
	 1	

Advancing clinical cohort selection with genomics analysis on a distributed platform

Authors

Jaclyn M Smith jaclyn.smith@cs.ox.ac.uk
Department of Computer Science, University of Oxford, Oxford, United Kingdom, OX1 3QD; Omics Data Automation
Inc., Beaverton, Oregon, USA 97005

Melvin Lathara melvin@omicsautomation.com
Omics Data Automation Inc., Beaverton, Oregon, USA 97005

Hollis Wright wrighth@omicsautomation.com
Omics Data Automation Inc., Beaverton, Oregon, USA 97005.

Brian Hill brian@omicsautomation.com
Department of Computer Science, University of California, Los Angeles, Los Angeles, CA 90095; Omics Data
Automation Inc., Beaverton, Oregon, USA 97005

Nalini Ganapati nalini@omicsautomation.com
Omics Data Automation Inc., Beaverton, Oregon, USA 97005

Ganapati Srinivasa gans@omicsautomation.com
Omics Data Automation Inc., Beaverton, Oregon, USA 97005

Christopher T Denny cdenny@ucla.edu
Department of Pediatrics, Division of Hematology/Oncology, Gwynne Hazen Cherry Memorial Laboratories,
University of California, Los Angeles, Los Angeles, CA 90095; Molecular Biology Institute, University of California,
Los Angeles, Los Angeles, CA 90095; Jonsson Comprehensive Cancer Center, University of California, Los Angeles,
Los Angeles, CA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095

Corresponding Author

Jaclyn M Smith

Abstract

Background:

The affordability of next-generation genomic sequencing and the improvement of

medical data management have contributed largely to the evolution of biological analysis

from both a clinical and research perspective. Precision medicine is a response to these

advancements that places individuals into better-defined subsets based on shared clinical

and genetic features. The identification of personalized diagnosis and treatment options is

dependent on the ability to draw insights from large-scale, multi-modal analysis of

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 2	

biomedical datasets. Driven by a real use case, we premise that platforms that support

precision medicine analysis should maintain data in their optimal data stores, should

support distributed storage and query mechanisms, and should scale as more samples are

added to the system.

Results:

We extended a genomics-based columnar data store, GenomicsDB, for ease of use within

a distributed analytics platform for clinical and genomic data integration, known as the

ODA framework. The framework supports interaction from an i2b2 plugin as well as a

notebook environment. We show that the ODA framework exhibits worst-case linear

scaling for array size (storage), import time (data construction), and query time for an

increasing number of samples. We go on to show worst-case linear time for both import

of clinical data and aggregate query execution time within a distributed environment.

Conclusions:

This work highlights the integration of a distributed genomic database with a distributed

compute environment to support scalable and efficient precision medicine queries from a

HIPAA-compliant, cohort system in a real-world setting. The ODA framework is

currently deployed in production to support precision medicine exploration and analysis

from clinicians and researchers at UCLA David Geffen School of Medicine.

Keywords

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 3	

GenomicsDB, Variants, Genomic cohorts, Precision Medicine, i2b2, Apache Spark,

AWS

Background

The affordability of next-generation genomic sequencing and the improvement of

medical data management have contributed largely to the evolution of biological analysis

from both a clinical and research perspective. Precision medicine is a response to these

advancements that aims to tailor a medical treatment to an individual based on their

genetic, lifestyle, and environmental risk factors [1]. While current medical practice is

limited to using broad populations with heterogeneous characteristics, precision medicine

places individuals into better-defined subsets based on shared clinical and genetic

features. This fine-tuned, cohort-based method determines relative risk factors and

potential therapeutic responses with higher accuracy [2]. Though a promising field, the

identification of personalized diagnosis and treatment options is dependent on the ability

to draw insights from large-scale, multi-modal analysis of biomedical datasets.

The integration of high-throughput genomic sequencing data and electronic health record

(EHR) derived, phenotypic data is at the core of precision medicine efforts. Even before

integration, genomic and clinical data each have specific bottlenecks that impede

effective utilization of these data in practical analysis. EHR data requires extensive

cleaning and restructuring for use in cohort analysis and clinical trial identification. This

can be accomplished through ETL (extract transform load) and indexing procedures to

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 4	

process the data into a form that can be efficiently queried from a relational database [3].

Informatics for Integrating Biology and Beside (i2b2) is a framework that enables cohort

exploration and selection on clinical attributes, such as International Classification of

Disease 10th revision (ICD10) codes [4,5]. The i2b2 framework is made up of series of

components that work together to query and analyze clinical data. One such cell is the

clinical research chart (CRC) that queries a relational database that stores ontological and

clinical data with a patient-centric, star schema [4,5]. This system has been widely

deployed for clinical data exploration in hospitals across the United States [6], and

supports drag-and-drop, clinical cohort queries that interact with the backend relational

database through a browser-based user interface.

Genomic data are large, heavily sparse, and in general, inefficiently stored in relational

format. Columnar data stores can be specialized for sparse, multidimensional array

representation to provide a scalable means to load, store, and query genomic variant data

[7,8]. One such columnar data store is GenomicsDB [10], which has exhibited linear

import and query execution time with respect to sample size [7]. The power of

GenomicsDB has warranted the use of the database in the Genomics Analysis Toolkit

(GATK) since version 4.0 [9,10] as a more efficient alternative to flat files. Variant data

can be visualized in GenomicsDB as a sparse, two-dimensional matrix with genomic

positions on the horizontal axis and samples on the vertical axis (Figure 1). Under this

representation, columns can maintain top-level information about the variant, such as

genomic position and reference allele. Cells of the matrix store data about the sample for

the given position, such as genotype call, read depth, and quality scores. A single matrix

instance has several vertically partitioned segments, called arrays, which support

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 5	

contiguous storage of genomic regions on disk. These arrays can be split into several

partitions, thus providing support for data distribution [7].

