 subjects in PNC, HCP, PING, and ADNI cohorts for all of the 211 neuroimaging traits
6 (Method). The prediction analysis was conducted separately on 52 reference panels (13
7 GETx v7 brain tissues, 35 GTEx v7 other tissues, 1 non-GETx brain tissue, and 3 non-GETx
8 other tissues) using the FUSION⁴⁰ software and database. We found that genetically
9 predicted profiles for 28 ROI volumes (**Figure 5**) and 23 DTI parameters (**Supplementary**
10 **Fig. 11**) were significantly associated with the corresponding observed traits in all
11 testing datasets after Bonferroni correction (that is, $101*4+3*110=734$ tests). Compared
12 to previous SNP-based PRS analysis that yielded significant PRS profiles for 11 ROI
13 volumes³⁷, gene-based PRS profiles were significant for more ROI volumes, such as
14 left/right insula, left/right pallidum, left/right ventral DC, left/right fusiform, and
15 left/right transverse temporal, suggesting the substantial power gain in association
16 analysis of PRS. The significant TWAS PRS can account for 0.97%-6.97% phenotypic
17 variance (p-value range=[$8.0*10^{-29}$, $6.81*10^{-5}$]) (**Supplementary Tables 19-20**), which
18 was within the similar range to SNP-based PRS analysis. For example, the (incremental)
19 R-squared of TWAS PRS of Cerebellar vermal lobules VIII–X was 6.97% in PNC and 6.48%
20 in HCP, and the R-squared of SFO MD-derived TWAS PRS was 3.8% in PING and 2.41% in
21 PNC. We also examined the performance of each reference panel on these significant
22 traits. There was a significant linear relationship between the panel sample size and
23 average prediction R-squared (48 GTEx reference panels, simple correlation=0.53,
24 p-value= $1.21*10^{-4}$, **Supplementary Fig. 12**), which means that currently panel sample
25 size may dominate the performance of TWAS PRS analysis regardless of the tissue
26 specificity⁵⁸. Among the brain tissue panels, we found that cerebellum tissue had the
27 largest sample size and also showed the highest average R-squared (**Supplementary**
28 **Table 21**), further supporting the importance of reference panel sample size.

29
30 **DISCUSSION**

31 In this study, we applied TWAS methods on 211 neuroimaging traits to identify genes,
32 whose imputed expression levels were associated with brain structure variations. Using

1 a cross-tissue approach, our main discovery analysis identified 86 novel genes and
2 validated 18 significant genes at stringent Bonferroni-correction p-value thresholds.
3 Conditional analysis and comparison with GWAS variant-level results suggested that the
4 identification and validation of new genes reflect the ability of TWAS to reduce the
5 testing burden and to combine the small genetic variant effects. We also performed
6 brain tissue-specific TWAS and illustrated the unique strengths of cross-tissue TWAS in
7 conditional and enrichment analyses. Lots of brain structure-related genes were known
8 genetic factors for a wide range of complex traits, ranging from physical traits, cognition,
9 mental disease/disorders, blood assays, to lifestyle, which extend the potential
10 applications of neuroimaging traits. Some of these genetic overlaps were additionally
11 highlighted by a TWAS analysis of 11 cognitive and mental health traits.

12

13 The present study faces some limitations. First, since these results are purely based on
14 statistical associations, it is hard to draw conclusions about the underlying causality and
15 prioritize causal genes^{42,100}. This is also one of the main challenges for most of the
16 current TWAS approaches⁴⁸. Follow-up experimental validation is a clear need to
17 confirm TWAS results and pinpoint the causal genes of brain structure changes. Second,
18 the brain tissue-specific TWAS did not yield much new results compared to the previous
19 GWAS and brain tissue panels did not show better prediction accuracy than non-brain
20 tissues in gene-based PRS analysis. Both of the two observations support the use of
21 multiple tissues in our analysis to increase testing power for association analysis, but
22 making the causality interpretation of TWAS results even more complicated. In addition,
23 though gene-based PRS had much better power in association tests than SNP-based
24 polygenic scores, their prediction accuracies were similar. These limitations may be due
25 to the fact that currently brain tissue reference panels do not have large sample size
26 and/or the associated gene expression imputations may have low quality. Despite these
27 limitations, it is clear that TWAS have the potential to become a powerful supplement to
28 traditional GWAS in imaging genetics studies. In our study, many new gene-trait
29 associations were discovered and the underlying genetic overlaps among complex traits
30 were largely expanded. With better brain tissue gene expression reference panels and
31 more neuroimaging GWAS datasets available, future TWAS analyses of neuroimaging

1 traits are expected to show the value of tissue specificity and improve our
2 understanding for the genetic basis of human brain.

