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Abstract

Principal neurons in rodent medial entorhinal cortex (MEC) generate high-frequency bursts during natural

behavior. While in vitro studies point to potential mechanisms that could support such burst sequences, it

remains unclear whether these mechanisms are effective under  in-vivo  conditions.  In this  study, we

focused on the membrane-potential dynamics immediately following action potentials, as measured in

whole-cell  recordings from male mice running in  virtual  corridors  (Domnisoru et  al.,  2013).  These

afterpotentials consisted either of a hyperpolarization, an extended ramp-like shoulder, or a depolarization

reminiscent of depolarizing afterpotentials  (DAPs) recorded  in  vitro in MEC stellate  and pyramidal

neurons. Next, we correlated the afterpotentials with the cells' propensity to fire bursts. All DAP cells with

known location resided in Layer II, generated bursts, and their inter-spike intervals (ISIs) were typically

between five and fifteen milliseconds. The ISI distributions of Layer-II cells without DAPs peaked sharply

at around four milliseconds and varied only minimally across that group. This dichotomy in burst behavior

is  explained by cell-group-specific  DAP dynamics.  The same two groups of  bursting  neurons  also

emerged when we clustered extracellular spike-train autocorrelations measured in real two-dimensional

arenas (Latuske et al., 2015). No difference in the spatial coding properties of the grid cells across all three

groups was discernible. Layer III neurons were only sparsely bursting and had no DAPs. As various

mechanisms for modulating the ion-channels underlying DAPs exist, our results suggest that the temporal

features of MEC activity can be altered while maintaining the cells' spatial tuning characteristics.
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Significance Statement

Depolarizing afterpotentials (DAPs) are frequently observed in principal neurons from slice preparations

of rodent medial entorhinal cortex (MEC), but their functional role in vivo is unknown. Analyzing whole-

cell data from mice running on virtual tracks, we show that DAPs do occur during behavior. Cells with

prominent DAPs are found in Layer II; their inter-spike intervals reflect DAP time-scales. In contrast,

neither the rarely bursting cells in Layer III, nor the high-frequency bursters in Layer II, have a DAP.

Extracellular recordings from mice exploring real two-dimensional arenas demonstrate that grid cells

within these three groups have rather similar spatial coding properties. We conclude that DAPs shape the

temporal but not the spatial response characteristics of principal neurons in MEC.
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Introduction

Principal neurons in the superficial layers of medial entorhinal cortex (MEC) show rich temporal

behavior, from slow depolarization ramps (Domnisoru et al., 2013, Schmidt-Hieber and Häusser,

2013), spike locking and phase precession in the theta band (Hafting et al., 2008; Reifenstein et al.,

2012),  to  gamma-band  activity  (Chrobak  and  Buzsáki,  1998;  Colgin  et  al.,  2009)  and  burst

sequences with instantaneous firing rates of up to 300 Hz (Latuske et al., 2015). The spatial firing

fields of one particular MEC cell class, namely grid cells, form hexagonal lattices spanning the

explored  two-dimensional  environment  (Hafting  et  al.  2005).  Notably,  not  every  grid  cell

participates to the same degree in these temporal phenomena. In particular, there are two sub-classes

of  grid  cells,  those  that  burst  frequently  and  those  that  do  not  or  only  rarely  generate  bursts

(Mizuseki et  al.,  2009, Latuske et  al.,  2015, Ebbesen et  al.,  2016). But what is  the mechanism

behind the MEC bursts and what role do they play for spatially selective neurons, such as grid cells?

In this study, we tested the hypothesis that burst activity of principal neurons in MEC is shaped by

cell-intrinsic membrane-potential dynamics. Two mechanisms come to mind. Bursts could reflect

action-potentials  (APs) riding on high-frequency membrane-potential  oscillations,  akin to  theta-

band coupling in MEC Layer-II stellate cells (Alonso and Klink, 1993; Engel et al. 2008; see also

Hasselmo,  2013;  Newman  and  Hasselmo,  2014).  Alternatively,  bursts  could  result  from  AP-

triggered membrane-potential dynamics that increase the probability of further discharges.

