bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Advancing clinical cohort selection with genomics analysis on a distributed platform

Authors

Jaclyn M Smith jaclyn.smith@cs.ox.ac.uk
Department of Computer Science, University of Oxford, Oxford, United Kingdom, OX1 3QD; Omics Data Automation
Inc., Beaverton, Oregon, USA 97005

Melvin Lathara melvin@omicsautomation.com
Omics Data Automation Inc., Beaverton, Oregon, USA 97005

Hollis Wright wrighth@omicsautomation.com
Omics Data Automation Inc., Beaverton, Oregon, USA 97005.

Brian Hill brian@omicsautomation.com
Department of Computer Science, University of California, Los Angeles, Los Angeles, CA 90095; Omics Data
Automation Inc., Beaverton, Oregon, USA 97005

Nalini Ganapati nalini@omicsautomation.com
Omics Data Automation Inc., Beaverton, Oregon, USA 97005

Ganapati Srinivasa gans(@omicsautomation.com
Omics Data Automation Inc., Beaverton, Oregon, USA 97005

Christopher T Denny cdenny@ucla.edu

Department of Pediatrics, Division of Hematology/Oncology, Gwynne Hazen Cherry Memorial Laboratories,
University of California, Los Angeles, Los Angeles, CA 90095; Molecular Biology Institute, University of California,
Los Angeles, Los Angeles, CA 90095; Jonsson Comprehensive Cancer Center, University of California, Los Angeles,
Los Angeles, CA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095

Corresponding Author
Jaclyn M Smith

Abstract
Background:

The affordability of next-generation genomic sequencing and the improvement of
medical data management have contributed largely to the evolution of biological analysis
from both a clinical and research perspective. Precision medicine is a response to these
advancements that places individuals into better-defined subsets based on shared clinical
and genetic features. The identification of personalized diagnosis and treatment options is

dependent on the ability to draw insights from large-scale, multi-modal analysis of

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

biomedical datasets. Driven by a real use case, we premise that platforms that support
precision medicine analysis should maintain data in their optimal data stores, should
support distributed storage and query mechanisms, and should scale as more samples are

added to the system.

Results:

We extended a genomics-based columnar data store, GenomicsDB, for ease of use within
a distributed analytics platform for clinical and genomic data integration, known as the
ODA framework. The framework supports interaction from an i2b2 plugin as well as a
notebook environment. We show that the ODA framework exhibits worst-case linear
scaling for array size (storage), import time (data construction), and query time for an
increasing number of samples. We go on to show worst-case linear time for both import

of clinical data and aggregate query execution time within a distributed environment.

Conclusions:

This work highlights the integration of a distributed genomic database with a distributed
compute environment to support scalable and efficient precision medicine queries from a
HIPAA-compliant, cohort system in a real-world setting. The ODA framework is
currently deployed in production to support precision medicine exploration and analysis

from clinicians and researchers at UCLA David Geffen School of Medicine.

Keywords

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

GenomicsDB, Variants, Genomic cohorts, Precision Medicine, i2b2, Apache Spark,

AWS

Background

The affordability of next-generation genomic sequencing and the improvement of
medical data management have contributed largely to the evolution of biological analysis
from both a clinical and research perspective. Precision medicine is a response to these
advancements that aims to tailor a medical treatment to an individual based on their
genetic, lifestyle, and environmental risk factors [1]. While current medical practice is
limited to using broad populations with heterogeneous characteristics, precision medicine
places individuals into better-defined subsets based on shared clinical and genetic
features. This fine-tuned, cohort-based method determines relative risk factors and
potential therapeutic responses with higher accuracy [2]. Though a promising field, the
identification of personalized diagnosis and treatment options is dependent on the ability

to draw insights from large-scale, multi-modal analysis of biomedical datasets.

The integration of high-throughput genomic sequencing data and electronic health record
(EHR) derived, phenotypic data is at the core of precision medicine efforts. Even before
integration, genomic and clinical data each have specific bottlenecks that impede
effective utilization of these data in practical analysis. EHR data requires extensive
cleaning and restructuring for use in cohort analysis and clinical trial identification. This

can be accomplished through ETL (extract transform load) and indexing procedures to

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

process the data into a form that can be efficiently queried from a relational database [3].
Informatics for Integrating Biology and Beside (i2b2) is a framework that enables cohort
exploration and selection on clinical attributes, such as International Classification of
Disease 10™ revision (ICD10) codes [4,5]. The i2b2 framework is made up of series of
components that work together to query and analyze clinical data. One such cell is the
clinical research chart (CRC) that queries a relational database that stores ontological and
clinical data with a patient-centric, star schema [4,5]. This system has been widely
deployed for clinical data exploration in hospitals across the United States [6], and
supports drag-and-drop, clinical cohort queries that interact with the backend relational

database through a browser-based user interface.

Genomic data are large, heavily sparse, and in general, inefficiently stored in relational
format. Columnar data stores can be specialized for sparse, multidimensional array
representation to provide a scalable means to load, store, and query genomic variant data
[7,8]. One such columnar data store is GenomicsDB [10], which has exhibited linear
import and query execution time with respect to sample size [7]. The power of
GenomicsDB has warranted the use of the database in the Genomics Analysis Toolkit
(GATK) since version 4.0 [9,10] as a more efficient alternative to flat files. Variant data
can be visualized in GenomicsDB as a sparse, two-dimensional matrix with genomic
positions on the horizontal axis and samples on the vertical axis (Figure 1). Under this
representation, columns can maintain top-level information about the variant, such as
genomic position and reference allele. Cells of the matrix store data about the sample for
the given position, such as genotype call, read depth, and quality scores. A single matrix

instance has several vertically partitioned segments, called arrays, which support

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

contiguous storage of genomic regions on disk. These arrays can be split into several

partitions, thus providing support for data distribution [7].

