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Abstract 

Decision making is a ubiquitous cognitive process that determines choice behaviour. In 

recent years there has been increased interest in how information about multiple discrete sensory 

events are combined in support of single, integrated decisions. Previous studies have shown that 

integrative decision-making is biased in favour of more reliable stimuli. As reliability-weighted 

integration typically mimics statistically optimal integration, it remains unclear whether reliability 

biases are automatic or strategic. To dissociate reliability-weighting and optimal decisions, we 

developed a task that required participants to monitor two successive epochs containing brief, 

suprathreshold coherent motion signals which varied in their reliability. Rather than judging the 

individual target motion directions, however, participants had to reproduce the average motion 

direction of the two targets. Using mixture distribution modelling and linear regression to model 

behavioural data, we found robust biases in favour of the more reliable stimulus, despite the fact 

that unbiased responses were optimal in our paradigm. Using population-tuning modelling to 

characterise feature specific brain activity recorded using electroencephalography, we observed 

robust and sustained feature-specific responses to target signals in both epochs. Using the same 

method, we were able to capture the temporal dynamics of integrated decision-making by 

characterising tuning to the average motion direction. Critically, the tuning profiles to the average 

motion direction exhibited biases in favour of the more reliable signal, in keeping with the modelled 

behavioural responses. Taken together, our findings reveal that temporal integration of discrete 

sensory events is automatically and suboptimally weighted according to stimulus reliability. 
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Introduction 

Decision-making is a ubiquitous cognitive process involved in any form of choice behaviour, 

from choosing to cross a busy street to choosing a life partner. Sequential-sampling evidence-

accumulation models have had great success in modelling both choice behaviour and the neural 

correlates of decision-making, from single cell firing to the activity of large neuronal populations (1–

6). According to these models, evidence in support of one or more choices accumulates in time 

toward a decision criterion, and the decision is made once the accumulated value reaches a criterion 

threshold. This architecture can account for response-time distributions of correct and error 

responses in a variety of behavioural tasks, from simple detection of sensory events to memory 

retrieval (7–9). Importantly, the neural activity recorded in both humans (10–12) and in animal 

models (13–15) closely mimics the time-course of the hypothetical decision variable, thereby lending 

neurobiological support to the idea that the brain accumulates evidence toward a decision 

threshold.  

In recent years there has been increased interest in the cognitive and neural mechanisms 

underpinning more complex decision making (15–19). One pertinent issue is how multiple sources of 

evidence might be combined in support of a single decision. For example, to safely cross a busy 

street, one should consider the traffic coming from both sides of the road. This decision presumably 

engages at least two evidence-accumulation processes, each of which should converge on the same 

decision, namely, whether to cross or to wait. While much has been learned about decision making 

in relation to single stimuli – in our example, monitoring cars on just one side of the street – little is 

known about how the brain integrates two (or more) distinct sources of evidence into one decision. 

Here we characterised the cognitive and neural mechanisms underpinning such ‘integrative’ 

decision-making. 

To investigate integrative decision-making, most studies to date have used a variant of the 

‘redundant signals’ paradigm (17,18,20–22) in which a stream of multisensory stimuli – typically 

auditory and visual pulses – are concurrently presented and observers have to discriminate whether 

the number of pulses in either stream is lower or higher than an arbitrary criterion. The pulse counts 

in the two streams vary independently, so that, at the end of trial, the streams can either support 

the same decision (i.e., congruent trials), or different decisions.  Importantly, the streams are 

temporally jittered so that they cannot be integrated into a single multisensory event at the level of 

initial sensory encoding. Instead, each stream should engage a separate evidence accumulator and 

yield two decisions that are integrated at later stages of the processing hierarchy. Following this 

rationale, a comparison between single-signal trials (unimodal) and redundant-signals trials 

(multimodal) can reveal mechanisms of integrative decision-making.  Typically, participants are more 
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accurate in congruent multimodal than in unimodal trials suggesting that the two decisions are 

indeed integrated at some stage. Critically, the higher accuracy in multimodal trials scales with 

stimulus reliability of the individual streams, suggesting that the integration process is biased in 

favour of the more reliable sensory stream. In fact, biases in integrative decision-making closely 

resemble statistically optimal signal integration (23,24) in which the contributions of individual 

signals are weighted by their reliability so as to yield statistically optimal decisions. 

While previous research has demonstrated that integrative decision-making is subject to 

biases based on factors such as stimulus reliability, it remains unclear whether these biases are 

automatic or strategic. One ubiquitous finding in the literature on integrative decision-making is that 

some observers do not integrate decisions at all, but rather rely exclusively on signals of higher 

reliability (17,18,20,22). This finding suggests that integrating decisions may be subject to higher 

order influences such as a trade-off analysis of increased accuracy at the expense of increased effort. 

It is important to note that the redundant signals paradigm, in which deciding on the basis of a single 

stream already affords accurate decisions, is especially vulnerable to such higher order effects. 

While characterising higher order biases is an important open issue (25), it remains unclear whether 

integrating several discrete decisions automatically favours sources of higher reliability in tasks 

where the integration is essential, rather than opportunistic.  

To address this important issue, we developed a task which required explicit integration of 

two simple visual decisions on brief periods of coherent motion in successive stimulus displays (Fig. 

1a). On every trial, we presented two epochs of coherently moving dots separated by 1 s of 

randomly moving dots. At the end of the trial the task was to reproduce the direction of the average 

target motion. To illustrate, if a trial contained successive motion directions toward 10 o’clock and 2 

o’clock, participants should indicate an average motion direction of 12 o’clock. Participants made 

their decisions without time constraints by adjusting the orientation of a response dial. To 

manipulate stimulus reliability, motion coherence in the first and second epoch could either be low 

(40% of coherently moving dots) or high (80%). Critically, as we explain below, these motion 

coherence values were deliberately chosen to be well above normal motion coherence thresholds. 

