

1
2
3
4 **Vortex fluidics-mediated DNA rescue from formalin-fixed museum**
5 **specimens**
6

7 Christian A. Totoiu^{1, #a}, Jessica M. Phillips⁴, Aspen T. Reese⁵, Sudipta Majumdar¹, Peter R. Girguis⁵, Colin
8 L. Raston⁴, Gregory A. Weiss^{1,2,3 *}

9
10 ¹ Department of Chemistry, University of California, Irvine, California, United States of America
11
12 ² Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United
13 States of America
14
15 ³ Department of Pharmaceutical Sciences, University of California, Irvine, California, United States of
16 America

17
18 ⁴ Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders
19 University, Adelaide, South Australia, Australia
20

21 ⁵ Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts,
22 United States of America
23

24 ^{#a}Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge,
25 England, United Kingdom
26

27 * Corresponding Author:
28 E-mail: gweiss@uci.edu (GAW)

29 **Abstract**

30 DNA from formalin-preserved tissue could unlock a vast repository of genetic information stored in
31 museums worldwide. However, formaldehyde crosslinks proteins and DNA, and prevents ready
32 amplification and DNA sequencing. Formaldehyde acylation also fragments the DNA. Treatment with
33 proteinase K proteolyzes crosslinked proteins to rescue the DNA, though the process is quite slow. To
34 reduce processing time and improve rescue efficiency, we applied the mechanical energy of a vortex
35 fluidic device (VFD) to drive the catalytic activity of proteinase K and recover DNA from American lobster
36 tissue (*Homarus americanus*) fixed in 3.7% formalin for >1-year. A scan of VFD rotational speeds
37 identified the optimal rotational speed for recovery of PCR-amplifiable DNA and while 500+ base pairs
38 were sequenced, shorter read lengths were more consistently obtained. This VFD-based method also
39 effectively recovered DNA from formalin-preserved samples. The results provide a roadmap for exploring
40 DNA from millions of historical and even extinct species.

41 **Introduction**

42 Archived biological samples offer an important source of genetic information for diverse fields including
43 evolutionary biology, ecology, phylogenetics, biodiversity, and epidemiology [1-2]. Samples, from
44 hydrated tissues to whole organisms, have historically been preserved in aqueous formaldehyde (3.7 to
45 4% solution of formaldehyde in water, termed formalin). In many cases, these specimens are the only
46 remaining samples that could provide genetic information about the organisms, including their
47 microbiomes, environments, diets, and other attributes – all from the moment of sample preservation [3-
48 5]. This preservative, however, hinders DNA amplification and sequencing with the sample [6]. Thus, new
49 methods to recover DNA from formalin-fixed specimens could advance our ability to access the genetic
50 information in these samples, and advance our understanding of how organisms and ecosystems have
51 responded to natural and anthropogenic changes over time. For example, formalin-fixed specimens in
52 natural history museums could be used to elucidate the impact of environmental changes on the DNA of
53 biological populations [1-2, 7]. DNA sequencing of such samples could address longitudinal, biological
54 questions that may be impractical to address without the genetic information for the preserved specimens
55 [2, 8-9].

56 For >150 years, formalin fixation has been used to effectively preserve hydrated specimens [7]. A
57 vast repository of formalin-fixed samples exists, including at least 400 million samples at 13 large
58 institutions [1]. Marine organisms are particularly well-preserved in this aqueous preservative, as it retains
59 morphological features well, enabling more detailed taxonomic studies. Aqueous formaldehyde is also
60 advantageous in that it stops parasitic microbial growth [10]. However, preserving samples in formalin
61 fixation damages DNA [11-12]. Covalent modification of DNA bases by the electrophilic formaldehyde
62 drives base deglycosylation, and the resultant abasic sites in DNA can cause strand breakage [13].
63 Additionally, long duration storage often incurs DNA fragmentation, independent of formalin [14].
64 Fragments from both mechanisms increase the amount of DNA template required for PCR amplification
65 of longer targets, and can also inhibit PCR [15-16].

66 Intrastrand and protein-DNA crosslinks introduced by formaldehyde can also block PCR and DNA
67 sequencing [17-18]. Protein-DNA crosslinks result from nucleophilic attack on formaldehyde by proteins'
68 primary amines to yield imines and iminium ions. These groups can then react with the less nucleophilic
69 primary amines of DNA bases, particularly from guanine, resulting in a protein-DNA crosslink (Fig 1) [19-
70 20]. Due to the high density of amines found on the surface of proteins and DNA, each DNA-protein
71 complex can become crosslinked multiple times. Additionally, formalin-fixed cells cannot repair the slow
72 process of cytosine deamination to uracil [11, 21]. During PCR amplification, adenine can be incorporated
73 as the incorrect complement to degraded cytosine, resulting in point mutations [11]. In summary, DNA
74 damage caused by preservation results in short templates for PCR and low-quality, error-prone DNA
75 sequences.

76
77 **Fig 1. Schematic of formalin-induced crosslink formation and the removal of crosslinked proteins**
78 **by treatment with proteinase K. (A)** A protein amine can nucleophilically attack the formaldehyde
79 carbonyl to yield an iminium ion, which can then react with another primary amine from DNA, RNA, or
80 proteins to form a crosslink. This crosslink reaction is in reversible dynamic equilibrium [10, 21]. **(B)**
81 Treatment with a protease, proteinase K, allows free DNA (fDNA) recovery. Here, Nuc designates an
82 amine nucleophile from the DNA.

83 Despite the immense challenges that are associated with formalin fixation, much effort has been
84 dedicated to developing techniques for sequencing these irreplaceable samples (DNA recovery methods
85 from formalin-fixed tissue are summarized in Table 1). Most current methods for recovering DNA from
86 formalin-fixed organisms use proteinase K, a thermostable serine protease with broad substrate
87 specificity [22], to digest crosslinked proteins and eliminate most crosslink-associated blockages [21-23].
88 However, even at the enzyme's optimum temperature (49 ± 2 °C), the free DNA (fDNA) recovery rate
89 from this method is low at approximately 4.4% per hour; additionally, the enzyme's half-life is limiting at
90 approximately 11.3 h [21-22]. At room temperature (≈ 22 °C), the proteolytic reaction rate yields only 1.1%
91 fDNA per hour [24]. DNA can also be recovered from formalin-fixed tissue with a 0.1 M NaOH (pH 12)
92 buffer treatment at 120 °C for 25 min [7, 25]. However, these harsh conditions can further damage the
93 DNA through Brønsted base-caused strand cleavage; therefore, this approach is most valuable in cases
94 where there is an excess of tissue to be digested, and is highly inappropriate for most delicate, longer-
95 preserved samples. Notably, the current reactions to liberate DNA are harsh, low-throughput, low
96 yielding, and time consuming. Mild methods to increase DNA recovery and purification for PCR
97 amplification and subsequent DNA sequencing could revolutionize the study of a wide range of museum
98 specimens.

99 **Table 1.** Current methods for formaldehyde crosslink removal & DNA recovery from formalin-fixed
100 specimens.