To understand how clinical and genomic data can be combined for use in cohort
selection, consider a use case from UCLA David Geffen School of Medicine. Prior to the
efforts discussed later in this paper, UCLA had an existing i12b2 system deployed for the
purposes of performing clinical queries and retrieving a patient set count. Requirements
for this system include a rolling update of clinical data, the processing and storage of
associated genomic sequencing data, and patient consent to share such data. The ultimate
goal was to query the genomic data from within the i2b2 interface along side the clinical
attributes. The genomic and clinical data would be accessible to both clinicians and
researchers for de-identified, cohort exploration and selection. At the outset of the efforts
discussed in this paper, genomic data were stored as individual flat files that were siloed
from the i12b2 system. UCLA projected an accrual of up to 1000 new samples per week

that would need to be imported into and accessible from this system.

12b2 has a modular design that makes the framework easy to extend with backend
features. Plugins have been developed previously that enable querying of genomic data
from within i2b2 for datasets with hundreds of samples [6,12]. Given the projected
accrual of up to 1000 new samples per week noted above, a scalable genomics database
as well as an efficient processing environment was required to manage and analyze the
data at UCLA. Since clinical data and genomic data are optimally stored in databases
natural for their specific data structures, a scalable solution to clinical-genomic data
integration should leave the data in the respective optimal data store and provide the

mechanisms to perform efficient aggregate queries from these sources. Given this, we

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

built a system that would (i) integrate genomic sequencing data with the existing i2b2
instance at UCLA, (ii) maintain the data sources in their respective data stores, and (iii)
support efficient and scalable integrative analysis by means of a distributed processing

environment.

Distributed processing platforms, such as Apache Spark [13,14], are becoming
increasingly popular for large-scale, genomic data analysis [15,16,17]. Spark provides a
powerful, programmatic interface that abstracts the distribution from the user. A Spark
cluster consists of a master node and a set of worker (slave) nodes. The master node
delegates tasks to the worker nodes, which will execute relevant tasks over the distributed
datasets. In the event that a worker fails, Spark uses a data structure known as Resilient
Distributed Datasets (RDDs), which will reallocate data to other nodes and ensure
nothing is lost (fault-tolerance) [18]. Distributed file systems, such as the Hadoop
Distributed File System (HDFS) [19] and Amazon Elastic MapReduce File System
(EMREFS) [20], are often used in conjunction with such platforms to maintain data
integrity and high data throughput. In contrast to distributed file systems, a local file
system does not allow worker nodes to have centralized access to all the data required for
the application. Similarly, network file systems provide limitations since all data is

physically stored on a single machine and not distributed.

Prior to the work described in this paper, GenomicsDB supported querying of genomic
data from Spark [7], but did not support the reading and writing of genomic data from
genomic arrays stored on a distributed file system (legacy mode). Without support for a
distributed file system, the process of querying GenomicsDB from Spark meant that

arrays had to be manual organized across the worker nodes. The worker could only

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

access the genomic data that existed physically on that node. Under the organization of
legacy mode, a query would be broadcast to each worker node, executed, and then a
single RDD partition would be loaded with all the genomic variant data available to that

worker.

There are several restrictions with this configuration that impact both genomic data
storage and the Spark distribution abilities. First, a worker node is required to store the
genomic data locally meaning the node needs enough space to store the genomic data and
write out temporary work files from Spark. The addition of more genomic data to the
system could require a resizing of the worker nodes and lead to system downtime.
Second, a worker node can only query one GenomicsDB array and can only load data
from this array into a single RDD partition. This limits the distribution power of Spark
since the number of RDD partitions should at least equal the number of cores available to
an application to take full advantage of the available resources. Finally, if a worker node
fails in legacy mode, the data must be reloaded or copied back to the node from an
archive. This reduces the fault tolerance power of Spark and makes auto scaling the
cluster a difficult task. Auto scaling is the ability to increase or decrease the number of
worker nodes according to application load and is an important feature for resource
management in Spark. Fortunately, the issues associated with Spark and legacy mode of
GenomicsDB can be addressed by extending GenomicsDB to work with a distributed file

system.

In response to the issues described above, we have extended GenomicsDB to support
reading and writing to/from a distributed file system, such as HDFS and Amazon Simple

Storage Service (Amazon S3) [21]. This setup better utilizes the distributed power of both

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Apache Spark and GenomicsDB, reduces the space requirements for a worker node, and
maintains the fault-tolerant behavior of an RDD. These extensions, together termed the
Omics Data Automation (ODA) framework, have been used to create a precision
medicine platform that enables integration and distributed aggregation of EHR-based

clinical data and associated genetic data.

In this paper, we show that the ODA framework enables GenomicsDB to exhibit worst-
case linear scaling for array size (storage), import time (data construction), and query
time. We go on to show that the ODA Framework also exhibits worst-case linear time for
both import of clinical data and aggregate query execution time within a distributed
environment. This work highlights the integration of a distributed genomic database with
a distributed compute environment to support scalable and efficient precision medicine
queries from a HIPAA-compliant (Health Insurance Portability and Accountability Act of
1996), cohort system in a real-world setting. The ODA framework is currently deployed
in production for use by both clinicians and researchers at UCLA David Geffen School of
Medicine and the extended version of GenomicsDB is openly available at

www.genomicsdb.org.

Implementation

The ODA framework is responsible for genomic variant data storage in GenomicsDB,
maintaining mapping information to a clinical data store, and enabling users to perform
Spark-based queries to the platform from a graphical interface or a programmatic
interface. Queries executed on the framework (i) consolidate the requested clinical and

genomic data (GenomicsDB) in a distributed environment (Apache Spark), (ii) perform

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

the aggregate calculation within the distributed environment, and (iii) return the results to
the user. Based on the UCLA use case, these components were integrated with an 12b2-
based, cohort system in a HIPAA-compliant, protected subnet. The UCLA
implementation is deployed on Amazon Web Services (AWS) [22], which leverage AWS
provided subnets and Amazon’s Elastic MapReduce (EMR) instances [20]. Figure 2
presents a synergistic view of the ODA framework and i2b2 within a protected subnet.
Focus on AWS services is attributed to the UCLA implementation, and it should be noted
that the ODA framework is designed to be agnostic to any cloud provider or local

hardware.