Indeed, slice experiments have shown that depolarizing afterpotentials (DAPs) arise in a majority of

principle cells in superficial MEC layers (Alonso and Klink, 1993; Canto and Witter, 2012). DAPs

are at the center of triphasic deflections following an AP, sandwiched between fast and medium

after-hyperpolarization  (fAHP  and  mAHP).  The  DAP  maximum  occurs  some  five-to-ten

milliseconds after the AP and peaks a few millivolts above the fAHP minimum. In stellate cells,

DAPs become more pronounced when neurons are hyperpolarized, whereas the reverse is true for
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pyramidal neurons (Alessi et al., 2016). Not all cell types associated with grid-like rate maps have

DAPs in vitro, however. In particular, layer-III neurons are reported to have no DAPs (Canto and

Witter, 2012). 

DAPs do not only agree in their relevant time scale with intra-burst inter-spike intervals (ISIs); in

vitro, DAPs also play a causal role for bursting. Alessi et al. (2016) reported that during DAPs the

AP current threshold was reduced such that the cells' average excitability increased by over 40%.

Conversely, neurons without strong DAPs did not burst at the beginning of an AP train (Canto and

Witter, 2012).

To  test  the  functional  relevance  of  DAPs  under  in-vivo  conditions,  we  analyzed  whole-cell

recordings from mice moving on a virtual linear track (Domnisoru et al., 2013) and could show that

DAPs play a decisive role for burst firing in MEC Layer-II neurons: Cells with DAPs were bursty

and their intra-burst ISIs were compatible with the DAP mechanism. ISI distributions of the other

Layer-II cells were highly uniform and had a sharp peak at 4.1±0.2 ms (SD across this cell group).

The remaining neurons were sparsely bursting and those with known location resided in Layer III,

apart  from  one  pyramidal  cell  in  Layer  II.  The  results  are  compatible  with  our  findings  for

extracellular recordings from open-field arenas (Latuske et al., 2015). In addition, bursty cells with

and without DAP did not differ in their spatial coding properties. As the ion-channels underlying

DAPs can be modulated in many ways, our analysis suggests that temporal features of grid-cell

activity  can  be  altered  to  serve  different  functions  without  affecting  the  cells'  spatial  tuning

characteristics.
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Materials and Methods 

Data. We analyzed data from two separate studies in navigating wild-type (C57BL/6) male mice.

Data set "D" (Domnisoru et al., 2013) contained voltage traces from whole-cell recordings sampled

at 20 kHz in head-fixed animals. These mice ran on cylindrical treadmills through virtual corridors.

Data set  "L" (Latuske et  al.,  2015) contained tetrode data (Sampling frequency: 20 or 24 kHz)

obtained during movements in a real square arena (70 x 70 cm).

Cell selection. Data set D: The original data set contained recordings from 51 cells of which 27 had

been classified  as  grid cells  by Domnisoru et  al.  (2013).  One grid-cell  recording was partially

corrupted and excluded. Two grid cells had mean firing rates above 10 Hz and were removed to

allow for an unbiased comparison with data set L,  which contained only cells  with firing rates

below 10 Hz to exclude interneurons. From the 24 neurons that had been classified as non-grid cells

two cells had firing rates above 10 Hz and the action potentials of six other cells did not meet our

criteria (see below under "Membrane-potential dynamics"). This resulted in 40 neurons from data

set D, namely 24 grid cells and 16 non-grid cells. 

Data set L:  After removing cells for which the animal trajectories showed artifacts, 522 principal

cells were identified using the same criterium (mean firing rate < 10 Hz) as in Latuske et al. (2015).

Out of those cells, 115 cells had been classified as grid cells by these authors. Ten of the 522 cells

were not considered further as their inter-spike interval (ISI) distributions differed strongly from all

other cells in that they had not a single inter-spike interval below 8 ms. Similarly, to avoid artifacts

in  the  cluster  analysis  of  the  cells'  spike-time  autocorrelations,  seven  cells  with  sparse

autocorrelations were removed (see below for details). Altogether, this led to 505 cells in data set L,

112 grid cells and 393 non-grid cells.