3

4 **ACKNOWLEDGEMENTS**

5 This research was partially supported by U.S. NIH grants MH086633 (H.Z.) and
6 MH116527 (T.F.L.). We thank Quan Wang, Bingshan Li, and Jia Wen for helpful
7 conversations. We thank the individuals represented in the UK Biobank, ADNI, HCP,
8 PING, PNC, ENIGMA2, and ENIGMA-CHARGE datasets for their participation and the
9 research teams for their work in collecting, processing and disseminating these datasets
10 for analysis. This research has been conducted using the UK Biobank resource
11 (application number 22783), subject to a data transfer agreement. We gratefully
12 acknowledge all the studies and databases that made GWAS summary data available.
13 Part of data collection and sharing for this project was funded by the Alzheimer's
14 Disease Neuroimaging initiative (ADNI) (National Institutes of Health Grant U01
15 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012).
16 ADNI is funded by the National Institute on Aging, the National Institute of Biomedical
17 Imaging and Bioengineering and through generous contributions from the following:
18 Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech;
19 BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan
20 Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and
21 its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd; Janssen
22 Alzheimer Immunotherapy Research & Development, LLC; Johnson & Johnson
23 Pharmaceutical Research & Development LLC; Medpace, Inc.; Merck & Co., Inc.; Meso
24 Scale Diagnostics, LLC; NeuroRx Research; Neurotrack Technologies; Novartis
25 Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and
26 Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is
27 providing funds to support ADNI clinical sites in Canada. Private sector contributions are
28 facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The
29 grantee organization is the Northern California Institute for Research and Education,
30 and the study is coordinated by the Alzheimer's Disease Cooperative Study at the
31 University of California, San Diego. ADNI data are disseminated by the Laboratory for
32 Neuro Imaging at the University of Southern California. Part of the data collection and

1 sharing for this project was funded by the Pediatric Imaging, Neurocognition and
2 Genetics Study (PING) (U.S. National Institutes of Health Grant RC2DA029475). PING is
3 funded by the National Institute on Drug Abuse and the Eunice Kennedy Shriver
4 National Institute of Child Health & Human Development. PING data are disseminated
5 by the PING Coordinating Center at the Center for Human Development, University of
6 California, San Diego. Support for the collection of the PNC datasets was provided by
7 grant RC2MH089983 awarded to Raquel Gur and RC2MH089924 awarded to Hakon
8 Hakonarson. All PNC subjects were recruited through the Center for Applied Genomics
9 at The Children's Hospital in Philadelphia. HCP data were provided by the Human
10 Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen
11 and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that
12 support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for
13 Systems Neuroscience at Washington University.

14

15 **AUTHOR CONTRIBUTIONS**

16 B.Z., Y.S., Y.L., and H.Z. designed the study. B.Z., Y.S., Y.Y., T.F.L., T.Y.L., and Z.Z performed
17 the experiments and analyzed the data. B.Z., Y.S., Y.L., and H.Z. wrote the manuscript
18 with feedback from all authors.

19

20 **COMPETETING FINANCIAL INTERESTS**

21 The authors declare no competing financial interests.

22

23 **REFERENCES**

24

- 25 1. Ritchie, S.J. *et al.* Beyond a bigger brain: Multivariable structural brain imaging
26 and intelligence. *Intelligence* **51**, 47-56 (2015).
- 27 2. Davies, G. *et al.* Genome-wide association study of cognitive functions and
28 educational attainment in UK Biobank (N= 112 151). *Molecular Psychiatry* **21**,
29 758–767 (2016).
- 30 3. van der Meer, D. *et al.* Brain scans from 21,297 individuals reveal the genetic
31 architecture of hippocampal subfield volumes. *Molecular Psychiatry*, in press.
32 (2018).

1 4. Caldiroli, A. *et al.* The relationship of IQ and emotional processing with insula
2 volume in schizophrenia. *Schizophrenia Research* **202**, 141-148 (2018).

3 5. Vreeker, A. *et al.* The relationship between brain volumes and intelligence in
4 bipolar disorder. *Journal of Affective Disorders* **223**, 59-64 (2017).

5 6. Nir, T.M. *et al.* Effectiveness of regional DTI measures in distinguishing
6 Alzheimer's disease, MCI, and normal aging. *NeuroImage: clinical* **3**, 180-195
7 (2013).

8 7. Bohnen, N.I. & Albin, R.L. White matter lesions in Parkinson disease. *Nature
Reviews Neurology* **7**, 229 (2011).

10 8. Voineskos, A.N. Genetic underpinnings of white matter 'connectivity': heritability,
11 risk, and heterogeneity in schizophrenia. *Schizophrenia research* **161**, 50-60
12 (2015).

13 9. Sudre, G. *et al.* Estimating the Heritability of Structural and Functional Brain
14 Connectivity in Families Affected by Attention-Deficit/Hyperactivity Disorder.
15 *JAMA psychiatry* **74**, 76-84 (2017).

16 10. Peng, P. *et al.* Brain structure alterations in respect to tobacco consumption and
17 nicotine dependence: a comparative voxel-based morphometry study. *Frontiers
in neuroanatomy* **12**, 43 (2018).