Target reliability across the two epochs of each trial was factorially combined so that different 

combinations (low/low, low/high, high/low, and high/high) were presented equally often and in a 

random order. The main goal was to characterise the effects of stimulus reliability on cognitive and 

neural mechanisms of integrative decision-making.  

To adjudicate between automatic versus strategic reliability-weighted biases in integrative 

decision-making, it is important to demonstrate that unbiased integration is, in principle, the optimal 

strategy. If a motion direction is particularly difficult to discern at low coherence and very easy at 
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high coherence, for example, then unbiased averaging of a very noisy and a very precise 

representation would yield relatively poor performance. In other words, the specific combination of 

low and high coherences will determine the optimality of unbiased integration. For this reason, we 

used motion coherence levels that were well above threshold (40% and 80%) as opposed to 

threshold-level stimuli, which are typically around 6–7% for most observers (26). The supra-

threshold coherence levels we used should afford the best possible motion discrimination for both 

low and high coherence signals, thus permitting unbiased source integration. Any bias in favour of 

signals of higher reliability would strongly suggest that reliability-weighted integration of discrete 

decisions is automatic. To ensure that different coherence levels afforded similar response precision, 

in Experiment 1 we compared error magnitudes for reproducing single motion directions of low and 

high coherence. 

In contrast to commonly used forced-choice paradigms (1,2,4), which are optimised for 

characterising the temporal dynamics of decision-making, the reproduction task provided us with a 

continuous, feature-specific read-out of integrated decisions. In that sense, our paradigm is 

complementary to forced-choice paradigms; by measuring the difference between the expected and 

the reproduced average-motion direction on each trial, we could use mixture distribution modelling 

(27,28) and linear regression (16,29,30) to characterise behavioural biases in integrative decision-

making. To characterise the neural correlates of decision-making, we recorded brain activity using 

electroencephalography (EEG). We were primarily interested in measuring feature-specific brain 

responses to presented motion signals using population-tuning modelling of brain activity (31–36). 

Critically, our experimental design also permitted us to use the same method to decode feature-

specific brain responses to the average motion direction. This quantity must be internally computed 

by integrating the representations of the two target signals and, as such, must be closely related to 

the mechanisms of integrative decision-making. If stimulus reliability affects integration processes, 

then population-tuning responses to the average motion direction should depend on the 

combination of motion coherence levels across target epochs within a trial. 

Using a similar analytical approach, previous studies (35,37) have successfully characterised 

feature-specific brain responses to both task-relevant and task-irrelevant stimuli. Although weaker 

than neural responses to relevant stimuli, robust responses to irrelevant stimuli suggest that the 

population-tuning analyses have a strong sensory component. To gauge the degree to which 

decoded motion-specific responses reflect sensory processing, on every trial of the motion-

averaging task we presented two overlaid patches of dots in different, distinctive colours. At the 

beginning of every trial, a colour cue indicated the dot-patch that would contain the target-motion 

direction; the other dot-patch served as a concurrent distractor which could be ignored. Different, 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 13, 2019. ; https://doi.org/10.1101/841353doi: bioRxiv preprint 

https://doi.org/10.1101/841353
http://creativecommons.org/licenses/by/4.0/


6 
 

uncorrelated motion signals were briefly (500 ms) and concurrently presented in both target and 

distractor patches. Introducing distractor signals enabled us to dissociate sensory responses – which 

should be comparable for target and distractor signals – and decision-related brain responses – 

which should be more prominent for targets than distractors.  

Unlike commonly used decision-making paradigms in which all stimuli are task-relevant, 

contrasting target and distractor processing should elucidate the role of selective attention in 

integrative decision-making. On the basis of the vast literature on selective attention (38), we 

expected target motion signals to influence behavioural measures of integrative decision-making 

more strongly than distractor signals. What is less clear, however, is whether and in what way 

selective attention might affect feature-specific brain responses to distractor signals. While unlikely, 

it is possible that the brain represents both relevant and irrelevant sensory input with equal fidelity, 

predicting a comparable degree of population tuning to target and distractor signals. A more likely 

outcome (39,40) is that selective attention modulates the temporal dynamics of tuning to target and 

distractor motion, predicting suppression of distractor-related responses following an initial, sensory 

response to both target and distractor signals. By presenting both target and distractor signals and 

using population-tuning modelling, we could adjudicate between these two alternatives. 

Results 

In Experiment 1 (Fig. 1a, upper panel), we presented only one epoch containing a motion 

stimulus, and participants had to ascertain the target motion direction while ignoring a concurrently 

presented distractor motion event. By presenting a single epoch of coherent motion, we could test 

whether participants’ ability to discern motion direction was comparable across low (40%) and high 

(80%) coherence levels. By presenting both target and distractor motion signals within each single-

epoch trial, we could also ask whether selective attention operates differently at different coherence 

levels. Importantly, on every trial the strength of motion coherence of the concurrently presented 

target and distractor signals was the same, either both high coherence or both low coherence. To 

quantify overall task performance, we used mixture distribution modelling of error magnitudes (see 

Methods) to separately analyse the response precision (K) of noisy target responses and the 

proportion of random guesses (Pg). To quantify the degree to which individual target and distractor 

motion signals influenced the responses, we used linear regression (ordinary least squares; OLS) 

with complex-valued data. The absolute value of the regression coefficients associated with 

individual signals will reflect the degree to which target and distractor signals influenced the 

decision, or decision weights. 
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Figure 1. Overview of the experimental paradigm and the results of Experiment 1. (a) Upper panel shows a 

typical display sequence per trial. Lower panel shows the time-course of different events and possible colours. 