To understand how clinical and genomic data can be combined for use in cohort

selection, consider a use case from UCLA David Geffen School of Medicine. Prior to the

efforts discussed later in this paper, UCLA had an existing i2b2 system deployed for the

purposes of performing clinical queries and retrieving a patient set count. Requirements

for this system include a rolling update of clinical data, the processing and storage of

associated genomic sequencing data, and patient consent to share such data. The ultimate

goal was to query the genomic data from within the i2b2 interface along side the clinical

attributes. The genomic and clinical data would be accessible to both clinicians and

researchers for de-identified, cohort exploration and selection. At the outset of the efforts

discussed in this paper, genomic data were stored as individual flat files that were siloed

from the i2b2 system. UCLA projected an accrual of up to 1000 new samples per week

that would need to be imported into and accessible from this system.

I2b2 has a modular design that makes the framework easy to extend with backend

features. Plugins have been developed previously that enable querying of genomic data

from within i2b2 for datasets with hundreds of samples [6,12]. Given the projected

accrual of up to 1000 new samples per week noted above, a scalable genomics database

as well as an efficient processing environment was required to manage and analyze the

data at UCLA. Since clinical data and genomic data are optimally stored in databases

natural for their specific data structures, a scalable solution to clinical-genomic data

integration should leave the data in the respective optimal data store and provide the

mechanisms to perform efficient aggregate queries from these sources. Given this, we

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 6	

built a system that would (i) integrate genomic sequencing data with the existing i2b2

instance at UCLA, (ii) maintain the data sources in their respective data stores, and (iii)

support efficient and scalable integrative analysis by means of a distributed processing

environment.

Distributed processing platforms, such as Apache Spark [13,14], are becoming

increasingly popular for large-scale, genomic data analysis [15,16,17]. Spark provides a

powerful, programmatic interface that abstracts the distribution from the user. A Spark

cluster consists of a master node and a set of worker (slave) nodes. The master node

delegates tasks to the worker nodes, which will execute relevant tasks over the distributed

datasets. In the event that a worker fails, Spark uses a data structure known as Resilient

Distributed Datasets (RDDs), which will reallocate data to other nodes and ensure

nothing is lost (fault-tolerance) [18]. Distributed file systems, such as the Hadoop

Distributed File System (HDFS) [19] and Amazon Elastic MapReduce File System

(EMRFS) [20], are often used in conjunction with such platforms to maintain data

integrity and high data throughput. In contrast to distributed file systems, a local file

system does not allow worker nodes to have centralized access to all the data required for

the application. Similarly, network file systems provide limitations since all data is

physically stored on a single machine and not distributed.

Prior to the work described in this paper, GenomicsDB supported querying of genomic

data from Spark [7], but did not support the reading and writing of genomic data from

genomic arrays stored on a distributed file system (legacy mode). Without support for a

distributed file system, the process of querying GenomicsDB from Spark meant that

arrays had to be manual organized across the worker nodes. The worker could only

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 7	

access the genomic data that existed physically on that node. Under the organization of

legacy mode, a query would be broadcast to each worker node, executed, and then a

single RDD partition would be loaded with all the genomic variant data available to that

worker.

There are several restrictions with this configuration that impact both genomic data

storage and the Spark distribution abilities. First, a worker node is required to store the

genomic data locally meaning the node needs enough space to store the genomic data and

write out temporary work files from Spark. The addition of more genomic data to the

system could require a resizing of the worker nodes and lead to system downtime.

Second, a worker node can only query one GenomicsDB array and can only load data

from this array into a single RDD partition. This limits the distribution power of Spark

since the number of RDD partitions should at least equal the number of cores available to

an application to take full advantage of the available resources. Finally, if a worker node

fails in legacy mode, the data must be reloaded or copied back to the node from an

archive. This reduces the fault tolerance power of Spark and makes auto scaling the

cluster a difficult task. Auto scaling is the ability to increase or decrease the number of

worker nodes according to application load and is an important feature for resource

management in Spark. Fortunately, the issues associated with Spark and legacy mode of

GenomicsDB can be addressed by extending GenomicsDB to work with a distributed file

system.

In response to the issues described above, we have extended GenomicsDB to support

reading and writing to/from a distributed file system, such as HDFS and Amazon Simple

Storage Service (Amazon S3) [21]. This setup better utilizes the distributed power of both

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 8	

Apache Spark and GenomicsDB, reduces the space requirements for a worker node, and

maintains the fault-tolerant behavior of an RDD. These extensions, together termed the

Omics Data Automation (ODA) framework, have been used to create a precision

medicine platform that enables integration and distributed aggregation of EHR-based

clinical data and associated genetic data.