Spike-train characterization. The firing rate of a cell was defined as number of spikes divided by

the total duration of the recording. For the graphical illustrations, spike-time autocorrelations and
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ISI distributions were calculated from binned data (bin width: 1 ms). To compute the peak location

and width of ISI distributions, the recorded time difference between each pair of successive spikes

was represented by a Gaussian kernel with a standard deviation of 1ms, centered at the mesaured

time difference. These individual kernel density (KD) estimates were summed up across the entire

recording. The analogous procedure was used for autocorrelations. 

The location of the ISI peak was determined as the inter-spike interval for which the KD estimate

was  maximal.  Similarly,  the  width  of  the  ISI  distribution  was  defined  as  full  width  at  half

maximum. The mean ISI and its standard deviation were calculated from all ISIs, the coefficient of

variation (CV) was defined as the ratio between standard deviation and mean. 

A burst was defined as a sequence of at least two spikes with ISIs shorter than 8 ms. The fraction of

ISIs smaller than 8 ms was calculated relative to all ISIs and serves as a measure for the cell's

burstiness. An event is a burst or an isolated spike. The fraction of single spikes was defined as the

number of spikes that do not belong to a burst divided by the number of all events. 

Principal-component (PC) analysis. For both data sets, autocorrelations were calculated for time

lags between 0 ms and max = 50 ms. To weigh all neurons equally autocorrelations were normalized

to  unit  area.  Principal  components  were calculated  after  binning (bin width:  1  ms).  To reduce

spurious effects caused by sparse normalized autocorrelations, cells with more than 75% empty bins

(the maximum value for data set D) were removed (one grid cell and six non-grid cells in data set

L). For the same reason, 5 (2) cells of data set D (data set L) that had relatively few spikes (< 130)

were excluded when PC components were calculated but are included in the further analysis. To test

the robustness of the PC analysis of the D data, the maximal time lag max was varied between 30 ms

and 100 ms (see also Results). 

Identification of neuron classes. For the D data set, visual inspection of the two-dimensional space

spanned by the first two PCs suggested two main cell groups, whose arrangement was determined
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by k-means clustering with k=2 clusters. To test the robustness of the k-means clustering for the L

data set, cluster analyses were performed on the 50-dimensional binned autocorrelations as well as

in  PC spaces  with  N=2-4  dimensions.  The  clustering  quality  was  estimated  through  silhouette

scores (Rousseeuw et a., 1987).  

Membrane-potential dynamics. The whole-cell voltage traces contained sizeable fluctuations that

reflected synaptic inputs and potential movement artefacts. To obtain reliable information about the

membrane potential before and after an action potential, AP-triggered averaging was performed.

The APs themselves varied in amplitude and width, both within and across the different recordings,

suggesting  that  the  recording  quality  varied  in  time;  the  slowly  decaying  AP amplitudes  and

increasing width of some cells indicated run-down effects. To guarantee a good recording quality

and to obtain reliable estimates of the subthreshold membrane-potential dynamics on the time scales

relevant for fAHPs and DAPs, we focused on well isolated APs (no further APs within 25 ms before

and after  the  trigger  AP),  and required  the  individual  AP amplitudes  to  be larger  than 40 mV

(measured relative to the membrane potential 10 ms before the AP maximum) and APs width to be

smaller than 1 ms. 

The pre-AP voltage slope was calculated from the cell's average AP-triggered voltage trace within

the last 10 ms before AP onset; AP onset was determined by a threshold crossing (15 mV/ms) in the

average AP-triggered voltage trace. 

For cells with DAPs, the fAHP amplitude  VfAHP was defined as the average voltage minimum

during the fAHP relative to the voltage at AP onset. This means that  VfAHP is negative for DAP

cells (see Fig. 1). The DAP-deflection  VDAP was defined as the difference between the voltage

level at the DAP peak and at the minimum of the preceding fAHP. It is positive for cells with DAPs.

