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Abstract

Structural and microstructural variations of human brain are heritable and highly
polygenic traits, with hundreds of associated genes founded in recent genome-wide
association studies (GWAS). Using gene expression data, transcriptome-wide association
studies (TWAS) can prioritize these GWAS findings and also identify novel gene-trait
associations. Here we performed TWAS analysis of 211 structural neuroimaging
phenotypes in a discovery-validation analysis of six datasets. Using a cross-tissue
approach, TWAS discovered 204 associated genes (86 new) exceeding Bonferroni
significance threshold of 1.37*10® (adjusted for testing multiple phenotypes) in the UK
Biobank (UKB) cohort, and validated 18 TWAS or previous GWAS-detected genes. The
TWAS-significant genes of brain structures had been linked to a wide range of complex
traits in different domains. Additional TWAS analysis of 11 cognitive and mental health
traits detected 69 overlapping significant genes with brain structures, further
characterizing the genetic overlaps among these brain-related traits. Through TWAS
gene-based polygenic risk scores (PRS) prediction, we found that TWAS PRS gained
substantial power in association analysis compared to conventional variant-based PRS,
and up to 6.97% of phenotypic variance (p-value=7.56*103?) in testing datasets can be
explained by UKB TWAS-derived PRS. In conclusion, our study illustrates that TWAS can
be a powerful supplement to traditional GWAS in imaging genetics studies for gene

discovery-validation, genetic co-architecture analysis, and polygenic risk prediction.

Keywords: Gene expression; Cross-tissue TWAS; Regional brain volumes; Diffusion

tensor imaging; UK Biobank.
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Brain structural and microstructural differences are phenotypically associated with
many other complex traits across different categories, such as cognitive measures!>,
neurodegenerative/neuropsychiatric traits®®, alcohol and tobacco consumptionl®, and
physical bone density!l. Structural variations of human brain can be quantified by
multimodal magnetic resonance imaging (MRI). Specifically, the T1l-weighted MRI
(T1-MRI) can provide basic morphometric information of brain tissues, such as volume,
surface area, sulcal depth, and cortical thickness. In region of interest (ROIl)-based
T1-MRI analysis, images are annotated onto ROIs of pre-defined brain atlas, and then
both global (e.g., whole brain, gray matter, white matter) and local (e.g., basal ganglia
structures, limbic and diencephalic regions) markers can be generated to measure the
brain anatomy. On the other hand, diffusion MRI (dMRI) can capture local tissue
microstructure through the random movement of water. Using diffusion tensor imaging
(DTI) models, brain structural connectivity can be quantified by using white matter
tracts extracted from dMRI, which build psychical connections among brain ROIs and are
involved in connected networks for various brain functions'?!3. See Miller, et al. 1* and
Elliott, et al. * for a global overview and more information about neuroimaging

modalities used in the present study.

Structural neuroimaging traits have shown moderate to high degree of heritability in
both twin and population-based studies!*?4. In the past ten years, genome-wide
association studies (GWAS)>142433 have been conducted to identify the associated
genetic variants (typically single-nucleotide polymorphisms [SNPs]) for brain structures.
A highly polygenic3*3> genetic architecture has been observed, indicating that a large
number of genetic variants contribute to the brain structure variations measured by
neuroimaging biomarkers?12®, Particularly, using data from the UK Biobank (UKB°)
cohort, two recent large-scale GWAS have identified 578 associated genes for 101
regional brain volumes derived from T1-MRI*’ (referred as ROl volumes, n=19,629) and
110 DTI parameters of dMRI®® (referred as DTl parameters, n=17,706). Some of these
discovered genes had been implicated with the same or other traits such as cognition
and mental health diseases/disorders in previous GWAS. However, most of them have
not been verified and need further investigations. As a supplement to traditional GWAS,

recent advances of gene expression imputation methods***® and developments of
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reference databases (e.g., the Genotype-Tissue Expression (GTEx) project*’) have put
the transcriptome-wide association studies (TWAS) forward for gene-trait association
analysis. Despite some challenges®® such as interpreting causality, TWAS has successfully
discovered novel gene-trait associations and provided new insights into biological
mechanisms for many complex traits*. Through imputed transcriptomes, TWAS can
reduce the multiple testing burden and leverage gene expression data to increase
testing power for gene-trait association detection. This is a particularly desirable feature
for imaging genetics studies, for which most of neuroimaging GWAS datasets continue

to have small sample sizes and heavy multiple testing burden.