In this paper, we show that the ODA framework enables GenomicsDB to exhibit worst-

case linear scaling for array size (storage), import time (data construction), and query

time. We go on to show that the ODA Framework also exhibits worst-case linear time for

both import of clinical data and aggregate query execution time within a distributed

environment. This work highlights the integration of a distributed genomic database with

a distributed compute environment to support scalable and efficient precision medicine

queries from a HIPAA-compliant (Health Insurance Portability and Accountability Act of

1996), cohort system in a real-world setting. The ODA framework is currently deployed

in production for use by both clinicians and researchers at UCLA David Geffen School of

Medicine and the extended version of GenomicsDB is openly available at

www.genomicsdb.org.

Implementation

The ODA framework is responsible for genomic variant data storage in GenomicsDB,

maintaining mapping information to a clinical data store, and enabling users to perform

Spark-based queries to the platform from a graphical interface or a programmatic

interface. Queries executed on the framework (i) consolidate the requested clinical and

genomic data (GenomicsDB) in a distributed environment (Apache Spark), (ii) perform

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 9	

the aggregate calculation within the distributed environment, and (iii) return the results to

the user. Based on the UCLA use case, these components were integrated with an i2b2-

based, cohort system in a HIPAA-compliant, protected subnet. The UCLA

implementation is deployed on Amazon Web Services (AWS) [22], which leverage AWS

provided subnets and Amazon’s Elastic MapReduce (EMR) instances [20]. Figure 2

presents a synergistic view of the ODA framework and i2b2 within a protected subnet.

Focus on AWS services is attributed to the UCLA implementation, and it should be noted

that the ODA framework is designed to be agnostic to any cloud provider or local

hardware.

Data Storage

GenomicsDB was augmented to enable writing and reading of arrays on HDFS-

compliant file systems, in addition to existing POSIX (Portable Operating System

Interface) support. Genomic variant data read from Variant Call Format (VCF) [23] files

are imported into GenomicsDB arrays residing on a distributed file system through the

standard GenomicsDB VCF import process. The import process uses a set of

configuration files and Samtools HTSLib (High-throughput sequencing library) [24] to

read block-compressed and indexed VCF files. This process writes to several

GenomicsDB arrays at once with the use of GNU parallel [25], which maintains an

independent import process for each array. Performance for parallel import of

GenomicsDB arrays is dependent on 1) the number of arrays produced, and 2) the

resources available to the ETL process, such as the number of cores, memory and

network throughput. Once the arrays are loaded, the VCF files are no longer needed and

can be moved to a cold storage archive. For the UCLA import process, the genome was

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 10	

split into 1000 evenly sized sections to produce 1000 GenomicsDB arrays. These arrays

are stored on Amazon S3 and are accessed from an Amazon EMR instance via AWS

EMRFS distributed file system. The HDFS-compliant additions to GenomicsDB have

been integrated into the public repository

at https://github.com/GenomicsDB/GenomicsDB.

Clinical data is maintained in a database and application chosen, or already in-use, by the

medical institution. To ensure HIPAA-compliance, the ODA framework acquires clinical

data by enforcing encryption at REST (Representational State Transfer) with SSL

(Secure Sockets Layer) for all network-based database communication. Mapping

information is used to associate clinical data to samples stored in GenomicsDB. The

mapping information constructs a relationship between a de-identified patient id and the

relative genomic sample information. The patient identifier is sourced from the clinical

data store, such as i2b2. This information, along with the configuration files used in the

GenomicsDB ETL process, is used to load a mapping database. This mapping database

also maintains metadata on GenomicsDB arrays. In essence, the mapping database

provides a global view over the relevant data sources required to perform an integrative

query over the clinical and genomic information. The mapping database (PostgreSQL

[26]) comes with a core relational schema and a python interface for ease of database

construction and maintenance. The UCLA implementation uses i2b2 with a PostgreSQL

backend as their clinical data store and stores mapping information in a separate

PostgreSQL mapping database.

Apache Spark

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 11	

To support distributed queries and processing, the majority of the query and analytical

components reside on the master of the Spark cluster. For the UCLA implementation, the

Spark cluster is an AWS Elastic Map Reduce (EMR) instance. The EMR instance

contains a Spark master that delegates tasks to worker nodes. The master node serves as

the entry point to queries that are sent out to the worker nodes and in the process, loads

data from each of the GenomicsDB arrays into Spark RDD partitions. Since

GenomicsDB arrays are made available to the worker via a direct connection to a

distributed file system, any of the GenomicsDB arrays are accessible to all worker nodes

in the cluster. The master node is responsible for delegating query tasks to the workers

and these query tasks are responsible for loading of genomic variant data into Spark

RDDs.

When a user submits a query to the ODA framework, the Spark master decomposes the

query into a list of smaller queries that are distributed to the worker nodes as query tasks.

The worker nodes perform the query tasks assigned to them, which is some subset of the

whole query list. The number and size of query tasks is proportional to the number of

GenomicsDB arrays, such that each query task will query one GenomicsDB array and

load the result into an RDD partition. The collection of RDD partitions across all workers

collectively contains all the genomic information queried from GenomicsDB. This means

the number of GenomicsDB arrays produced during the import process also helps balance

the query workload. The optimal distribution of genomic variant is determined by

balance of file open and read operations as well as RDD partition size. More distribution

will lead to an increase in open and read operations and smaller RDD partitions, where as

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 12	

less distribution can cause more overhead for smaller query regions by creating large

RDD partitions.