A coloured cue indicating the task-relevant colour (fixed per participant) was followed by a patch of grey dots 

moving randomly. After 1 s buffer periods, the colour saturation increased gradually to reveal two 

intermingled fields of distinctly coloured target and distractor dots. Coherent motion signals were presented 

for .5 s in both fields, jittered relative to the maximum saturation onset (.25–.5 s). In Experiment 1, only one 

epoch was presented and participants reproduced the target motion direction. In Experiment 2, two epochs 

were presented and participants reproduced the average motion direction of the two target motion stimuli. 

(b) Upper panel shows the histograms (bars) of the observed error magnitudes (expected – actual response) 

together with the predictions of the mixture-distribution modelling (pink lines) per motion coherence (low, 

high) in Experiment 1. Lower panel shows contributions of target- and distractor-motion signals to the 

response (i.e., the decision weights) per motion coherence (low, high) in Experiment 1. Dots represent 

individual participants. 

Consistent with the supra-threshold levels of coherence we used, distributions of observed 

error magnitudes were unimodal and narrow (overall FWHM = 50°, Fig. 1b, upper panel) suggesting 

that participants performed the task with ease. The mixture distribution modelling yielded very close 

fits to the observed error magnitudes. The estimated response precision was high and comparable 

between low and high coherence motion targets (KM/SEM = 14.86/.71 and 13.73/.71, respectively, 

one-sample t22 = 1.12, pone-tailed = .137). Similarly, the estimated guessing rates were very low and 

comparable between coherences (both Pg = .03/.01, t22 < 1). Analyses of decision weights revealed 

that participants successfully focused on target signals and ignored concurrently presented 

distractors, as indicated by target weights which were around 9-times higher than concurrently 

presented distractors (.92 vs. .10, F1,22 = 1,693, p < .001, η"# = 	 .99, Fig. 1b, lower panel). Critically, 
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both target and distractor weights were statistically indistinguishable across low and high coherence 

conditions (main effect of coherence F1,22 < 1, coherence x stimulus type F1,22 = 1.34, p = .259).  

To summarise, Experiment 1 showed that participants were able to discern target motion 

direction with comparable precision at both low and high coherence values. Similarly, the efficiency 

of selective attention, as indexed by the difference between target and distractor weights, was 

comparable across low and high coherence trials. These results suggest that the low and high 

coherence levels we chose were both close to the asymptote of the psychometric curve. 

Consequently, unbiased integration of signals with low and high reliability should permit accurate 

integrative decisions.  

In Experiment 2, we examined how temporally discrete perceptual decisions are integrated 

into a single decision. To this end, two epochs of coherent motion, rather than a single epoch as in 

Experiment 1, were presented in each trial. Participants had to reproduce the average motion 

direction of the two target signals while ignoring the concurrently presented distractors. We were 

primarily interested in characterising biases in behavioural decision weights as a function stimulus 

reliability. In addition, we recorded brain activity using EEG. To characterise the temporal dynamics 

of individual perceptual decisions, we quantified a well-documented neural correlate of decision-

making (11,12,41), the centro-parietal positivity (CPP), time-locked to the onsets of both colour-

saturation modulation and coherent motion signals (see Methods and Fig. 1a). Further, we 

characterised feature-specific neural responses to the presented motion using population-tuning 

modelling. Finally, using the same method, we quantified feature-specific brain activity related to 

the average motion direction. The average-motion responses should be closely related to the 

integration of the two target signals and, as such, are a good candidate for the neural correlate of 

integrative decision-making. 

Similar to Experiment 1, the mixture distribution modelling of error magnitudes in 

Experiment 2 yielded close fits to the observed errors. Relative to Experiment 1, having to reproduce 

the average yielded lower response precision and higher guessing rates (K = 8.16/.34, Pg = .09/.01, 

Fig. 2a). Importantly, the variance of error magnitudes in the averaging task (Experiment 2) was 

equivalent to the simple linear sum of the variances estimated from the single target reproduction 

(Experiment 1) for all combinations of dot coherence across the two epochs (all pFDR-corrected > .05). 

The fact that the variance of single signals was additive when averaging them indicates that 

participants performed the two tasks in a qualitatively similar way.  

We next analysed the effect of dot coherence in different epochs on response precision and 

guessing rates. Consistent with Experiment 1, response precision was comparable for low and high 

coherence in the first epoch (K = 8.12 and 8.19, respectively, F < 1). By contrast, response precision 
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was significantly lower for low than high coherence targets in the second epoch (7.61 and 8.70, 

respectively,  F1,21 = 14.27, p = .001, η"# = 	 .40). The interaction between coherence levels in the first 

and second epochs was not significant (F < 1). Independently of epoch, participants were more likely 

to guess for low coherence signals than high (.10 and .06, overall, main effect of coherence in the 

first epoch F1,21 = 25.75, p < .001, η"# = 	 .55, in the second F1,21 = 13.80, p = .001, η"# = 	 .40, 

interaction F < 1).  

 

Figure 2. Behavioural results of Experiment 2. (a) Distributions of the observed error magnitudes (bars) in 

Experiment 2 together with the predicted distributions (pink lines) on the basis of mixture distribution 

modelling across different combinations of motion coherence (Low/High) in the first and second epoch (First 

epoch coherence ® Second). (b) Left: Decision weights across different conditions of Experiment 2 separately 

per epoch and stimulus type. Right: Difference in respective decision weights for the first and second epoch 

separately per condition and stimulus type. Error bars denote within-participants standard errors of the mean 

(42). Conventions as in Figure 1. 

Similar to Experiment 1, decision weights were significantly larger for target than distractor 

motion signals (.56 and .09, respectively, F1,21 = 2,028, p < .001, η"# = 	 .99, Fig. 2b). Unexpectedly, 

however, both target and distractor weights were higher in the first epoch than in the second (.63 

and .53 for targets, respectively, F1,21 = 24.28, p < .001, η"# = 	 .54; .10 and .09 for distractors, F1,21 = 

4.60, p = .044, η"# = 	 .18). As the trials were relatively long (5 s), one might expect memory decay 

(29,43) to affect the first target more than the second, more recent target. The primacy bias we 

observed in Experiment 2 is opposite to what one might expect from simple memory decay, and 

might be indicative of how participants represented individual signals prior to integrating them. 

