

1 **Genomic epidemiology of vancomycin resistant *Enterococcus faecium***  
2 **(VREfm) in Latin America: Revisiting the global VRE population structure**

3

4 Rafael Rios<sup>1</sup>, Jinneth Reyes<sup>1,2</sup>, Lina P. Carvajal<sup>1</sup>, Sandra Rincon<sup>1</sup>, Diana  
5 Panesso<sup>1,2,3</sup>, Paul J. Planet<sup>4,5</sup>, Aura M. Echeverri<sup>1</sup>, An Dinh<sup>2,3</sup>, Sergios-Orestis  
6 Kolokotronis<sup>5,6</sup>, Apurva Narechania<sup>5</sup>, Truc T. Tran<sup>2,3</sup>, Jose M. Munita<sup>2,3,7,8</sup>, Barbara  
7 E. Murray<sup>2,3,9</sup>, Cesar A. Arias<sup>1,2,3,8,9</sup> and Lorena Diaz<sup>1,2,7\*</sup>

8

9 <sup>1</sup> Molecular Genetics and Antimicrobial Resistance Unit, International Center for  
10 Microbial Genomics, Universidad El Bosque, Bogotá, Colombia.

11 <sup>2</sup> Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical  
12 School, University of Texas Health Science Center, Houston, TX, USA.

13 <sup>3</sup> Division of Infectious Diseases, Department of Internal Medicine, McGovern  
14 Medical School, University of Texas Health Science Center, Houston, Texas, USA

15 <sup>4</sup> Department of Pediatrics, Perelman School of Medicine, University of  
16 Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, USA

17 <sup>5</sup> Institute for Comparative Genomics, American Museum of Natural History, New  
18 York, NY, USA

19 <sup>6</sup> Department of Epidemiology and Biostatistics, School of Public Health, SUNY  
20 Downstate Health Sciences University, Brooklyn, NY, USA

21 <sup>7</sup> Millennium Initiative for Collaborative Research On Bacterial Resistance

22 (MICROB-R), Santiago, Chile

23 <sup>8</sup> Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana,

24 Universidad del Desarrollo, Santiago, Chile

25 <sup>9</sup> Department of Microbiology and Molecular Genetics, McGovern Medical School,

26 University of Texas Health Science Center, Houston, Texas, USA

27

28 \*Correspondence

29 Lorena Diaz, PhD

30 Molecular Genetics and Antimicrobial Resistance Unit, International Center for

31 Microbial Genomics, Universidad El Bosque

32 Av Cra 9 131a-02, Bogotá, Colombia.

33 Tel: +57 6489000 ext 1131

34 Email: diazsandra@unbosque.edu.co

35

36

37

38

39

40

41

42 **Abstract**

43 The prevalence of vancomycin-resistant *Enterococcus faecium* varies across  
44 geographical regions yet little is known about its population structure in Latin  
45 America. Here, we provide a complete genomic characterization of 55  
46 representative Latin American VREfm recovered from 1998-2015 in 5 countries.  
47 We found that VREfm population in the region is structured into two main clinical  
48 clades without geographical clustering. To place our regional findings in context,  
49 we reconstructed the global population structure of VREfm by including 285  
50 genomes from 36 countries from 1946-2017. Our results differ from previous  
51 studies showing an early branching of animal related isolates and a further split of  
52 clinical isolates into two sub-clades, all within clade A. The overall phylogenomic  
53 structure was highly dependent on recombination (54% of the genome) and the  
54 split between clades A and B is estimated to have occurred more than 3585 years  
55 BP. Furthermore, while the branching of animal isolates and clinical clades was  
56 predicted to have occurred ~894 years BP, our molecular clock calculations suggest  
57 that the split within the clinical clade occurred around ~371 years BP. By including  
58 isolates from Latin America, we present novel insights into the population structure  
59 of VREfm and revisit the evolution of this pathogen.

60

61

62

63

64 **Introduction**

65 Enterococci are predominantly non-pathogenic gastrointestinal commensal  
66 bacteria that occasionally cause human infections. Among them, *Enterococcus*  
67 *faecalis* and *Enterococcus faecium* represent the species that account for most  
68 clinically relevant infections. In particular, *E. faecium* has been able to adapt to the  
69 hospital environment, emerging during the last few decades as a leading cause of  
70 health-care infections worldwide, and becoming the most challenging species to  
71 treat<sup>1,2</sup>.

72 Genome plasticity, the presence of multiple antibiotic resistance determinants, and  
73 the lack of therapeutic options have contributed to the adaptation of *E. faecium* to  
74 hospital environments<sup>3,4</sup>. Moreover, high recombination rates and the acquisition of  
75 mobile elements in the genome of *E. faecium* also have driven this evolutionary  
76 process<sup>5</sup>. In addition, the enrichment of virulence determinants, such as surface  
77 proteins and phosphotransferase systems (particularly PTS<sup>clin</sup>, a putative factor  
78 found to contribute to the intestinal colonization in a murine model) seems to  
79 provide an advantage to the hospital adaptive process<sup>3,6</sup>. Furthermore, functional  
80 gene groups, such as those involved in galactosamine metabolism, bile hydrolysis  
81 and phosphorus utilization, are also abundant in *E. faecium* clinical strains  
82 compared to non-clinical isolates, suggesting that specific metabolic factors have  
83 also facilitated adaptation<sup>7</sup>.

84 In terms of antibiotic resistance, one of the most relevant antibiotic resistance traits  
85 acquired by enterococci is resistance to vancomycin due to the *van* gene clusters<sup>8</sup>.  
86 Furthermore, vancomycin-resistant *E. faecium* (VREfm) frequently exhibits

87 resistance to ampicillin and high-level resistance to aminoglycosides<sup>9,10</sup>. Indeed,  
88 the World Health Organization (WHO) has categorized *VREfm* as a priority agent  
89 for which the finding of new and effective therapeutic strategies is imperative<sup>11</sup>.  
90 *VREfm* is widely distributed in hospitals around the world, with the prevalence  
91 varying according to geographical location. In US hospitals, *VREfm* is an important  
92 clinical pathogen, particularly in immunosuppressed and critically-ill patients<sup>1,12</sup>.  
93 The National Health-Care Safety Network described that 82% of *E. faecium*  
94 recovered from bloodstream infections in the US were vancomycin-resistant,  
95 whereas only 9.8% of *E. faecalis* were resistant to vancomycin<sup>12</sup>. In Europe,  
96 prevalence rates of *VREfm* vary widely by country, but according to the European  
97 Centre for Disease and Control (ECDC) 2016 report, overall prevalence across  
98 European countries was 30%<sup>13</sup>. Although data regarding *VREfm* in Latin America  
99 are scarce, a few studies have shed some light on the current situation. A  
100 prospective multicentre study focusing on 4 countries in northern South America  
101 (i.e. Colombia, Ecuador, Peru and Venezuela) found an overall prevalence of  
102 *VREfm* in clinical enterococcal isolates of 31%<sup>14</sup>. More recently, another study  
103 performed in Brazil reported a *VREfm* prevalence close to 60%<sup>15</sup>.  
104 Tracking the population structure of *E. faecium* using conventional bacterial typing  
105 techniques has been challenging<sup>16</sup>. Although wide genetic variability has been  
106 observed among *E. faecium* strains causing clinical infections, a previously  
107 described lineage (designated clonal complex CC17 by multi locus sequence  
108 typing [MLST]), was initially recognized as globally distributed<sup>17</sup>. However, the  
109 classification of this lineage by MLST has some important drawbacks when

110 analysing the population structure of *E. faecium*, since high rates of recombination  
111 in the MLST loci often occurs in these organisms<sup>18</sup>. Additionally, some strains are  
112 not type able by MLST due to the lack of the locus *pts*<sup>19</sup> leading to major  
113 discrepancies compared to whole-genome sequencing (WGS) when it is used for  
114 typing purposes<sup>20</sup>.

115 Whole-genome-based comparative phylogenomic analyses using *E. faecium*  
116 recovered from different geographical regions have identified two clades,  
117 designated A and B. Clade A mostly contains isolates recovered in clinical settings  
118 (including those from CC17)<sup>21</sup>, while clade B encompasses organisms isolated in  
119 community settings, usually from healthy individuals<sup>3,20,22–24</sup>. A further subdivision  
120 has been described within clade A, which groups isolates from animal origin in a  
121 subclade (designated as A2), separating them from those recovered from human  
122 infections or colonization (subclade A1).

123 However, these analyses have been performed mostly with US and European  
124 isolates, lacking geographical diversity particularly in areas such as Latin America.  
125 Indeed, studies on the molecular epidemiology of *VREfm* isolates from Latin  
126 America are sparse, with one study suggesting that the CC17 lineage  
127 predominates<sup>14</sup>. Furthermore, studies analysing the population structure of *VREfm*  
128 in the region using high-resolution, WGS-based phylogenomic comparative  
129 methods are limited. Here, we sought to characterize the population structure of  
130 *VREfm* lineages in a collection of isolates recovered between 1998-2015 in  
131 prospective multicentre studies performed in selected Latin-American

132 hospitals<sup>14,25,26</sup> and revisit the global population structure and evolutionary history  
133 of *VREfm*.

134

135 **Results**

136 **Genomic characterization of Latin American *VREfm* clinical isolates**

137 From a collection of 207 *VREfm* clinical isolates obtained between 1998 and 2015  
138 in five Latin American countries (Colombia, Ecuador, Venezuela, Peru and  
139 Mexico), we selected 55 representative isolates for WGS. We included the first  
140 *VREfm* (ERV1) reported in Colombia as the representative of 23 isolates with  
141 identical PFGE banding pattern, recovered from an outbreak in 1998-1999 and  
142 affecting 23 patients in a single teaching hospital<sup>25</sup>. Five isolates (out of 7  
143 available) were selected from a national surveillance in Colombia during 2001-  
144 2002, which included 15 tertiary hospitals among 5 cities<sup>26</sup> and 16 (out of 35  
145 available) were chosen from a subsequent surveillance study (2006-2008)  
146 performed in Colombia, Ecuador, Venezuela and Peru and the selected isolates  
147 were chosen based on their different banding patterns<sup>14</sup>. The remaining 33 isolates  
148 were obtained from sporadic isolates and outbreaks that occurred in Colombia and  
149 Mexico (2002-2014). In order to characterize the *VREfm* lineages circulating in  
150 Latin America, we reconstructed their phylogenetic history based on 1,674 genes  
151 (groups of orthologous sequences; hereafter referred to as orthogroups) present in  
152 more than 90% of the genome sequences (core genome) from a total of 6735  
153 orthogroups (pan-genome) using a Bayesian approach (Figure 1A). We observed a

154 split into two main clades (Clade I and Clade II, marked in red and green,  
155 respectively). Clade I included all the ST412 isolates, while Clade II had all the  
156 ST17 isolates from our sample. We observe that the emergence of *VREfm* in  
157 Colombia was associated with Clade II, including the first *VREfm* (described in  
158 1998) and representatives from the first national surveillance (2001 to 2002).  
159 Additionally, ST412 was reported in 2005 and, since then, ST17 and ST412 seem  
160 to be the most prevalent STs in the country. Our previous results showed that Peru  
161 had the highest prevalence of *VREfm* (48%) and our PFGE and MLST results  
162 suggested higher diversity in Peruvian lineages compared to Colombia, Ecuador  
163 and Venezuela with a predominant circulation of ST412<sup>14</sup>. Indeed, the  
164 representative *VREfm* isolates of the circulating lineages in Peru collected in the  
165 two-year period (2006-2007) exhibited a marked genomic variability (Figure 1A and  
166 B).