Here we applied TWAS methods to 211 structural neuroimaging traits including 101 ROI
volumes and 110 DTI parameters. As these brain-related traits tend to be highly
polygenic?3® and are related with many traits across different categories!?, we used a
cross-tissue (panel) TWAS approach (UTMOST#?) in our main analysis. UTMOST first
performs single-tissue gene-trait association analysis in each reference panel with both
within-tissue and cross-tissue statistical penalties, and then combines these single-tissue
results using the Generalized Berk-Jones (GBJ) test®’, which is aware of
tissue-dependence and can account for the potential sharing of local expression
regulation across tissues. The UKB dataset was used in the discovery phase (n=19,629
for ROI volumes and 17,706 for DTl parameters, respectively). For the same UKB cohort,
we compared TWAS-significant genes to previous GWAS findings in gene-based
association analysis via MAGMA>? and gene-level functional mapping and annotation
results by FUMA>. The UKB TWAS results were validated in five independent data
sources, including Philadelphia Neurodevelopmental Cohort (PNC>*,n=537), Alzheimer’s
Disease Neuroimaging Initiative (ADNI®>, n=860), Pediatric Imaging, Neurocognition, and
Genetics (PING®®, n=461), the Human Connectome Project (HCP®’, n=334), and the
ENIGMA2?* and ENIGMA-CHARGE collaboration3® (n=13,193, for 8 ROl volume traits,
referred as ENIGMA in this paper). Additional TWAS analysis was performed on 11
cognitive and mental traits to explore their genetics overlaps with brain structures.
Chromatin interaction enrichment analysis and drug-target lookups were conducted for

TWAS-significant genes. Finally, we developed TWAS gene-based polygenic risk scores>®
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(PRS) using FUSION*® to fully assess polygenic architecture and examine the predictive
ability of the UKB TWAS results.

RESULTS

Overview of TWAS discovery-validation in the six datasets

We conducted a two-phase discovery-validation TWAS analysis for 211 neuroimaging
traits by using the UKB cohort for discovery and the other datasets (ADNI, HCP, PING,
PNC, and ENIGMA) for validation. We applied the UTMOST gene expression imputation
models trained on 44 GETx (v6) reference panels, and used GWAS summary statistics
generated from previous GWAS as inputs. In the rest of this paper, we refer 1.37*10®
(that is, 5*102/17,290/211, adjusted for all candidate genes and traits performed) as

the significance threshold for gene-trait associations unless otherwise stated.

The UKB discovery phase identified 614 significant gene-trait associations
(Supplementary Table 1) between 204 genes and 135 neuroimaging traits (53 ROI
volumes, 82 DTl parameters). Of the 204 TWAS-significant genes, 61 (29.9%) had
significant associations with more than two neuroimaging traits, 25 (12.3%) had more
than five significant associations, and 12 (5.9%) had at least ten, including OSER1, XRCC4,
PLEKHM1, ZKSCAN4, EIF4EBP3, MAPT, LRRC37A, CRHR1, FOXF1, TREH, ARHGAP27, and
C6orf100. These 12 genes together contributed 195 (31.8%) of the 614 gene-trait
associations, indicating their widespread influences on brain structures. Specifically, we
identified 123 genes whose imputed gene expression levels were significantly associated
with one of more of the 53 ROl volumes (215 associations in total, 115 new,
Supplementary Fig. 1), and 103 significantly associated genes (22 overlapping) for one
or more of the 82 DTl parameters (399 associations in total, 219 new, Supplementary
Fig. 2). Figure 1 illustrates that TWAS prioritized previous GWAS findings of MAGMA and
FUMA and also discovered many new associations and genes. Moreover, some genes
were associated with both ROl volumes and DTl parameters, while others were more
specifically related to certain structures (Supplementary Fig. 3). For example, XRC(C4,
ZKSCAN4, EIF4EBP3, and CD14 were associated with DTl parameters but not ROI
volumes, DEFB124, COX412, HCK, HM13, and REM1 showed associations with putamen
and pallidum volumes, and the associations of PLEKHM1, LRRC37A, MAPT, CNNM2,
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NT5C2, ARHGAP27, and CRHR1 were spread widely across DTl parameters and total

brain volume.