Programmatic Access

The GDBSpark API is an integral component of the ODA framework that provides

support for distributed querying, loading, and aggregating clinical, genomic, and relevant

mapping data sources. Clinical data accessed through the API will require a data handler

to tell the API how to interact with the source data. For the UCLA implementation, the

API contains an i2b2 data handler that supports the import of an i2b2 XML (eXtensible

Markup Language) file received from the CRC cell. The GDBSpark API is implemented

in Scala 2.11. This API represents genomic variant data as a VariantContext object

provided from HTSLib [24] as specified in the GenomicsDB Java Native Interface (JNI).

The API acts as an intermediate layer between Spark, GenomicsDB, and the mapping

database to query genomic data, load Spark RDDs, and associate to the clinical dataset

for downstream computation. In general, the clinical data from the CRC cell of i2b2 and

the aggregation of the clinical data with genomic information in VariantContext RDDs

are distributed across the worker nodes. The API also provides a genomic toolkit to

perform pre-defined aggregate statistics for genomic and clinical data.

User Interfaces

There are two analytical interface components that interact with the ODA framework to

support distributed analytics, an Apache Zeppelin interactive notebook environment [27]

and an i2b2 plugin, VariantView. The VariantView plugin is designed to perform

aggregate clinical and genomic queries from within the i2b2 interface. A user first creates

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 13	

an i2b2 patient set from the “Find Patients” window. This patient set is then referenced in

the VariantView plugin along with additional clinical attributes (i.e. ICD10 code), and

genomic regions (dbSNP rs-identifiers and attributes from the Sequence Ontology). Users

have the ability to filter by genotype specified in the form: rs### (is | is not) (homref |

homvar | het | nocall). The aggregate queries are predefined as reports, which specify the

aggregate calculation to perform when the Spark application is submitted. Four reports

are available: total allele counts, genotype distribution by clinical attribute, and genomic-

only based cohorts. A screen shot of this plugin within the i2b2 interface is shown in

Figure 3.

The VariantView i2b2 plugin consists of two main components: a frontend, graphical

user interface that exists within the i2b2 browser, and a backend that extends the i2b2

hive with an additional service (cell). The frontend uses the i2b2 JavaScript API to

communicate with the backend through plugin-specific, XML messages supported by the

i2b2 REST API. The backend of the VariantView plugin is responsible for submitting a

Spark application to the ODA framework with SparkLauncher. SparkLauncher enables

i2b2 to run spark-submit, sending the application jar and associated parameters to the

AWS EMR instance that houses the ODA framework. The incoming job requests from

i2b2 are scheduled with Hadoop YARN [19]. Once the application finishes aggregating

the results of both queries, the results are written back to MongoDB [28] using SSL with

a unique identifier. The backend of VariantView is notified of the success or failure of

the spark job. On success, the plugin backend will query MongoDB for the results using

the unique identifier. The results are then formatted into a plugin-specific, XML response

message and sent to the frontend. The frontend accesses the required information from

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 14	

the response and plots the results using a JavaScript plotting library (d3.js) [29]. If the

spark application reports failure, the response will contain error information that will then

be displayed to the user. The backend of VariantView is written in Scala 2.11 and is

based on a tutorial plugin provided by the i2b2 [30].

Figure 4 shows the flow of a query originating from the VariantView plugin. This entry

point could be any Spark-based application that submits to the ODA framework with the

GDBSpark API, such as the Zeppelin notebook environment. This notebook environment

was added to the framework to enable users to develop code and execute distributed

queries to GenomicsDB without having to be concerned about the configuration of a

Spark cluster. The Zeppelin instance at UCLA comes with several notebooks that support

use cases proposed from clinical geneticists, clinicians, and bioinformaticians at David

Geffen School of Medicine. Users are able to create their own notebooks and develop

their own analysis within this environment.

Results

The following describes the results of a set of experiments designed to highlight efficient

variant data loading, storage, and querying of genomic data, stored in GenomicsDB,

to/from the distributed platform for an increasing number of samples. The timing to

import clinical data as well as the time to aggregate the clinical and genomic data is also

reported. All experiments were performed in AWS EMR- 5.7.0, with Spark 2.1.1, and

Scala 2.11. Two datasets are referenced throughout the experiments: the Phase III 1000

Genomes Whole Exome Sequencing (WES) dataset [31] and the AtLAs target

sequencing data [32]. The AtLAs dataset was generated using a microarray technology to

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 15	

interrogate approximately 600,000 genomic loci. The AtLAs dataset is the UCLA patient

data that has associated clinical data stored in i2b2. By contrast, the 1000 genomes data

was generated using a high-throughput, whole exome sequencing platform that targets all

the protein coding regions in each patient’s genome. These datasets will be referred to as

1000g and AtLAs, respectively.

Distributed import into GenomicsDB scales linearly with sample size

To test the performance of importing genomic variant data (VCF files) into

GenomicsDB, we carried out the ETL process for an increasing number of samples for

both the 1000g and AtLAs datasets. The ETL process wrote 1000 GenomicsDB partitions

to Amazon S3 with the following GenomicsDB loader configurations: 1) column based

partitioning, 2) disabled synced writes, 3) 20 parallel VCF files, 4) 1000 cells per tile, 5)

compress genomicdb array, 6) 1048576 segment size, 7) ping pong buffering, 8) treat

deletions as intervals, 9) size per column partition 43581440, 10) discard missing

genotypes, and 11) offload VCF output processing for both datasets. END and GT fields

were loaded from AtLAs VCFs. Whole exome sequencing contains additional attributes

that are not generated in microarray genotype assays. END and GT fields as well as DP,

GQ, AD, and PL fields were loaded for 1000g. These additional fields are found in whole

exome sequencing datasets, but not in microarray genotype assays. This process was

repeated on four different AWS instance types in order to evaluate the effects of

resources on import time. We used two general-purpose instances m4.2xlarge (2 cores,

8G memory) and m4.4xlarge (16 cores, 64G memory) and two memory-optimized

instances r4.2xlarge (8 cores, 61G memory) and r4.4xlarge (16 cores, 122G memory)

[33].