Data Storage

GenomicsDB was augmented to enable writing and reading of arrays on HDFS-
compliant file systems, in addition to existing POSIX (Portable Operating System
Interface) support. Genomic variant data read from Variant Call Format (VCF) [23] files
are imported into GenomicsDB arrays residing on a distributed file system through the
standard GenomicsDB VCF import process. The import process uses a set of
configuration files and Samtools HTSLib (High-throughput sequencing library) [24] to
read block-compressed and indexed VCF files. This process writes to several
GenomicsDB arrays at once with the use of GNU parallel [25], which maintains an
independent import process for each array. Performance for parallel import of
GenomicsDB arrays is dependent on 1) the number of arrays produced, and 2) the
resources available to the ETL process, such as the number of cores, memory and
network throughput. Once the arrays are loaded, the VCEF files are no longer needed and

can be moved to a cold storage archive. For the UCLA import process, the genome was

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

split into 1000 evenly sized sections to produce 1000 GenomicsDB arrays. These arrays
are stored on Amazon S3 and are accessed from an Amazon EMR instance via AWS
EMREFS distributed file system. The HDFS-compliant additions to GenomicsDB have
been integrated into the public repository

at https://github.com/GenomicsDB/GenomicsDB.

Clinical data is maintained in a database and application chosen, or already in-use, by the
medical institution. To ensure HIPAA-compliance, the ODA framework acquires clinical
data by enforcing encryption at REST (Representational State Transfer) with SSL
(Secure Sockets Layer) for all network-based database communication. Mapping
information is used to associate clinical data to samples stored in GenomicsDB. The
mapping information constructs a relationship between a de-identified patient id and the
relative genomic sample information. The patient identifier is sourced from the clinical
data store, such as i2b2. This information, along with the configuration files used in the
GenomicsDB ETL process, is used to load a mapping database. This mapping database
also maintains metadata on GenomicsDB arrays. In essence, the mapping database
provides a global view over the relevant data sources required to perform an integrative
query over the clinical and genomic information. The mapping database (PostgreSQL
[26]) comes with a core relational schema and a python interface for ease of database
construction and maintenance. The UCLA implementation uses 12b2 with a PostgreSQL
backend as their clinical data store and stores mapping information in a separate

PostgreSQL mapping database.

Apache Spark

10

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

To support distributed queries and processing, the majority of the query and analytical
components reside on the master of the Spark cluster. For the UCLA implementation, the
Spark cluster is an AWS Elastic Map Reduce (EMR) instance. The EMR instance
contains a Spark master that delegates tasks to worker nodes. The master node serves as
the entry point to queries that are sent out to the worker nodes and in the process, loads
data from each of the GenomicsDB arrays into Spark RDD partitions. Since
GenomicsDB arrays are made available to the worker via a direct connection to a
distributed file system, any of the GenomicsDB arrays are accessible to all worker nodes
in the cluster. The master node is responsible for delegating query tasks to the workers
and these query tasks are responsible for loading of genomic variant data into Spark

RDDs.

When a user submits a query to the ODA framework, the Spark master decomposes the
query into a list of smaller queries that are distributed to the worker nodes as query tasks.
The worker nodes perform the query tasks assigned to them, which is some subset of the
whole query list. The number and size of query tasks is proportional to the number of
GenomicsDB arrays, such that each query task will query one GenomicsDB array and
load the result into an RDD partition. The collection of RDD partitions across all workers
collectively contains all the genomic information queried from GenomicsDB. This means
the number of GenomicsDB arrays produced during the import process also helps balance
the query workload. The optimal distribution of genomic variant is determined by
balance of file open and read operations as well as RDD partition size. More distribution

will lead to an increase in open and read operations and smaller RDD partitions, where as

11

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

less distribution can cause more overhead for smaller query regions by creating large

RDD partitions.

Programmatic Access

The GDBSpark API is an integral component of the ODA framework that provides
support for distributed querying, loading, and aggregating clinical, genomic, and relevant
mapping data sources. Clinical data accessed through the API will require a data handler
to tell the API how to interact with the source data. For the UCLA implementation, the
API contains an i2b2 data handler that supports the import of an i2b2 XML (eXtensible
Markup Language) file received from the CRC cell. The GDBSpark API is implemented
in Scala 2.11. This API represents genomic variant data as a VariantContext object
provided from HTSLib [24] as specified in the GenomicsDB Java Native Interface (JNI).
The API acts as an intermediate layer between Spark, GenomicsDB, and the mapping
database to query genomic data, load Spark RDDs, and associate to the clinical dataset
for downstream computation. In general, the clinical data from the CRC cell of i2b2 and
the aggregation of the clinical data with genomic information in VariantContext RDDs
are distributed across the worker nodes. The API also provides a genomic toolkit to

perform pre-defined aggregate statistics for genomic and clinical data.

User Interfaces

There are two analytical interface components that interact with the ODA framework to
support distributed analytics, an Apache Zeppelin interactive notebook environment [27]
and an 12b2 plugin, VariantView. The VariantView plugin is designed to perform

aggregate clinical and genomic queries from within the i12b2 interface. A user first creates

12

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

an 12b2 patient set from the “Find Patients” window. This patient set is then referenced in
the VariantView plugin along with additional clinical attributes (i.e. ICD10 code), and
genomic regions (dbSNP rs-identifiers and attributes from the Sequence Ontology). Users
have the ability to filter by genotype specified in the form: rs### (is | is not) (homref |
homvar | het | nocall). The aggregate queries are predefined as reports, which specify the
aggregate calculation to perform when the Spark application is submitted. Four reports
are available: total allele counts, genotype distribution by clinical attribute, and genomic-
only based cohorts. A screen shot of this plugin within the i2b2 interface is shown in

Figure 3.