Most importantly, this order bias was further qualified by two-way interactions with motion 

coherence in both the first epoch and the second (Fig 2b, right panel). Specifically, whereas 
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increasing the coherence in the first epoch increased the order bias (F1,21 = 16.30, p < .001, η"# =

	.44), increasing the coherence in the second epoch decreased the bias (F1,21 = 4.34, p = .049, η"# =

	.17).  The interaction of dot coherence with order bias indicates that averaging two signals was 

biased in favour of the signal of higher reliability. Importantly, this bias arose despite the fact that, 

consistent with the task instructions to average the two target signals, unbiased averaging should be 

the optimal response strategy. Moreover, the results of Experiment 1 confirmed that participants 

could perform equally accurate motion judgements on both high and low coherence signals when 

they were presented in single-epoch trials (see Fig. 1b). 

To characterise the time-course of evidence accumulation in the motion-averaging task, we 

next analysed the CPP (Fig. 3), a positive deflection over centro-parietal electrodes that has been 

shown to closely mimic temporal dynamics of evidence accumulation (11,12,41). Visual inspection of 

the ERP topographies (Fig. 3a) revealed a pattern of central-medial positivity, consistent with the 

typical CPP topography. Visual inspection of the CPP time-course over the trial (Fig. 3b) revealed a 

phasic modulation that closely followed the trial sequence: during periods of grey, randomly moving 

dots, the CPP amplitude was at baseline. Two sharp deflections closely followed the onset of colour 

modulation in the first and the second epochs, and two broader deflections coincided with periods 

of coherent motion. This phasic modulation of the CPP suggests that several, temporally separable 

episodes of evidence accumulation took place within each trial. (By contrast, a single, continuous 

episode of evidence accumulation should have resulted in a sustained response across the trial, 

which was not observed.) 

We next analysed shorter segments (500 ms) time-locked to the onsets of colour modulation 

and coherent motion (Fig. 3c and 3d, respectively). For both colour- and motion-locked epochs, the 

CPP deflection started at around 200 ms after the onset, consistent with the notion that the CPP is 

not merely a sensory-evoked response, but rather reflects higher level processes following sensory 

encoding (see the Intercept line in Fig. 3c and 3d, bottom panel). The colour-locked CPP was 

modulated only by the epoch, with a steeper rise and higher peak amplitude in the first epoch than 

the second (Fig. 3c). Analyses of the motion-locked CPP revealed a robust effect of motion 

coherence, with a steeper rise and higher peak amplitude for high coherence relative to low in both 

epochs (Fig. 3d). Importantly, only the coherence for the currently presented motion stimulus 

affected the CPP, as evidenced by a significant interaction between epoch (first/second) and the 

motion coherence per epoch (First coherence x Epoch and Second coherence x Epoch lines, bottom 

panel). This finding suggests that the motion-locked CPP reflects evidence accumulation in support 

of discriminating the currently presented motion target (i.e., a simple perceptual decision), rather 

than the averaging process (i.e., an integrated decision). 
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Figure 3. ERP results from Experiment 2. (a) ERP topography for colour-locked responses, showing the average 

of time-samples at which the colour saturation reached a maximum (.75 s and 2.75 s for the first and the 

second epoch, respectively); and for motion-locked responses, showing the average of time-samples at which 

the motion signal was most likely to be presented (at 1.25 and 3.25 s). Marked electrodes (white circles) were 

used for computing the CPP time-course. (b) The CPP time-course (upper panel) together with the time-course 

of different events within a trial (lower panel). (c) Colour-locked CPP during the first .5 s following the onset of 

colour modulation in the first epoch (upper panel) and the second epoch (central panel). Only random motion 

was presented during this period.  The lower panel shows -log10(pFDR-corrected) for different terms in the stepwise 

linear mixed effect model of colour-locked CPPs. (d) Motion-locked CPP. The colours were at maximum 

saturation during the analysed 500 ms. Conventions as in panel (b). For the purpose of presentation, all time-

traces were low-pass filtered at 10 Hz using a Butterworth 4th order infinite impulse-response filter. The 

analyses were performed on unfiltered data. Shaded areas denote ±1 within-participants SEM. 

Whereas analyses of behavioural decision weights revealed robust interactions between the 

order bias and motion coherence across the two epochs, the ERP analyses suggest that the order 

effect and the coherence effects might have separable neural correlates.  The order bias, evident in 

the colour-locked CPP, appears to reflect the process of selecting the target patch against the 

distractor patch – and, potentially, staying focused on the target patch – whereas the coherence 

effect, evident in the motion-locked CPP, appears to reflect the strength of the subsequently 

presented motion signals. 
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We next characterised time-resolved motion-specific responses to target and distractor 

signals (Fig. 4a) using population-tuning modelling (31–33) of the motion-locked EEG signals (see 

Methods for details). Inspection of tuning to target signals revealed a robust and sustained motion-

specific response. The onset of significant motion-tuning coincided with the peak latency of the 

motion-locked CPP, suggesting that motion-tuning reflects the decision about the currently 

presented motion stimulus. There was no such tuning to distractor signals, which further supports 

the notion that motion tuning captures the dynamics of deciding about task-relevant signals, rather 

than stimulus-driven responses regardless of task relevance. Importantly, tuning to the target 

motion direction was sustained well after motion offset (indicated by dotted vertical lines), 

suggesting that representations of individual signals were maintained until both targets had been 

presented.  