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 16	

We found linear-scale ETL times for 1000g (Figure 5) and better than linear-scale ETL

times for AtLAs (Figure 6) as the number of samples increase. The import times for

AtLAs suggest log-scale potential, although more samples would be required to

determine this with confidence. The import times for both 1000g and AtLAs suggest that

m4.4xlarge and r4.4xlarge instances result in shorter import times with increasing sample

size in comparison to the m4.2xlarge and r4.2xlarge instances. This result is expected

since the m4.4xlarge and r4.4xlarge have more processing power than the m4.2xlarge and

r4.2xlarge instances. A less expected result was that there were no significant advantages

to using the memory-optimized nodes for ETL. This result suggests that the lower cost,

general-purpose nodes provide sufficient resources to perform the ETL process

efficiently with the provided configurations.

Total GenomicsDB partition size scales linearly with sample size

To evaluate how total GenomicsDB array size grows as the number of samples in the

database increases, we measured the total partition size of the databases resulting from

the ETL processes described above (sum of 1000 partitions). Storage size increased

linearly with the number of samples for both 1000g and AtLAs, with the storage size for

1000g increasing at a faster rate (Figure 7). This observation is expected since the 1000g

dataset is importing more fields from the VCF files and has more coverage of the

genome, as compared to the AtLAs dataset.

Distributed GenomicsDB queries scale linearly with sample size

To test the performance of Spark-based GenomicsDB queries, we queried variable-sized

regions across the genome of both datasets using the GDBSpark API. Regions include a

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 17	

large chromosome (chromosome 1 – add # bp), a medium sized chromosome

(chromosome 10 – add # bp), and a small chromosome (chromosome 22 – add #bp).

Similar to the above experiments, query times were measured for an increasing number

of samples in the database. Each query requested data for all samples in the respective

GenomicsDB instance. Queries were performed five times and the average was reported.

A query within the GDBSpark API is the time it takes for data to be retrieved from

GenomicsDB, imported into an RDD in VariantContext format, and the number of

elements counted. Given this, the reported times measure time to query GenomicsDB,

load variant data into an RDD, and perform a simple iteration operation over the data

(count).

For 1000g dataset, smaller regions exhibit worst-case linear scaling and chromosomes

display near-linear scaling (Figure 8). This result is consistent with previously reported

results in the GenomicsDB white paper [7]. When more data is read into memory, the

number of cache misses leads to in-memory bandwidth saturation and causes an increase

in read times. The AtLAs queries appear to be reporting near log-scale query times with

smaller regions, small chromosomes, and even medium size chromosomes (Figure 9).

The larger chromosome for the AtLAs dataset is close to linear, but still exhibits a trend

that is suggestive of the memory-saturation behavior of GenomicsDB.

	

Integrating clinical and genomic data in a distributed compute environment scales

linearly with sample size

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 18	

To test the performance of clinical and genomic data integration within the framework,

we measured the time to import clinical datasets for an increasing number of patients and

the time to perform an aggregate query. Clinical datasets were generated from the clinical

information associated to the AtLAs variant data associated to over 12,000 patients in the

UCLA i2b2 CRC cell. Requests were sent from the web browser of i2b2 for a subset of

ICD10 ontological terms and the response was saved to an XML file. The time to import

this XML file into Spark and count the number of patients in the set, collectively, was

recorded five times for each query and the average was reported. Worst-case linear time

was observed for an increasing number of patients (Figure 10).

The time required to associate this clinical set to the genomic data, query GenomicsDB,

collate the integrated set into the distributed environment, and perform a simple

aggregate (count) calculation, collectively, was also recorded. We use a subset of the

genomic regions queried above for these queries, and report these regions based on the

number of variants returned. Each query was performed five times and the average was

reported. Again, we observe worst-case linear query response time for the aggregation of

the clinical and genomic data for an increasing number of regions queried (Figure 11).

The number of patients in the query had less of an effect on query time, but still exhibited

linear scaling (Figure 12) with respect to the number of patients queried. This result

suggests that response time is affected only minimally by the size of the patient set query.

These queries were performed for a subset of samples in a constant size GenomicsDB

instance. This is in contrast to the previously presented experiment, which queried all the

samples in a given instance. It is important to note that during the short time these two

experiments, the number of samples in the system had nearly doubled in size. These

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 19	

results show that the worst-case linear performance is preserved even for clinical-

genomic aggregate queries for over 10,000 patients. The results also show that the

number of variants queried will have more of an effect on response time than the number

of patients referenced in the query. This means that more patients could be included in an

analysis without having a significant impact on query response time.