The VariantView i2b2 plugin consists of two main components: a frontend, graphical
user interface that exists within the i2b2 browser, and a backend that extends the i2b2
hive with an additional service (cell). The frontend uses the 12b2 JavaScript API to
communicate with the backend through plugin-specific, XML messages supported by the
12b2 REST API The backend of the VariantView plugin is responsible for submitting a
Spark application to the ODA framework with SparkLauncher. SparkLauncher enables
12b2 to run spark-submit, sending the application jar and associated parameters to the
AWS EMR instance that houses the ODA framework. The incoming job requests from
12b2 are scheduled with Hadoop YARN [19]. Once the application finishes aggregating
the results of both queries, the results are written back to MongoDB [28] using SSL with
a unique identifier. The backend of VariantView is notified of the success or failure of
the spark job. On success, the plugin backend will query MongoDB for the results using
the unique identifier. The results are then formatted into a plugin-specific, XML response

message and sent to the frontend. The frontend accesses the required information from

13

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

the response and plots the results using a JavaScript plotting library (d3.js) [29]. If the
spark application reports failure, the response will contain error information that will then
be displayed to the user. The backend of VariantView is written in Scala 2.11 and is

based on a tutorial plugin provided by the i2b2 [30].

Figure 4 shows the flow of a query originating from the VariantView plugin. This entry
point could be any Spark-based application that submits to the ODA framework with the
GDBSpark API, such as the Zeppelin notebook environment. This notebook environment
was added to the framework to enable users to develop code and execute distributed
queries to GenomicsDB without having to be concerned about the configuration of a
Spark cluster. The Zeppelin instance at UCLA comes with several notebooks that support
use cases proposed from clinical geneticists, clinicians, and bioinformaticians at David
Geffen School of Medicine. Users are able to create their own notebooks and develop

their own analysis within this environment.

Results

The following describes the results of a set of experiments designed to highlight efficient
variant data loading, storage, and querying of genomic data, stored in GenomicsDB,
to/from the distributed platform for an increasing number of samples. The timing to
import clinical data as well as the time to aggregate the clinical and genomic data is also
reported. All experiments were performed in AWS EMR- 5.7.0, with Spark 2.1.1, and
Scala 2.11. Two datasets are referenced throughout the experiments: the Phase 111 1000
Genomes Whole Exome Sequencing (WES) dataset [31] and the AtLAs target

sequencing data [32]. The AtLAs dataset was generated using a microarray technology to

14

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

interrogate approximately 600,000 genomic loci. The AtLAs dataset is the UCLA patient
data that has associated clinical data stored in i2b2. By contrast, the 1000 genomes data

was generated using a high-throughput, whole exome sequencing platform that targets all
the protein coding regions in each patient’s genome. These datasets will be referred to as

1000g and AtLAs, respectively.

Distributed import into GenomicsDB scales linearly with sample size

To test the performance of importing genomic variant data (VCEF files) into
GenomicsDB, we carried out the ETL process for an increasing number of samples for
both the 1000g and AtLAs datasets. The ETL process wrote 1000 GenomicsDB partitions
to Amazon S3 with the following GenomicsDB loader configurations: 1) column based
partitioning, 2) disabled synced writes, 3) 20 parallel VCF files, 4) 1000 cells per tile, 5)
compress genomicdb array, 6) 1048576 segment size, 7) ping pong buffering, 8) treat
deletions as intervals, 9) size per column partition 43581440, 10) discard missing
genotypes, and 11) offload VCF output processing for both datasets. END and GT fields
were loaded from AtLAs VCFs. Whole exome sequencing contains additional attributes
that are not generated in microarray genotype assays. END and GT fields as well as DP,
GQ, AD, and PL fields were loaded for 1000g. These additional fields are found in whole
exome sequencing datasets, but not in microarray genotype assays. This process was
repeated on four different AWS instance types in order to evaluate the effects of
resources on import time. We used two general-purpose instances m4.2xlarge (2 cores,
8G memory) and m4.4xlarge (16 cores, 64G memory) and two memory-optimized
instances r4.2xlarge (8 cores, 61G memory) and r4.4xlarge (16 cores, 122G memory)

[33].

15

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

We found linear-scale ETL times for 1000g (Figure 5) and better than linear-scale ETL
times for AtLAs (Figure 6) as the number of samples increase. The import times for
AtLAs suggest log-scale potential, although more samples would be required to
determine this with confidence. The import times for both 1000g and AtLAs suggest that
m4.4xlarge and r4.4xlarge instances result in shorter import times with increasing sample
size in comparison to the m4.2xlarge and r4.2xlarge instances. This result is expected
since the m4.4xlarge and r4.4xlarge have more processing power than the m4.2xlarge and
r4.2xlarge instances. A less expected result was that there were no significant advantages
to using the memory-optimized nodes for ETL. This result suggests that the lower cost,
general-purpose nodes provide sufficient resources to perform the ETL process

efficiently with the provided configurations.

Total GenomicsDB partition size scales linearly with sample size

To evaluate how total GenomicsDB array size grows as the number of samples in the
database increases, we measured the total partition size of the databases resulting from
the ETL processes described above (sum of 1000 partitions). Storage size increased
linearly with the number of samples for both 1000g and AtLAs, with the storage size for
1000g increasing at a faster rate (Figure 7). This observation is expected since the 1000g
dataset is importing more fields from the VCF files and has more coverage of the

genome, as compared to the AtLAs dataset.