Method	Temperature (°C)	Time (h)
proteinase K treatment ^[26]	56	~17
proteinase K treatment in Tris-NaCl- EDTA-SDS buffer ^[27]	55	68
hot alkali buffer treatment ^{[7][25]}	100 to 120	0.4 to 0.7
Cetyltrimethylammonium bromide (CTAB) & proteinase K ^[28]	65 & 56	0.5 & 1-72
QIAamp DNA Mini Kit ^[28]	56	not reported
QIAamp DNA FFPE Kit ^[28]	56 & 90	not reported

101 We posit that judicious application of mechanical energy could address this challenge.
102 Specifically a vortex fluidic device (VFD) directs controlled mechanical energy into solution to accelerate
103 enzyme-catalyzed reactions [29]. This thin film microfluidic platforms can disrupt membranes and drive
104 protein folding [30], and potentially assist with the deaggregation, and solubilization of formalin-fixed
105 samples in addition to acceleration of enzyme activity. Here, we tested the efficacy of using a VFD to

107 accelerate proteinase K activity, and increase the process throughput and efficiency of extracting DNA
108 from formalin-fixed specimens (Fig 2). Thus, we optimized the recovery of fDNA from formalin-fixed
109 specimens through VFD and post-processing purification. Our results suggest that this method recovers
110 fDNA with 40 to 85% greater yields than conventional methods without requiring harsh conditions, and
111 can decrease treatment time from days to hours.

112 **Protocol**

113 **Reagents**

114 • Proteinase K (Promega, cat. no. V3021, lyophilized)

115 • Sodium dodecyl sulphate (SDS) (Fisher Bioreagents, cat no. BP8200-5)

116 • Tris hydrochloride (Fisher Bioreagents, cat. no. BP153-1)

117 • Calcium chloride (Fisher Chemical, cat no. C614-500)

118 • Glycerol (ACS reagent, cat. no. G7893-4L)

119 • Ethylenediaminetetraacetic acid (EDTA) (Acros Organics, cat. no. 147850010)

120 • Nitrogen (Liquid) (Airgas Healthcare, cat no. UNI977)

121 • Ethanol (200 proof, Molecular Biology Grade) (Fisher Scientific, cat. no. BP2828-500)

122 • Clean & Concentrator Kit (Zymo Research, cat. no. D4006)

123 **Equipment**

124 • Vortex Fluidic Device v.2 (VFD) (Vortex Fluidic Technologies)

125 • Microliter pipettes (1000 µL, 200 µL, 20 µL, and 10 µL)

126 • Refrigerated, tabletop centrifuge

127 • Vortex mixer

128 • Mortar & pestle

129 • Hemostat

130 • Forceps

131 • Razorblades

132 • Eppendorf tubes (1.7 mL)

133 Reagent setup

134 **Critical Step:** Nanopure water (ddH₂O) is used for all buffers and solutions. Buffers are autoclaved or
135 sterile-filtered, if containing SDS, prior to addition of enzymes and use. Enzyme-containing solutions are
136 stored at -80 °C.

137

138 • **Proteolysis buffer** 20 mM Tris-HCl, 50 mM EDTA, 1% w/v SDS, pH 8.0^[31]

139 • **Proteinase K solution** 10 mg/mL proteinase K, 20 mM Tris-HCl, 1 mM CaCl₂, 50% glycerol, pH
140 8.0

141

142 Procedure

143 Tissue sample preparation. Timing: ≈1 h

144 1. After removal of a small portion (≈5 to 10 g) of the preserved biological tissue from the preservative,
145 immerse the tissue in liquid nitrogen until frozen, and grind with a mortar and pestle for ≈1 min. The
146 small pieces of ground tissue are aliquoted (≈1 to 1.5 g) into Eppendorf tubes (henceforth termed
147 tubes).

148 **Safety Note:** Exercise caution when utilizing a sharp edge to prevent puncturing or cutting personal
149 protective equipment or skin.

150 **Pause Point:** At this stage, the sample can be stored at -80 °C for later processing.

151 2. On an autoclaved glass surface, mince the formalin-fixed tissue sample with a flame-sterilized
152 razorblade held by a sterilized hemostat for ≈5 min.

153 **Safety Note:** Exercise caution when utilizing a sharp edge to prevent puncturing or cutting personal
154 protective equipment or skin.

155 **Critical Step:** This step increases the surface area to volume ratio of the tissue and, thus, improves
156 the proteinase K access to the sample.

157 3. To remove the preservative fluid, wash the sample three times with the proteolysis buffer (1 mL). For
158 each wash step, briefly vortex, centrifuge (15 krcf, 3 min), and decant the samples. If required, an
159 addition centrifugation (15 krcf, 1 min) can remove any residual buffer.

160 **VFD treatment. Timing: ≈1 h**

161 4. Transfer the ground, minced tissue to the bottom of an autoclaved 20 mm VFD sample tube. Add
162 proteolysis buffer (950 µL) and then proteinase K solution (50 µL).

163 5. Seal the VFD sample tube with a rubber septum, and use the VFD to spin the sample (7 krpm, 1 h,
164 RT).

165 **Critical Step:** This rotational speed is optimal for fDNA amplification and sequencing.

166 **Sample post-processing and purification. Timing: ≈1.5 h**

167 6. Following VFD processing, immediately transfer the sample, including both the processed tissue and
168 solution, from the VFD sample tube to a new tube.

169 7. Immediately, centrifuge the sample (15 krcf, 5 min, RT) to remove the tissue. Transfer the
170 supernatant to a clean tube.

171 8. Incubate the supernatant on wet ice for 30 minutes.

172 **Critical Step:** A white precipitate (SDS) collects at the bottom of the tube. The presence of SDS
173 negatively affects PCR yields and subsequent purification of fDNA.

174 9. Immediately, centrifuge the sample (15 krcf, 10 min, 4 °C) to remove SDS, and transfer the
175 supernatant to a new tube without disturbing the SDS pellet.

176 **Critical Step:** The supernatant must be transferred immediately following centrifugation to prevent
177 resolubilization of SDS.

178 **Pause Point:** At this stage, the sample may be frozen at -20 or -80 °C for later analysis.

179 10. Process 400 µL of the supernatant with a Zymo DNA Clean & Concentrator Kit, according to the
180 manufacturer's instructions.

181 **fDNA quantification and characterization. Timing: ≈8 h**

182 11. The isolated fDNA can be used for further amplification, characterization, quantification, and
183 sequencing.

184 Materials & methods

185 One adult male Lobster (*H. americanus*) was purchased in February 2017 from a local lobster fishery in
186 Boston, MA. The lobster was euthanized by quickly severing the ganglia behind the eyes with a sharp
187 knife. The body was then placed whole in a solution of 3.7% formaldehyde in 0.9 M phosphate-buffered
188 saline (which approximates the salinity of seawater). The lobster was maintained at room temperature for
189 one month, and then shipped to the University of California Irvine in March 2017. All lobster trails shown
190 here have used muscle recovered from the chelipeds (primary claws), which have remained in formalin
191 for the two-year duration of this study. For experimental treatments, the lobster claw tissue was
192 processed according to the procedure described above.

193 Proteinase K (Promega, V3021, lyophilized) was solubilized and diluted to 10 mg/mL in storage
194 buffer (20 mM Tris-HCl, 1 mM CaCl₂, 50% glycerol, pH 8.0).