The time interval between the AP peak and the following fAHP minimum is denoted by tfAHP, the

time interval between the AP peak and the following DAP maximum is called tDAP.
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To compare the afterpotentials of all neurons studied, the definitions of VfAHP and VDAP had to be

generalized to cells without DAP. This was done (a) for grid cells only, and (b) for all neurons. To

this end, we calculated the population averages  ´Δt fAHP  and ´Δt DAP across the respective DAP

cells  (grid  cells:  n=8,  all  neurons:  n=15).  We then used  these  mean  time  intervals  (grid  cells:

Δt1≡ ´Δt fAHP  = 1.8 ± 0.4  ms, Δt2≡ ´Δt DAP = 4.6 ± 1.2 ms, all neurons: Δt1≡ ´Δt fAHP  = 2.0 ±

0.5 ms,  Δt2≡ ´Δt DAP = 5.4 ± 2.3  ms) to determine voltage changes corresponding to  VfAHP and

VDAP for cells without DAP. These are called V1 and V2, respectively. For notational simplicity,

we will  use these terms for  grid cells,  too,  but  here,  they denote the  VfAHP and  VDAP values

measured at the cell-specific tfAHP and tDAP values.

Spatial coding properties. For data set L, grid score and head-direction score were calculated as in

Sargolini et al. (2006), the spatial information as in Skaggs et al. (1996).

Experimental design and statistical analysis. We analyzed data recorded by Domnisoru et al. (2013)

and  Latuske  et  al.  (2015)  and  refer  the  reader  to  these  two  publications  for  details  on  the

experimental design. All our analyses were performed in Python 2.7.6. Specific statistical tests used

are stated throughout  the text.  The Kruskal-Wallis  test,  the Kolmogorov-Smirnov test,  the Chi-

square test  and the median tests  are  taken from scipy.stats.  The linear  regression,  the principal

component analysis and the k-means clustering are taken from scikit-learn.

Bootstrapping. To assess the fAHP and DAP parameters, we bootstrapped the AP-triggered voltage

traces of a cell by using sampling with replacement and repeated this procedure 10000 times to

obtain mean values and standard errors. 
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Results 

The temporal firing characteristics of principal neurons in the medial entorhinal cortex (MEC) of

behaving rodents vary strongly from cell to cell, even if their mean firing rates are almost identical

(Latuske et al., 2015). Some neurons rarely fire with inter-spike intervals shorter than 8 ms; their

spike-time autocorrelations have a pronounced dip at  short time lags (Fig. 1A,  left).  Other cells

show an autocorrelation peak in the 5-15 ms range with broad flanks (Fig. 1A, middle) and yet other

cells  have  autocorrelations  that  are  sharply  peaked  at  even  shorter  lags  (Fig. 1A,  right).  Not

distinguishing between the second and third group of neurons, these cells have been termed "bursty"

by Latuske et al.  (2015) whereas the first group has been called "non-bursty" by these authors.

Since "non-bursty" neurons generate bursts from time to time, too,  we will  call  them "sparsely

bursting", in line with Simmonet and Brecht (2019).

We wondered whether differences in the in vivo spike patterns of bursty neurons could be explained

at a mechanistic level by differences in their intrinsic single-cell dynamics and whether – for the

spatially  tuned  cells  within  the  total  population  –  differences  in  the  cells’ temporal  discharge

patterns  were  reflected  in  their  spatial  tuning  properties.  To  this  end,  we  analyzed  whole-cell

recordings  from mice moving on a  linear  track in  virtual  reality  (Domnisoru et  al.,  2013)  and

extracellular  recordings from mice navigating in  two-dimensional  environments (Latuske et  al.,

2015). We start with an analysis of grid cells and then extend our approach to non-grid cells.

Grid cells differ in the voltage deflections following an action potential. 