Distributed GenomicsDB queries scale linearly with sample size

To test the performance of Spark-based GenomicsDB queries, we queried variable-sized

regions across the genome of both datasets using the GDBSpark API. Regions include a

16

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

large chromosome (chromosome 1 — add # bp), a medium sized chromosome
(chromosome 10 — add # bp), and a small chromosome (chromosome 22 — add #bp).
Similar to the above experiments, query times were measured for an increasing number
of samples in the database. Each query requested data for all samples in the respective
GenomicsDB instance. Queries were performed five times and the average was reported.
A query within the GDBSpark API is the time it takes for data to be retrieved from
GenomicsDB, imported into an RDD in VariantContext format, and the number of
elements counted. Given this, the reported times measure time to query GenomicsDB,
load variant data into an RDD, and perform a simple iteration operation over the data

(count).

For 1000g dataset, smaller regions exhibit worst-case linear scaling and chromosomes
display near-linear scaling (Figure 8). This result is consistent with previously reported
results in the GenomicsDB white paper [7]. When more data is read into memory, the
number of cache misses leads to in-memory bandwidth saturation and causes an increase
in read times. The AtLAs queries appear to be reporting near log-scale query times with
smaller regions, small chromosomes, and even medium size chromosomes (Figure 9).
The larger chromosome for the AtLAs dataset is close to linear, but still exhibits a trend

that is suggestive of the memory-saturation behavior of GenomicsDB.

Integrating clinical and genomic data in a distributed compute environment scales

linearly with sample size

17

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

To test the performance of clinical and genomic data integration within the framework,
we measured the time to import clinical datasets for an increasing number of patients and
the time to perform an aggregate query. Clinical datasets were generated from the clinical
information associated to the AtLAs variant data associated to over 12,000 patients in the
UCLA i2b2 CRC cell. Requests were sent from the web browser of i2b2 for a subset of
ICD10 ontological terms and the response was saved to an XML file. The time to import
this XML file into Spark and count the number of patients in the set, collectively, was
recorded five times for each query and the average was reported. Worst-case linear time

was observed for an increasing number of patients (Figure 10).

The time required to associate this clinical set to the genomic data, query GenomicsDB,
collate the integrated set into the distributed environment, and perform a simple
aggregate (count) calculation, collectively, was also recorded. We use a subset of the
genomic regions queried above for these queries, and report these regions based on the
number of variants returned. Each query was performed five times and the average was
reported. Again, we observe worst-case linear query response time for the aggregation of
the clinical and genomic data for an increasing number of regions queried (Figure 11).
The number of patients in the query had less of an effect on query time, but still exhibited
linear scaling (Figure 12) with respect to the number of patients queried. This result

suggests that response time is affected only minimally by the size of the patient set query.

These queries were performed for a subset of samples in a constant size GenomicsDB
instance. This is in contrast to the previously presented experiment, which queried all the
samples in a given instance. It is important to note that during the short time these two

experiments, the number of samples in the system had nearly doubled in size. These

18

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

results show that the worst-case linear performance is preserved even for clinical-
genomic aggregate queries for over 10,000 patients. The results also show that the
number of variants queried will have more of an effect on response time than the number
of patients referenced in the query. This means that more patients could be included in an

analysis without having a significant impact on query response time.

Discussion

Throughout this paper we present a distributed analytics framework for performing
precision medicine queries. We use a real-world use case from UCLA to drive the
development of the framework and confirm scalability and efficiency of distributed
loading, storage, access, and aggregate queries for an increasing number of samples. The
results have shown linear query times from distributed GenomicsDB instance with an
HDFS-compliant file system. These results were made possible by extending
GenomicsDB to support reading and writing to a distributed file system, which has
resulted in a more Spark friendly version of GenomicsDB. Despite network latencies
associated with HDFS and Spark, the results show that the distributive power maintains,
and often improves upon, previously reported GenomicsDB results that use a native file
system for both microarray and whole exome sequencing data. If processing samples are
to be expected to be thousands weekly, then scalability with increasing patient data added
to the system is of great importance for import, storage, and query times. Further, the
ODA platform maintains scalability in the downstream analytics environment to scale at

all points of the analysis pipeline.

19

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Our extensions to GenomicsDB have several maintenance and cost related advantages in
addition to those noted in the above results section, which we have observed from
utilizing AWS. First, the ability to read and write from a distributed file system means the
GenomicsDB arrays can be stored and queried from cost-effective Amazon S3 buckets
rather than requiring each slave node to have an additional EBS mount to store the data
locally. Second, our extensions allow for an increase in the number of RDD partitions per
worker without adding new slave nodes which requires a smaller and more cost effective
EMR instance than the setup that allowed for only one RDD partition per worker. By
persisting GenomicsDB arrays on Amazon S3, we are able to maintain data integrity and
fault tolerance in the event of a failed worker node. These extensions to GenomicsDB
allow for better, more on-demand resource balancing. Without the extensions described
in this paper, the management of GenomicsDB for use on a Spark cluster would be

extremely difficult to maintain.

Future plans for GenomicsDB include extending the database to be more Spark-friendly
in terms of file system support, database distribution, and partitioning schemes.
GenomicsDB arrays are statically partitioned during the import process by splitting the
genome into a user-specified amount of chunks. The distribution of variants is not even
across the genome space, meaning that some arrays contain a lot more variant data than
others. This can lead to load imbalance across both data ingesting and querying. Proper
load balancing of a Spark application can lead to better execution times of aggregate
queries. More advanced ways to distribute the variant data into GenomicsDB arrays
should be considered, such as sampling the variant data before loading to understand

mutation burden across the genome. Ideally, we would like to create an array distribution

20

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

that optimizes load balancing and provides support for loading a variable amount of RDD
partitions — potentially dependent on the resources available to the application. Other
areas of exploration should include how additional data types impact the ability to scale

GenomicsDB, such as whole genome sequencing and other genomic data modalities.