## 167 **The resistome and virulome of Latin American *VREfm***

168 In order to characterize antibiotic resistance determinants, we built resistome  
169 profiles by detecting acquired resistance genes and mutations known to confer  
170 resistance to linezolid, ciprofloxacin and daptomycin. All the *VREfm* isolates from  
171 our collection were resistant to vancomycin ( $\text{MIC}_{90} > 256 \mu\text{g/ml}$ ) and teicoplanin  
172 ( $\text{MIC}_{90} 64 \mu\text{g/ml}$ ) (Figure 1B). The presence of *vanA* was confirmed in all isolates  
173 by PCR assays. Consistently, we confirmed the presence of the entire *vanA* cluster  
174 in 54 out of the 55 sequenced genomes. Of note, the genome of ERV69 lacked the  
175 two-component regulatory system *vanSR*, although still exhibiting MICs of  $> 256$

176  $\mu\text{g}/\text{ml}$  and  $64 \mu\text{g}/\text{ml}$  for vancomycin and teicoplanin, respectively. The deletion of  
177 the two-component regulatory system has been previously reported<sup>27</sup>.

178 High-level resistance to ampicillin was consistently found in all 55 *E. faecium*  
179 isolates, a phenotype that was corroborated using comparisons of the PBP5  
180 protein sequence using a machine-learning prediction model. This approach was  
181 based on the amino acid changes present in the PBP5 protein across susceptible  
182 and resistant isolates (see details in Methods).

183 High-level resistance to gentamicin was identified in 31% of the isolates of our  
184 collection and, within the sequenced representatives, the presence of *aac(6')*-  
185 *aph(2")* was detected in 49% of the genome sequences. High-level resistance to  
186 streptomycin was identified in 39% of the Latin American VRE<sup>fm</sup> isolates with a  
187 high prevalence of the *ant(6)-la* gene (89%; n=49) in the sequenced genomes.

188 Fluoroquinolone resistance is very common in *E. faecium*. All isolates in our  
189 collection were fluoroquinolone-resistant and we were able to predict the presence  
190 of substitutions in GyrA and ParC associated with this phenotype. The most  
191 common substitution in GyrA was Ser84Arg (67%; n=37). All isolates exhibited  
192 Ser82Arg (53%; n=29) or Ser82Ile (47%; n=26) substitutions in ParC.

193 The *cat* gene conferring resistance to chloramphenicol was present only in the  
194 three Peruvian genomes. Interestingly, Peruvian isolates had the highest  
195 resistance to this antibiotic (21%). All the isolates from this collection were  
196 susceptible to linezolid; however, we detected the various genetic elements  
197 previously associated with linezolid resistance. The gene, *optrA*, was detected in

198 one genome of a Colombian linezolid-susceptible isolate (ERV138). Also, we  
199 identified the presence of *cfrB*, a recently reported variant of *cfr*<sup>28</sup>, in a Mexican  
200 isolate (ERV275). We predicted tetracycline resistance owing to the presence of  
201 *tetM* (43.6%; n=24), *tetL* (16.3%; n=9) and *tetS* (1.8%; n=1) in the sequenced  
202 genomes, but resistance to this group of antibiotics was not tested phenotypically.  
203 Substitutions in LiaS (Thr120Ala) and LiaR (Trp73Cys), which have been strongly  
204 associated with daptomycin resistance and tolerance<sup>29,30</sup>, were present in three  
205 VRE<sub>fm</sub> isolates, recovered before daptomycin was available in the region. Of note,  
206 the three isolates showed MICs between 2-4 µg/ml, considered now as  
207 “daptomycin-susceptible dose-dependent”, by the Clinical & Laboratory Standards  
208 Institute (CLSI)<sup>31</sup>.

209 Latin American VRE isolates also harboured a high proportion of putative virulence  
210 determinants (Figure 2). The vast majority had gene clusters related to pilus  
211 formation, adhesins and microbial surface components recognizing adhesive  
212 matrix molecules (MSCRAMMS). Interestingly, the notable exception was the  
213 Clade I isolates, which often lacked *fms22*, *swpC* and *hylEfm*. Our results suggest  
214 that the “virulome” of Latin-American VRE is similar to those from other regions in  
215 the world<sup>32</sup>.

216

## 217 **Global Phylogenetic Reconstructions of Latin American VRE**

218 To place the genetic lineages of VRE<sub>fm</sub> isolates circulating in Latin America into a  
219 global context, we performed a WGS-based phylogenomic analysis. We included

220 285 *E. faecium* genomes (VRE and non-VRE) from the publicly available NCBI  
221 collection aiming to incorporate a diverse set of sequences for comparisons. The  
222 included isolates were from colonizing, commensal, animal and clinical sources  
223 and were collected between 1946-2017 from Europe, North America, Asia, Africa  
224 and Australia (Supplementary Table 1). We constructed a pangenome (29,503  
225 orthogroups) and core genome (978 orthogroups). Using the core genome, we built  
226 a phylogenomic tree of the species to show the evolutionary relationships among  
227 isolates based on the variation of their genomic sequences. Figure 3 shows that,  
228 as previously reported, we found a clear split into two main clades corresponding  
229 to the previously designated clades A and B<sup>3,22,24</sup>. All Latin American isolates from  
230 our clinical collection were in clade A. We compared the genomic characteristics  
231 among the two main clades and found similar findings as published previously  
232 (Supplementary table 2)<sup>3</sup>. However, our data showed that the core genome was  
233 larger in clade B as compared to clade A (1,466 vs 1,182 orthogroups,  
234 respectively).

235 Considering the relevance of *E. faecium* as a cause of hospital-associated  
236 infections and that all Latin American isolates were grouped within clade A, we  
237 sought to dissect the population structure of this clade when adding the genomes  
238 of these isolates. Our first approach was based on a core genome (>90%  
239 reconstruction), which contained 1,226 orthogroups and the isolate Com15, from  
240 clade B, as the outgroup to root the tree. We observed two major subclades. The  
241 first was composed of 52 genomes, most of which were from animal sources (57%,  
242 n=30), related to the previously described subclade A2<sup>3</sup>. The second lineage

243 harboured 273 genomes, with 91% (n=228) corresponding to isolates obtained  
244 from clinical sources (Supp. Figure 2A), and related to the subclade A1<sup>3</sup>.

245 Previous studies have shown contradictory distributions of the subclades A1 and  
246 A2 within clade A<sup>20</sup>; suggesting that clade A2 is not in fact a clade, but rather  
247 corresponds to the paraphyletic early branching lineages of clade A. To further  
248 clarify the issue, we performed a phylogenomic analysis accounting for  
249 recombination events within clade A. We used the variants found from paired  
250 alignments of each genome against the chromosome of reference Aus0085 and  
251 built a whole-genome multiple sequence alignment (WGMSA) of all genomes in the  
252 clade. We used this alignment to create a maximum likelihood tree, which is  
253 required for determining recombinant regions using ClonalFrameML<sup>33</sup>. The  
254 average amount of recombination found in the 303 genomes belonging to clade A  
255 was 19,539pb (Supp. figure 2C). The total recombinant regions found across  
256 clinical isolates encompassed 1.6 Mb (54% of the length of WGMSA). Interestingly,  
257 the exclusion of recombinant regions considerably altered the structure of the tree,  
258 and showed 7 early-branching subclades that included 73 genomes (mostly from  
259 animal sources) rather than a split into clades A1 and A2.

260 Following these animal-related early branches, we observed a split into two main  
261 subclades (Supp. Figure 2B). Overall, these subclades were related to clinical  
262 sources, exhibiting a high similarity in terms of prevalence of antibiotic resistance  
263 and virulence determinants (Supplementary table 3). We refer to them as clinically-  
264 related clades I and II (CRS-I and CRS-II), containing 101 and 124 genomes  
265 respectively. Latin American genomes from our collection were split between these

266 two CRS, showing that Clade I and Clade II (derived from the analysis of Latin  
267 American *VR*Efm, see above) belonged to CRS-I and CRS-II, respectively. Of  
268 note, the genomes from our collection were distributed almost equally between  
269 CRS-I (49%) and CRS-II (51%). Furthermore, despite the inclusion of a few  
270 outbreak isolates and that *VR*Efm from Latin America originated in different  
271 periods, cities and countries, our phylogenetic reconstruction showed 11  
272 conserved clusters with four or more isolates from the same country (Figure 4). In  
273 particular, three clusters had only Colombian genomes with the number of SNPs  
274 among them, within the regions not showing recombination, ranging between 36  
275 and 160. We also found clusters among isolates from Brazil (n=3), USA (n=3),  
276 Denmark (n=1) and Sweden (n=1). The Danish cluster is situated in the animal-  
277 associated branches, and their genomes were closely related (with an average of  
278 43 SNPs among them). Of note, two of the USA clusters were related to each other  
279 and to 5 other isolates, four of them from the UK and one from Colombia in our  
280 collection (172 SNPs difference on average among them).  
  
281 In CRS-I, there were 23 different STs, with ST412 and 78 the most frequent (34%  
282 and 11%, respectively) (Figure 4). Importantly, we did not find a strong correlation  
283 between MLST and the phylogenomic analysis, as isolates belonging to the same  
284 ST were not all clustered in the same clades, and were distributed in different  
285 groups in the phylogeny. In particular, 56% (n=9) of genomes from ST78 were in  
286 CRS-I, while 37% (n=6) were in CRS-II. To further dissect this discrepancy, we  
287 performed a phylogenetic reconstruction using only the sequences of the 7 MLST  
288 *loci* and compared it against the phylogeny of Clade A. Our results showed that

289 many isolates from ST17, ST18, ST78, ST203, ST412 were in different clusters  
290 and even formed subclades in the non-recombination reconstruction  
291 (Supplementary Figure 3).