195 For DNA isolation, 100 (± 1) mg of lobster tissue samples were utilized. Tissue preparation, VFD
196 processing, and DNA purification used methods described above. In the experiments reported here, the
197 VFD was operated in the confined, not continuous flow, mode [32-33]; specifically, 1 mL volumes were
198 used. The negative control samples consisted of identical tissue samples and treatment but were not
199 subjected to VFD processing. A positive control contained VFD-processed fresh lobster tissue.
200 Additionally, fixed and fresh lobster tissue were processed overnight at 56 °C without the VFD for the
201 conventional method controls, based on Table 1. Finally, intermediate controls combined the conventional
202 and VFD-mediated methods to minimize the number of variables changed per experiment. These
203 intermediate controls consisted of fixed and fresh lobster processed overnight (as in the conventional
204 method) at room temperature (as in the VFD-mediated method) without use of the VFD.

205 The positive controls for PCR quantification were DNA obtained from fresh (non-formalin-fixed),
206 ground lobster claw tissue. The DNA recovery from this sample applied Chelex 100 Resin (Bio-Rad, 10%
207 w/v in 500 μ L in ddH₂O) with the manufacturer's protocol. The mixture of a tissue fragment and resin was
208 vortexed and centrifuged briefly before incubation at 90 to 95 °C for 20 to 35 min. Following another brief
209 vortexing and centrifugation, the supernatant was isolated as the positive control for lobster fDNA.

210 DNA extraction yields were compared by quantitative PCR (qPCR) (Bio-Rad iCycler). For PCR,
211 reaction mixtures (10 μ L) applied the Phusion DNA polymerase (0.2 U final concentration, New England
212 Biolabs) and buffer (5 \times diluted final concentration, New England Biolabs), DMSO (10% v/v final
213 concentration), dNTPs (0.5 mM each final concentration, New England Biolabs), primers (8-33 ng each
214 final concentration, Integrated DNA Technologies) (Table 2), and SYBR Green I dye (10,000 \times diluted final
215 concentration, Thermo Fisher Scientific). A PCR was performed with 1 cycle of 94 °C for 5 min followed
216 by 40 to 50 cycles of 94 °C for 1 min, 60 °C for 1 min, and 72 °C for 2 min, followed by 1 cycle of 72 °C for
217 5 min.

218 **Table 2.** PCR primer sequences and annealing temperatures.

Gene Target: mitochondrial ATP synthase		Primer	Annealing Temperature (est.) (°C)
579 bp	Forward	GGGTTACTTTTATTCCCTACCTTATTGAGC	60
	Reverse	GGCATATAAAGTCCTAGAACAGCAAATACATACG	
183 bp	Forward	GGGTTACTTTTATTCCCTACCTTATTGAGC	60
	Reverse	CAGCCCGAGAGTGTATTGAATATAATAAAC	

219
220 The recovered fDNA from the formalin-fixed lobster was quantified by UV-Vis absorbance. The
221 absorbance spectra of the samples, diluted in ddH₂O (1:50), were measured (Jasco V-730
222 Spectrophotometer). The spectra were recorded from 200 to 400 nm, in triplicate (technical replicates),
223 with a scanning speed of 200 nm/min and intervals of 0.5 nm with ddH₂O as the blank. Two buffer only
224 controls examined the reaction mixture without lobster tissue. The first was processed in the VFD (7.5
225 krpm, 1 h, RT), and the second did not use VFD processing. The 1 kb Plus DNA Ladder (10 μ g, 1000 μ L)
226 (Thermo Fisher Scientific, 1.0 μ g/ μ L) was used to estimate DNA sizes and concentrations; a positive
227 control applied DNA from fresh lobster tissue extracted with Chelex 100 Resin, as described above.

228 A SYBR Green I fluorescence assay also quantified the dsDNA concentration [34]. To derive a
229 DNA concentration calibration curve, a 1 kb Plus DNA Ladder (Thermo Fisher Scientific, 1.0 μ g/ μ L) was
230 diluted to concentrations of 0 ng/ μ L to 1.25 ng/ μ L. These dilutions (100 μ L) and SYBR Green I dye (100
231 μ L, Thermo Fisher Scientific, 1250 \times diluted in ddH₂O) were added to a black, clear-bottom 96-well plate
232 (Corning, 3615). The fluorescence of each well was measured (λ_{ex} 485 nm, λ_{em} 550 nm, Bandwidth 20
233 nm, Gain 50). The fluorescence of fDNA from the fixed lobster samples (100 \times diluted) were similarly
234 measured, and the dsDNA concentrations were estimated using the calibration curve shown in S4 Fig.

235 Results and discussion

236 Conventional methods applying proteinase K to remove protein-DNA crosslinks require >17 h [26-27],
237 and typically the reaction runs for >1 day. Here we report enzyme acceleration techniques via VFD
238 mechanical stimulation to enable DNA recovery in <2 h from lobster claw tissue (*H. americanus*)
239 preserved in formalin (3.7% formaldehyde in phosphate-buffered saline, a condition iso-osmotic with
240 seawater). Key variables requiring optimization included mechanical breakage of the tissue sample,
241 length of fDNA sequences to be amplified, and rotational speed of the VFD. As observed for other VFD-
242 enhanced enzymes [29], proteinase K activity can be accelerated using a VFD. The approach allows
243 recovery of free DNA (fDNA) from formalin-fixed samples. The rotational speed of the tube in the VFD
244 determines the level of shear, micro-mixing, and fluid dynamics experienced by the thin film of liquid [32].
245 The tilt angle of the VFD can be important, and 45° relative to the horizontal is the optimal tilt angle for a
246 myriad of applications, including accelerating enzymatic reactions [29, 32].

247

248 **Fig 2. Schematic of the VFD-mediated fDNA recovery technique.** (A) The protocol begins with Vortex
249 Fluidic Device (VFD) treatment (7 krpm, room temperature, abbreviated RT, 1 h) of a mixture of
250 proteinase K and the frozen, then broken-up tissue. The reaction mixture is next processed to remove
251 solids and DNA polymerase inhibitors. The recovered fDNA is then purified and concentrated. Finally, the
252 DNA is amplified, quantified, and characterized by (B) qPCR and (C) DNA sequencing of the samples.
253 Larger versions of panels B and C are provided in S1 and S2 Figs. Threshold cycle (C_t) and endpoint
254 fluorescence values are given in S1 Table.

255 Mechanical breakage of the tissue sample emerged as a key variable for efficient and robust
256 isolation of fDNA. Smaller fragments increase the surface area to volume ratio, allowing greater efficiency
257 of proteinase K digestion. Also, the VFD removes solids from solution by centrifugation, and, therefore,
258 breaking the tissue sample into small fragments improves the efficiency of VFD-mediated fDNA recovery.
259 The formalin-fixed tissue was first frozen in liquid nitrogen then ground into small particles using a clean
260 mortar and pestle. When extracted using traditional extraction approaches, the ground material yielded
261 modest and inconsistent quantities of fDNA (Fig 2 and S1 Table). The lack of reproducibility suggested a

262 need for further mechanical breakdown of the tissue. Beadbeating and sonication increased the observed
263 breakdown of tissue, but both methods failed to improve PCR product yields (data not shown). These
264 failures may be due to the fact that sonication or the resultant heat generation through cavitation could
265 introduce additional breaks in the DNA. However, we found that a second, mincing step with a sterile,
266 new razorblade consistently improved fDNA recovery (Fig 4).

267 Also, the length of the amplified DNA proved critical for consistent recovery from formalin-fixed
268 samples. In initial experiments, we amplified a 579 bp sequence of fDNA. The amplified DNA was the
269 correct lobster sequence (Fig 2, Fig 4, and S2 Fig), but this long fragment proved difficult to amplify
270 repeatedly. Thus, primers targeting a 183 bp sequence were used for all further experiments reported
271 here. The shorter target amplicon decreased the chance of DNA fragmentation damaging the sequence
272 and preventing PCR amplification. As expected, DNA sequencing quality in the non-VFD control reactions
273 was difficult to monitor; only three out of thirteen cumulative control amplification reactions yielded fDNA
274 detectable by gel electrophoresis.