We validated the UKB results in the other five independent cohorts. For each dataset,
we applied the Bonferroni-corrected significance threshold accounting for all candidate
genes and traits analyzed (that is, 5*102/17,290/number of traits, Supplementary
Tables 2-6). We found that 13 UKB TWAS-significant genes and 5 more previous
GWAS-significant genes can be validated in one or more of the five validation datasets
(Supplementary Fig. 4) including ANKRD42, DCC, DCTPP1, DLGAP5, HCK, LGALS3, UBE2C,
KLRD1, LRRC37A, OSER1, PRPF3, TREH, TGM7, NUP210L, DOK5, KRTAP5-1, C200rf166,
and DPP4. The TWAS novel findings and validated genes were discussed further in

details below.

Novel TWAS discoveries and validated genes

Of the 204 UKB TWAS-significant genes, 90 were not discovered in previous GWAS of
the same UKB dataset (Supplementary Table 7). TWAS resulted in 60 new associated
genes for 53 ROI volumes (106 associations, Supplementary Fig. 5), and 52 new genes
for 82 DTI parameters (139 associations, Supplementary Fig. 6). According to NHGRI-EBI
GWAS catalog®®, the 90 TWAS-significant genes replicated four previous findings on
brain structures, including JPH3% for hippocampal volume in mild cognitive impairment,
CNNM2%' for white matter lesion progression, FOXF1%? for hippocampal volume in
Alzheimer’s disease progression, and C1QL1% for white matter hyperintensity burden.
The other 86 genes had not been linked to brain structure previously and thus can be
regarded as novel genes for these 211 neuroimaging traits. To explore the genetic
overlaps with other traits in different domains, we performed association lookups for
the 90 TWAS-significant genes on the NHGRI-EBI GWAS catalog (Supplementary Table
8). Figure 2 shows that these genes were widely associated with physical measures (e.g.,
height, waist-to-hip ratio, heel bone mineral density, body mass index), cognitive traits
(e.g., cognitive function, intelligence, math ability), neuropsychiatric and
neurodegenerative diseases/disorders (e.g., schizophrenia, bipolar disorder, Alzheimer's

disease), coronary artery disease, mean corpuscular hemoglobin, neuroticism,
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education, reaction time, chronotype, smoking behavior and alcohol use, such as

CDK2AP15467, EL15870, CTTNBP27173, and SH2B17%747¢,

For the 18 TWAS-validated genes shown in Supplementary Fig. 4, 8 (ANKRD42, DCC,
LRRC37A, NUP210L, DOK5, KRTAP5-1, C20orfl166, and DPP4) of them had been
discovered in the previous UKB GWAS and were implicated in brain-related complex
traits, such as neuroticism®, major depression’’, schizophrenia’®®°, Intelligence®!, math
ability’3, reaction time’®, and insomnia®. The left ten genes, which were novel findings
of TWAS, also had known associations with many cognitive and mental health traits. For
example, previous GWAS reported that HCK was associated with chronotype®?, LGALS3
with schizophrenia®, UBE2C with reaction time’®, KLRD1 with adolescent idiopathic
scoliosis®, OSER1 with cognitive performance’’ and Alzheimer's disease’®, and PRPF3
with chronotype’®8> and neuropsychiatric disorders®®. In summary, TWAS novel and
validated genes expand the overview of gene-level pleiotropy across these traits,
suggesting that neuroimaging-derived biomarkers could be useful in studying a wide

range of complex traits.

Compared to brain tissue-specific TWAS analysis

As a comparison, we performed a brain tissue-specific version of TWAS that only
combines brain tissues in UTMOST (Method). This brain tissue-specific TWAS detected
308 significant gene-trait associations (Supplementary Table 9) between 107 unique
genes and 96 neuroimaging traits, including 64 associated genes for one or more of 37
ROI volumes (104 associations, Supplementary Fig. 7), and 53 genes (10 overlapping) for

one or more of 59 DTl parameters (204 associations, Supplementary Fig. 8).

Most (101/107) of the tissue-specific genes have been identified by either the
cross-tissue TWAS (95/107) or previous GWAS (70/107). The 6 genes that were uniquely
identified by tissue-specific analysis included KNCN, LHFPL3, MBD2, TBK1, C3orf62, and
TMEM173. LHFPL3 showed associations with education®’, social behavior®®29, cognitive
ability”®, schizophrenia®®, and bipolar disorder®. MBD2 was associated with reaction
time’®, TBK1 with amyotrophic lateral sclerosis®®®3, and C3orf62 with intelligence®?.