Discussion

Throughout this paper we present a distributed analytics framework for performing

precision medicine queries. We use a real-world use case from UCLA to drive the

development of the framework and confirm scalability and efficiency of distributed

loading, storage, access, and aggregate queries for an increasing number of samples. The

results have shown linear query times from distributed GenomicsDB instance with an

HDFS-compliant file system. These results were made possible by extending

GenomicsDB to support reading and writing to a distributed file system, which has

resulted in a more Spark friendly version of GenomicsDB. Despite network latencies

associated with HDFS and Spark, the results show that the distributive power maintains,

and often improves upon, previously reported GenomicsDB results that use a native file

system for both microarray and whole exome sequencing data. If processing samples are

to be expected to be thousands weekly, then scalability with increasing patient data added

to the system is of great importance for import, storage, and query times. Further, the

ODA platform maintains scalability in the downstream analytics environment to scale at

all points of the analysis pipeline.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 20	

Our extensions to GenomicsDB have several maintenance and cost related advantages in

addition to those noted in the above results section, which we have observed from

utilizing AWS. First, the ability to read and write from a distributed file system means the

GenomicsDB arrays can be stored and queried from cost-effective Amazon S3 buckets

rather than requiring each slave node to have an additional EBS mount to store the data

locally. Second, our extensions allow for an increase in the number of RDD partitions per

worker without adding new slave nodes which requires a smaller and more cost effective

EMR instance than the setup that allowed for only one RDD partition per worker. By

persisting GenomicsDB arrays on Amazon S3, we are able to maintain data integrity and

fault tolerance in the event of a failed worker node. These extensions to GenomicsDB

allow for better, more on-demand resource balancing. Without the extensions described

in this paper, the management of GenomicsDB for use on a Spark cluster would be

extremely difficult to maintain.

Future plans for GenomicsDB include extending the database to be more Spark-friendly

in terms of file system support, database distribution, and partitioning schemes.

GenomicsDB arrays are statically partitioned during the import process by splitting the

genome into a user-specified amount of chunks. The distribution of variants is not even

across the genome space, meaning that some arrays contain a lot more variant data than

others. This can lead to load imbalance across both data ingesting and querying. Proper

load balancing of a Spark application can lead to better execution times of aggregate

queries. More advanced ways to distribute the variant data into GenomicsDB arrays

should be considered, such as sampling the variant data before loading to understand

mutation burden across the genome. Ideally, we would like to create an array distribution

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 21	

that optimizes load balancing and provides support for loading a variable amount of RDD

partitions – potentially dependent on the resources available to the application. Other

areas of exploration should include how additional data types impact the ability to scale

GenomicsDB, such as whole genome sequencing and other genomic data modalities.

Though GenomicsDB and the interaction with Spark was the main focus of this work, the

API, mapping database, and user applications are presented as an example of how

GenomicsDB can be used to scale out precision medicine platforms at existing hospitals.

For instance, we introduced the i2b2 VariantView plugin that enables clinicians to

perform on-demand, clinical-genomic precision medicine queries. The plugin uses the

ODA Framework to submit a distributed, aggregate query inside a HIPAA-compliant,

virtual private network at UCLA David Geffen School of Medicine. The application

loads clinical data from i2b2, queries distributed GenomicsDB partitions that reside on

Amazon S3, performs a specified analysis report within the distributed environment, and

write the results back for visualization in the i2b2 browser interface. Previous efforts to

support genomic-based queries in i2b2 have reported linear scaling only up to 500

samples [12]. Our results have exhibited worst-case linear scaling with over 2400

samples from the 1000 genomes whole exome sequencing data and over 10,000 patients

with targeted-sequencing data. Further, to the best of our knowledge this is the first effort

to extend i2b2 to run Spark-based, distributed queries and processing from within the

i2b2 interface.

The prototype system described in this paper is currently designed to support generic

analysis applications from the i2b2 front end. However, the applications available to front

end users are limited to simple proof of use allele and clinical concept distribution charts.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 22	

The validation and usability of these applications will only be proven with use of the

system by both clinicians and researchers. We anticipate integrating more complex

analytical tools into the system that will improve cohort selection through means of more

advance statistics and machine learning techniques. Further, many of the claims made

about scalability should be continuously validated as more samples and more data is

added to the system for both microarray and more large-scale, next generation

sequencing data.

Conclusions

The power of precision medicine is dependent on the ability to combine data across

multiple types and sources to enable quick and scalable joint analyses that support cohort

selection and analysis. We have presented an efficient and scalable means for genomic-

based cohort exploration and analysis using an optimized genomics database. We show

that data can reside in optimal data stores, while still supporting scalable, distributed

analytics. Our extensions to GenomicsDB provide support with a distributed file system

to provide ease of interaction from a distributed compute environment as well as cost

advantages for hosting-related, hardware requirements. The ODA framework can be

integrated into existing code for advanced usage, or can be used to extend a HIPPA

compliant clinical interface (EHR or cohort system) to execute distributed aggregate

queries. Scalable and efficient data processing platforms and databases, such as the

framework described in this paper, will be necessary to drive precision medicine forward

as data grows and analysis becomes more complex.

Availability and requirements

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 23	

GenomicsDB is available at: https://github.com/GenomicsDB/GenomicsDB. The

mapping database and GDBSpark API are available for academic use upon request. i2b2

plugin and Zeppelin notebook demonstrations are available to interested readers upon

request.

Lists the following:

 Project name: GenomicsDB

 Project home page: www.genomicsdb.org

 Operating system(s): GNU/Linux, MacOSX

 Programming language: C++, Java, Scala

 Other requirements: CMake, Zlib, OpenSSL, libuuid, C++ 2011 compiler, gcc

version >= 4.8, Google Protobuf 3.0.2, Rapidjson, Htslib, Java SDK version 8, Scala 2.11

 License: MIT License

 Any restrictions to use by non-academics: No restrictions, see license on github.