19 11. Miller, K.L. *et al.* Multimodal population brain imaging in the UK Biobank
20 prospective epidemiological study. *Nature Neuroscience* **19**, 1523-1536 (2016).

21 12. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses
22 and interpretations. *Neuroimage* **52**, 1059-1069 (2010).

23 13. Hu, W., Zhang, A., Cai, B., Calhoun, V. & Wang, Y.-P. Distance canonical
24 correlation analysis with application to an imaging-genetic study. *Journal of
Medical Imaging* **6**, 026501 (2019).

26 14. Elliott, L.T. *et al.* Genome-wide association studies of brain imaging phenotypes
27 in UK Biobank. *Nature* **562**, 210-216 (2018).

28 15. Wen, W. *et al.* Distinct genetic influences on cortical and subcortical brain
29 structures. *Scientific Reports* **6**, 32760 (2016).

30 16. den Braber, A. *et al.* Heritability of subcortical brain measures: a perspective for
31 future genome-wide association studies. *NeuroImage* **83**, 98-102 (2013).

1 17. Eyler, L.T. *et al.* Conceptual and data-based investigation of genetic influences
2 and brain asymmetry: a twin study of multiple structural phenotypes. *Journal of*
3 *Cognitive Neuroscience* **26**, 1100-1117 (2014).

4 18. Blokland, G.A., de Zubicaray, G.I., McMahon, K.L. & Wright, M.J. Genetic and
5 environmental influences on neuroimaging phenotypes: a meta-analytical
6 perspective on twin imaging studies. *Twin Research and Human Genetics* **15**,
7 351-371 (2012).

8 19. Kremen, W.S. *et al.* Genetic and environmental influences on the size of specific
9 brain regions in midlife: the VETSA MRI study. *Neuroimage* **49**, 1213-1223
10 (2010).

11 20. Jansen, A.G., Mous, S.E., White, T., Posthuma, D. & Polderman, T.J. What twin
12 studies tell us about the heritability of brain development, morphology, and
13 function: a review. *Neuropsychology Review* **25**, 27-46 (2015).

14 21. Zhao, B. *et al.* Heritability of regional brain volumes in large-scale neuroimaging
15 and genetic studies. *Cerebral Cortex* **29**, 2904-2914 (2018).

16 22. Biton, A. *et al.* Polygenic architecture of human neuroanatomical diversity.
17 *bioRxiv*, 592337 (2019).

18 23. Toro, R. *et al.* Genomic architecture of human neuroanatomical diversity.
19 *Molecular Psychiatry* **20**, 1011-1016 (2015).

20 24. Hibar, D.P. *et al.* Common genetic variants influence human subcortical brain
21 structures. *Nature* **520**, 224-229 (2015).

22 25. Hibar, D.P. *et al.* Novel genetic loci associated with hippocampal volume. *Nature*
23 *Communications* **8**, 13624 (2017).

24 26. Franke, B. *et al.* Genetic influences on schizophrenia and subcortical brain
25 volumes: large-scale proof of concept. *Nature Neuroscience* **19**, 420-431 (2016).

26 27. Guadalupe, T. *et al.* Human subcortical brain asymmetries in 15,847 people
27 worldwide reveal effects of age and sex. *Brain imaging and behavior* **11**,
28 1497-1514 (2017).

29 28. Ikram, M.A. *et al.* Common variants at 6q22 and 17q21 are associated with
30 intracranial volume. *Nature Genetics* **44**, 539-544 (2012).

31 29. Bis, J.C. *et al.* Common variants at 12q14 and 12q24 are associated with
32 hippocampal volume. *Nature Genetics* **44**, 545-551 (2012).

1 30. Grasby, K.L. *et al.* The genetic architecture of the human cerebral cortex. *bioRxiv*,
2 399402 (2018).

3 31. Hofer, E. *et al.* Genetic Determinants of Cortical Structure (Thickness, Surface
4 Area and Volumes) among Disease Free Adults in the CHARGE Consortium.
5 *bioRxiv*, 409649 (2018).

6 32. Satizabal, C.L. *et al.* Genetic Architecture of Subcortical Brain Structures in Over
7 40,000 Individuals Worldwide. *bioRxiv*, 173831 (2017).

8 33. Adams, H.H. *et al.* Novel genetic loci underlying human intracranial volume
9 identified through genome-wide association. *Nature neuroscience* **19**, 1569
10 (2016).

11 34. Boyle, E.A., Li, Y.I. & Pritchard, J.K. An Expanded View of Complex Traits: From
12 Polygenic to Omnipotent. *Cell* **169**, 1177-1186 (2017).

13 35. Timpson, N.J., Greenwood, C.M.T., Soranzo, N., Lawson, D.J. & Richards, J.B.
14 Genetic architecture: the shape of the genetic contribution to human traits and
15 disease. *Nature Reviews Genetics* **19**, 110-124 (2017).