We first focus on the intracellular linear-track data as these provide information about both spike

times and membrane-potential dynamics. 
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The time courses of the membrane potentials recorded by Domnisoru et al. (2013) show striking

cell-to-cell differences within the first ten milliseconds following an action potential (AP). Three

distinct types of behavior can be distinguished from the spike-triggered voltage traces:

(i) a monotone repolarization that gradually slows down (Fig. 1B, left panel)

(ii) a fast afterhyperpolarization (fAHP) followed by a depolarizing afterpotential (DAP), as shown

in Fig. 1B, middle panel,

(iii) a short repolarizing phase that abruptly turns into a much slower voltage decay, which may

include a flat shoulder (Fig. 1B, right panel).

To quantify these distinct behaviors, we used parameters that capture two salient features of cells

exhibiting DAPs – the voltage minimum during the fAHP and the voltage peak during the DAP (see

the lower left inset in Fig. 1C). The "fAHP-depth" VfAHP measures the voltage minimum relative to

the membrane potential at AP onset. This minimum occurs at some time tfAHP after the AP peak.

The "DAP-deflection" VDAP measures the difference between the membrane potential at the DAP

peak and the fAHP minimum. The DAP peak is attained at  some time  tDAP after  the AP peak

(Fig. 1C).

To extend the  VfAHP and  VDAP measures to voltage traces of cells with no detectable DAP, two

time intervals corresponding to  tfAHP and tDAP need to be defined. For concreteness, we used the

population means across all grid cells with a DAP (n=8), resulting in Δt1≡ ´Δt fAHP  = 1.8 ± 0.4 ms

and  Δt2≡ ´Δt DAP = 4.6 ± 1.2  ms. We then determined the voltage differences corresponding to

VfAHP and VDAP at these two time points, and named them V1 and V2, respectively. For DAP

cells, we define V1 = VfAHP and V2 =  VDAP to simplify the notation. These settings mean that

cells  with  a  shoulder  or  slow  voltage  decay  (Fig.  1B,  right  panel)  have  zero  or  small  V2
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irrespective  of  their  V1 value  whereas  large  negative  V2  values  indicate  a  strong decline  in

membrane potential until around five milliseconds after the action potential. 

Within  the  parameter  space  spanned  by  V1 and  V2  ,  neurons  fall  into  two  distinct  groups

(Fig. 1C)  –  cells  with  a  pronounced  DAP (negative  V1 and  positive  V2)  and  cells  with  no

detectable DAP (negative V2), which typically have also no fAHP (positive V1). Results from a

bootstrapping analysis (see Materials and Methods) underscore the reliability of the DAP and fAHP

parameter estimates (see Fig. 1-1).

All measured neurons that had a DAP and whose location was known, resided in Layer II. Five of

these eight cells had large theta-band membrane potential oscillations and have been called "large

theta cells" by Domnisoru et al. (2013). Cells without a DAP (n=16) were located in both layers II

and III. 

Grid cells differ in their spike-train characteristics.  

To capture the diversity of spike discharge patterns we carried out a principal component analysis

on the spike-time autocorrelations of the 24 intracellularly recorded grid cells (Fig. 2A), as has been

done  for  extracellular  recordings  (Latuske  et  al,  2015).  We  restricted  our  attention  to

autocorrelations on short time-scales, in particular to the region between 0 and 50 ms after a spike.

We found that the first two principal components, PC1 and PC2, explain 66% and 18% of the cell-

to-cell variability, respectively, whereas the contribution from PC3 adds only another 4%. Together,

PC1 and PC2 thus account for 84% of the variability. This value changes by less than 3% when max

is varied between 30 ms and 100 ms (data not shown) and starts to decrease for shorter or longer

maximal  lag.  These findings  indicate  that  a  two-dimensional  PC representation of  the  grid-cell

autocorrelations in the 0-50 ms range describes the essence of the cell-to-cell variability. 
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The mean autocorrelation is highly peaked at a lag  of around 4 ms (Fig. 2B),  and so are both

principal components (Fig. 2C). This indicates that brief activity bursts in the 250 Hz range play an

important role for both the mean grid-cell discharge patterns and their cell-to-cell variability. 