292 In relation to antibiotic resistance determinants, we found important differences  
293 comparing the presence/absence of genomic elements associated with antibiotic  
294 resistance between the CRSs and the animal branches. Indeed, the animal-  
295 associated branches exhibited a lower prevalence of elements associated with  
296 glycopeptide (34.2%), aminoglycoside (21.9%), ampicillin (9.5%) and  
297 fluoroquinolone resistance (2.7%) compared to the CRS isolates, which harboured  
298 these determinants in 78%, 85%, 95% and 99% of isolates, respectively. In  
299 contrast, similar frequencies of determinants coding for resistance to macrolides  
300 (>98%), tetracyclines (between 50-63%) and oxazolidinones (between 2-12%)  
301 were found between animal and clinical clades (Supp. Table 3). Within the  
302 subclades of clade A, only 9% of isolates within the animal-associated branches  
303 exhibited resistance to ampicillin (7 out of 71 complete PBP5 sequences), while  
304 99% of the clinically related subclades (100% in CRS-I and 98% in CRS-II)  
305 harboured the predicted *pbp5-R* allele<sup>34,35</sup>. Mutations associated with  
306 fluoroquinolone resistance were also much more highly prevalent in clinical clades  
307 (>98% for CRSs) vs animal branches (2.7%; p<0.001).

308 Genes encoding putative surface adhesin proteins (e.g., *acm*, *scm*, *esp*, *sgrA*,  
309 *fms6* and *fms22*) and two of the pilus-forming clusters were significantly more  
310 common in the CRSs, (p-values below 0.001 in all cases) compared to animal  
311 isolates (Supp. Table 3). We next compared the presence/absence of putative

312 mobile elements between animal branches vs. CRSs. On average, the number of  
313 insertion sequences in the former were 5.7, whereas the clinical subclades had 6.9  
314 (6.76 CRS-I and 7.06 for CRS-II). Of note, *rep17* was notoriously overrepresented  
315 in the CRSs (Supp. Table 3), located in the plasmid pRUM, which is a  
316 representative member of *rep17* family and has been associated with the  
317 toxin/antitoxin system *Txe/Axe*<sup>36</sup>.

318

319 **Rates of evolution across the whole population of *E. faecium***

320 Using the sampling date of isolates within clade A, we performed molecular clock  
321 analyses on the entire clade A and its subgroups (animal branches, CRS-I and  
322 CRS-II). We found that the oldest split within clade A likely occurred ~3,585 years  
323 ago (y.a.) (95% High Posterior Density Interval [HPDI]: [2626, 4690]). The  
324 separation of the clinical subclades from the animal branches is predicted to have  
325 occurred ~894 y.a. (95% HPDI: [649, 1171]) (Supplementary Figure 3). The most  
326 recent split between CRS-I and CRS-II was dated ~371 y. a (95% HPDI: [272,  
327 488]) (Supplementary Figure 4). The substitution rate across the clade A genomes  
328 was 3.91E-7 (95% HPDI: [2.78E-7, 5E-7]), which translates to 0.53 SNPs per year  
329 (using only non-recombinant regions or 1.17 SNPs if the WGSA is used). The  
330 substitution rates within each subgroup of genomes were 3.02E-7 (95% HPDI:  
331 [2,78E-7, 3,46E-7]) for animal branches, 4.7E-7 (95% HPDI: [4,01E-7, 4,98E-7]) for  
332 CRS-I and 4.63E-7 (95% HPDI: [3.92E-7, 4.98E-7]) for CRS-II. These rates are  
333 equivalent to 0.41, 0.64 and 0.63 SNPs per year for animal branches, CRS-I and

334 CRS-II, respectively. Our results support that clinically related clades are evolving  
335 faster than those of the animal branches.

336

337 **Discussion**

338 Our results indicate that *VREfm* is widely present in Latin America but that their  
339 frequency and population structure seem to vary from country to country. As  
340 multicentre analyses of *VREfm* in the Latin American region are rare, our study is  
341 unique in its dissection of the population structure of *VREfm* in the region. Unlike  
342 previous studies, we found two distinct populations of clinically-related isolates of  
343 *VREfm*. This subpopulation separation was also seen in our analyses of the global  
344 population of *E. faecium*. The causes for the splitting of the population structure of  
345 *VRE* (CRS-I and CRS-II) are not clear, but the findings were consistent when  
346 analysing the population structure in the presence or absence of recombinant  
347 regions. Such a separation suggests that these lineages have been expanding  
348 through Latin American countries and highlights the importance of establishing  
349 genomic surveillance studies for these multidrug-resistant organisms. Furthermore,  
350 the distribution of the Latin American isolates across the tree does not suggest a  
351 particular dominance of a specific lineage circulating in the region or country,  
352 suggesting that the presence of *VREfm* in Latin America is associated with multiple  
353 introductions of *VREfm* lineages that are circulating globally. Interestingly, some  
354 South American countries such as Brazil (no isolates available for this study) have  
355 reported *VREfm* since 1997<sup>37</sup>, and their prevalence appears to be increasing  
356 exhibiting a shift from *E. faecalis* to *VREfm* since 2007<sup>15</sup>. Of interest, ST412

357 isolates reported in some regions of Brazil<sup>38,39</sup> have also been detected in some  
358 Caribbean countries<sup>40</sup> and this sequence type was also identified in our collection  
359 in Colombia, Peru and Venezuela since 2005<sup>14</sup>, suggesting wide dissemination of  
360 this genetic lineage.

361 Our VR*Efm* phylogenomic analysis, which includes a highly diverse sample  
362 collection and excludes recombinant regions from the genome, questions the  
363 presence of a single animal clade. Our results suggest that the animal isolates  
364 represent multiple lineages that diverged prior to the emergence of the clinical  
365 subclades in the clade A<sup>3</sup>. Importantly, animal-associated branches have  
366 significantly lower predicted ampicillin resistance, fluoroquinolone resistance  
367 mutations, virulence elements and average number of insertion sequences,  
368 similarly to what has previously reported<sup>41</sup>. Furthermore, the amount of  
369 recombination in clade A genomes was greater than previous results. Importantly,  
370 this difference (54% vs 44% found in previous studies<sup>18,42</sup>) could be due to the fact  
371 that previous analyses were based on the alignment of SNPs from a core genome  
372 and neither included non-coding regions nor invariant sites to identify the  
373 recombinant DNA. Over the recombinant regions, we found partial sequences in 5  
374 out of the 7 loci used by MLST (*ddl*, *gyd*, *purK*, *gdh* and *adk*), corroborating the  
375 notion that the current *E. faecium* MLST scheme has major limitations to describe  
376 the population structure of VR*Efm*. Interestingly, the exclusion of recombinant  
377 regions considerably altered the structure of the tree, dissolving the animal-related  
378 clade into a paraphyletic group and reducing the length of the branches across the  
379 tree (Supplementary Figure 2). Additionally, we found a lack of concordance

380 between MLST classification and the clades. The discrepancy is likely explained by  
381 the presence of recombinant regions in the MLST genes, low variation in some of  
382 the loci, and the absence of *pst* in many isolates<sup>19,20,43</sup>

383 Previous studies estimated that the separation between clades A and B occurred  
384  $2776 \pm 818$  y.a.<sup>3</sup>, a time frame that is similar to our results. However, the previously  
385 reported split between animal branches and the clinically-related subclades was  
386 reported to occur  $74 \pm 30$  y. a., which is much more recent than what we found.

387 Our findings showed at least a tenfold lower mutation rate from what has been  
388 previously reported<sup>3,18</sup>. This finding could be associated with the larger genomic  
389 region used in our analysis and the increase in the diversity of the sampled  
390 genomes. Indeed, dating of the splits between the animal-associated branches and  
391 the clinically-related subclades, and the lower mutation rates across clade A  
392 correlates with lower number of SNPs per year. It has been estimated that the  
393 *Enterococcus* as a genus arose around 500 million years ago<sup>44</sup> and ancient  
394 isolates of *E. faecium* have been found in permafrost over 20,000 y.a.<sup>45</sup>, supporting  
395 our findings that a more ancient branching between Clade A and B could have  
396 occurred.

397 Our study could be subject to sampling bias due to small sample size of genomes  
398 from Latin America, but we attempted to include as many and as diverse genomes  
399 as possible from our collection, based on phenotypic characteristics and PFGE  
400 typing of the strains. Also, we included all publicly available genomes from the  
401 region, provided that the associated demographic information was complete  
402 (source, year of sampling and geographical location), which also reiterates the low

403 number of previously sequenced genomes of *E. faecium* in Latin America at the  
404 moment of sample selection. Nonetheless, our results supporting the existence of  
405 two clinical subclades were maintained even after the inclusion of genomes from  
406 other continents; that is, our conclusion holds beyond sample size, further  
407 indicating that the population structure of the clinical related isolates is divided into  
408 two main lineages within clade A.

409

## 410 **Conclusions**

411 We provide comprehensive insights into the genomic epidemiology of VREfm using  
412 available isolates from Latin America where previous studies are lacking. Our  
413 results indicate that the population structure of VREfm in the region is diverse and  
414 can be grouped into two main lineages (Clades I and II) that belong to the  
415 previously reported clade A. A novel global reconstruction of the *E. faecium*, using  
416 a wide and diverse sample of isolates from 36 countries and obtained from clinical,  
417 animal, environmental and commensal samples, corroborates previous reports that  
418 recombination plays a major role in the evolution of this species. Our analyses also  
419 indicate, contrary to previous results, that animal-associated genomes are not  
420 monophyletic, and are instead a diverse collection of early-branching clades that  
421 diverged prior to the emergence of the human clinical clade and its two subclades  
422 (CRSI and CRSII).

423 The complex evolutionary dynamics of *VREfm* highlight the importance of  
424 employing phylogenomic approaches when studying the population structure of a  
425 highly evolved hospital-associated pathogen.

426

427 **Acknowledgments**

428 This work was founded by Universidad El Bosque, grant PCI 2016-8865 to L.D.;  
429 grants from the National Institutes of Health K24-AI121296 and R01-AI134637 to  
430 C.A.A. and grant FONDECYT regular Project No. 1171805, Ministry of Education,  
431 Government of Chile and the Millennium Science Initiative, Ministry of Economy,  
432 Development and Tourism, Chile to J.M.M.