Compared to tissue-specific TWAS, cross-tissue analysis clearly identified more signals.
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For example, of the 215 gene-trait associations identified by cross-tissue analysis of ROI
volumes, 100 had been identified in GWAS, 28 can be additionally identified by
tissue-specific TWAS, and 87 can only be detected by cross-tissue analysis
(Supplementary Fig. 9). Similarly, 180 of the 399 cross-tissue TWAS associations for DTI
can be identified in GWAS, 69 can be additionally identified by tissue-specific TWAS, and
150 were cross-tissue TWAS only (Supplementary Fig. 10). These results illustrate the
advantage of cross-tissue analysis over brain tissue-specific TWAS for discovering
association signals that are difficult to be identified in traditional GWAS. We further

compared their results in a few follow-up analyses below.

Comparison with GWAS variant-level signals and conditional analysis

For each of the 614 gene-trait associations detected in cross-trait TWAS, we used
previous GWAS summary statistics to check the most significant variant within the gene
region (with a 1IMB window on each side) that was pinpointed in the same UKB dataset
(Method). The GWAS p-value of the most significant variant was greater than 1*10°® for
any associations of 13 genes (Supplementary Table 10). None of them had been
identified by MAGMA or FUMA, indicating that it can be difficult to detect these genes
by GWAS or post-GWAS screening for any of these neuroimaging traits. Of the 13 genes,
7 (OSER1, TREH, PRPF3, KLRD1, TGM7, DCTPP1, UBE2C) were validated in one or more
of the five validation datasets and were discussed in previous section. For the other 6
genes (CELSR3, MYO9A, DNAJC24, GYPE, TMEM136, MOB4) genes, MOB4 was reported
for major depression®® and autism spectrum disorder/schizophrenia®>, DNAJC24 was
linked to adolescent idiopathic scoliosis®*, and CELSR3 was associated with education®
and cognitive ability®*81, The same checking was then performed for the 308 significant
gene-trait associations of brain tissue-specific TWAS. We found that only one gene

DCTPP1 had minimum GWAS p-value greater than 1*10® (Supplementary Table 11).

We next performed a conditional analysis to see whether the TWAS signals remained
significant after adjustment for the most significant genetic variant used in UTMOST
gene expression imputation models (Method). Although our cross-tissue analysis
combined information from many genetic variants across various human tissues, we

found that 418 of the 614 associations may indeed be dominated by the strongest
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GWAS signal of the imputation model, as their conditional p-values were larger than
0.05 (Supplementary Table 12). However, the conditional p-values of four genes (XRCC4,
OBFC1, Cl5o0rf56, NMT1) were smaller than 1*10° for 18 gene-trait associations,
suggesting that these associations were unlikely to be driven by a signal genetic variant.
When the p-value threshold was relaxed to 1*1073, 66 associations of 20 genes persisted
after conditional analysis. The conditional analysis was also performed on significant
associations of brain tissue-specific TWAS. Their conditional p-values were smaller than
1*10°for three genes (XRCC4, C150rf56, NMT1) with 15 associations, and were smaller
than 1*103for 10 genes with 42 associations (Supplementary Table 13).

Additional TWAS analysis for cognitive and mental health traits

To further explore the gene-level genetic overlaps among brain structure and other
brain-related traits, we performed cross-tissue TWAS analysis for 11 cognitive and
mental health traits (Supplementary Table 14). We found that 69 of the 204
TWAS-significant genes of neuroimaging traits were also significantly associated with
one or more of the 11 cognitive and mental health traits (Figure 3). These results
suggest the genes involved in brain structure changes are often also active in brain
functions and mental disorder/diseases. For example, we found 33 overlapping genes
with cognitive function, 32 with education, 26 with numerical reasoning, 25 with
intelligence, 23 with neuroticism, 19 with drinking behavior, and 13 with schizophrenia.
A large proportion (48/69) of these genes were associated with more than one cognitive
or mental health traits, and 11 genes were linked to at least five traits, including SCML4,
Cl6orf54, DCC, NFATC2IP, NPIPB7, NPIPBY, SH2B1, CRHR1, LRRC37A, HIST1H2BO, and
NKAPL, indicating the high degree of statistical pleiotropy®® of these genes.