 

Figure 4. Population-tuning modelling of neural activity in response to targets and distractors in Experiment 

2. (a) Time-resolved responses to target and distractor signals (upper and lower panels, respectively) of 16 

hypothetical motion-specific channels spanning the full circle (from -p to +p) and centred on the actual 

presented motion signal. The trial-averaged profile of channel responses per participant and time-sample was 

z-scored across channels. White contours denote areas which were significantly different from 0 (FDR-

corrected across all time-samples and channels). Significant modulation of channel-response profiles with 

yellow areas around 0 and blue areas around -p and +p indicate robust motion tuning to the presented signal. 

(b) Time-resolved tuning strength to target signals across first and second epochs (upper and lower panels, 

respectively). The tuning strength is an aggregate index of the channel-response profile (see Methods for 

details) with 0 indicating no tuning. Conventions as in Figure 3. 

Inspection of the time-resolved tuning strength for target signals (Fig. 4b) across different 

epochs revealed comparable tuning to high and low coherence signals in the first epoch. This is 
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consistent with the observation of no effect of dot coherence in the first epoch on behavioural 

response precision, and it supports the notion that the two coherence levels afforded decisions of 

comparable precision. In keeping with the significant effect of dot coherence in the second epoch on 

behavioural response precision, the tuning strength in the second epoch was significantly higher for 

high coherence than for low coherence targets. These results, in conjunction with the lower decision 

weights and weaker colour-locked CPP responses in the second epoch relative to the first, suggest 

that the overall level of focused attention decreased from the first to the second epoch within a 

trial.  

 

Figure 5. Population-tuning modelling of neural activity associated with the average motion direction in 

Experiment 2. (a) Time-resolved average-motion tuning in the first and the second epoch (upper and lower 

panels, respectively). Conventions as in Figure 4. (b) Upper panel: Expected shifts in the tuning profile 

reflecting the observed behavioural order bias. The motion channels were sorted relative to the first- and the 

second-presented motion direction so that shifts to the left from 0 reflect a first target bias. Lower panel: 

Observed shifts in the tuning profiles for the same-coherence trials (High®High and Low®Low, red line) and 

different-coherence trials (High®Low and Low®High, purple line). The profiles were computed by averaging 

channel responses in the .5–1 s interval during which there was robust tuning to the average motion direction. 

To match the number of trials in the same-coherence and different-coherence trials and to maximise the 

signal-to-noise ratio in the different-coherence conditions, the channels were flipped for the High®Low trials 

so that the direction of a potential order bias would be the same as for the Low®High trials. Small inset panel: 

the average shift of the tuning profiles computed as the difference between the mean response for channels 

tuned to -p –0 and 0 –p intervals. Whiskers denote ±1 within-participants SEM. 

In a final analysis, we characterised the temporal dynamics of integrated decision-making by 

estimating neural tuning to the average motion direction (Fig. 5a). For the first epoch, there was no 
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significant motion tuning. This finding was expected, as neural representations of average motion 

direction can only be determined after presentation of the second motion target within the trial. By 

contrast, there was robust and sustained tuning to the average motion direction in the second 

epoch, starting from the offset of coherent motion. Note that during this period only random motion 

was actually presented on the screen, so tuning to the average motion direction could not have 

been stimulus-driven. 

To investigate how the brain integrates two discrete decisions, we next quantified the tuning 

profiles for the average motion direction (Fig. 5b). We focused on quantifying potential shifts in the 

profile that might reflect the first and the second target bias. To do so, the motion channels on each 

trial were re-coded so that negative channels were closer to the first presented target, and positive 

channels were closer to the second. Thus, a leftward shift would indicate a first-target bias, and a 

rightward shift would indicate a second-target bias. The channels’ responses were then averaged 

across trials separately for different combinations of stimulus reliability across epochs. Motivated by 

the first-target bias we observed in behavioural decision weights (Fig. 2b), we expected to see a 

leftward shift for trials with the same coherence across epochs (Fig. 5b, upper panel). To increase 

signal-to-noise ratio, we averaged the tuning profiles for High®High and Low®Low coherence 

trials. The observed tuning profiles (Fig. 5b, lower panel) confirmed our expectation, as we observed 

a statistically significant leftward shift consistent with a first-target bias (M/SEM = -.16 /.06, t21 = 

2.32, pFDR-corrected = .046, Fig. 5b, inset panel). This result mimics the first-target bias in behavioural 

decision weights, and it suggests that the brain integrates two target signals in a biased way, with 

the first signal contributing more strongly than the second.  

In contrast to the same-coherence trials (High®High, Low®Low), for the different-

coherence trials we expected to observe effects of signal reliability on the tuning profile shifts. For 

the High®Low sequence, in which the order bias and the reliability bias both favoured the first 

target, we expected to see an even stronger leftward shift relative to the same-coherence trials (Fig. 

5b, upper panel). For the Low®High sequence, on the other hand, in which the order bias and the 

reliability bias favoured different targets, we expected to see weaker shifts in the tuning profile 

relative to the same-coherence trials (Fig. 5b, upper panel). To match the numbers of trials in the 

same- and different-coherence conditions and to increase signal-to-noise ratio in the different-

coherence condition, we flipped the tunning profiles for High®Low trials so that the expected shift 

direction was the same for High®Low and Low®High trials. Confirming our predictions, the first-

target bias for different-coherence trials was not significantly different from zero (.05/.06, t21 = .66, 

pFDR-corrected = .519, Fig. 5b, inset panel), and it was significantly smaller than the bias for same-
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coherence trials (t21 = 2.35, pFDR-corrected = .046). Taken together, analyses of shifts in tuning profiles 

revealed that the brain relies more on signals with high reliability than low when integrating the two.  

Across two experiments in which we combined behavioural testing and whole-brain 

recording, we have shown that behavioural decision weights and population-tuning profiles to the 

average motion direction exhibit qualitatively similar biases in favour of stimuli of higher reliability. 