16 36. O'Connor, L.J. *et al.* Extreme polygenicity of complex traits is explained by
17 negative selection. *The American Journal of Human Genetics* **105**, 456-476
18 (2019).

19 37. Zhao, B. *et al.* Genome-wide association analysis of 19,629 individuals identifies
20 variants influencing regional brain volumes and refines their genetic
21 co-architecture with cognitive and mental health traits. *Nature Genetics* **51**,
22 1637-1644 (2019).

23 38. Zhao, B. *et al.* Large-scale GWAS reveals genetic architecture of brain white
24 matter microstructure and genetic overlap with cognitive and mental health
25 traits (n = 17,706). *Molecular Psychiatry* (2019).

26 39. Sudlow, C. *et al.* UK biobank: an open access resource for identifying the causes
27 of a wide range of complex diseases of middle and old age. *PLoS Medicine* **12**,
28 e1001779 (2015).

29 40. Gusev, A. *et al.* Integrative approaches for large-scale transcriptome-wide
30 association studies. *Nature genetics* **48**, 245 (2016).

1 41. Barbeira, A.N. *et al.* Exploring the phenotypic consequences of tissue specific
2 gene expression variation inferred from GWAS summary statistics. *Nature
3 communications* **9**, 1825 (2018).

4 42. Hu, Y. *et al.* A statistical framework for cross-tissue transcriptome-wide
5 association analysis. (Nature Publishing Group, 2019).

6 43. Gamazon, E.R. *et al.* A gene-based association method for mapping traits using
7 reference transcriptome data. *Nature genetics* **47**, 1091 (2015).

8 44. Zeng, P. & Zhou, X. Non-parametric genetic prediction of complex traits with
9 latent Dirichlet process regression models. *Nature communications* **8**, 456
10 (2017).

11 45. Zhou, X. & Stephens, M. Efficient multivariate linear mixed model algorithms for
12 genome-wide association studies. *Nature methods* **11**, 407 (2014).

13 46. Nagpal, S. *et al.* TIGAR: An Improved Bayesian Tool for Transcriptomic Data
14 Imputation Enhances Gene Mapping of Complex Traits. *The American Journal of
15 Human Genetics* (2019).

16 47. Consortium, G. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue
17 gene regulation in humans. *Science* **348**, 648-660 (2015).

18 48. Wainberg, M. *et al.* Opportunities and challenges for transcriptome-wide
19 association studies. *Nature genetics* **51**, 592 (2019).

20 49. Zhang, W. Advancements of transcriptome imputation and related
21 transcriptome-wide association studies. *Current Research in Biochemistry and
22 Molecular Biology* **1**, 14-16 (2019).

23 50. Smith, S.M. & Nichols, T.E. Statistical challenges in “big data” human
24 neuroimaging. *Neuron* **97**, 263-268 (2018).

25 51. Sun, R. & Lin, X. Set-based tests for genetic association using the generalized
26 Berk-Jones statistic. *arXiv preprint arXiv:1710.02469* (2017).

27 52. de Leeuw, C.A., Mooij, J.M., Heskes, T. & Posthuma, D. MAGMA: generalized
28 gene-set analysis of GWAS data. *PLoS Computational Biology* **11**, e1004219
29 (2015).

30 53. Watanabe, K., Taskesen, E., Bochoven, A. & Posthuma, D. Functional mapping
31 and annotation of genetic associations with FUMA. *Nature Communications* **8**,
32 1826 (2017).

1 54. Satterthwaite, T.D. *et al.* Neuroimaging of the Philadelphia neurodevelopmental
2 cohort. *Neuroimage* **86**, 544-553 (2014).

3 55. Weiner, M.W. *et al.* The Alzheimer's Disease Neuroimaging Initiative: a review of
4 papers published since its inception. *Alzheimer's & Dementia* **9**, e111-e194
5 (2013).

6 56. Jernigan, T.L. *et al.* The pediatric imaging, neurocognition, and genetics (PING)
7 data repository. *Neuroimage* **124**, 1149-1154 (2016).

8 57. Somerville, L.H. *et al.* The Lifespan Human Connectome Project in Development:
9 A large-scale study of brain connectivity development in 5–21 year olds.
10 *NeuroImage* **183**, 456-468 (2018).

11 58. Gusev, A. *et al.* Transcriptome-wide association study of schizophrenia and
12 chromatin activity yields mechanistic disease insights. *Nature Genetics* **50**,
13 538–548 (2018).

14 59. Baniello, A. *et al.* The NHGRI-EBI GWAS Catalog of published genome-wide
15 association studies, targeted arrays and summary statistics 2019. *Nucleic Acids
16 Research* **47**, D1005-D1012 (2018).

17 60. Chung, J. *et al.* Genome-wide association study of Alzheimer's disease
18 endophenotypes at prediagnosis stages. *Alzheimer's & Dementia* **14**, 623-633
19 (2018).

20 61. Hofer, E. *et al.* White matter lesion progression: genome-wide search for genetic
21 influences. *Stroke* **46**, 3048-3057 (2015).