Chromatin interaction enrichment analysis and drug-target lookups

To explore the biological interpretations of TWAS and GWAS-significant genes, we
performed enrichment analysis in promoter-related chromatin interactions of four types
of brain neurons®’ (iPSC-induced excitatory neurons, iPSC-derived hippocampal DG-like
neurons, iPSC-induced lower motor neurons, and primary astrocytes), and also in high
confident interactions of adult and fetal cortex®® (Method). The raw p-values of

Wilcoxon rank test for enrichment were summarized in Supplementary Table 15. We
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found that cross-tissue TWAS-significant genes of the 11 cognitive and mental health
were significantly enriched in chromatin interactions from all of the five validation
datasets (p-value range=[4.91*10'" 3.03*107]), suggesting that TWAS-significant genes
actively interacted with other chromatin regions and played a more important role in
regulating gene expressions as compared with other genes. The cross-tissue
TWAS-significant genes of neuroimaging traits also showed significant enrichments
(p-value range=[1.38*103,2.44*102]). Merging the two sets of genes resulted in smaller
p-value in each dataset (p-value range=[2.93*101Y 2.77*10°]). The most significant
enrichment was observed in iPSC-induced lower motor neurons. These results remained
significant after adjusting for multiple testing by using Benjamini-Hochberg (B-H)
procedure at 0.05 level (Supplementary Table 16). In contrast, GWAS-significant genes
were only significantly enriched in primary astrocytes and high confident interactions
(p-value range=[5.11*10% 1.48*1072]), and brain tissue-specific TWAS-significant genes

did not show any significant enrichments after B-H adjustment.

We carried out drug-target lookups using a recently published drug-target database® to
see whether any of the TWAS and GWAS-significant genes were known targets of
existing drugs. We focused on nervous system drugs with Anatomical Therapeutic
Chemical (ATC) code started with “N”, yielding 2,285 drug-gene pairs between 273
drugs and 241 targeted genes. We found that 12 TWAS-significant genes of the 11
cognitive and mental health traits were known targets for 64 drugs, including CACNA1|,
ESR1, ALDH2, CACNA1C, GRM2, KCNJ3, SCN3A, CACNA1D, KCNK3, CHRNA3, CHRNAG,
and SLC6A4. Of the 64 drugs, 27 were anti-depressants (ATC: NO6A) to treat major
depressive disorder and other conditions, and 10 were anti-psychotics (ATC: NO5A) to
manage psychosis such as schizophrenia and bipolar disorder (Supplementary Table 17).
In addition, 3 more drug-target genes (GABBR1, HTR2B, CREB1) were detected by GWAS
or TWAS of neuroimaging traits (Supplementary Table 18). These 3 genes were
targets for 19 more drugs, 6 of which were anti-Parkinson drugs (ATC: NO4) for
treatment of Parkinson’s disease and related conditions, and 5 were anti-migraine
preparations (ATC: NO2C) used in prophylaxis and treatment of migraine. These results
may suggest that TWAS-significant genes could be considered as new targets in future

drug development.

10
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TWAS gene-based polygenic risk scores analysis

To fully assess the polygenic genetic architecture of neuroimaging traits and examine
the predictive ability of UKB TWAS results, we constructed TWAS gene-based PRS on
subjects in PNC, HCP, PING, and ADNI cohorts for all of the 211 neuroimaging traits
(Method). The prediction analysis was conducted separately on 52 reference panels (13
GETx v7 brain tissues, 35 GTEx v7 other tissues, 1 non-GETx brain tissue, and 3 non-GETx
other tissues) using the FUSION*® software and database. We found that genetically
predicted profiles for 28 ROI volumes (Figure 5) and 23 DTI parameters (Supplementary
Fig. 11) were significantly associated with the corresponding observed traits in all
testing datasets after Bonferroni correction (that is, 101*4+3*110=734 tests). Compared
to previous SNP-based PRS analysis that yielded significant PRS profiles for 11 ROI
volumes?’, gene-based PRS profiles were significant for more ROl volumes, such as
left/right insula, left/right pallidum, left/right ventral DC, left/right fusiform, and
left/right transverse temporal, suggesting the substantial power gain in association
analysis of PRS. The significant TWAS PRS can account for 0.97%-6.97% phenotypic
variance (p-value range=[8.0%*10%°, 6.81*10°]) (Supplementary Tables 19-20), which
was within the similar range to SNP-based PRS analysis. For example, the (incremental)
R-squared of TWAS PRS of Cerebellar vermal lobules VIII-X was 6.97% in PNC and 6.48%
in HCP, and the R-squared of SFO MD-derived TWAS PRS was 3.8% in PING and 2.41% in
PNC. We also examined the performance of each reference panel on these significant
traits. There was a significant linear relationship between the panel sample size and
average prediction R-squared (48 GTEx reference panels, simple correlation=0.53,
p-value=1.21*10*, Supplementary Fig. 12), which means that currently panel sample
size may dominate the performance of TWAS PRS analysis regardless of the tissue
specificity®®. Among the brain tissue panels, we found that cerebellum tissue had the
largest sample size and also showed the highest average R-squared (Supplementary