List of abbreviations

1000g: 1000 Genomes Project

Amazon S3: Amazon Simple Storage Service

API: Application Programming Interface

AtLAs: University of California, Los Angeles Biobank

AWS: Amazon Web Services

CRC: Clinical Research Chart (from i2b2)

dbSNP: Single Nucleotide Polymorphism Database

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 24	

EHR: Electronic Health Record

EMR: Elastic Map Reduce

EMRFS: Elastic MapReduce File System

ETL: Extract, transform, and load

GATK: Genomics Analysis Toolkit

GNU: GNU’s Not Linux

HDFS: Hadoop Distributed File System

HIPAA: Health Insurance Portability and Accountability Act of 1996

HTSLIB: Samtools High-Throughput Sequencing Library

I2B2: Informatics for Integrating Biology and the Bedside

JNI: Java Native Interface

ODA: Omics Data Automation

POSIX: Portable Operating System Interface

RDD: Resilient Distributed Dataset

REST: Representational State Transfer

SSL: Secure Sockets Layer

UCLA: University of California, Los Angeles

VCF: Variant Call Format

WES: Whole Exome Sequencing

XML: eXtensible Markup Language

Declarations

Ethics approval and consent to participate: Not applicable

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 25	

Consent for publication: Not applicable

Availability of data and materials: This manuscript uses datasets for measuring

framework performance only. Data sharing is not applicable to this article as no datasets

were generated or analyzed during the current study.

Competing Interests: J Smith, M Lathara, H Wright, B Hill, N Ganapati, and G

Srinivasa are sponsored by Omics Data Automation, Inc. Competing interests have been

fully disclosed and arranged through contract and licensing agreements with UCLA

David Geffen School of Medicine. The authors declare that they have no other competing

interests.

Funding: C Denny is supported by the National Center for Advancing Translational

Sciences, National Institutes of Health, through the University of California, Los

Angeles, Clinical and Translational Science Institute, under award number

UL1TR000124 and UL1TR001881. All other support was provided through Omics Data

Automation, Inc. Omics Data Automation employees (J Smith, M Lathara, H Wright, B

Hill, N Ganapati, and G Srinivasa) were supported by the National Science Foundation

under award number 1721343 and via work contract from UCLA David Geffen School of

Medicine. Detailed contributions from ODA employees are described in the author’s

contributions section.

	

Authors’ contributions: J Smith designed and developed the ODA framework, designed

and executed the experiments, and was a major contributor in writing the manuscript. M

Lathara designed and developed the ODA framework and contributed to the

GenomicsDB extensions. H Wright aided in the testing and validation of the ODA

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 26	

framework. B Hill aided in the development of the ETL process of the ODA framework.

N Ganapati contributed to the GenomicsDB extensions. G Srinivasa managed the design

and development of the ODA framework and GenomicsDB extensions. C Denny

managed the testing and validation of the ODA framework from the UCLA side. All

authors read and approved the final manuscript.

Acknowledgements: Thanks to all the clinicians and researchers at UCLA David Geffen

School of Medicine, who provided input and feedback throughout the duration of this

work. Thanks also to the DGIT and I2B2 support team who helped in the deployment and

testing of the framework at UCLA.

References

[1] HodsonR. Precision medicine. Nature. 2016; 537:S49.

[2] Ashley EA. Towards precision medicine. Nature Reviews Genetics. 2016; 17: 507-
522.

[3] McMurry AJ, Murphy SN, MacFadden D, Weber G, Simons WW, Orechia J, Bickel
J, Wattanasin N, Gilbert C, Trevvett P, Churchill S, Kohane IS. SHRINE: Enabling
nationally scalable multi-site disease studies. PLoS One. 2013; doi:	
10.1371/journal.pone.0055811.

[4] Kohane IS, Churchill SE, Murphy SN. A translational engine at the national scale:
informatics for integrating biology and the bedside. J Am Med Inform Assoc.
2012;19(2):181–5.

[5] Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S, et al. Serving
the enterprise and beyond with informatics for integrating biology and the bedside (i2b2).
J Am Med Inform Assoc. 2010;17(2):124–30.

[6] Murphy SN, Avillach P, Bellazzi R, Phillips L, Gabetta M, Eran A, McDuffie MT,
Kohane IS. Combining clinical and genomics queries using i2b2 – Three methods. PLoS
One. 2017; doi:10.1371/journal.pone.0172187.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 27	

[7] Datta K, Gururaj K, Naik M, Narvaez P, Rutar M. GenomicsDB: Storing Genome
Data as Sparse Columnar Arrays. White Paper. Intel Health and Life Sciences; 2017.

[8] Papadopoulos, SA. The TileDB Array Data Storage Manager. Proc. VLDB Endow.
2016; 329-360.

[9] GenomicsDB [https://www.genomicsdb.org/]

[10] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis
Toolkit: a MapReduce framework fro analyzing next-generation DNA sequencing data.
Genome Res. 2010; doi: 10.1101/gr.107524.110.

[11] Genomics Analysis Toolkit (GATK) [https://github.com/broadinstitute/gatk/]

[12] Gabetta M, Limongelli I, Rizzo E, Riva A, Segagni D, Bellazzi R. BigQ: a NoSQL
based framework to handle genomic variants in i2b2. BMC Bioinformatics. 2015;
doi:10.1186/s12859-015-0861-0.