433

434 **Methods**

435 ***Enterococcus faecium* isolates**

436 A total of 207 vancomycin-resistant Latin American *E. faecium* clinical isolates  
437 have been collected between 1998 and 2014 including those belonging to the first  
438 outbreak of VRE infections in Colombia and isolates collected in two multicentre  
439 surveillances<sup>14,25,26</sup>. Isolates were recovered from patients in Colombia (n=177,  
440 86%) Peru (n=14, 7%), Venezuela (n=6, 3%), Ecuador (n=5, 2%) and Mexico (n=5,  
441 2%). The most common sources included blood (22%), urine (18%) and stools  
442 (10%). For all the isolates, species (*E. faecium*) confirmation and the susceptibility  
443 profiles determination were performed by PCR assays<sup>46</sup> and agar dilution,  
444 respectively<sup>31</sup>.

445

446 **Whole genome sequencing**

447 From our VRE<sub>fm</sub> characterized strains collection, we selected 55 representative  
448 isolates based on distinct PFGE banding patterns. We included the first VRE  
449 reported in Colombia as the representative of an outbreak of 23 infections at a  
450 teaching hospital in 1998-1999<sup>25</sup>. Five isolates were selected from a national  
451 surveillance in Colombia during 2001-2002, which included 15 tertiary hospitals in  
452 5 cities<sup>26</sup> and 16 chosen from surveillance performed in Colombia, Ecuador,  
453 Venezuela and Peru in 2006-2008<sup>14</sup>. The remaining 33 isolates were sent to our  
454 lab for the confirmation of resistance or outbreak studies in 2005-2014. All selected  
455 isolates were recovered from clinical samples including blood (32%), urine (13%),  
456 faeces (13%), surgical wound (10%), pleural liquid (5%), peritoneal liquid (5%) and  
457 other sources (22%). The isolates were subjected to whole genome sequencing on  
458 the Illumina platform. Briefly, genomic DNA was extracted from overnight cultures  
459 using the kit DNeasy Blood & Tissue Kit (Qiagen) after a lysozyme treatment. DNA  
460 libraries were prepared using Nextera XT kit (illumina) and sequenced on a MiSeq  
461 instrument using a 300pb paired-end strategy. The obtained paired-end reads were  
462 trimmed for quality and used for assemblies using SPAdes<sup>47</sup>.

463

464 **Global *E. faecium* genomic characterization**

465 To place the population structure of Latin American VRE<sub>fm</sub> into global context, we  
466 included 285 *E. faecium* genomes from the publicly available collection available at

467 NCBI. We aimed to incorporate a diverse set of sequences, including colonizing,  
468 commensal, animal and clinical sources recovered between 1946 and 2017 in  
469 Europe, North America, Asia, Africa, and Australia (Supplementary Table 1).  
470 Accordingly to the source, the *E. faecium* genomes were grouped into different  
471 categories: **i**) isolates from stools or rectal swabs of hospitalized patients (n=59), **ii**)  
472 organisms from hospitalized patients (n=196), recovered from sources other than  
473 faeces, including blood (n=113), urine (n=18) and other sources (n=65), **iii**) stools  
474 from healthy individuals not in hospital settings (n=13), **iv**) animal isolates (n=47),  
475 obtained from different animals, including pets, wild and farm animals, and **v**)  
476 “others” (n=25), which included isolates recovered from food products, water, soil,  
477 among other non-human and non-animal sources.

478 All sequences (340 *E. faecium* genomes) were annotated using RAST<sup>48</sup>. The  
479 sequence type (ST) was determined by MLST tools  
480 (<https://github.com/tseemann/mlst>) and verified against PubMLST<sup>49</sup>. Genomic  
481 characterization was performed to identify genetic elements associated with  
482 resistance using BLASTX<sup>50</sup> searches against the ResFinder database<sup>51</sup>.  
483 Additionally, we specifically interrogated the genomes for substitutions in GyrAB  
484 and ParCE proteins associated to fluoroquinolone resistance, and mutations in  
485 genes encoding 23S rRNA and L3 and L4 proteins associated with linezolid  
486 resistance. Detection of mobile elements was performed with BlastN<sup>50</sup>. Search for  
487 *rep* families genes<sup>52,53</sup> and insertion sequences (IS) was carried out with BLASTN  
488 searches and compared to the ISFinder database<sup>54</sup>. Identification of virulence  
489 elements was performed with BLASTX against a set of potential virulence proteins

490 in enterococci<sup>4,55</sup>. Identification of CRISPR and cas-systems was done using  
491 CRISPRfinder<sup>56</sup> and BLASTX searches using Cas system proteins<sup>57</sup> as templates.  
492 All BLASTX hits were selected if they had an identity percentage higher or equal to  
493 95% and a coverage of at least 80% of the target sequence. For BLASTN  
494 searches, hits were selected if they had an identity percentage higher than 90%  
495 and a coverage of at least 80% of the target sequence. To identify statistically  
496 significant differences across proportions of the evaluated characteristics among  
497 pairs of clades found, a Z-test was performed ( $\alpha=0.01$ ).

498

#### 499 **Ampicillin resistance prediction based on PBP5 sequences**

500 The ampicillin resistance prediction model for *E. faecium* isolates consisted on a  
501 random forest built upon a dataset of 250 PBP5 sequences from isolates with  
502 known MIC of ampicillin (62 from susceptible isolates [MIC $\leq$ 8  $\mu$ g/ml] and 188  
503 belonging to resistant ones [MIC  $\geq$  16  $\mu$ g/ml][Supplementary Table 4]). The model  
504 was based on a multiple sequence alignment using the sequence of the PBP5 from  
505 Com15 (GenBank accession: WP\_002314979.1) isolate as reference (based on  
506 previous studies of correlation of the amino acid sequence of this protein with the  
507 resistant phenotype<sup>34,35</sup>) with 110 positions harbouring amino acid changes  
508 (Supplementary Table 4). These positions were used to create a random forest  
509 model with 100 decision trees; using a training set of 42 isolates (17 susceptible  
510 and 25 resistant with a range of MIC values). Based on this training set, forty  
511 amino acid changes were selected for the classification based on their  
512 discrimination power using recursive elimination process of those with lower score.

513 Next, the model was tested on the whole dataset of PBP5 sequences and had a  
514 100% specificity with 96% sensitivity, which resulted in 6 cases of major errors  
515 were the isolate was resistant but predicted to be susceptible.

516

## 517 **Phylogenetic analysis**

518 We built a phylogenetic tree based on the core genome of 55 representative  
519 genomes from our collection, including the genome Com15 as outgroup. The core  
520 genome was obtained with Roary<sup>58</sup> and each of the orthogroups was aligned with  
521 MUSCLE v3.8<sup>59</sup>. A Maximum Likelihood (ML) guide tree was built with RAxML  
522 8.2.11<sup>60</sup> using a GTR+Γ model. Using Bayesian approach, we estimated a  
523 Maximum Clade Credibility (MCC) tree based on 20 million trees in BEASTv1.8<sup>61</sup>.  
524 We employed a constant population size, a GTR+Γ+I substitution model, default  
525 prior probability distributions, and a chain length of 100 million steps with a burn-in  
526 of 10 million and a 5000-step thinning and the ML as starting tree.

527 The phylogenetic tree for the whole population of *E. faecium* included all the  
528 genomes (n=340) and two outgroups (*Enterococcus durans* BDGP3 [GenBank  
529 accession: CP022930.1] and *Enterococcus hirae* ATCC 9790 [CP003504.1]). This  
530 tree was based on the core genome (genes present in at least 90% of the studied  
531 genomes) obtained with Roary, each orthogroup was individually aligned with  
532 MUSCLE and then concatenated to obtain a matrix. The alignment matrix was  
533 used for Bayesian phylogenetic reconstruction with BEAST. Model parameters

534 were the same as above with a chain length of 300 million steps, a burn-in of 80  
535 million steps, and a random starting tree.

536 The second phylogenetic reconstruction included the genomes grouped into the  
537 clade corresponding to the previously designed Clade A<sup>3</sup>. We realized pairwise  
538 comparisons of the assemblies with Mummer 3.23<sup>62</sup> against the reference genome  
539 Aus0085 (CP006620.1). The identified variants and the reference sequence were  
540 used to create a multiple whole genome alignment and, with it, we built a guide  
541 tree with RAxML<sup>60</sup> using the abovementioned parameters. This guide tree was  
542 used later to obtain the recombinant regions in the alignment with  
543 ClonalFrameML<sup>33</sup> for each isolate. Those regions were further removed from the  
544 alignment and then used to produce a MCC tree with BEAST. The same run  
545 parameters as above were used with a 50-million step burn-in.

546 Finally, a strict molecular clock analysis was performed on clade A strains. We  
547 dated the tips on the isolates accordingly to the sampling year. The analysis was  
548 done with the non-recombinant regions of the whole genome alignment as matrix  
549 and the MCC from the second analysis, as a guide tree. The analysis had a 300  
550 million length chain and a burn-in of 30 million to obtain ESS numbers above 200.  
551 All MCC trees were computed with a 0.3 posterior clade probability cut-off and  
552 mean heights. To estimate the evolution rates across subclades, further  
553 subgrouping of the isolates was performed and a similar molecular clock analysis  
554 without guide tree were performed for each group using 100 million chain length  
555 and 10% burn in. All BEAST runs were performed on the CIPRES Science  
556 gateway servers<sup>63</sup>.

557

558 **Data Availability**

559 All genomic data is available at GenBank database, accession numbers for the  
560 sequenced genomes are listed in Supplementary Table 3. The datasets generated  
561 during and/or analysed during the current study are available from the  
562 corresponding author on reasonable request.

563

564 **Ethics declarations**

565 We declare no ethical competing interest. In our study, we did not perform any  
566 experiments with animals or higher invertebrates, neither performed experiments  
567 on humans and/or the use of human tissue samples. Our data have been  
568 originated from bacteria, not linked to clinical information, collected in previous  
569 studies and following full ethical approvals. Also, additional genomic data that we  
570 included for the analysis are available on public repositories (NCBI and published  
571 articles).

572 **References**

573 1. Arias, C. a. & Murray, B. E. The rise of the *Enterococcus*: beyond  
574 vancomycin resistance. *Nat. Rev. Microbiol.* **10**, 266–278 (2012).

575 2. Cattoir, V. & Giard, J.-C. Antibiotic resistance in *Enterococcus faecium*  
576 clinical isolates. *Expert Rev. Anti. Infect. Ther.* **12**, 239–248 (2014).

577 3. Lebreton, F. *et al.* Emergence of epidemic multidrug-resistant *Enterococcus*

578 faecium from animal and commensal strains. *MBio* **4**, 1–10 (2013).