Table 21), further supporting the importance of reference panel sample size.
DISCUSSION

In this study, we applied TWAS methods on 211 neuroimaging traits to identify genes,

whose imputed expression levels were associated with brain structure variations. Using

11
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a cross-tissue approach, our main discovery analysis identified 86 novel genes and
validated 18 significant genes at stringent Bonferroni-correction p-value thresholds.
Conditional analysis and comparison with GWAS variant-level results suggested that the
identification and validation of new genes reflect the ability of TWAS to reduce the
testing burden and to combine the small genetic variant effects. We also performed
brain tissue-specific TWAS and illustrated the unique strengths of cross-tissue TWAS in
conditional and enrichment analyses. Lots of brain structure-related genes were known
genetic factors for a wide range of complex traits, ranging from physical traits, cognition,
mental disease/disorders, blood assays, to lifestyle, which extend the potential
applications of neuroimaging traits. Some of these genetic overlaps were additionally

highlighted by a TWAS analysis of 11 cognitive and mental health traits.

The present study faces some limitations. First, since these results are purely based on
statistical associations, it is hard to draw conclusions about the underlying causality and
prioritize causal genes*>'%, This is also one of the main challenges for most of the
current TWAS approaches®. Follow-up experimental validation is a clear need to
confirm TWAS results and pinpoint the causal genes of brain structure changes. Second,
the brain tissue-specific TWAS did not yield much new results compared to the previous
GWAS and brain tissue panels did not show better prediction accuracy than non-brain
tissues in gene-based PRS analysis. Both of the two observations support the use of
multiple tissues in our analysis to increase testing power for association analysis, but
making the causality interpretation of TWAS results even more complicated. In addition,
though gene-based PRS had much better power in association tests than SNP-based
polygenic scores, their prediction accuracies were similar. These limitations may be due
to the fact that currently brain tissue reference panels do not have large sample size
and/or the associated gene expression imputations may have low quality. Despite these
limitations, it is clear that TWAS have the potential to become a powerful supplement to
traditional GWAS in imaging genetics studies. In our study, many new gene-trait
associations were discovered and the underlying genetic overlaps among complex traits
were largely expanded. With better brain tissue gene expression reference panels and

more neuroimaging GWAS datasets available, future TWAS analyses of neuroimaging

12
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traits are expected to show the value of tissue specificity and improve our

understanding for the genetic basis of human brain.
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METHODS

GWAS summary statistics datasets

We made use of GWAS summary statistics to test for gene-trait associations in our
TWAS study. The GWAS summary-level were from six studies, including the UK Biobank
(UKB, http://www.ukbiobank.ac.uk/resources/) study,

the Human Connectome Project (HCP, https://www.humanconnectome.org/) study,

the Pediatric Imaging, Neurocognition, and Genetics (PING,

http://www.chd.ucsd.edu/research/ping-study.html) study, the Philadelphia

Neurodevelopmental Cohort (PNC,

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study id=phs000607.v1.p

1) study, the Alzheimer's Disease Neuroimaging Initiative (ADNI,
http://adni.loni.usc.edu/data-samples/) study, and ENIGMA2 (GWAS of subcortical
volumes) and the ENIGMA-CHARGE collaboration (http://enigma.ini.usc.edu/research/).

For discovery, we used the GWAS summary statistics of the UKB study. Then the GWAS
results of the other studies were used for validation, see Supplementary Table 22 for a
summary of sample size and the analyzed neuroimaging traits of each GWAS. More
information about study cohorts and neuroimaging traits can be found in the original
GWAS?243337.38 '\We also performed TWAS analysis for 11 cognitive and mental health

traits, see Supplementary Table 23 for these data resources.