275 The final parameter optimized for fDNA extraction was the rotational speed of the VFD. Previous
276 studies with the VFD have demonstrated that acceleration of enzymatic catalysis occurs at rotational
277 speeds between 5 and 9 krpm with the VFD at a 45° tilt angle [29]. Hypotheses attribute the enzymatic
278 acceleration phenomena to two interconnected actions. First, the periodic change in the thickness of the
279 thin fluid film present in the VFD, results in intense micro-mixing and high mass transfer. Second, the
280 Faraday waves arising from this periodic change contribute to zones of high and low pressure within the
281 reaction mixture and, accordingly, the enzyme present in solution. The pressure oscillations could
282 increase substrate accessibility and removal of product from the enzyme active site, which also benefit
283 from the high mass transfer of the VFD.

284 To identify optimal speeds for fDNA recovery, a systematic assessment of rotational speeds
285 between 5 and 9 krpm at intervals of 1 krpm was conducted. Heterogeneity inherent to pulverized tissue
286 imparts idiosyncratic and uncontrollable variables into this optimization and subsequent isolation of fDNA.
287 Thus, the yields of fDNA, as determined by UV-Vis spectrophotometry, were sometimes inconsistent (It is
288 well known that absorption of 260 nm is a proxy for DNA concentrations in solution, whereas the ratio of
289 absorbances at 260:280 nm serves as an indicator of DNA purity). Though absorbance at 260 nm

290 increased for the VFD-processed samples at various rotational speeds relative to the non-VFD-processed
291 negative control, the ratio of 260:280 nm absorbances was significantly <1.8 for all rotational speeds (Fig
292 3 and S3 Fig), which likely indicates inclusion of protein in the VFD-treated samples [35]. The DNA-
293 associated, absorbance at 260 nm was greatest for the samples processed at 8 krpm. This rotational
294 speed is within the VFD-based rate enhancement zone for reactions in aqueous solvents. That said, the
295 highest, most consistently observed PCR yields were obtained for the rotational speed of the VFD of 7
296 krpm (which is discussed in more detail below; see Fig 2, Fig 4, S1 Fig, S2 Table, and S5 Fig).

297

298 **Fig 3. Quantification for optimizing the VFD rotational speed for fDNA yields.** After proteinase K
299 and VFD treatment at the indicated speeds, **(A)** absorbance at 260 nm and **(B)** the ratio of absorbances
300 260:280 nm quantifies DNA and protein yields, respectively, with positive and negative controls. Full UV-
301 vis spectra for these samples are shown in S3 Fig. SYBR Green I fluorescence-quantified **(C)** dsDNA
302 concentration and **(D)** fold increase in dsDNA yield between non-VFD-processed and VFD-processed
303 samples. The negative control indicates samples not subjected to VFD processing. Buffer only controls
304 lacked lobster tissue. The positive controls included DNA that had not been formalin fixed. Additional
305 controls demonstrated a conventional method and an intermediate method (processing time of the
306 conventional method and temperature of the VFD-mediated method) used to process fixed and fresh
307 tissue without the VFD. The error bars designate the standard deviation for sample measurements at the
308 indicated condition (technical replicates, $n = 3$).

309 To more robustly quantify the concentration of double-stranded DNA (dsDNA) in the fDNA, a
310 fluorescence-based DNA intercalating assay was performed using SYBR Green I dye. Samples were
311 diluted to reach the dye's linear range, and the sample fluorescence ($\lambda_{\text{ex}} 485 \text{ nm}$, $\lambda_{\text{em}} 550 \text{ nm}$) was
312 measured against a standard curve to determine the concentrations of the rescued dsDNA. The assay
313 demonstrated that VFD-processed samples yielded 40 to 85% more dsDNA than the control, non-VFD
314 processed sample (Fig 3). Thus, the VFD improved the rescue of dsDNA from formalin-fixed tissue
315 compared to the non-VFD-treated negative control.

316 Moreover, and most importantly, DNA recovered via VFD-enhanced extraction were amenable to
317 amplification via PCR and quantitative PCR (or qPCR). Post-VFD treatment, samples were purified and

318 concentrated with a Zymo™ DNA Clean & Concentrator Kit, which removes DNA polymerase inhibitors
319 and proteins [16, 36]. Using the fDNA samples and qPCR, we observed reproducible amplification of an
320 183 bp target amplicon from the gene encoding ATP synthase from samples processed with a VFD
321 rotating at either 6 or 7 krpm (Fig 4, Table 2). Paradoxically, these speeds had lower fDNA yields when
322 compared to the 8 krpm (as described above; see Fig 3a-b). However, the 8 krpm treated DNA would
323 amplify <50% of the time (n = 8, shown in S5 Fig). Though yields were greater, the more aggressive
324 treatment is apparently liberating other compounds that can be problematic to PCR amplification (this
325 phenomena has also been seen in algal cells and more) [37]. Additionally, it is plausible that greater VFD
326 rotational speeds could result in both greater yields and further fragmentation of fDNA, which could
327 explain the higher DNA concentrations, but lower amplification efficacy [16].

328 From the formalin-fixed samples, the 7 krpm VFD-processed DNA sample yielded the highest
329 levels of fDNA amplification as measured by qPCR. For example, on average $94\pm4\%$ of the endpoint
330 positive control fluorescence signal was obtained with a low threshold cycle (C_t) value, averaging
331 35.4 ± 0.7 cycles (S2 Table). Comparatively, the no template controls (NTC) did not surpass the threshold
332 in two of three trials, and their fluorescence averaged $10\pm10\%$ of the endpoint positive control
333 fluorescence signal (S2 Table). The lower C_t values demonstrated a greater yield of DNA. Furthermore,
334 the PCR product of the fDNA rescued from the 7 krpm VFD-processing condition could readily be
335 sequenced via Sanger sequencing. This sequence exhibited 99.5% homology to the expected sequence
336 [38]. The 6 krpm-processed sample offered a decreased yield of amplified DNA. Notably, PCR
337 amplification failed for the non-VFD-treated sample.

338 The data herein illustrate the efficacy of our new VFD-enabled method for fDNA recovery. We
339 have demonstrated the successful amplification of fDNA from biological specimens treated with
340 formaldehyde. We have also shown that fDNA can be used to great effect with appropriately designed
341 qPCR assays. Therefore, we are optimistic that this method presents a potentially valuable method for
342 increasing the throughput of fDNA recovery. Increasing the rate at which fDNA can be recovered is a
343 timely pursuit, as there are tens of millions of formalin-fixed samples stored in museums around the world.
344 These organisms provide a “time capsule” of sorts, revealing the genomic adaptations of organisms to a
345 pre-industrial world. Indeed, museum specimens may become our first tool for understanding the extent

346 to which anthropogenic factors are shaping our biosphere. It is also important to note that fDNA is,
347 unfortunately, subject to irreparable damage and fragmentation, and any PCR-based amplification from
348 such samples will always be highly dependent on rescue conditions, primer design (especially amplicon
349 length), tissue mincing, and other factors. The VFD method here may help investigators tap into this
350 enormous genetic repository.