579 4. Gao, W., Howden, B. P. & Stinear, T. P. Evolution of virulence in  
580 Enterococcus faecium, a hospital-adapted opportunistic pathogen. *Curr.*  
581 *Opin. Microbiol.* **41**, 76–82 (2018).

582 5. van Hal, S. J. *et al.* Evolutionary dynamics of Enterococcus faecium reveals  
583 complex genomic relationships between isolates with independent  
584 emergence of vancomycin resistance. *Microb. genomics* **2**, (2016).

585 6. Zhang, X. *et al.* Identification of a Genetic Determinant in Clinical  
586 Enterococcus faecium Strains That Contributes to Intestinal Colonization  
587 During Antibiotic Treatment. *J. Infect. Dis.* **207**, 1780–1786 (2013).

588 7. Kim, E. B. & Marco, M. L. Nonclinical and Clinical Enterococcus faecium  
589 Strains, but Not Enterococcus faecalis Strains, Have Distinct Structural and  
590 Functional Genomic Features. *Appl. Environ. Microbiol.* **80**, 154–165 (2014).

591 8. Courvalin, P. Vancomycin Resistance in Gram-Positive Cocci. *Clin. Infect.*  
592 *Dis.* **42**, 25–34 (2006).

593 9. Rubinstein, E. & Keynan, Y. Vancomycin-resistant enterococci. *Crit. Care*  
594 *Clin.* **29**, 841–852 (2013).

595 10. O'Driscoll, T. & Crank, C. W. Vancomycin-resistant enterococcal infections:  
596 Epidemiology, clinical manifestations, and optimal management. *Infect. Drug*  
597 *Resist.* **8**, 217–230 (2015).

598 11. Tacconelli, E. *et al.* Discovery, research, and development of new antibiotics:

599 the WHO priority list of antibiotic-resistant bacteria and tuberculosis. *Lancet*  
600 *Infect. Dis.* **18**, (2018).

601 12. Weiner, L. M. *et al.* Antimicrobial-Resistant Pathogens Associated with  
602 Healthcare-Associated Infections: Summary of Data Reported to the National  
603 Healthcare Safety Network at the Centers for Disease Control and  
604 Prevention, 2011-2014. *Infect. Control Hosp. Epidemiol.* **37**, 1288–1301  
605 (2016).

606 13. European Centre for Disease Prevention and Control. *Surveillance of  
607 antimicrobial resistance in Europe 2016. Annual report of the European  
608 Antimicrobial REsistance Surveillance Network (EARS-Net)*. (2017).  
609 doi:10.2900/296939

610 14. Panesso, D. *et al.* Molecular epidemiology of vancomycin-resistant  
611 Enterococcus faecium: A prospective, multicenter study in South American  
612 hospitals. *J. Clin. Microbiol.* **48**, 1562–1569 (2010).

613 15. Sacramento, A. G. *et al.* Changed epidemiology during intra and interhospital  
614 spread of high-risk clones of vanA-containing Enterococcus in Brazilian  
615 hospitals. *Diagn. Microbiol. Infect. Dis.* **88**, 348–351 (2017).

616 16. van Schaik, W. & Willems, R. J. L. Genome-based insights into the evolution  
617 of enterococci. *Clin. Microbiol. Infect.* **16**, 527–532 (2010).

618 17. Top, J., Willems, R. & Bonten, M. Emergence of CC17 *Enterococcus*  
619 *faecium*: from commensal to hospital-adapted pathogen. *FEMS Immunol.  
620 Med. Microbiol.* **52**, 297–308 (2008).

621 18. Howden, B. P. *et al.* Genomic Insights to Control the Emergence of  
622 Vancomycin-Resistant Enterococci. *MBio* **4**, 1–9 (2013).

623 19. Carter, G. P. *et al.* Emergence of endemic MLST non-typeable vancomycin-  
624 resistant *Enterococcus faecium*. *J. Antimicrob. Chemother.* **71**, 3367–3371  
625 (2016).

626 20. Raven, K. E. *et al.* A decade of genomic history for healthcare-associated  
627 *Enterococcus faecium* in the United Kingdom and Ireland. *Genome Res.* **26**,  
628 1388–1396 (2016).

629 21. Leavis, H. L., Bonten, M. J. & Willems, R. J. Identification of high-risk  
630 enterococcal clonal complexes: global dispersion and antibiotic resistance.  
631 *Curr. Opin. Microbiol.* **9**, 454–460 (2006).

632 22. Galloway-Peña, J., Roh, J. H., Latorre, M., Qin, X. & Murray, B. E. Genomic  
633 and SNP analyses demonstrate a distant separation of the hospital and  
634 community-associated clades of *enterococcus faecium*. *PLoS One* **7**, (2012).

635 23. van Schaik, W. *et al.* Pyrosequencing-based comparative genome analysis  
636 of the nosocomial pathogen *Enterococcus faecium* and identification of a  
637 large transferable pathogenicity island. *BMC Genomics* **11**, 239 (2010).

638 24. Palmer, K. L., Schaik, W. Van, Willems, R. J. L. & Gilmore, M. S.  
639 Enterococcal Genomics. *E-Book* (2014).

640 25. Panesso, D. *et al.* First Characterization of a Cluster of VanA-Type  
641 Colombia. *Emerg. Infect. Dis.* **8**, 961–965 (2002).

642 26. Arias, C. A. *et al.* Multicentre surveillance of antimicrobial resistance in  
643 enterococci and staphylococci from Colombian hospitals, 2001-2002. *J.*  
644 *Antimicrob. Chemother.* **51**, 59–68 (2003).

645 27. Sung, K., Khan, S. A. & Nawaz, M. S. Genetic diversity of Tn 1546 -like  
646 elements in clinical isolates of vancomycin-resistant enterococci. **31**, 549–  
647 554 (2008).

648 28. Deshpande, L. M. *et al.* Detection of a New cfr -Like Gene , cfr(B), in  
649 Enterococcus faecium Isolates Recovered from Human Specimens in the  
650 United States as Part of the SENTRY Antimicrobial Surveillance Program.  
651 *Antimicrob. Agents Chemother.* **59**, 6256–6261 (2015).

652 29. Diaz, L. *et al.* Whole-genome analyses of Enterococcus faecium isolates with  
653 diverse daptomycin MICs. *Antimicrob. Agents Chemother.* **58**, 4527–4534  
654 (2014).

655 30. Munita, J. M. *et al.* Correlation between mutations in liaFSR of Enterococcus  
656 faecium and MIC of daptomycin: revisiting daptomycin breakpoints.  
657 *Antimicrob. Agents Chemother.* **56**, 4354–9 (2012).

658 31. Clinical Laboratory Standards Institute. *M100. Performance Standards for*  
659 *Antimicrobial Susceptibility Testing, 29th Edition.* (2019).

660 32. Freitas, A. R., Tedim, A. P., Novais, C., Coque, T. M. & Peixe, L. Distribution  
661 of putative virulence markers in Enterococcus faecium: towards a safety  
662 profile review. *J. Antimicrob. Chemother.* 1–14 (2017).

663 doi:10.1093/jac/dkx387

664 33. Didelot, X. & Wilson, D. J. ClonalFrameML: Efficient Inference of  
665 Recombination in Whole Bacterial Genomes. *PLoS Comput. Biol.* **11**, 1–18  
666 (2015).

667 34. Pietta, E., Montealegre, M. C., Roh, J. H., Cocconcelli, P. S. & Murray, B. E.  
668 Enterococcus faecium PBP5-S/R, the Missing Link between PBP5-S and  
669 PBP5-R. *Antimicrob. Agents Chemother.* **58**, 6978–6981 (2014).

670 35. Galloway-Peña, J. R., Rice, L. B. & Murray, B. E. Analysis of PBP5 of early  
671 U.S. isolates of Enterococcus faecium: Sequence variation alone does not  
672 explain increasing ampicillin resistance over time. *Antimicrob. Agents*  
673 *Chemother.* **55**, 3272–3277 (2011).

674 36. Grady, R. & Hayes, F. Axe-Txe, a broad-spectrum proteic toxin-antitoxin  
675 system specified by a multidrug-resistant, clinical isolate of Enterococcus  
676 faecium. *Mol. Microbiol.* **47**, 1419–1432 (2003).

677 37. Zanella, R. C. *et al.* First Confirmed Case of a Vancomycin-Resistant  
678 Enterococcus faecium with vanA Phenotype from Brazil: Isolation from a  
679 Meningitis Case in São Paulo. *Microb. Drug Resist.* **5**, 159–162 (2009).

680 38. Alves, G. da S., Pereira, M. F., Bride, L. de L., Nunes, A. P. F. & Schuenck,  
681 R. P. Clonal dissemination of vancomycin-resistant Enterococcus faecium  
682 ST412 in a Brazilian region. *Brazilian J. Infect. Dis.* **21**, 656–659 (2017).

683 39. da Silva, L. P. P., Pitondo-Silva, A., Martinez, R. & da Costa Darini, A. L.  
684 Genetic features and molecular epidemiology of Enterococcus faecium  
685 isolated in two university hospitals in Brazil. *Diagn. Microbiol. Infect. Dis.* **74**,

686 267–271 (2012).

687 40. Akpaka, P. E. *et al.* Genetic characteristics and molecular epidemiology of  
688 vancomycin-resistant Enterococci isolates from Caribbean countries. *PLoS*  
689 **One** **12**, 1–11 (2017).

690 41. Torres, C. *et al.* Antimicrobial Resistance in Enterococcus spp . of animal  
691 origin. *Microbiol. Spectr.* **6**, (2018).

692 42. De Been, M., Van Schaik, W., Cheng, L., Corander, J. & Willems, R. J.  
693 Recent recombination events in the core genome are associated with  
694 adaptive evolution in Enterococcus faecium. *Genome Biol. Evol.* **5**, 1524–  
695 1535 (2013).

696 43. Been, M. De *et al.* Core Genome Multilocus Sequence Typing Scheme for  
697 High- Resolution Typing of Enterococcus faecium. *J. Clin. Microbiol.* **53**,  
698 3788–3797 (2015).

699 44. Lebreton, F. *et al.* Tracing the Enterococci from Paleozoic Origins to the  
700 Hospital. *Cell* 1–13 (2017). doi:10.1016/j.cell.2017.04.027

701 45. Goncharov, A. *et al.* Draft Genome Sequence of Enterococcus faecium  
702 Strain 58m , Isolated from Intestinal Tract Content of a Woolly Mammoth ,  
703 Mammuthus primigenius. *Genome Announc.* **4**, 15–16 (2016).

704 46. Dutka-Malen, S., Evers, S. & Courvalin, P. Detection of glycopeptide  
705 resistance genotypes and identification to the species level of clinically  
706 relevant enterococci by PCR. *J. Clin. Microbiol.* **33**, 24–27 (1995).