Though GenomicsDB and the interaction with Spark was the main focus of this work, the
API, mapping database, and user applications are presented as an example of how
GenomicsDB can be used to scale out precision medicine platforms at existing hospitals.
For instance, we introduced the i2b2 VariantView plugin that enables clinicians to
perform on-demand, clinical-genomic precision medicine queries. The plugin uses the
ODA Framework to submit a distributed, aggregate query inside a HIPAA-compliant,
virtual private network at UCLA David Geffen School of Medicine. The application
loads clinical data from i2b2, queries distributed GenomicsDB partitions that reside on
Amazon S3, performs a specified analysis report within the distributed environment, and
write the results back for visualization in the i2b2 browser interface. Previous efforts to
support genomic-based queries in i2b2 have reported linear scaling only up to 500
samples [12]. Our results have exhibited worst-case linear scaling with over 2400
samples from the 1000 genomes whole exome sequencing data and over 10,000 patients
with targeted-sequencing data. Further, to the best of our knowledge this is the first effort
to extend i12b2 to run Spark-based, distributed queries and processing from within the

12b2 interface.

The prototype system described in this paper is currently designed to support generic
analysis applications from the i2b2 front end. However, the applications available to front

end users are limited to simple proof of use allele and clinical concept distribution charts.

21

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

The validation and usability of these applications will only be proven with use of the
system by both clinicians and researchers. We anticipate integrating more complex
analytical tools into the system that will improve cohort selection through means of more
advance statistics and machine learning techniques. Further, many of the claims made
about scalability should be continuously validated as more samples and more data is
added to the system for both microarray and more large-scale, next generation

sequencing data.

Conclusions

The power of precision medicine is dependent on the ability to combine data across
multiple types and sources to enable quick and scalable joint analyses that support cohort
selection and analysis. We have presented an efficient and scalable means for genomic-
based cohort exploration and analysis using an optimized genomics database. We show
that data can reside in optimal data stores, while still supporting scalable, distributed
analytics. Our extensions to GenomicsDB provide support with a distributed file system
to provide ease of interaction from a distributed compute environment as well as cost
advantages for hosting-related, hardware requirements. The ODA framework can be
integrated into existing code for advanced usage, or can be used to extend a HIPPA
compliant clinical interface (EHR or cohort system) to execute distributed aggregate
queries. Scalable and efficient data processing platforms and databases, such as the
framework described in this paper, will be necessary to drive precision medicine forward

as data grows and analysis becomes more complex.

Availability and requirements

22

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

GenomicsDB is available at: https://github.com/GenomicsDB/GenomicsDB. The
mapping database and GDBSpark API are available for academic use upon request. i2b2
plugin and Zeppelin notebook demonstrations are available to interested readers upon

request.

Lists the following:

Project name: GenomicsDB

Project home page: www.genomicsdb.org

Operating system(s): GNU/Linux, MacOSX

Programming language: C++, Java, Scala

Other requirements: CMake, Zlib, OpenSSL, libuuid, C++ 2011 compiler, gcc
version >= 4.8, Google Protobuf 3.0.2, Rapidjson, Htslib, Java SDK version 8, Scala 2.11

License: MIT License

Any restrictions to use by non-academics: No restrictions, see license on github.

List of abbreviations

1000g: 1000 Genomes Project

Amazon S3: Amazon Simple Storage Service

API: Application Programming Interface

AtLAs: University of California, Los Angeles Biobank
AWS: Amazon Web Services

CRC: Clinical Research Chart (from i2b2)

dbSNP: Single Nucleotide Polymorphism Database

23

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

EHR: Electronic Health Record

EMR: Elastic Map Reduce

EMREFS: Elastic MapReduce File System

ETL: Extract, transform, and load

GATK: Genomics Analysis Toolkit

GNU: GNU’s Not Linux

HDFS: Hadoop Distributed File System

HIPAA: Health Insurance Portability and Accountability Act of 1996
HTSLIB: Samtools High-Throughput Sequencing Library
12B2: Informatics for Integrating Biology and the Bedside
JNI: Java Native Interface

ODA: Omics Data Automation

POSIX: Portable Operating System Interface

RDD: Resilient Distributed Dataset

REST: Representational State Transfer

SSL: Secure Sockets Layer

UCLA: University of California, Los Angeles

VCF: Variant Call Format

WES: Whole Exome Sequencing

XML: eXtensible Markup Language

Declarations

Ethics approval and consent to participate: Not applicable

24

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Consent for publication: Not applicable

Availability of data and materials: This manuscript uses datasets for measuring
framework performance only. Data sharing is not applicable to this article as no datasets

were generated or analyzed during the current study.

Competing Interests: J Smith, M Lathara, H Wright, B Hill, N Ganapati, and G
Srinivasa are sponsored by Omics Data Automation, Inc. Competing interests have been
fully disclosed and arranged through contract and licensing agreements with UCLA
David Geffen School of Medicine. The authors declare that they have no other competing

interests.

Funding: C Denny is supported by the National Center for Advancing Translational
Sciences, National Institutes of Health, through the University of California, Los
Angeles, Clinical and Translational Science Institute, under award number
UL1TR000124 and UL1TRO001881. All other support was provided through Omics Data
Automation, Inc. Omics Data Automation employees (J Smith, M Lathara, H Wright, B
Hill, N Ganapati, and G Srinivasa) were supported by the National Science Foundation
under award number 1721343 and via work contract from UCLA David Geffen School of
Medicine. Detailed contributions from ODA employees are described in the author’s

contributions section.