351

352 **Fig 4. Amplification of an 183-bp fDNA target from the ATP synthase gene of the lobster**
353 **mitochondrial genome. (A)** Quantitative PCR and **(B)** agarose DNA gel electrophoresis identified 7
354 krpm as the optimal VFD rotational speed for qPCR amplification. Threshold cycle and endpoint
355 fluorescence values are provided in S2 Table. The variable-rotational speed PCR reactions were
356 compared to a no template control (NTC), a fresh lobster DNA positive control (+), and a non-VFD-
357 processed negative control (-). **(C)** The 7 krpm VFD-processed qPCR product (*) was subjected to
358 Sanger sequencing; a mutation (G2728A, GenBank No. HQ402925) was observed (highlighted).

359 **Availability**

360 Genbank is a collection of gene and genome sequences in the National Center for Biotechnology
361 Information database (<https://www.ncbi.nlm.nih.gov/genbank/>).

362 **Author information**

363 **ORCID**

364 CA Totoiu: 0000-0001-9839-8894

365 JM Phillips: 000-0001-5673-0879

366 AT Reese: 0000-0001-9004-9470

367 S Majumdar: 0000-0001-6738-2267

368 PR Girguis: 0000-0002-3599-8160

369 CL Raston: 0000-0003-4753-0079

370 GA Weiss: 0000-0003-0296-9846

371 **Acknowledgements**

372 We gratefully thank UCI's Department of Molecular Biology and Biochemistry for access to the qPCR
373 thermocycler.

374 **Funding**

375 This work was supported by the National Human Genome Research Institute (NHGRI) of the National
376 Institutes of Health [1R01HG009188-01 to G.A.W.]; the Star Family Foundation Challenge for Promising
377 Scientific Research [to A.T.R. and P.R.G.]; and the University of California at Irvine's Undergraduate
378 Research Opportunities Program and Summer Undergraduate Research Program [to C.A.T.]. Funding for
379 open access charge: NHGRI.

380 **Conflict of interest**

381 The authors declare no competing financial interests. Debut Biotechnology, a company co-founded by
382 Dr. Weiss, has licensed the VFD technology for different applications.

383 **References**

384 [1] Holmes,M.W., Hammond,T.T., Wogan,G.O., Walsh,R.E., LaBarbera,K., Wommack,E.A.,
385 Martins,F.M., Crawford,J.C., Mack,K.L., Bloch,L.M. and Nachman,M.W. (2016) Natural history
386 collections as windows on evolutionary processes. *Mol. Ecol.*, **25**, 864–881.

387 [2] Suarez,A.V. and Tsutsui,N.D. (2004) The value of museum collections for research and society.
388 *BioScience*, **54**, 66–74.

389 [3] Pergams,O.R.W. and Nyberg,D. (2001) Museum collections of mammals corroborate the exceptional
390 decline of prairie habitat in the Chicago region. *J. Mammal.*, **82(4)**, 984-992.

391 [4] Lens,L., Van Dongen,S., Norris,K., Githiru,M. and Matthysen,E. (2002) Avian persistence in
392 fragmented rainforest. *Science*, **298(5596)**, 1236-1238.

393 [5] Carroll,S.P. and Boyd,C. (1992) Host race radiation in the soapberry bug: natural history with the
394 history. *Evolution*, **46(4)**, 1052-1069.

395 [6] Greer,C.E., Lund,J.K. and Manos,M.M. (1991) PCR amplification from paraffin-embedded tissues:
396 recommendations on fixatives for long-term storage and prospective studies. *PCR Methods Appl.*,
397 **1(1)**, 46-50.

398 [7] Hykin,S.M., Bi,K. and McGuire,J.A. (2015) Fixing formalin: a method to recover genomic-scale DNA
399 sequence data from formalin-fixed museum specimens using high-throughput sequencing. *PLoS
400 ONE*, **10(10)**, e0141579.

401 [8] Mikheyev,A.S., Tin,M.M.Y., Arora,J. and Seeley,T.D. (2015) Museum samples reveal rapid evolution
402 by wild honey bees exposed to a novel parasite. *Nat. Commun.*, **6**, 7991.

403 [9] Spurgin,L.G., Wright,D.J., van der Velde,M., Collar,N.J., Komdeur,J., Burke,T. and Richardson,D.S.
404 (2014) Museum DNA reveals the demographic history of the endangered Seychelles warbler. *Evol.
405 Appl.*, **7(9)**, 1134-1143.

406 [10] Fox,C.H., Johnson,F.B., Whiting,J. and Roller,P.P. (1985) Formaldehyde fixation. *J. Histochem.
407 Cytochem.*, **33(8)**, 845-853.

408 [11] Do,H. and Dobrovic,A. (2015) Sequence artifacts in DNA from formalin-fixed tissues: causes and
409 strategies for minimization. *Clin. Chem.*, **61(1)**, 64-71.

410 [12] Suzuki,T., Ohsumi,S. and Makino,K. (1994) Mechanistic studies on depurination and apurinic site
411 chain breakage in oligodeoxyribonucleotides. *Nucleic Acids Res.*, **22(23)**, 4997-5003.

412 [13] Lindahl,T. and Andersson,A. (1972) Rate of chain breakage at apurinic sites in double-stranded
413 deoxyribonucleic acid. *Biochemistry*, **11(19)**, 3618-3623.

414 [14] Ludyga,N., Grunwald,B., Azimzadeh,O., Englert,S., Hofler,H., Tapiro,S. and Aubele,M. (2012)
415 Nucleic acids from long-term preserved FFPE tissues are suitable for downstream analyses.
416 *Virchows Arch.*, **460**, 131-140.

417 [15] Didelot,A., Kotsopoulos,S.K., Lupo,A., Pekin,D., Li,X., Atochin,I., Srinivasan,P., Zhong,Q.,
418 Olson,J., Link,D.R., Laurent-Piug,P., Blons,H., Hutchison,J.B. and Taly,V. (2013) Multiplex picoliter-
419 droplet digital PCR for quantitative assessment of DNA integrity in clinical samples. *Clin. Chem.*,
420 **59(5)**, 815-823.

421 [16] Dietrich,D., Uhl,B., Sailer,V., Holmes,E.E., Jung,M., Meller,S. and Kristiansen,G. (2013) Improved
422 PCR performance using template DNA from formalin-fixed and paraffin-embedded tissues by
423 overcoming PCR inhibition. *PLoS ONE*, **8(10)**, e77771.

424 [17] Dutta,S., Chowdhury,G. and Gates,K.S. (2007) Interstrand cross-links generated by abasic sites
425 in duplex DNA. *J. Am. Chem. Soc.*, **129(7)**, 1852-1853.

426 [18] Vesnaver,G., Chang,C.N., Eisenberg,M., Grollman,A.P. and Breslauer,K.J. (1989) Influence of
427 abasic and anucleosidic sites on the astability, conformation, and melting behavior of a DNA duplex:
428 correlations of thermodynamic and structural data. *Proc. Natl. Acad. Sci. U.S.A.*, **86(10)**, 3614-3618.

429 [19] Kennedy-Darling,J. and Smith,L.M. (2014) Measuring the formaldehyde protein-DNA cross-link
430 reversal rate. *Anal. Chem.*, **86(12)**, 5678-5681.

431 [20] Hoffman,E.A., Frey,B.L., Smith,L.M. and Auble,D.T. (2015) Formaldehyde crosslinking: A tool for
432 the study of chromatin complexes. *J. Biol. Chem.*, **290(44)**, 26404-26411.