Cross-tissue TWAS analysis by UTMOST
Cross-tissue TWAS analysis was performed for each trait using the UTMOST software

(https://github.com/Joker-Jerome/UTMOST). We first run single-tissue association test

for each of the 44 GTEx (v6) reference panels using the above GWAS summary statistics
as input. There were 17,290 candidate genes considered in UTMOST. Second, the
gene-trait associations in 44 panels (tissues) were combined by the GBJ test

(https://cran.r-project.org/web/packages/GBJ/). We used the pre-trained cross-tissue

imputation models and pre-calculated covariance matrices provided by UTMOST. For
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the 211 neuroimaging traits in the UKB cohort, we also performed a brain-tissue specific

version of UTMOST analysis that only combined brain tissues.

Comparison with previous GWAS findings

We compared TWAS-significant genes with those identified in the same UKB cohort by
MAGMA gene-based association analysis and FUMA functional gene mapping analysis,
which can be found in previous GWAS (Supplementary Tables 12 and 15 of Zhao, et al. ¥’
for ROI volumes and Supplementary Tables 14 and 16 of Zhao, et al. 3% for DTI
parameters, respectively). For each significant gene-trait association, we also explored
whether any genetic variant of this gene region (with 1IMB window on both sides) had
been linked to this neuroimaging trait by checking the smallest p-value in corresponding
GWAS. For TWAS-significant genes that were not identified in GWAS, we used
NHGRI-EBI GWAS catalog (version 2019-10-14, https://www.ebi.ac.uk/gwas/) to look for

their reported associations with brain structure traits and any other traits. We
summarized the traits that frequently reported for these genes, such as physical
measures (e.g., height, waist-to-hip ratio, heel bone mineral density, body mass index),
cognitive functions (such as general cognitive ability, cognitive performance),
intelligence, educational attainment, math ability (such as highest math class taken and
self-reported math ability), reaction time, neuroticism, neurodegenerative diseases
(such as Alzheimer's disease and Parkinson's disease), neuropsychiatric disorders (such
as major depressive disorder, schizophrenia, and bipolar disorder), coronary artery

disease, and mean corpuscular hemoglobin.

Cross-tissue analysis conditional on the most significant GWAS signal

The TWAS gene expression imputation model can be viewed as a weighted sum of
multiple genetic variants. If certain variant has a relatively large weight, the imputed
gene expression could be driven by a single GWAS signal. In order to look at how many
significant TWAS signals could be dominated by a single genetic variant, we rerun TWAS
analysis in UKB cohort conditional on the most significant variant used in the UTMOST
imputation model. First, for each reference panel, we considered a simple linear model

Phenotype ~ imputed gene expression + variant,
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where the variant conditioned on was the most significant variant in previous GWAS of
this phenotype in the same UKB cohort. Then, single-tissue conditional p-values of the
imputed gene expression were combined by the GBJ test across the 44 GTEx reference

panels.

Enrichment analyses and drug-target lookups

The chromatin interaction enrichments between significant and non-significant genes
were tested using the Wilcoxon rank sum test. For the adult neural Promoter Capture
Hi-C (PCHi-C), the enrichment of each gene was measured as the number of interactions
overlapping gene with CHICAGO Enrichment Score greater than 5%, The enrichment was
tested separately in four cell types, including induced pluripotent stem cells
(iPSC)-induced excitatory neurons, iPSC-derived hippocampal DG-like neurons,
iPSC-induced lower motor neurons, and primary astrocytes. For the high confident
interactions of adult and fetal cortex, the enrichment of each gene was measured as the
sum of —logio(P-value) of all significant interactions overlapping the gene®. The
drug-target lookups were conducted using the drug-gene associations reported in Wang,
et al. %°. We focused on nervous system drugs whose Anatomical Therapeutic Chemical
code starts with “N” according to the DrugBank database (version 2019-07-02,
https://www.drugbank.ca/atc).

Gene-based TWAS polygenic risk prediction

Gene-based polygenic profiles were created to assess the out-of-sample prediction
power of the UKB TWAS results. In this analysis, we used the individual-level phenotype
and genetic data, whose processing steps were detailed in previous GWAS3738, The

FUSION software and database (http://gusevlab.org/projects/fusion/) were used to

impute gene expression levels in UKB, ADNI, HCP, PNC, and PING datasets using
individual-level genetic data. We performed imputation for 52 different reference
panels (Supplementary Table 21). In training data (UKB), we estimated the effect size of
each imputed gene expression in a linear regression model, while adjusting for the age
(at imaging), age-squared, sex, age-sex interaction, age-squared-sex interaction, as well
as the top 40 genetic principle components (PCs) provided by UKB°! (Data-Field 22009).