22 62. Scelsi, M.A. *et al.* Genetic study of multimodal imaging Alzheimer's disease
23 progression score implicates novel loci. *Brain* **141**, 2167-2180 (2018).

24 63. Verhaaren, B.F. *et al.* Multiethnic genome-wide association study of cerebral
25 white matter hyperintensities on MRI. *Circulation: Cardiovascular Genetics* **8**,
26 398-409 (2015).

27 64. Lam, M. *et al.* Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific
28 Neural Expression and Potential Nootropic Drug Targets. *Cell reports* **21**,
29 2597-2613 (2017).

30 65. Okbay, A. *et al.* Genetic variants associated with subjective well-being,
31 depressive symptoms, and neuroticism identified through genome-wide analyses.
32 *Nature Genetics* **48**, 624–633 (2016).

1 66. Hill, W. *et al.* A combined analysis of genetically correlated traits identifies 187
2 loci and a role for neurogenesis and myelination in intelligence. *Molecular*
3 *Psychiatry* **24**, 169–181 (2019).

4 67. Morris, J.A. *et al.* An atlas of genetic influences on osteoporosis in humans and
5 mice. *Nature genetics* **51**, 258 (2019).

6 68. Kunkle, B.W. *et al.* Genetic meta-analysis of diagnosed Alzheimer's disease
7 identifies new risk loci and implicates A β , tau, immunity and lipid processing.
8 *Nature genetics* **51**, 414 (2019).

9 69. Astle, W.J. *et al.* The allelic landscape of human blood cell trait variation and links
10 to common complex disease. *Cell* **167**, 1415-1429. e19 (2016).

11 70. Kim, S.K. Identification of 613 new loci associated with heel bone mineral density
12 and a polygenic risk score for bone mineral density, osteoporosis and fracture.
13 *PLoS one* **13**, e0200785 (2018).

14 71. Howard, D.M. *et al.* Genome-wide meta-analysis of depression identifies 102
15 independent variants and highlights the importance of the prefrontal brain
16 regions. *Nature neuroscience* **22**, 343 (2019).

17 72. Linnér, R.K. *et al.* Genome-wide association analyses of risk tolerance and risky
18 behaviors in over 1 million individuals identify hundreds of loci and shared
19 genetic influences. *Nature Genetics* **51**, 245-257 (2019).

20 73. Lee, J.J. *et al.* Gene discovery and polygenic prediction from a genome-wide
21 association study of educational attainment in 1.1 million individuals. *Nature*
22 *Genetics* **50**, 1112–1121 (2018).

23 74. Shungin, D. *et al.* New genetic loci link adipose and insulin biology to body fat
24 distribution. *Nature* **518**, 187 (2015).

25 75. Davies, G. *et al.* Study of 300,486 individuals identifies 148 independent genetic
26 loci influencing general cognitive function. *Nature Communications* **9**, 2098
27 (2018).

28 76. Kichaev, G. *et al.* Leveraging polygenic functional enrichment to improve GWAS
29 power. *The American Journal of Human Genetics* **104**, 65-75 (2019).

30 77. Wray, N.R. *et al.* Genome-wide association analyses identify 44 risk variants and
31 refine the genetic architecture of major depression. *Nature genetics* **50**, 668
32 (2018).

1 78. Li, Z. *et al.* Genome-wide association analysis identifies 30 new susceptibility loci
2 for schizophrenia. *Nature Genetics* **49**, 1576-1583 (2017).

3 79. Periyasamy, S. *et al.* Association of schizophrenia risk with disordered niacin
4 metabolism in an Indian genome-wide association study. *JAMA psychiatry* **76**,
5 1026-1034 (2019).

6 80. Ripke, S. *et al.* Biological insights from 108 schizophrenia-associated genetic loci.
7 *Nature* **511**, 421 (2014).

8 81. Savage, J.E. *et al.* Genome-wide association meta-analysis in 269,867 individuals
9 identifies new genetic and functional links to intelligence. *Nature Genetics* **50**,
10 912-919 (2018).

11 82. Jansen, P.R. *et al.* Genome-wide analysis of insomnia in 1,331,010 individuals
12 identifies new risk loci and functional pathways. *Nature Genetics* **51**, 394-403
13 (2019).

14 83. Lam, M. *et al.* Pleiotropic Meta-Analysis of Cognition, Education, and
15 Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult
16 Synaptic Pathways. *bioRxiv*, 519967 (2019).

17 84. Liu, J. *et al.* The coexistence of copy number variations (CNVs) and single
18 nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of
19 the significance in associating SNPs to disease. *Human genetics* **137**, 553-567
20 (2018).

21 85. Jones, S.E. *et al.* Genome-wide association analyses of chronotype in 697,828
22 individuals provides insights into circadian rhythms. *Nature communications* **10**,
23 343 (2019).