433 [21] Kavli,B., Otterlei,M., Slupphaug,G. and Krokan,H.E. (2007) Uracil in DNA-general mutagen, but
434 normal intermediate in acquired immunity. *DNA Repair (Amst.)*, **6(4)**, 505-516.

435 [22] Yazawa,K., Sugahara,M., Yutani,K., Takehira,M. and Numata,K. (2016) Derivatization of
436 proteinase K with heavy atoms enhances its thermal stability. *ACS Catal.*, **6(5)**, 3036-3046.

437 [23] Goelz,S.E., Hamilton,S.R. and Vogelstein,B. (1985) Purification of DNA from formaldehyde fixed
438 and paraffin embedded human tissue. *Biochem. Biophys. Res. Commun.*, **130(1)**, 118-126.

439 [24] Butler,J.M., Johnson,J.E. and Boone,W.R. (2013) The heat is on: room temperature affects
440 laboratory equipment—an observational study. *J. Assist. Reprod. Genet.*, **30(10)**, 1389-1393.

441 [25] Campos,P.F. and Gilbert,T.M.P. (2012) DNA extraction from formalin-fixed material. In
442 Shapiro,B. and Hofreiter,M. (eds) *Ancient DNA. Methods in Molecular Biology (Methods and*
443 *Protocols)*. Humana Press, Vol. 840.

444 [26] Munchel,S., Hoang,Y., Zhao,Y., Cottrell,J., Klotzle,B., Godwin,A.K., Koestler,D., Beyerlein,P.,
445 Fan,J., Bibikova,M. and Chien,J. (2015) Targeted or whole genome sequencing of formalin fixed
446 tissue samples: potential applications in cancer genomics. *Oncotarget.*, **6(28)**, 25943-25961.

447 [27] Hassani,A. and Khan,G. (2015) A simple procedure for the extraction of DNA from long-term
448 formalin-preserved brain tissues for the detection of EBV by PCR. *Exp. Mol. Pathol.*, **99(3)**, 558-563.

449 [28] Paireder,S., Werner,B., Bailer,J., Werther,W., Schmid,E., Patzek,B. and Cichna-Markl,M. (2013)
450 Comparison of protocols for DNA extraction from long-term preserved formalin fixed tissues. *Anal.*
451 *Biochem.*, **439(2)**, 152-160.

452 [29] Britton,J., Meneghini,L.M., Raston,C.L. and Weiss,G.A. (2016) Accelerating enzymatic catalysis
453 using vortex fluidics. *Angew. Chem. Int. Ed.*, **55(38)**, 11387-11391.

454 [30] Yuan,T.Z., Ormonde,C.F.G., Kudlacek,S.T., Kunche,S., Smith,J.N., Brown,W.A., Pugliese,K.M.,
455 Olsen,T.J., Iftikhar,M., Raston,C.L. and Weiss,G.A. (2015) Shear stress-mediated refolding of
456 proteins from aggregates and inclusion bodies. *ChemBioChem.*, **16**, 393-396.

457 [31] Hu,M., Jex,A.R., Campbell,B.E. and Gasser,R.B. (2007) Long PCR amplification of the entire
458 mitochondrial genome from individual helminths for direct sequencing. *Nat. Protoc.*, **2(10)**, 2339-
459 2344.

460 [32] Britton,J., Stubbs,K.A., Weiss,G.A. and Raston,C.L. (2017) Vortex fluidic chemical
461 transformations, *Chem. Eur. J.*, **23**, 13270-13278.

462 [33] Luo,X., Al-Antaki,A.H.M., Harvey,D.P., Ruan,Y., He,S., Zhang,W. and Raston,C.L. (2018) Vortex
463 fluidic mediated synthesis of macroporous bovine serum albumin-based microspheres. *ACS Appl.*
464 *Mater. Interfaces.*, **10**, 27224-27232.

465 [34] Leggate,J., Allain,R., Isaac,L. and Blais,B.W. (2006) Microplate fluorescence assay for the
466 quantification of double stranded DNA using SYBR Green I dye. *Biotechnol. Lett.*, **28(19)**, 1587-1594.

467 [35] Glasel,J.A. (1995) Validity of nucleic acid purities monitored by 260 nm/280nm absorbance ratios.
468 *BioTechniques.*, **18(1)**, 62-63.

469 [36] Hu,Q., Liu,Y., Yi,S. and Huang,D. (2015) A comparison of four methods for PCR inhibitor
470 removal. *Forensic Sci. Int. Genet.*, **16**, 94-97.

471 [37] Sitepu,E.K., Corbin,K., Luo,X., Pye,S.J., Tang,Y., Leterme,S.C., Heimann,K., Raston,C.L. and
472 Zhang,W. (2018), *Bioresour Technol.*, **266**, 488-497.

473 [38] Kim,S., Lee,S.H., Park,M.H., Choi,H.G., Park,J.K. and Min,G.S. (2011) The complete
474 mitochondrial genome of the American lobster, *Homarus americanus* (Crustacea, Decapoda)
475 *Mitochondrial DNA*, **22(3)**, 47-49.

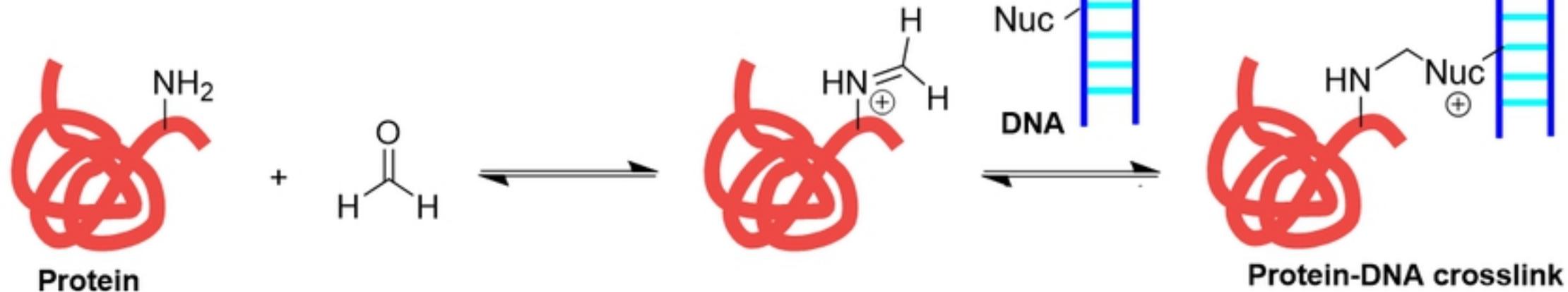
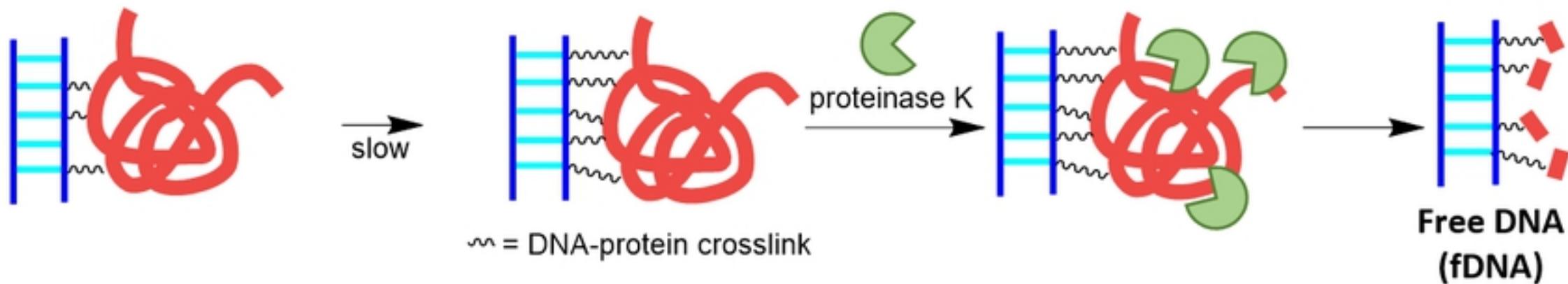