For ROl volumes, we also included total brain volume (for ROIs other than total brain
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volume itself) as a covariate. The gene-based PRS were generated in testing data by
summarizing across imputed gene expressions, weighed by their effect sizes estimated
from the training data. We tried a series of p-value thresholds for predictor selection: 1,
0.8,0.5,0.4,0.3,0.2, 0.1, 0.08, 0.05, 0.02, 0.01, 0.001, 1*10*, 1*10°, 1*10°°, 1*107, and
5*108. Thus, seventeen polygenic profiles were generated for each neuroimaging traits
and we reported the best prediction power that can be achieved by a single profile of
them in the single reference panel. The association between polygenic profile and trait
was estimated and tested in linear regression model, adjusting for the effects of age and
sex. The additional phenotypic variation that can be explained by polygenic profile (i.e.,

the incremental R-squared) was used to measure the prediction power.

Data availability

The individual-level data used in this work was obtained from five publicly available
datasets: the UK Biobank (UKB) study, the Human Connectome Project (HCP) study, the
Pediatric Imaging, Neurocognition, and Genetics (PING) study, the Philadelphia
Neurodevelopmental Cohort (PNC) study, and the Alzheimer's Disease Neuroimaging
Initiative (ADNI) study. The GWAS summary statistics of UKB study have been shared at
https://github.com/BIG-S2/GWAS, and the summary statistics of other validation

datasets will also be shared at https://github.com/BIG-S2/GWAS upon acceptance of
this paper. We also used the summary-level data of ENIGMA2 and ENIGMA-CHARGE

collaboration, which can be obtained at http://enigma.ini.usc.edu/research/. In addition,

we used other 11 sets of publicly available GWAS summary statistics shared by several

GWAS databases. These data resources were summarized in Supplementary Table 23.

Code availability
We made use of publicly available software and tools, especially the UTMOST
(https://github.com/Joker-Jerome/UTMOST) and the FUSION

(http://gusevlab.org/projects/fusion/). All codes used to generate results that are

reported in this paper are available upon request.

Figure legends
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Figure 1. Selected significant gene-trait associations discovered in UKB (UK Biobank)
cross-tissue TWAS analysis of 211 neuroimaging traits (n=19,629 subjects for ROI
volumes and 17,706 for DTl parameters).

The gene-level associations were estimated and tested by the cross-tissue UTMOST

approach (https://github.com/Joker-Jerome/UTMOST). We used the p-value threshold

of 1.37*10%, corresponding to adjusting for testing 211 imaging phenotypes with the
Bonferroni correction. The x axis provides the IDs of the neuroimaging traits, and the y
axis lists the detected genes in TWAS. The new (UTMOST new) and previously reported
GWAS-significant associations (MAGMA, FUMA, and FUMA&MAGMA) were labeled with

different colors (orange, purple, green, and red, respectively).

Figure 2. TWAS-significant genes of neuroimaging traits (n=19,629 subjects for ROI
volumes and 17,706 for DTI parameters) that have been linked to other complex traits
in previous GWAS.

For each of the TWAS-significant genes listed in the x axis, we manually checked the
previously  reported  associations on  the NHGRI-EBI GWAS  catalog
(https://www.ebi.ac.uk/gwas/). The genes associated with DTl parameters (DTI), ROI

volumes (Volume), and both of them (Both) were labeled with three different colors

(blue, orange, and green, respectively).

Figure 3. Overlapping TWAS-significant genes between neuroimaging traits (n=19,629
subjects for ROI volumes and 17,706 for DTl parameters) and 11 cognitive and mental
health traits.

The gene-level associations were estimated and tested by the cross-tissue UTMOST

approach (https://github.com/Joker-Jerome/UTMOST). We adjusted for testing 211

neuroimaging traits (p-value threshold 1.37*10%) and 11 cognitive traits (p-value
threshold 2.63*107) with the Bonferroni correction, respectively. The x axis provides the
IDs of the neuroimaging traits. The y axis lists the 11 cognitive and mental health traits,
and Supplementary Table 23 details the resources of their GWAS summary statistics

and the sample sizes of corresponding studies.
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Figure 4. Prediction accuracy (incremental R-squared) of gene-based polygenic risk
scores constructed by UKB TWAS results (n=19,629 subjects) on the four independent
datasets.

The x axis lists the four independent cohorts (ADNI, HCP, PING and PNC) and the y axis
lists the ROl volumes. The displayed numbers are the proportions of phenotypic

variation that can be additionally explained by UKB TWAS-derived gene-based PRS.
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