24 86. Consortium, C.-D.G.o.t.P.G. Identification of risk loci with shared effects on five
25 major psychiatric disorders: a genome-wide analysis. *The Lancet* **381**, 1371-1379
26 (2013).

27 87. Rietveld, C.A. *et al.* Common genetic variants associated with cognitive
28 performance identified using the proxy-phenotype method. *Proceedings of the
29 National Academy of Sciences* **111**, 13790-13794 (2014).

30 88. St Pourcain, B. *et al.* Variability in the common genetic architecture of
31 social-communication spectrum phenotypes during childhood and adolescence.
32 *Molecular autism* **5**, 18 (2014).

1 89. Day, F.R., Ong, K.K. & Perry, J.R. Elucidating the genetic basis of social interaction
2 and isolation. *Nature communications* **9**, 2457 (2018).

3 90. Goes, F.S. *et al.* Genome-wide association study of schizophrenia in Ashkenazi
4 Jews. *American Journal of Medical Genetics Part B: Neuropsychiatric Genetics*
5 **168**, 649-659 (2015).

6 91. Hou, L. *et al.* Genetic variants associated with response to lithium treatment in
7 bipolar disorder: a genome-wide association study. *The Lancet* **387**, 1085-1093
8 (2016).

9 92. Van Rheenen, W. *et al.* Genome-wide association analyses identify new risk
10 variants and the genetic architecture of amyotrophic lateral sclerosis. *Nature*
11 *genetics* **48**, 1043 (2016).

12 93. Nicolas, A. *et al.* Genome-wide analyses identify KIF5A as a novel ALS gene.
13 *Neuron* **97**, 1268-1283. e6 (2018).

14 94. Zhou, H. *et al.* Genetic risk variants associated with comorbid alcohol
15 dependence and major depression. *JAMA psychiatry* **74**, 1234-1241 (2017).

16 95. Anney, R.J.L. *et al.* Meta-analysis of GWAS of over 16,000 individuals with autism
17 spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap
18 with schizophrenia. *Molecular Autism* **8**, 21 (2017).

19 96. Watanabe, K. *et al.* A global overview of pleiotropy and genetic architecture in
20 complex traits. *Nature Genetics*, in press. (2019).

21 97. Song, M. *et al.* Mapping cis-regulatory chromatin contacts in neural cells links
22 neuropsychiatric disorder risk variants to target genes. *Nature genetics* **51**, 1252
23 (2019).

24 98. Giusti-Rodriguez, P.M. & Sullivan, P.F. Using three-dimensional regulatory
25 chromatin interactions from adult and fetal cortex to interpret genetic results for
26 psychiatric disorders and cognitive traits. *BioRxiv*, 406330 (2019).

27 99. Wang, Q. *et al.* A Bayesian framework that integrates multi-omics data and gene
28 networks predicts risk genes from schizophrenia GWAS data. *Nature*
29 *neuroscience* **22**, 691 (2019).

30 100. Ioannidis, N.M. *et al.* Gene expression imputation identifies candidate genes and
31 susceptibility loci associated with cutaneous squamous cell carcinoma. *Nature*
32 *communications* **9**, 4264 (2018).

1 101. Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic
2 data. *Nature* **562**, 203-209 (2018).

3

4 **METHODS**

5 **GWAS summary statistics datasets**

6 We made use of GWAS summary statistics to test for gene-trait associations in our
7 TWAS study. The GWAS summary-level were from six studies, including the UK Biobank
8 (UKB, <http://www.ukbiobank.ac.uk/resources/>) study,
9 the Human Connectome Project (HCP, <https://www.humanconnectome.org/>) study,
10 the Pediatric Imaging, Neurocognition, and Genetics (PING,
11 <http://www.chd.ucsd.edu/research/ping-study.html>) study, the Philadelphia
12 Neurodevelopmental Cohort (PNC,
13 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.p1)
14 study, the Alzheimer's Disease Neuroimaging Initiative (ADNI,
15 <http://adni.loni.usc.edu/data-samples/>) study, and ENIGMA2 (GWAS of subcortical
16 volumes) and the ENIGMA-CHARGE collaboration (<http://enigma.ini.usc.edu/research/>).
17 For discovery, we used the GWAS summary statistics of the UKB study. Then the GWAS
18 results of the other studies were used for validation, see **Supplementary Table 22** for a
19 summary of sample size and the analyzed neuroimaging traits of each GWAS. More
20 information about study cohorts and neuroimaging traits can be found in the original
21 GWAS^{24,33,37,38}. We also performed TWAS analysis for 11 cognitive and mental health
22 traits, see **Supplementary Table 23** for these data resources.