707 47. Bankevich, A. *et al.* SPAdes: A New Genome Assembly Algorithm and Its  
708 Applications to Single-Cell Sequencing. *J. Comput. Biol.* **19**, 455–477 (2012).

709 48. Overbeek, R. *et al.* The SEED and the Rapid Annotation of microbial  
710 genomes using Subsystems Technology (RAST). *Nucleic Acids Res.* **42**,  
711 D206–D214 (2014).

712 49. Jolley, K. a & Maiden, M. C. J. BIGSdb: Scalable analysis of bacterial  
713 genome variation at the population level. *BMC Bioinformatics* **11**, 595 (2010).

714 50. Camacho, C. *et al.* BLAST plus: architecture and applications. *BMC*  
715 *Bioinformatics* **10**, 1 (2009).

716 51. Zankari, E. *et al.* Identification of acquired antimicrobial resistance genes. *J.*  
717 *Antimicrob. Chemother.* **67**, 2640–2644 (2012).

718 52. Jensen, L. B. *et al.* A classification system for plasmids from enterococci and  
719 other Gram-positive bacteria. *J. Microbiol. Methods* **80**, 25–43 (2010).

720 53. Lozano, C. *et al.* Expansion of a plasmid classification system for gram-  
721 positive bacteria and determination of the diversity of plasmids in  
722 *Staphylococcus aureus* strains of human, animal, and food origins. *Appl.*  
723 *Environ. Microbiol.* **78**, 5948–5955 (2012).

724 54. Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder:  
725 the reference centre for bacterial insertion sequences. *Nucleic Acids Res.*  
726 **34**, D32–D36 (2006).

727 55. Sillanpää, J., Prakash, V. P., Nallapareddy, S. R. & Murray, B. E. Distribution

728 of genes encoding MSCRAMMs and pili in clinical and natural populations of  
729 *Enterococcus faecium*. *J. Clin. Microbiol.* **47**, 896–901 (2009).

730 56. Grissa, I., Vergnaud, G. & Pourcel, C. CRISPRFinder: a web tool to identify  
731 clustered regularly interspaced short palindromic repeats. *Nucleic Acids Res.*  
732 **35**, W52-7 (2007).

733 57. Makarova, K. S. *et al.* Evolution and classification of the CRISPR–Cas  
734 systems. *Nat. Rev. Microbiol.* **9**, 467–477 (2011).

735 58. Page, A. J. *et al.* Roary: Rapid large-scale prokaryote pan genome analysis.  
736 *Bioinformatics* **31**, 3691–3693 (2015).

737 59. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and  
738 high throughput. *Nucleic Acid Res.* **32**, 1792–1797 (2004).

739 60. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-  
740 analysis of large phylogenies. *Bioinformatics* **30**, 1312–1313 (2014).

741 61. Drummond, A. J., Suchard, M. a, Xie, D. & Rambaut, A. Bayesian P  
742 hylogenetics with BEAUti and the BEAST 1 . 7. *Mol. Biol. Evol.* **29**, 1969–  
743 1973 (2012).

744 62. Kurtz, S. *et al.* Versatile and open software for comparing large genomes.  
745 *Genome Biol.* **5**, R12 (2004).

746 63. Miller, M. A., Pfeiffer, W. & Schwartz, T. The CIPRES science gateway:  
747 enabling high-impact science for phylogenetics researchers with limited  
748 resources. *Proc. 1st Conf. Extrem. Sci. Eng. Discov. Environ. Bridg. from*

749 *Extrem. to campus beyond 1–8 (2012). doi:10.1145/2335755.2335836*

750

751 **Author contributions**

752 R.R. performed experiments, carried out all statistical analyses, analysed results  
753 and wrote draft of the manuscript, L.D. and C.A.A conceived the study, analysed  
754 the results, and drafted and reviewed the manuscript, J.R. and D.P. conceived the  
755 study, interpreted data and analysed the results, P.J.P and SO.K. conceived  
756 experiments and provided key experimental suggestions, B.E.M. T.T.T and J.M.M  
757 interpreted and analyse data and helped to write the manuscript, L.P.C., S.R,  
758 A.M.E., A.D. and A.N. performed experiments and analysed data. All authors  
759 contributed to improve the manuscript and gave approval of the final version prior  
760 to submission.

761

762 **Additional Information**

763 C.A.A has received grants funded by Merck Pharmaceuticals, MeMed Diagnostics  
764 Ltd and Entasis Therapeutics. B.E.M has received grants funded by Cubist/Merck,  
765 Forest/Actavis and is consultant of Paratek and Cempra.

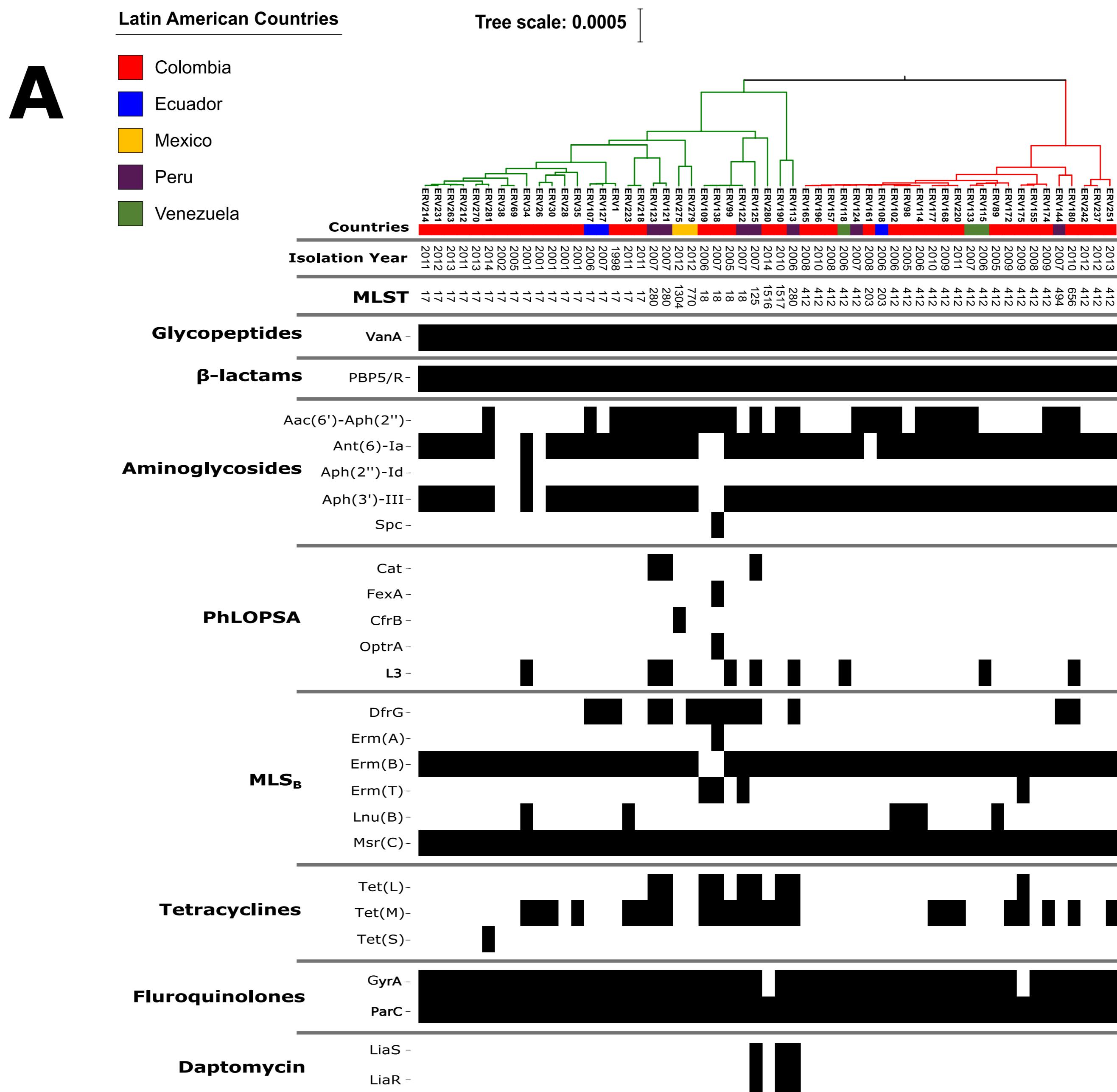
766 The other authors declare no competing interests.