A**B**

Figure 1

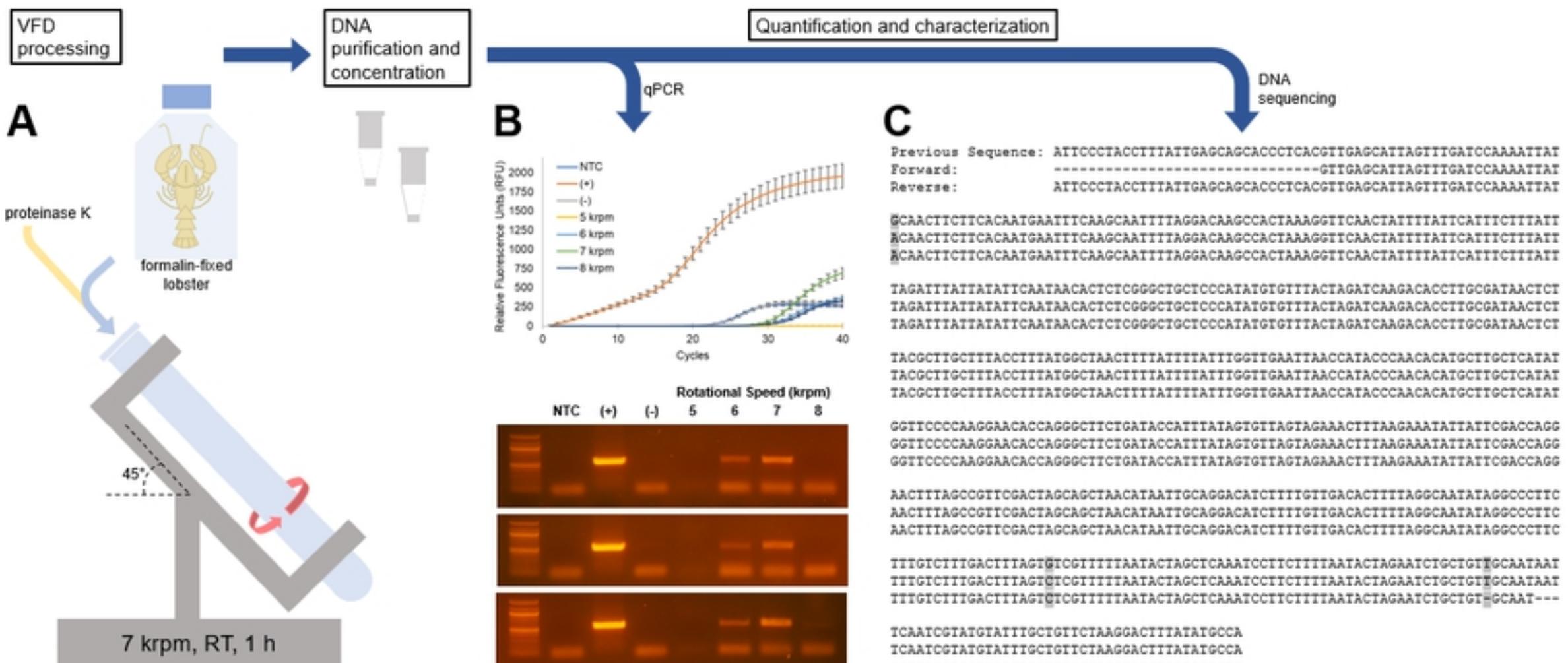


Figure 2

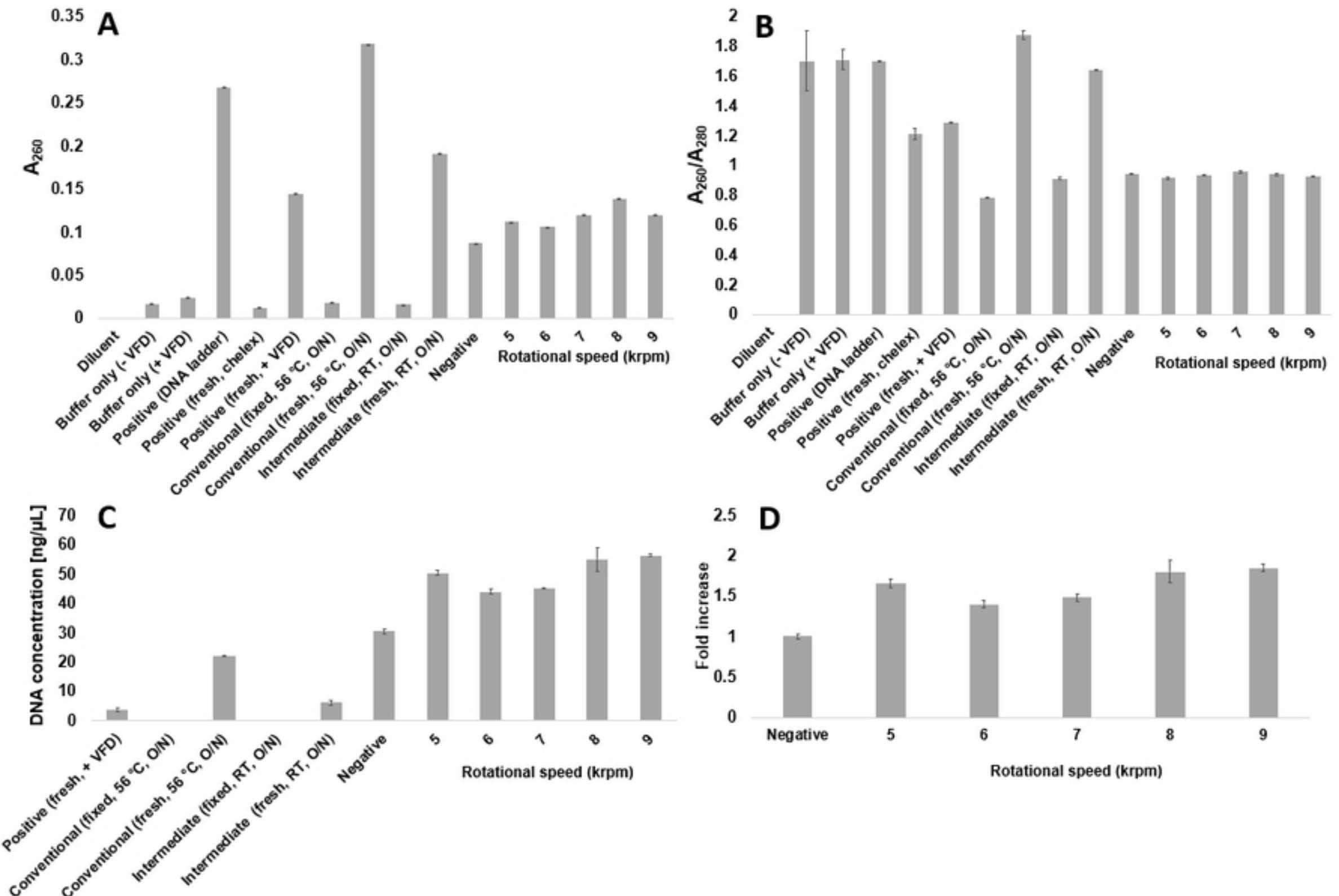
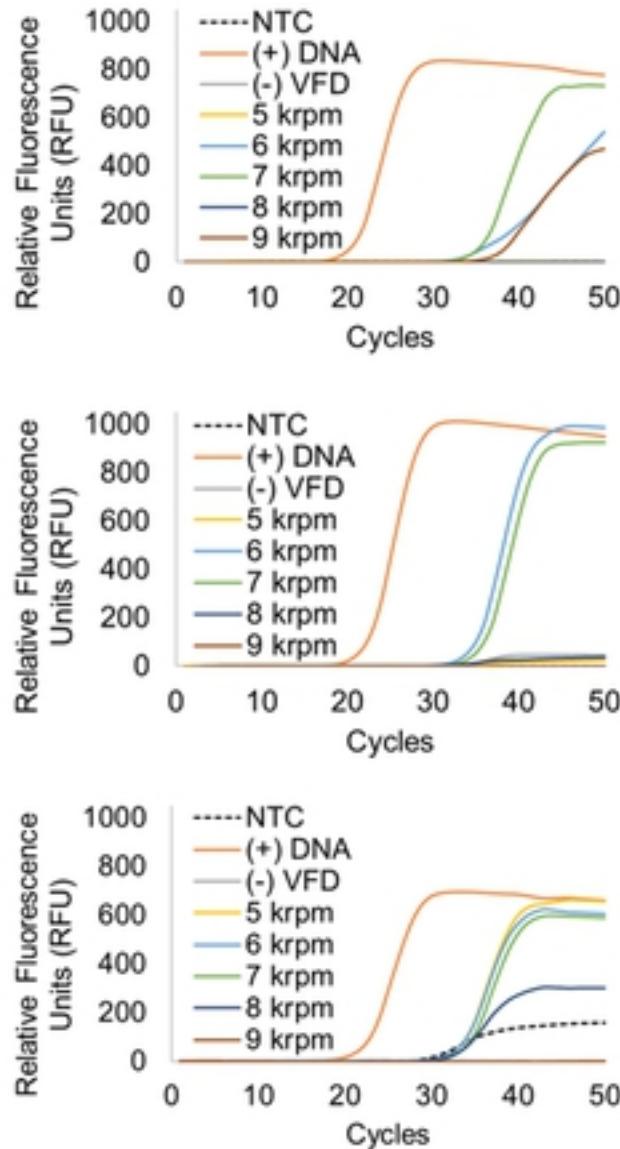
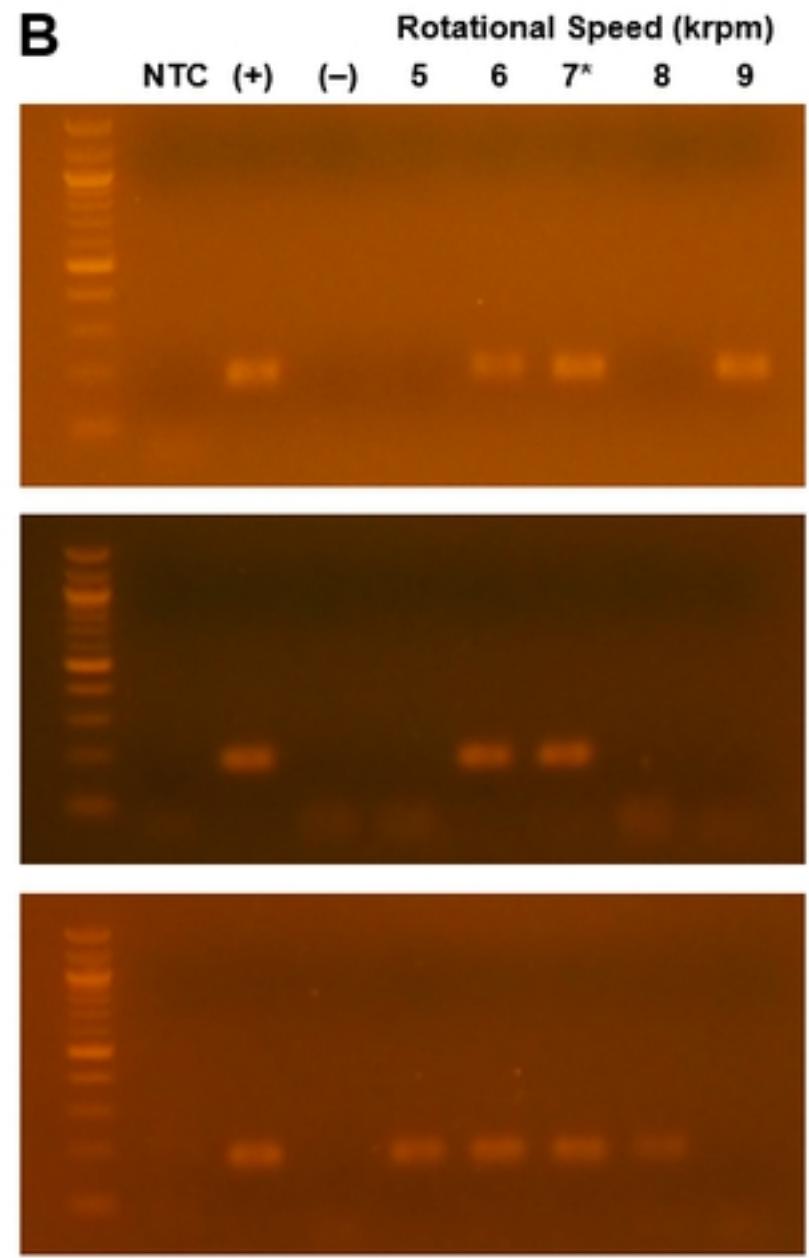




Figure 3

A**B****C**

Previous Sequence: GGTTACTTTTATTCC
 *Forward: GGTTACTTTTATTCC
 *Reverse: -----

CTACCTTATTGAGCAGCACCTCACGTTGAGCATT
 CTACCTTATTGAGCAGCACCTCACGTTGAGCATT
 -----CGTTGAGCATT

AGTTTGATCCAAAATTATGCAACTTCTTCACAATGA
 AGTTTGATCCAAAATTATACAACCTTCTTCACAATGA
 AGTTTGATCCAAAATTATACAACCTTCTTCACAATGA

ATTTCAAGCAATTAGGACAAGCCACTAAAGGTTC
 ATTTCAAGCAATTAGGACAAGCCACTAAAGGTTC
 ATTTCAAGCAATTAGGACAAGCCACTAAAGGTTC

AACTATTATTATTCAATTCTTTATTAGATTATTAT
 AACTA-----
 AACTATTATTATTCAATTCTTTATTAGATTATTAT

ATTCAATAACACTCTCGGGCTG

 ATTCAATAACACTCTCGGGCTG

Figure 4