23

24 **Cross-tissue TWAS analysis by UTMOST**

25 Cross-tissue TWAS analysis was performed for each trait using the UTMOST software
26 (<https://github.com/Joker-Jerome/UTMOST>). We first run single-tissue association test
27 for each of the 44 GTEx (v6) reference panels using the above GWAS summary statistics
28 as input. There were 17,290 candidate genes considered in UTMOST. Second, the
29 gene-trait associations in 44 panels (tissues) were combined by the GBJ test
30 (<https://cran.r-project.org/web/packages/GBJ/>). We used the pre-trained cross-tissue
31 imputation models and pre-calculated covariance matrices provided by UTMOST. For

1 the 211 neuroimaging traits in the UKB cohort, we also performed a brain-tissue specific
2 version of UTMOST analysis that only combined brain tissues.

3

4 **Comparison with previous GWAS findings**

5 We compared TWAS-significant genes with those identified in the same UKB cohort by
6 MAGMA gene-based association analysis and FUMA functional gene mapping analysis,
7 which can be found in previous GWAS (Supplementary Tables 12 and 15 of Zhao, et al.³⁷
8 for ROI volumes and Supplementary Tables 14 and 16 of Zhao, et al.³⁸ for DTI
9 parameters, respectively). For each significant gene-trait association, we also explored
10 whether any genetic variant of this gene region (with 1MB window on both sides) had
11 been linked to this neuroimaging trait by checking the smallest p-value in corresponding
12 GWAS. For TWAS-significant genes that were not identified in GWAS, we used
13 NHGRI-EBI GWAS catalog (version 2019-10-14, <https://www.ebi.ac.uk/gwas/>) to look for
14 their reported associations with brain structure traits and any other traits. We
15 summarized the traits that frequently reported for these genes, such as physical
16 measures (e.g., height, waist-to-hip ratio, heel bone mineral density, body mass index),
17 cognitive functions (such as general cognitive ability, cognitive performance),
18 intelligence, educational attainment, math ability (such as highest math class taken and
19 self-reported math ability), reaction time, neuroticism, neurodegenerative diseases
20 (such as Alzheimer's disease and Parkinson's disease), neuropsychiatric disorders (such
21 as major depressive disorder, schizophrenia, and bipolar disorder), coronary artery
22 disease, and mean corpuscular hemoglobin.

23

24 **Cross-tissue analysis conditional on the most significant GWAS signal**

25 The TWAS gene expression imputation model can be viewed as a weighted sum of
26 multiple genetic variants. If certain variant has a relatively large weight, the imputed
27 gene expression could be driven by a single GWAS signal. In order to look at how many
28 significant TWAS signals could be dominated by a single genetic variant, we rerun TWAS
29 analysis in UKB cohort conditional on the most significant variant used in the UTMOST
30 imputation model. First, for each reference panel, we considered a simple linear model

31 $\text{Phenotype} \sim \text{imputed gene expression} + \text{variant}$,

1 where the variant conditioned on was the most significant variant in previous GWAS of
2 this phenotype in the same UKB cohort. Then, single-tissue conditional p-values of the
3 imputed gene expression were combined by the GBJ test across the 44 GTEx reference
4 panels.

5

6 **Enrichment analyses and drug-target lookups**

7 The chromatin interaction enrichments between significant and non-significant genes
8 were tested using the Wilcoxon rank sum test. For the adult neural Promoter Capture
9 Hi-C (PCHi-C), the enrichment of each gene was measured as the number of interactions
10 overlapping gene with CHiCAGO Enrichment Score greater than 5⁹⁷. The enrichment was
11 tested separately in four cell types, including induced pluripotent stem cells
12 (iPSC)-induced excitatory neurons, iPSC-derived hippocampal DG-like neurons,
13 iPSC-induced lower motor neurons, and primary astrocytes. For the high confident
14 interactions of adult and fetal cortex, the enrichment of each gene was measured as the
15 sum of $-\log_{10}(P\text{-value})$ of all significant interactions overlapping the gene⁹⁸. The
16 drug-target lookups were conducted using the drug-gene associations reported in Wang,
17 et al. ⁹⁹. We focused on nervous system drugs whose Anatomical Therapeutic Chemical
18 code starts with “N” according to the DrugBank database (version 2019-07-02,
19 <https://www.drugbank.ca/atc>).

20

21 **Gene-based TWAS polygenic risk prediction**

22 Gene-based polygenic profiles were created to assess the out-of-sample prediction
23 power of the UKB TWAS results. In this analysis, we used the individual-level phenotype
24 and genetic data, whose processing steps were detailed in previous GWAS^{37,38}. The
25 FUSION software and database (<http://gusevlab.org/projects/fusion/>) were used to
26 impute gene expression levels in UKB, ADNI, HCP, PNC, and PING datasets using
27 individual-level genetic data. We performed imputation for 52 different reference
28 panels (**Supplementary Table 21**). In training data (UKB), we estimated the effect size of
29 each imputed gene expression in a linear regression model, while adjusting for the age
30 (at imaging), age-squared, sex, age-sex interaction, age-squared-sex interaction, as well
31 as the top 40 genetic principle components (PCs) provided by UKB¹⁰¹ (Data-Field 22009).
32 For ROI volumes, we also included total brain volume (for ROIs other than total brain