767

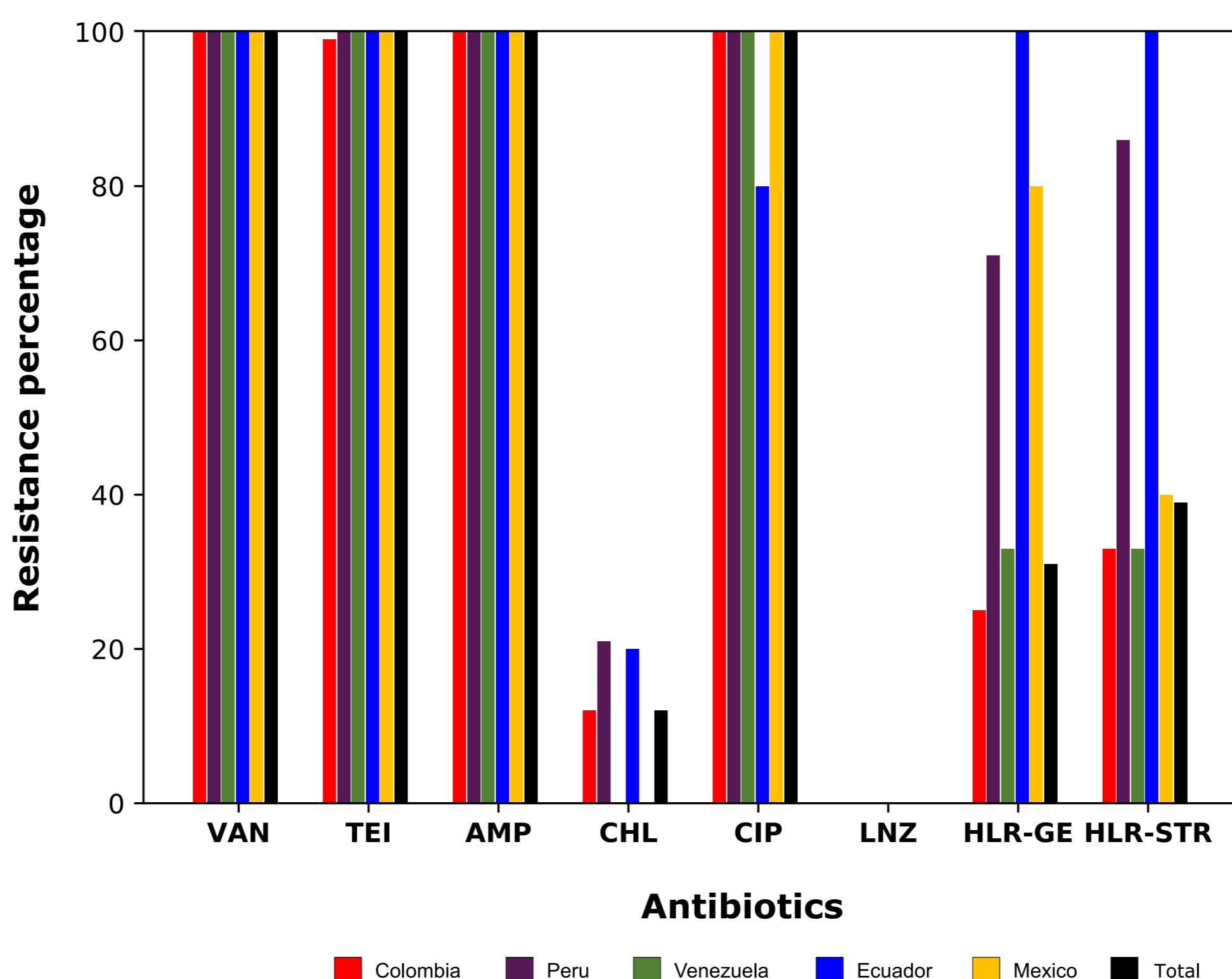
768

769

770 **Figure Legends**


771 **Figure 1.** (A) Bayesian phylogenomic tree from the core genome and genomic  
772 characterization of resistance elements of 55 representative Latin American *VR**Efm*  
773 strains; the presence of a genetic element is marked as a black box in the  
774 corresponding column of the isolate. (B) Phenotypic resistance profile of 207 clinical  
775 isolates of *VR**Efm* from our Latin American collection for vancomycin (VAN),  
776 teicoplanin (TEI), ampicillin (AMP), chloramphenicol (CHL), ciprofloxacin (CIP),  
777 linezolid (LNZ), high-level resistance to gentamicin (HLR-GE) and high-level  
778 resistance to streptomycin (HLR-STR).

779 **Figure 2.** Bayesian phylogenomic tree from the core genome and genomic  
780 characterization of virulence factors of 55 representative Latin American *VR**Efm*  
781 strains, the presence of a genetic element is marked as a black box in the  
782 corresponding column of the isolate.


783 **Figure 3.** Bayesian phylogenomic tree from the core genome of 340 genomes  
784 sampled from 36 countries between 1946 and 2017 and from different sources. Blue  
785 branches showed the genomes grouped within clade B, while brown branches show  
786 isolates from clade A. The outer coloured rings (from inner to outer) indicate the  
787 source of each isolate, the region from which it was sampled and its relationship  
788 through MLST typing (if possible) to Clonal Complex 17. Labels show the isolates  
789 originating from our Latin American collection.

790 **Figure 4.** Bayesian phylogenomic tree from the non-recombinant regions of the 303  
791 Clade A genomes. Branches highlighted in orange represent genomes from the

792 animal early branches. Branches highlighted in pink show genomes from clinical  
793 related isolates. Red and green branches show the genomes from clinically related  
794 subclades (CRS) I and II, respectively. Annotation rings (from inner to outer) show  
795 the sequence type (ST) of the isolate (only the five most prevalent STs in the sample  
796 are shown), the isolation year, the region from which the isolate was sampled and if  
797 the region was Latin America, the exact country from where it was obtained. The last  
798 ring shows which isolates were recovered from blood.

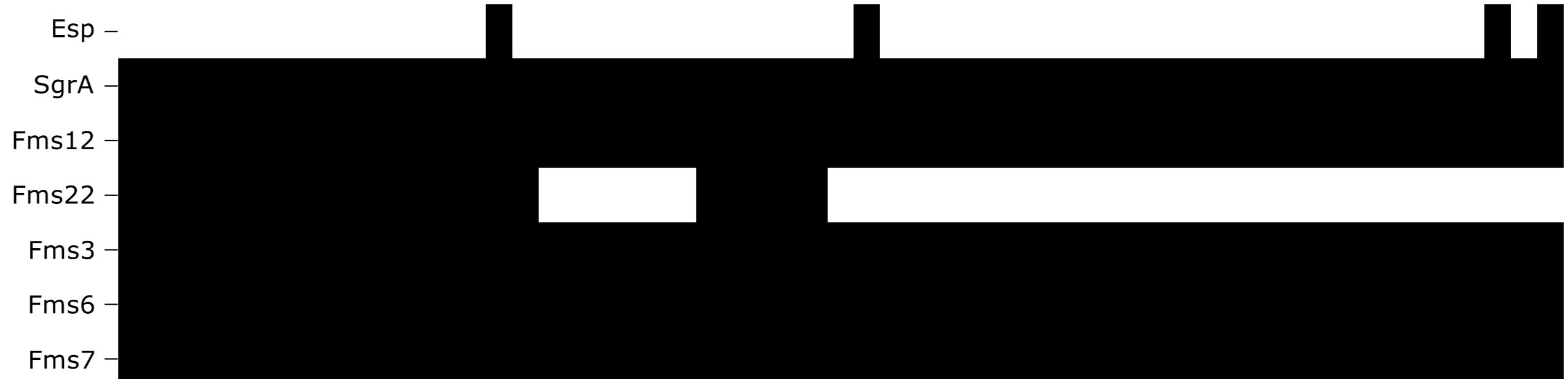



bioRxiv preprint doi: <https://doi.org/10.1101/842013>; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

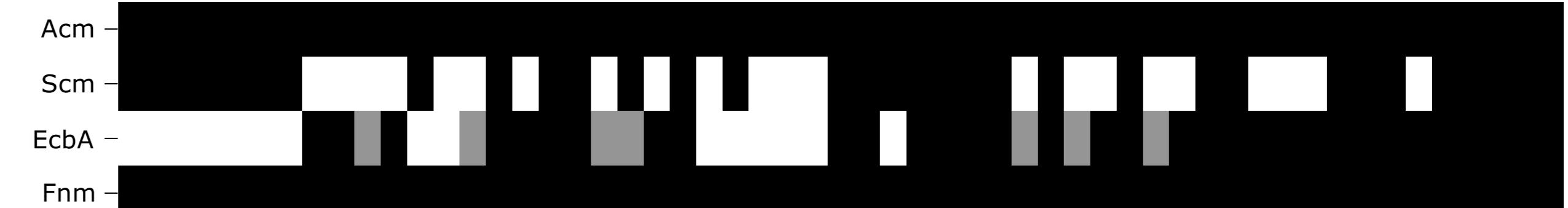


### Latin American Countries

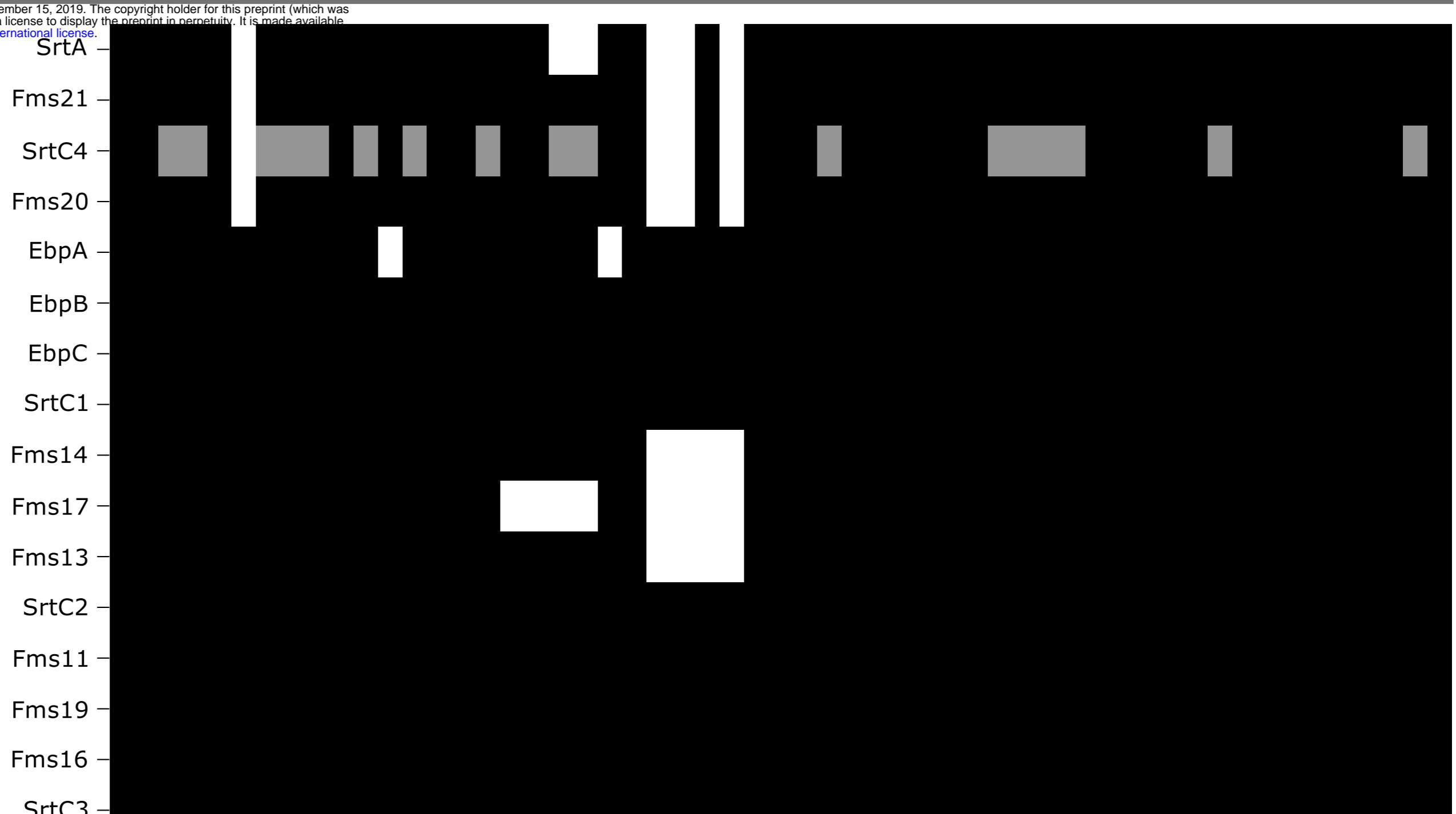
- Colombia
- Ecuador
- Mexico
- Peru
- Venezuela