Authors’ contributions: J Smith designed and developed the ODA framework, designed
and executed the experiments, and was a major contributor in writing the manuscript. M
Lathara designed and developed the ODA framework and contributed to the

GenomicsDB extensions. H Wright aided in the testing and validation of the ODA

25

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

framework. B Hill aided in the development of the ETL process of the ODA framework.
N Ganapati contributed to the GenomicsDB extensions. G Srinivasa managed the design
and development of the ODA framework and GenomicsDB extensions. C Denny
managed the testing and validation of the ODA framework from the UCLA side. All

authors read and approved the final manuscript.

Acknowledgements: Thanks to all the clinicians and researchers at UCLA David Geffen
School of Medicine, who provided input and feedback throughout the duration of this
work. Thanks also to the DGIT and 12B2 support team who helped in the deployment and

testing of the framework at UCLA.

References

[1] HodsonR. Precision medicine. Nature. 2016; 537:S49.

[2] Ashley EA. Towards precision medicine. Nature Reviews Genetics. 2016; 17: 507-
522.

[3] McMurry AJ, Murphy SN, MacFadden D, Weber G, Simons WW, Orechia J, Bickel
J, Wattanasin N, Gilbert C, Trevvett P, Churchill S, Kohane IS. SHRINE: Enabling
nationally scalable multi-site disease studies. PLoS One. 2013; doi:
10.1371/journal.pone.0055811.

[4] Kohane IS, Churchill SE, Murphy SN. A translational engine at the national scale:
informatics for integrating biology and the bedside.] Am Med Inform Assoc.
2012;19(2):181-5.

[5] Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S, et al. Serving
the enterprise and beyond with informatics for integrating biology and the bedside (i2b2).
J Am Med Inform Assoc. 2010;17(2):124-30.

[6] Murphy SN, Avillach P, Bellazzi R, Phillips L, Gabetta M, Eran A, McDuffie MT,

Kohane IS. Combining clinical and genomics queries using i2b2 — Three methods. PLoS
One. 2017; doi:10.1371/journal.pone.0172187.

26

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

[7] Datta K, Gururaj K, Naik M, Narvaez P, Rutar M. GenomicsDB: Storing Genome
Data as Sparse Columnar Arrays. White Paper. Intel Health and Life Sciences; 2017.

[8] Papadopoulos, SA. The TileDB Array Data Storage Manager. Proc. VLDB Endow.
2016; 329-360.

[9] GenomicsDB [https://www.genomicsdb.org/]

[10] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis

Toolkit: a MapReduce framework fro analyzing next-generation DNA sequencing data.
Genome Res. 2010; doi: 10.1101/gr.107524.110.

[11] Genomics Analysis Toolkit (GATK) [https://github.com/broadinstitute/gatk/]

[12] Gabetta M, Limongelli I, Rizzo E, Riva A, Segagni D, Bellazzi R. BigQ: a NoSQL
based framework to handle genomic variants in i2b2. BMC Bioinformatics. 2015;
doi:10.1186/s12859-015-0861-0.

[13] Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J,
Venkataraman S, Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I. Apache Spark:
a unified engine for big data processing. Communications of the ACM. 2016; doi:
10.1145/2934664.

[14] Apache Spark [https://spark.apache.org/]

[15] O’Driscoll A, Daugelaite J, Sleator RD. ‘Big data’, Hadoop and cloud computing in
genomics. Journal of Biomedical Informatics. 2013; doi:10.1016/j.jb1.2013.07.001.

[16] Nothaft FA, Massie M, Danford T, Zhang Z, Laserson U, Yeksigian C, Kottalam J,
Ahuja A, Hammerbacher J, Linderman M, Franklin M, Joseph AD, Patterson DA.

Rethinking data-intensive science using scalable analytics systems. Proc 2015 SIGMOD.
2015.

[17] Hail [https://github.com/hail-is/hail]

[18] Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ,
Shenker S, Stoica I. Resilient Distributed Datasets: A fault-tolerant abstraction for in-

memory cluster computing. Proc 9" USENIX Conf Network Systems Design and Impl.
2012; 2.

[19] Hadoop [http://hadoop.apache.org/]

[20] Amazon AWS EMR [https://aws.amazon.com/emrt/]

27

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

[21] Amazon AWS S3 [https://aws.amazon.com/s3/]
[22] Amazon AWS [https://aws.amazon.com/]

[23] The Variant Call Format (VCF) Version 4.2 Specification. In: SAM/BAM and
related specification. Samtools. 2018. https://samtools.github.io/hts-specs/VCFv4.2.pdf.

[24] Samtools HTSLib [https://github.com/samtools/htslib]

A global reference for human genetic variation, The 1000 Genomes Project Consortium,
Nature 526, 68-74 (01 October 2015) doi:10.1038/nature15393.

[25] Tange O. GNU Parallel 2018. Zenodo. 2018; doi:10.5281/zenodo.1146014.

[26] PostgreSQL [https://www.postgresql.org/]

[27] Apache Zeppelin [https://zeppelin.apache.org/]

AtLAs Biobank [https://www.uclahealth.org/precision-health/atlas-california-health-
initiative]

[28] MongoDB [https://www.mongodb.com/]

[29] D3.js [https://d3js.org/]

[30] i2b2 “How to”-Installation, startup and extending its functionality. In: i2b2
Informatics for Integrating Biology & the Bedside. Partners Healthcare. 2014.
https://www.i2b2.org/software/tutorial.html.

[31] The 1000 Genomes Project Consortium. A global reference for human genetic
variation, The 1000 Genomes Project Consortium. Nature. 2015; 526:68-74.

[32] AtLAs [https://www.uclahealth.org/precision-health/atlas-california-health-
initiative]

[33] Amazon EC2 Instance Types [https://aws.amazon.com/ec2/instance-types/|

Figure Legends

Figure 1. Conceptual view of genomic variant data stored in GenomicsDB. Data is
represented as a sparse two-dimensional matrix, and can be split into multiple, vertically

partitioned arrays for distribution.