These findings demonstrate that temporal integration of discrete perceptual decisions is biased even 

when the bias is suboptimal and unbiased, optimal integration is possible. Our findings suggest that 

the brain encodes the reliability of sensory inputs and that the encoded reliability is used 

automatically to weight respective inputs during integrative decision-making.  

The relatively narrow distributions of error magnitudes and high response precision suggest 

that participants were able to successfully select target signals and ignore concurrently presented 

distractors. This finding was further corroborated by very low decision weights for distractors, which 

were five to nine times lower than the respective target weights. Perhaps most interestingly, and 

contrary to expectations, the population-tuning modelling of distractor motion signals revealed no 

distractor-specific neural activity. As participants were given some preparation time (500–750 ms) 

before the motion onset, it is likely that this time was sufficient for attentional resources to be 

engaged exclusively on the target-motion stimulus. By contrast, the motion decoding for target 

signals was robust and sustained well after signal offset, suggesting that the population-tuning 

modelling primarily captured decision-making processes as opposed to purely sensory-evoked 

activity patterns. With this in mind, it is likely that decoding of the average motion direction also 

reflected the dynamics of integrated decision making. One might ask whether it is possible that 

tuning to the average motion direction simply reflects tuning to the second target, given that the 

two directions were not entirely uncorrelated. This seems unlikely, however, as comparable tuning 

to the average motion direction should also have been observed in the first epoch (for which target 

signals were likewise not uncorrelated with the average), but this was clearly not the case. 

Moreover, if tuning to the average motion direction was driven by the second target then the time 

course of average motion tuning should have been similar to that of the second target, which, again, 

clearly was not the case. We therefore conclude that the robust tuning to the average target motion 

observed in Experiment 2 reflects the temporal dynamics of integrative decision making.  

An unexpected finding in Experiment 2 was a reliable order bias, with higher decision 

weights for the first epoch than the second. Additionally, the colour-locked CPP had a steeper slope 

and a higher peak in the first epoch than the second. By contrast, the motion-locked CPPs did not 

differ much between epochs, at least prior to the peak of the CPP response. These findings suggest 

that the order bias originates from processes related to selecting the task-relevant dot patch, rather 
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than from processing of the motion signals themselves. Perhaps most compellingly, the order bias 

was also evident in tuning to the average motion direction, with robust shifts in favour of the first 

target-motion direction. This order effect was independent of reliability-weighted source 

integration, as we observed the shift in population tuning for epochs that were matched in 

coherence. Additionally, as the stimuli across the two epochs were matched for low-level properties, 

the order bias cannot be stimulus-specific. Finally, the first-target bias speaks against a simple 

memory decay explanation, which instead would predict a recency effect (29,43). Taken together, 

the most parsimonious explanation for the primacy bias is that the effectiveness of attentional 

selection decreases from the first epoch to the second. Characterising attentional selection 

dynamics in relation to integrated decision-making was not in the focus of the present study, and 

follow-up studies will be needed to address this issue in more detail. For the interested reader, we 

have recently conducted a study (44) that focused on the relationship between selective attention 

and decision-making using a similar experimental paradigm but a different analytical approach. 

The reproduction task we employed enabled us to probe the nature of the representations 

underlying integrated decision-making. In typical decision-making paradigms (4), the response is a 

categorical decision, for example, whether motion direction is to the left or to the right. While 

forced-choice paradigms lend themselves to speeded responding, and permit use of computational 

modelling to characterise different aspects of decision making, they do not capture the precision of 

the sensory and memory representations that underlie evidence accumulation processes. A well-

known property of the brain’s responses to sensory input (18,45–47) is that they are graded, forming 

a probabilistic stimulus representation in feature space. In the case of motion signals, the large-scale 

neural representation of a given motion direction should resemble a bell-shaped curve with a peak 

over the actual direction which gradually decreases for motion directions further away from the 

peak. Classical decision-making paradigms would be sensitive to the location of the peak, but would 

have difficulty characterising the variability of the probabilistic representation – and that variability 

seems to play a critical role in integrated decision-making. Using mixture distribution modelling for 

behavioural measures, and population tuning modelling for neural measures, we were able to 

characterise both the peak and the variance of the underlying probabilistic representations.  

A key question regarding reliability-weighted integrated decision-making concerns how two 

discrete representations get combined in support of an integrated decision. Using the redundant 

signals paradigm, previous research on signal integration at both sensory (23,24) and decision-

making (17,22,48) stages has suggested that a simple multiplication of two probabilistic 

representations could drive reliability-weighted integration. The multiplication, however, predicts 

lower variability (18,23) of the integrated representation relative to the variability of individual 
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sources. By contrast, the variability of integrated decisions in our study was higher than that of 

single decisions, following the summation rule for two random variables. Therefore, it appears that 

for tasks such as the one employed here the two probabilistic representations are summed rather 

than multiplied.  

As both the behavioural and neural results of Experiment 2 depended more strongly on 

high-reliability events than on low, the summation process appears to be biased, with higher 

weights for high-reliability representations. It is unlikely that these weights reflect learning 

processes, as in our paradigm the coherence of individual signals was unpredictable. Rather, the 

summation weights were likely encoded in parallel with encoding of the motion direction signals. 

One possibility is that the weights directly reflect the variability of the probabilistic signal 

representations: a simple combination of two probabilistic representations of differing variances 

would be shifted in favour of the representation of higher reliability. Another possibility is that the 

weights reflect a belief about the accuracy of the respective representations. In this scenario, even 

though the two reliability levels afforded comparable accuracy (as confirmed in Experiment 1), the 

strong perceptual differences between low- and high-reliability signals would have resulted in 

different beliefs about signals of different coherence. While at present we cannot adjudicate 

between the two potential correlates of the summation weights, the absence of strong coherence 

effects in our study suggests that the representations of the high and low reliability signals were 

comparably accurate, speaking in favour of the latter, beliefs-as-weights alternative. Further studies, 

most likely in combination with hierarchical computational modelling (49), would be necessary to 

address this issue conclusively. At present, computational models of decision-making in 

reproduction tasks are just beginning to appear (50,51), and more research will be needed before 

applying these models to integrative decision-making tasks. 