1 volume itself) as a covariate. The gene-based PRS were generated in testing data by
2 summarizing across imputed gene expressions, weighed by their effect sizes estimated
3 from the training data. We tried a series of p-value thresholds for predictor selection: 1,
4 0.8, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.05, 0.02, 0.01, 0.001, $1*10^{-4}$, $1*10^{-5}$, $1*10^{-6}$, $1*10^{-7}$, and
5 $5*10^{-8}$. Thus, seventeen polygenic profiles were generated for each neuroimaging traits
6 and we reported the best prediction power that can be achieved by a single profile of
7 them in the single reference panel. The association between polygenic profile and trait
8 was estimated and tested in linear regression model, adjusting for the effects of age and
9 sex. The additional phenotypic variation that can be explained by polygenic profile (i.e.,
10 the incremental R-squared) was used to measure the prediction power.

11

12 **Data availability**

13 The individual-level data used in this work was obtained from five publicly available
14 datasets: the UK Biobank (UKB) study, the Human Connectome Project (HCP) study, the
15 Pediatric Imaging, Neurocognition, and Genetics (PING) study, the Philadelphia
16 Neurodevelopmental Cohort (PNC) study, and the Alzheimer's Disease Neuroimaging
17 Initiative (ADNI) study. The GWAS summary statistics of UKB study have been shared at
18 <https://github.com/BIG-S2/GWAS>, and the summary statistics of other validation
19 datasets will also be shared at <https://github.com/BIG-S2/GWAS> upon acceptance of
20 this paper. We also used the summary-level data of ENIGMA2 and ENIGMA-CHARGE
21 collaboration, which can be obtained at <http://enigma.ini.usc.edu/research/>. In addition,
22 we used other 11 sets of publicly available GWAS summary statistics shared by several
23 GWAS databases. These data resources were summarized in **Supplementary Table 23**.

24

25 **Code availability**

26 We made use of publicly available software and tools, especially the UTMOST
27 (<https://github.com/Joker-Jerome/UTMOST>) and the FUSION
28 (<http://gusevlab.org/projects/fusion/>). All codes used to generate results that are
29 reported in this paper are available upon request.

30

31 **Figure legends**

1 **Figure 1. Selected significant gene-trait associations discovered in UKB (UK Biobank)**
2 **cross-tissue TWAS analysis of 211 neuroimaging traits (n=19,629 subjects for ROI**
3 **volumes and 17,706 for DTI parameters).**

4 The gene-level associations were estimated and tested by the cross-tissue UTMOST
5 approach (<https://github.com/Joker-Jerome/UTMOST>). We used the p-value threshold
6 of 1.37×10^{-8} , corresponding to adjusting for testing 211 imaging phenotypes with the
7 Bonferroni correction. The x axis provides the IDs of the neuroimaging traits, and the y
8 axis lists the detected genes in TWAS. The new (UTMOST new) and previously reported
9 GWAS-significant associations (MAGMA, FUMA, and FUMA&MAGMA) were labeled with
10 different colors (orange, purple, green, and red, respectively).

11

12 **Figure 2. TWAS-significant genes of neuroimaging traits (n=19,629 subjects for ROI**
13 **volumes and 17,706 for DTI parameters) that have been linked to other complex traits**
14 **in previous GWAS.**

15 For each of the TWAS-significant genes listed in the x axis, we manually checked the
16 previously reported associations on the NHGRI-EBI GWAS catalog
17 (<https://www.ebi.ac.uk/gwas/>). The genes associated with DTI parameters (DTI), ROI
18 volumes (Volume), and both of them (Both) were labeled with three different colors
19 (blue, orange, and green, respectively).

20

21 **Figure 3. Overlapping TWAS-significant genes between neuroimaging traits (n=19,629**
22 **subjects for ROI volumes and 17,706 for DTI parameters) and 11 cognitive and mental**
23 **health traits.**

24 The gene-level associations were estimated and tested by the cross-tissue UTMOST
25 approach (<https://github.com/Joker-Jerome/UTMOST>). We adjusted for testing 211
26 neuroimaging traits (p-value threshold 1.37×10^{-8}) and 11 cognitive traits (p-value
27 threshold 2.63×10^{-7}) with the Bonferroni correction, respectively. The x axis provides the
28 IDs of the neuroimaging traits. The y axis lists the 11 cognitive and mental health traits,
29 and **Supplementary Table 23** details the resources of their GWAS summary statistics
30 and the sample sizes of corresponding studies.

31

1 **Figure 4. Prediction accuracy (incremental R-squared) of gene-based polygenic risk**
2 **scores constructed by UKB TWAS results (n=19,629 subjects) on the four independent**
3 **datasets.**

4 The x axis lists the four independent cohorts (ADNI, HCP, PING and PNC) and the y axis
5 lists the ROI volumes. The displayed numbers are the proportions of phenotypic
6 variation that can be additionally explained by UKB TWAS-derived gene-based PRS.