[13] Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J,
Venkataraman S, Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I. Apache Spark:
a unified engine for big data processing. Communications of the ACM. 2016; doi:	
10.1145/2934664.

[14] Apache Spark [https://spark.apache.org/]

[15] O’Driscoll A, Daugelaite J, Sleator RD. ‘Big data’, Hadoop and cloud computing in
genomics. Journal of Biomedical Informatics. 2013; doi:10.1016/j.jbi.2013.07.001.

[16] Nothaft FA, Massie M, Danford T, Zhang Z, Laserson U, Yeksigian C, Kottalam J,
Ahuja A, Hammerbacher J, Linderman M, Franklin M, Joseph AD, Patterson DA.
Rethinking data-intensive science using scalable analytics systems. Proc 2015 SIGMOD.
2015.

[17] Hail [https://github.com/hail-is/hail]

[18] Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ,
Shenker S, Stoica I. Resilient Distributed Datasets: A fault-tolerant abstraction for in-
memory cluster computing. Proc 9th USENIX Conf Network Systems Design and Impl.
2012; 2.

[19] Hadoop [http://hadoop.apache.org/]

[20] Amazon AWS EMR [https://aws.amazon.com/emr/]

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 28	

[21] Amazon AWS S3 [https://aws.amazon.com/s3/]

[22] Amazon AWS [https://aws.amazon.com/]

[23] The Variant Call Format (VCF) Version 4.2 Specification. In: SAM/BAM and
related specification. Samtools. 2018. https://samtools.github.io/hts-specs/VCFv4.2.pdf.

[24] Samtools HTSLib [https://github.com/samtools/htslib]
A global reference for human genetic variation, The 1000 Genomes Project Consortium,
Nature 526, 68-74 (01 October 2015) doi:10.1038/nature15393.

[25] Tange O. GNU Parallel 2018. Zenodo. 2018; doi:10.5281/zenodo.1146014.

[26] PostgreSQL [https://www.postgresql.org/]

[27] Apache Zeppelin [https://zeppelin.apache.org/]
AtLAs Biobank [https://www.uclahealth.org/precision-health/atlas-california-health-
initiative]

[28]	MongoDB [https://www.mongodb.com/]

[29] D3.js [https://d3js.org/]

[30] i2b2 “How to”-Installation, startup and extending its functionality. In: i2b2
Informatics for Integrating Biology & the Bedside. Partners Healthcare. 2014.
https://www.i2b2.org/software/tutorial.html.

[31] The 1000 Genomes Project Consortium. A global reference for human genetic
variation, The 1000 Genomes Project Consortium. Nature. 2015; 526:68-74.

[32] AtLAs [https://www.uclahealth.org/precision-health/atlas-california-health-
initiative]

[33] Amazon EC2 Instance Types [https://aws.amazon.com/ec2/instance-types/]

Figure Legends

Figure 1. Conceptual view of genomic variant data stored in GenomicsDB. Data is

represented as a sparse two-dimensional matrix, and can be split into multiple, vertically

partitioned arrays for distribution.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 29	

Figure 2. The ODA framework system diagram represented within a HIPAA-compliant

AWS environment, including the connections with the clinical data store (i2b2). The

dotted lines are conceptual links between the relative data stores.

Figure 3. The frontend interface of the VariantView plugin that exists within the i2b2

browser. User inputs query parameters in the Generate Report tab and results are

displayed in the View Results tab.

Figure 4. The timeline of a query executed from the VariantView plugin, which starts

when a user makes a query form the VariantView i2b2 frontend for clinical attributes.

Plugin submits a Spark job with the clinical info and requested analysis from the user.

Master delegates to workers, which collate mapping information, query GenomicsDB,

and load variants into RDDs. User-specified report is performed in Spark. Results are

written to MongoDB and a return code is simultaneously sent to the VariantView plugin

and visualized in i2b2 browser.

Figure 5. 1000 genomes dataset import times: Time to write 1000 GenomicsDB

partitions to Amazon S3 from 1000g VCF file inputs. Measurements were taken for an

increasing sample size, and for four types of AWS instance types (m4.2xlarge,

r4.2xlarge, m4.4xlarge, and r4.rxlarge).

Figure 6. AtLAs dataset import times: Time to write 1000 GenomicsDB partitions to

Amazon S3 from AtLAs VCF file inputs. Measurements were taken for an increasing

sample size, and for four types of AWS instance types (m4.2xlarge, r4.2xlarge,

m4.4xlarge, and r4.rxlarge).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 30	

Figure 7. Total partition size (sum) as total number of samples in the database increases.

Results are shown for both 1000 genomes and AtLAs datasets.

Figure 8. Time to query varying size of GenomicsDB instances for the 1000g dataset.

Queries requested all samples in the database and were measured for varying size

genomic regions.	

Figure 9. Time to query varying size of GenomicsDB instances for the AtLAs dataset.

Queries requested all samples in the database and were measured for varying size

genomic regions.

Figure 10. Time required to import i2b2 derived clinical datasets into distributed

environment for an increasing number of patients.	

Figure 11. Time to aggregate the clinical information from the i2b2-derived file,

associate to the samples in the genomic database, load genomic variant data into

distributed environment, and count the number of variants. Results are shown for an

increasing number of variants queried for varying sets of patient sizes.

Figure 12. Clinical and genomic aggregation time as the number of patients increases,

displayed for varying sets of genomic regions.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/841940doi: bioRxiv preprint

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