In summary, here we have shown that combining two discrete, temporally separated signals 

in support of a single, integrated decision is biased in favour of higher reliability signals. Unlike 

previous studies in which reliability-weighted integration was statistically optimal, in the present 

study biased integration was suboptimal. These findings suggest that reliability-weighted integrated 

decision-making is automatic, taking place even when it is detrimental for performance. 

Methods 

Participants. 25 neurotypical adults (mean age 22 years, 14 females) participated in 

Experiment 1. All had normal or corrected-to-normal visual acuity and normal colour vision 

confirmed by Ishihara colour plates. The sample size was selected with the aim to achieve high 

power (b = .9 at a = .05) to detect a medium to large effect size (Cohen’s dz = .65) for a one-tailed, 

one-sample t-test between response error magnitude for low- and high-motion coherence. Due to 
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corrupted data acquisition, one participant was immediately removed from further analyses. 

Another group of 25 neurotypical adult humans (mean age 21, 15 females) took part in Experiment 

2. Based on behavioural performance (see below for details), one and two participants were 

identified as outliers in Experiments 1 and 2, respectively, and removed from further analyses. Based 

on the EEG signals, two participants were identified as outliers in Experiment 2, and removed from 

further analyses. The final sample comprised 23 and 22 participants in Experiments 1 and 2, 

respectively. The study was approved by the Human Research Ethics Committee of The University of 

Queensland (approval nr 2016001247), and was conducted in accordance with the Human Subjects 

Guidelines of the Declaration of Helsinki. All participants provided written informed consent prior to 

experimental testing. 

Stimuli, task, and procedure. In both experiments, every trial started with a coloured cue, 

indicating the target colour (Fig. 1a). Two out of three easily discernible colours (pink, HSL values of 

0, 75, 50; yellow, 90, 75, 50; and cyan, 270, 75, 50) served as target and distractor colours. The 

target-distractor colour pairs (e.g., pink target and blue distractor) were fixed per participant and 

counterbalanced between participants. After the cue, a circular patch (15.6 dva diameter) of 160 

grey randomly-moving dots (.6 dva diameter, speed 2.5 dva/s, infinite dot life) appeared. To prevent 

a stimulus onset-evoked response from influencing electrophysiological measures of decision-

making, the grey patch remained on screen for 1 s. Thereafter, the dot saturation increased 

gradually (over .25 s), revealing two overlapping patches of coloured dots (80 dots per patch), in the 

target and distractor colours. The colour saturation remained at maximum for 1 s and then gradually 

returned to grey. During maximum saturation, coherent motion signals were presented briefly (.5 s) 

in both patches. The onset of coherent motion was jittered (.25–.5 s) relative to the maximum 

colour saturation. The motion coherence was pseudo-randomly selected for every epoch of coloured 

dots, with low (40%) and high (80%) coherences presented equally often. Participants had to 

monitor for target motion signals and ignore distractors. A feedback stimulus was presented after 

every trial indicating response accuracy in that trial. Response accuracy rather than speed was 

emphasised, and participants were given ample time to respond (max. 6 s). 

The aim of Experiment 1 was to investigate the ability to discern target motion signals at 

different (40% and 80%) coherence levels. Only one epoch of coloured dots was presented per trial 

and participants had to reproduce the target motion direction by adjusting the orientation of a 

response dial. Per participant, two pairs of motion directions (i.e., four in total) were selected as 

target motions from a range of directions (0–360 degrees in 15-degree steps). Within a pair, the 

directions were 30 degrees apart from each other and the two pairs were 180 degrees apart (e.g., 15 

and 45, 195 and 225 degrees). Different combinations of directions were counterbalanced across 
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participants. The distractor motion was within a ±30–150 degree range relative to the presented 

target motion. Only behavioural data were recorded. 

The aim of Experiment 2 was to investigate integration of target signals across two epochs. 

Experiment 2 was identical to Experiment 1, with two exceptions. First, two epochs of coloured dots, 

rather than one, were presented in every trial and participants had to reproduce the average motion 

direction of the two target signals while ignoring distractor motion events. Second, target motion in 

the first epoch was selected randomly from 0–360 degrees range in 1 degree steps. The target 

motion in the second epoch was selected from a ±30–150 degree range relative to the first target. 

The dot coherence across the two epochs was selected pseudo-randomly so that all four 

combinations (low/high in the first epoch ´ low/high in the second) were presented equally often. 

Both behavioural and electroencephalography data were recorded. 

Apparatus. The experiments were conducted in a dark, acoustically and electromagnetically 

shielded room. The stimuli were presented on a 24” monitor with 1920´1080 resolution and a 

refresh rate of 144 Hz. The experimental software was custom-coded in Python using the PsychoPy 

toolbox (52,53). EEG signals were recorded using 64 Ag-AgCl electrodes (BioSemi ActiveTwo) 

arranged in the 10-20 layout, and sampled at 1,024 Hz. 

Behavioural analyses. To identify outlier participants, the distributions of error magnitudes 

(i.e., the angular difference between the response and the correct answer) were compared to a 

uniform distribution (i.e., pure guessing) using the Kolmogorov-Smirnov test. Participants for whom 

the probability of the null hypothesis (i.e., a uniform distribution of error magnitudes) exceeded .001 

were removed from further analyses. The remaining distributions per experimental condition and 

per participant were fitted to a theoretical model (54), and responses were separated into noisy 

target responses and random guesses. To quantify decision weights, a multiple-regression (OLS) 

model with a term for each of the presented motion directions, expressed as complex numbers, was 

fitted to the responses, separately per participant and experimental condition. The absolute value of 

the resulting regression coefficients reflects the influence of each of the presented coherent motion 

signals on the response, i.e., its decision weight.  