Tree scale: 0.001

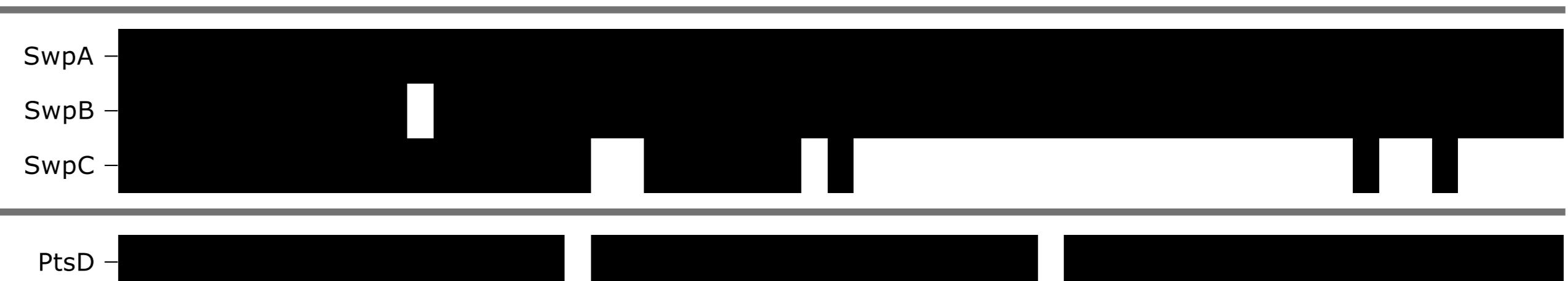



### Secreted Virulence Factors




### LPxTG domain proteins MSCRAMMs




### Adhesins



### Pili Forming Clusters



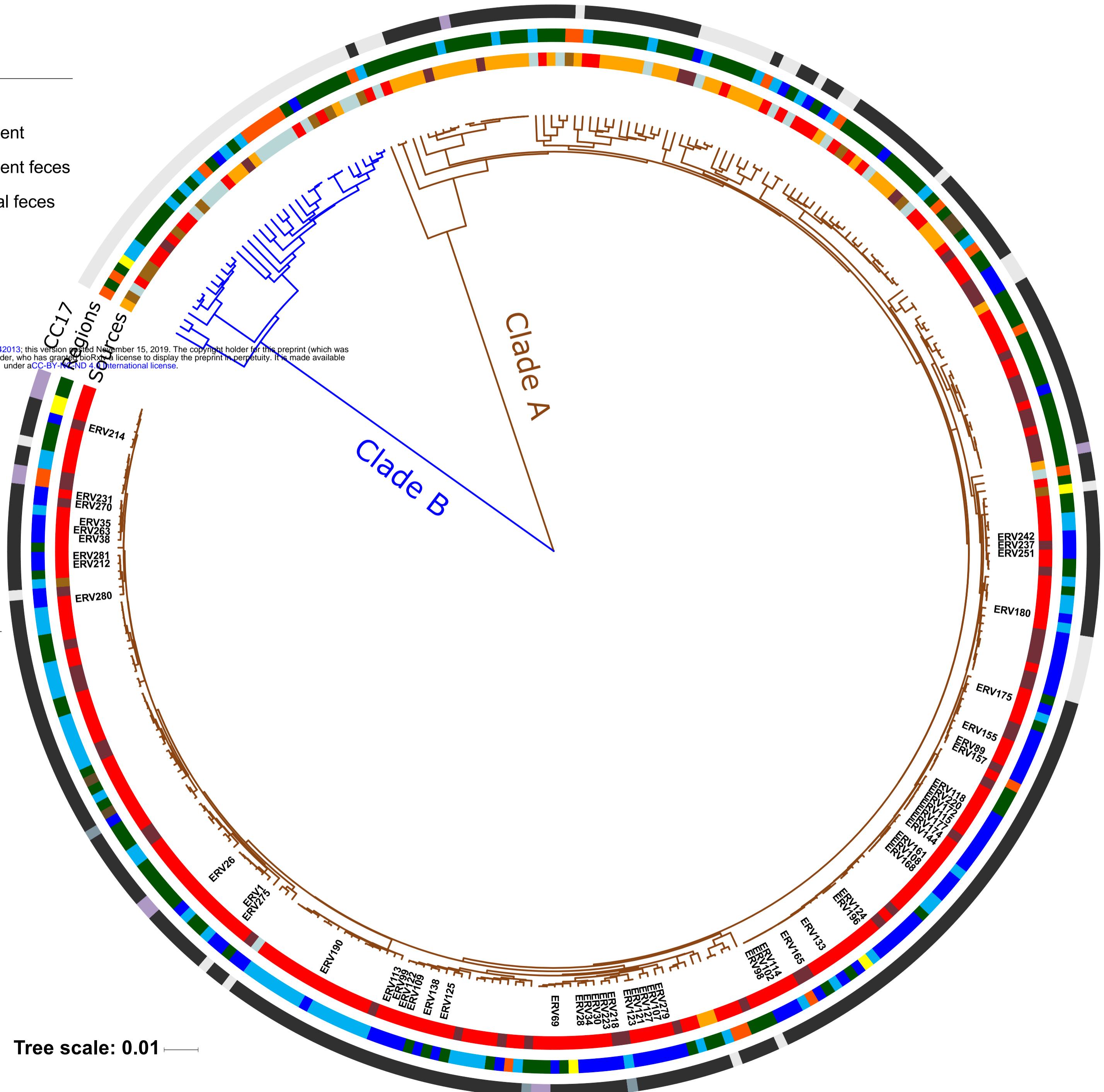
### WxL domain proteins



bioRxiv preprint doi: <https://doi.org/10.1101/842013>; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

### Sources

- Animal
- Hospitalized patient
- Hospitalized patient feces
- Healthy individual feces
- Other


### Regions

bioRxiv preprint doi: <https://doi.org/10.1101/842013>; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

- Europe
- North America
- South America
- Asia
- Australia
- Africa

### CC17

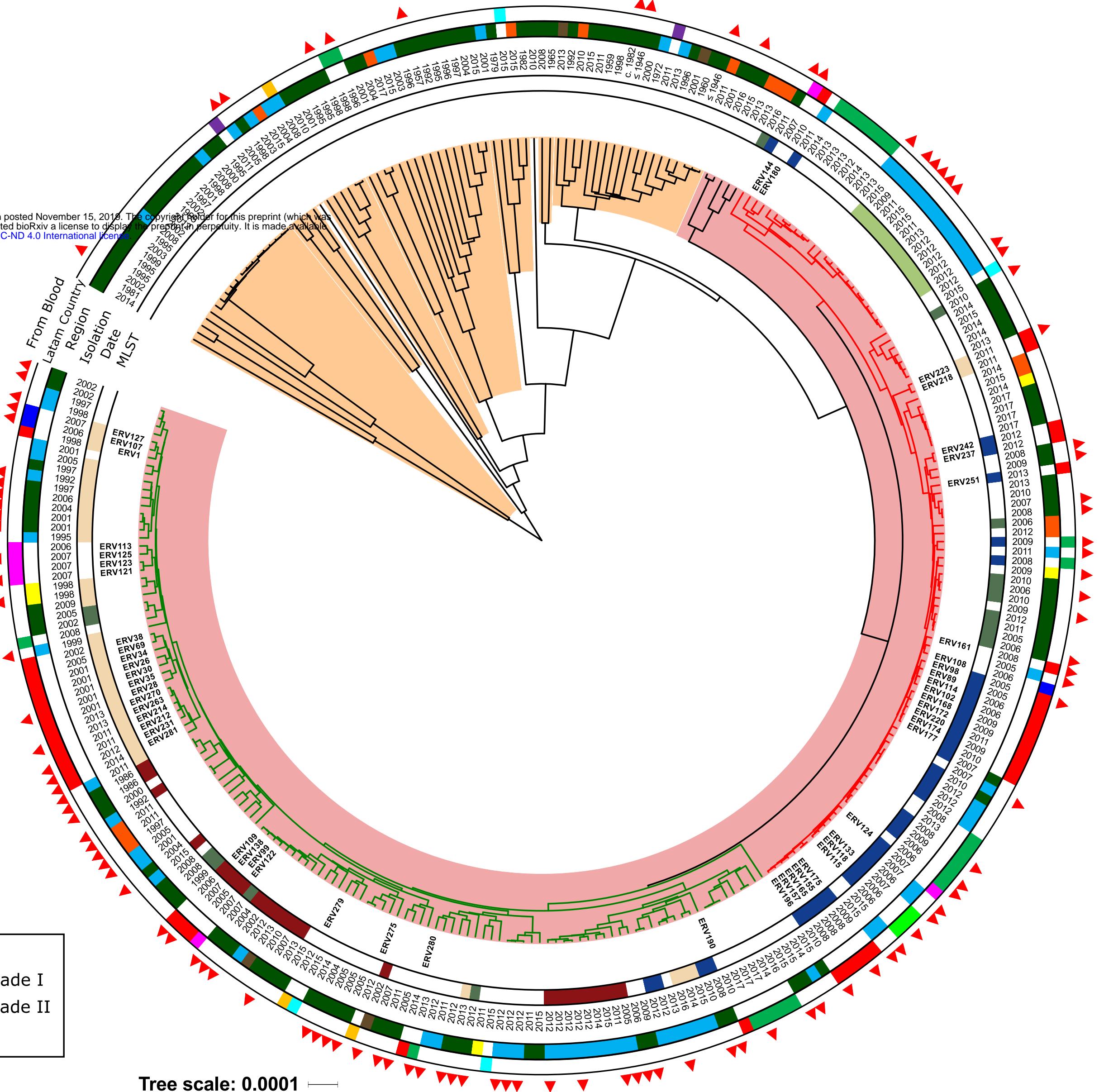
- Belongs
- Does not belong
- Pst missing
- No Typeable



### Prevalent Sequence types

- 17
- 18
- 78
- 412
- 736

bioRxiv preprint doi: <https://doi.org/10.1101/842013>; this version posted November 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


### Regions

- Europe
- North America
- Asia
- Australia
- Africa

### Latin American Countries

- Argentina
- Brazil
- Chile
- Colombia
- Ecuador
- Mexico
- Peru
- Venezuela

- Animal related
- Clinical related subclade I
- Clinical related subclade II
- Isolates from blood