28

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Figure 2. The ODA framework system diagram represented within a HIPAA-compliant
AWS environment, including the connections with the clinical data store (i2b2). The

dotted lines are conceptual links between the relative data stores.

Figure 3. The frontend interface of the VariantView plugin that exists within the i12b2
browser. User inputs query parameters in the Generate Report tab and results are

displayed in the View Results tab.

Figure 4. The timeline of a query executed from the VariantView plugin, which starts
when a user makes a query form the VariantView i2b2 frontend for clinical attributes.
Plugin submits a Spark job with the clinical info and requested analysis from the user.
Master delegates to workers, which collate mapping information, query GenomicsDB,
and load variants into RDDs. User-specified report is performed in Spark. Results are
written to MongoDB and a return code is simultaneously sent to the VariantView plugin

and visualized in 12b2 browser.

Figure 5. 1000 genomes dataset import times: Time to write 1000 GenomicsDB
partitions to Amazon S3 from 1000g VCF file inputs. Measurements were taken for an
increasing sample size, and for four types of AWS instance types (m4.2xlarge,

r4.2xlarge, m4.4xlarge, and r4.rxlarge).

Figure 6. AtLAs dataset import times: Time to write 1000 GenomicsDB partitions to
Amazon S3 from AtLAs VCF file inputs. Measurements were taken for an increasing
sample size, and for four types of AWS instance types (m4.2xlarge, r4.2xlarge,

m4.4xlarge, and r4.rxlarge).

29

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Figure 7. Total partition size (sum) as total number of samples in the database increases.

Results are shown for both 1000 genomes and AtLLAs datasets.

Figure 8. Time to query varying size of GenomicsDB instances for the 1000g dataset.
Queries requested all samples in the database and were measured for varying size

genomic regions.

Figure 9. Time to query varying size of GenomicsDB instances for the AtLAs dataset.
Queries requested all samples in the database and were measured for varying size

genomic regions.

Figure 10. Time required to import i2b2 derived clinical datasets into distributed

environment for an increasing number of patients.

Figure 11. Time to aggregate the clinical information from the i2b2-derived file,
associate to the samples in the genomic database, load genomic variant data into
distributed environment, and count the number of variants. Results are shown for an

increasing number of variants queried for varying sets of patient sizes.

Figure 12. Clinical and genomic aggregation time as the number of patients increases,

displayed for varying sets of genomic regions.

30

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Genome Positions

123456789101112 ...

T >
] 1
i PR S
']
! .
] 1
] 1
""""""" v Genome
™ — intervals
Samples ~ fromcmofeoeesgeessmssssssssssiooioooon
Row query
™ L]

R ———

Column query

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

i2b2 data (S3)

i
D I I) P

12b2 -
server

Mapping Database

saL

PostgreSQL = xn o P - 12b2
>.< e % database

—t

MongoDB

v

GenomicsDB
Arrays (S3)

EMRFS

ODA Worker
Nodes (EMR)

EBS

Protected Subnet

A

ODA Master
(EMR)

t

HTTPS

-

AN

- Clinician
i2b2 application
+ plugin
HTTPS
Researcher
Apache Zeppelin
Subnet B Subnet A

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Variant viewer

Drag and drop the appropriate query parameters and select Run Query to generate results.

Patient Set: Genomic Concepts:
Drop a Patient Set here Concept 1
Clinical Concepts:
Drop one or more Concepts here
Report type:

| Total Allele Counts

<>
—/

Enter genotype filter:
rs16492 is homref or rs1799977 is homvar

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

PostgreSQOL

m W
i2b2 application 12b2 database ODA Master ODA Workers

+ plugin (EMR) (EMR)
saL |

Genomics DB Mapping

Mongo DB
Arrays (S3) Database g

p— N— _— saL |

Spark Launch

Load RDDs :

Report
(Analysis)

‘/J— Mongo Write
Return Code ~>

-—-T""

Mongo Read

Variant View

Return Data

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

o
§ —o— m4.2xlarge
(o]
—=— r4.2xlarge
—4— m4.4xlarge
—— r4.4xlarge
o-
o
o
o
<
/\8 ;
L8
RS
£
|_
o -
o
o
o
AN
o -
o
o
o
A
o -

250 500 750 1000
Number of Samples

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

—o— m4.2xlarge
§ l —=— r4.2xlarge
10 —4— m4.4xlarge
—— r4.4xlarge
o -
o
o
<
—~~
2
()
£
|_
o -
o
()]
™
o -
o
o
N
o -
o
o

0 2000 4000 6000
Number of Samples

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

1000g
—A— AtLAS
o -
N~
)
9
a .
© 3
D
Q
)
N
(0))
o -
AN
o -
0 1000 2000 3000 4000

Number of Samples

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

ol Sl A A

o
S
e
0
o
£
|_
o -
o
o)
i
X
o -
0 500 1000 1500 2000 2500

Number of Samples

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

200

t ¢ 1 ft

150

Time (s)

100

50

0 1000 2000 3000 4000
Number of Samples

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

4.5

4.0

2.5

2.0

2500 5000 7500 10000
Number of patients

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

o
o
(9]
—o— 754
—— 1989
—=— 5105
—+— 8942
= 9839
3
< %= 10405
o-
o
—~M
L
o
£
|_
o-
o
N
o-
e

0 20000 40000
Number of variants

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841940; this version posted November 14, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

== 3 genes
o = Cm22 :
ot =d= Chr 10 .
=o=Chr 1
o
o
o -
o
<
o
® A
o- A
o
—~M
22
() A
£
|_
A
o -
o
N
| |
| I
o~ =]
‘C_) | |
2500 5000 7500 10000

Number of patients

https://doi.org/10.1101/841940
http://creativecommons.org/licenses/by-nc-nd/4.0/