EEG analyses. EEG signals were analysed using the MNE-Python toolbox (55). The data were 

offline re-referenced to the average electrode, low-pass filtered at 99 Hz and notch-filtered at 50 Hz 

to eliminate line noise. The recorded signal was pre-processed using the FASTER algorithm for 

automated artefact rejection (56). The pre-processed signal was down-sampled to 256 Hz, 

segmented into 4 s periods between the onset of the first epoch and the response-display onset, 

baseline-corrected relative to -.1–0 s pre-trial and linearly de-trended. Outlier trials and participants 

were identified using the FASTER algorithm and removed from further analyses.  
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Next, whole-trial time-traces were further segmented into shorter (.5 s) periods time-locked 

to the onset of colour-saturation increase and the onset of coherent motion in the first and second 

epoch, and baseline-corrected relative to .1–0 s pre-onset interval. To characterise the temporal 

dynamics of evidence accumulation, we quantified an ERP known as the central-parietal positivity 

(CPP). Previous research has shown that the time-course of the CPP closely resembles the time-

course of evidence accumulation: specifically, its amplitude builds up gradually, the build-up slope is 

proportional to stimulus quality, and it is observed even in the absence of overt responses 

(11,12,41). Visual inspection of the ERP topographies revealed a positive deflection in a cluster of 

central-medial electrodes (FCz, C1, Cz, C2, and CPz) consistent with the CPP ERP – to improve signal-

to-noise-ratio, the average of these electrodes was used in further analyses. Next, the CPP voltage 

per time-sample, trial and participant was submitted to a stepwise linear mixed-effects model with 

epoch (first/second) and motion coherence (low/high) per epoch as fixed effects, and participant as 

a random effect. A likelihood ratio test between models of higher and lower complexity was used to 

assess the significance of each main effect and interaction terms. To control for multiple 

comparisons, the p-values for all time-samples and all model terms were jointly corrected using the 

false discovery rate algorithm (57). 

To recover feature-specific information about motion signals from the EEG signals (Fig. 6), 

we used a population tuning curve model (31–33). To that end, the first and the second epochs (1 s 

segments time-locked to the onset of coherent motion) from all trials were concatenated (ca 700 

segments per participant), temporally smoothed by convolving the time series with a gaussian 

window (SD = 16 ms), shuffled and split into 10 testing sets (𝐵/0	1213456718	×	:	1;63<8= ). For each 

testing set, the remaining epochs were used as the training set (𝐵). We modelled motion tuning as a 

set of 16 half-wave-rectified sinusoid channels raised to the 15th power and centred on equidistant 

motion directions spanning 0–360°. The motion directions presented in each epoch were then 

convolved with the motion channels to yield a matrix of channel responses to motion signals 

(𝐶?/	3<@::128	×	:	1;63<8) in the training set. To model the mean EEG amplitude across training epochs, 

a fixed intercept term was added to the matrix of channel responses. The training EEG data were 

then modelled using the following linear model: 𝐵 = 𝑊𝐶, where W represents the weight matrix 

(𝑊/0	1213456718	×	?/	3<@::128) relating the EEG data and the population tuning model. The W matrix 

was estimated using ordinary least squares: 𝑊 = 𝐵𝐶B(𝐶𝐶B)E? using Moore-Penrose inverse. 

Finally, the responses of the population tuning model in the testing set were estimated using the 

following equation:  𝐶?/	3<@::128	×	:	1;63<8= = (𝑊B𝑊)E?𝑊B𝐵=. The profile of channel responses 

would reflect motion tuning: a uniform (i.e., flat) response profile would correspond to no tuning, 

whereas a prominent peak at channels close to the presented motion would reflect strong tuning. 
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Figure 6. Illustration of the population-tuning analysis pipeline. (a) A set of hypothetical motion-selective 

channels is created, each of which is preferentially tuned to one of 16 equidistantly spaced motion directions 

spanning the full circle (-p to p). (b) The array of presented motion directions per trial in the training set of 

trials is convolved with the response profiles of the motion channels to yield trial-specific responses (left 

panel). The trial-specific responses are used as predictors to model the EEG time-traces from the respective 

trials (right). The forward encoding yields a weight matrix (wCxS) relating channel responses to the EEG. (c) The 

inverted weight matrix (wSxC) is applied to the EEG time-traces from the testing set of trials to retrieve the 

profiles of the motion channel responses. 

The motion tuning analyses were conducted per time sample per participant. The tuning to 

target and distractor motion signals was analysed separately. We also estimated tuning to the 

average motion direction (i.e., the expected, average response) using the first and the second epoch 

data in two separate analyses. To characterise the overall tuning strength across different 

conditions, the vectors of channel responses were centred on the actual presented motion direction, 

temporally smoothed using a gaussian window (SD = 16 ms) and averaged across trials. As an 

aggregate index of the response profile, we computed the dot product (𝜃) between the channel 

responses and the complex-valued preferred motion directions for respective channels. To quantify 

the tuning strength, we used the following equation: 𝑓H = 𝑎𝑏𝑠(𝜃)𝑐𝑜𝑠(𝜃). This equation yields a 

good, non-parametric descriptor of the overall tuning shape: (i) the 𝑎𝑏𝑠(𝜃) yields 0 when there is no 

tuning (i.e., the distribution of channel responses is flat) and (ii) the 𝑐𝑜𝑠(𝜃) reflects a mismatch 

between the expected preferred motion direction (which is normalized to 0) and the empirical peaks 

in the tuning profile. Similar to the ERP analyses, the tuning strength time series were analysed using 

stepwise mixed-effects general linear models, separately per time sample. 
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