Within this two-dimensional representation (Fig. 2A), neurons without a DAP, shown in blue and

yellow, have a negative or only small positive second principal component and strongly vary in

their first principal component. Cells with large negative PC1 are sparsely bursting as the example

in the left panel of Fig. 1A, whose position in the PC1/PC2 space is marked with a blue arrow in

Fig. 2A. Cells with positive PC1 burst like the cell in the right panel of Fig. 1A (yellow arrow in

Fig. 2A). Cells with a DAP have positive PC2, only a small PC1, and are also bursting, though with

a much broader peak in their autocorrelation as demonstrated by the example in middle panel in

Fig. 1A, marked with a red arrow in Fig. 2A. 

This grouping is based on visual inspection of the AC principal components and might not properly

distinguish between bursting and sparsely-bursting neurons with small PC1. To better discriminate

between  these  two  cell  groups,  we  carried  out  a  k-means  clustering  with  k=2.  The  analysis

suggested that  9  cells  should be classified  as  sparsely  bursting ("SB")  neurons;  based on their

intracellular characteristics, the remaining 15 bursting ("B") cells are either DAP cells (" BD ") or

cells without detectable DAP (" BD— "). The same clusters emerge if the spike data from the first

and second half of each experiment are treated separately (data not shown), and provide evidence

for the robustness of our approach.  

All bursty neurons whose anatomical position was classified by Domnisoru et al. are located in

Layer II,  none in Layer III  (two bursty cells  were not assigned to a layer).  Furthermore,  unlike

suggested by reports from rats (Ebbesen et al., 2016), bursty neurons are more likely to be stellate

than pyramidal cells (6 versus 2 cells),  in agreement with the larger abundance of stellate cells

compared to pyramidal cells (Alonso and Klink, 1993). There was no detectable difference in the

morphology of bursty neurons with and without DAP: Within the BDgroup (n=8), there were three
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stellate cells, one pyramidal neuron and four non-identified cells. Within the BD—group (n=7), there

were three stellate cells, one pyramidal neuron and three non-identified cells.  In contrast,  not a

single non-bursty cell was identified as a stellate cell (pyramidal and non-identified cells: 3 and 6

out of n=9, respectively) and non-bursty neurons may have a tendency to reside in Layer III (three

cells versus one cell in Layer II; 5 cells were not classified). Finally, in the V1–V2 representation

(Fig. 1C), BD—neurons overlap with SB cells, but tend to have less negative V2 values and the V1

and  V2 values within the group of bursty neurons are correlated with a slope of -0.49 (standard

error: 0.06). The three groupings are robust, as confirmed by bootstrapping and indicated by error

bars in Fig. 1-1. 

Post-AP dynamics explain the spike-train characteristics of bursty grid cells.  

After  dividing  the  cells  into  three  groups  based on their  spike-train  autocorrelations  and  DAP

characteristics,  we  compared  the  group  averages  for  the  grid  cells'  intracellular  voltage  traces

(Fig. 3). Confirming the impression from individual cells, sparsely-bursting neurons show a smooth

and monotone AP down-stroke (Fig. 3A, left panel), bursty cells with DAP exhibit a local voltage

minimum followed by repolarization (Fig. 3A, middle panel), and compared to SB cells, bursty cells

without DAP tend to have two phases of repolarization: an initial AP downstroke followed abruptly

by a slower rate of repolarization, yielding a kink in the voltage traces  (Fig. 3A, right panel). 

To visualize these distinct features, the spike-triggered voltage traces were averaged for each neuron

and then aligned to the cell's mean voltage at AP onset. Without voltage alignment (see insets),

slight differences in membrane potential at AP onset are apparent (SB: -59.42 ± 1.22 mV, BD:

-57.12  ± 3.09  mV,  BD—:  -61.40  ± 6.83 mV)  but  not  significant  (p(BD,  BD—)=  0.25;  p(BD,

SB)=0.15; p(BD—, SB)=0.96, Kruskal Wallis), and a larger variability of the afterpotentials within

the two groups of bursty neurons. The voltage slope during the last 10 ms before AP onset does not
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differ significantly between BD and BD—neurons (BD: 0.50 ± 0.03 mV/ms; BD—: 0.48 ± 0.08

mV/ms;  p=0.35,  Kruskal  Wallis)  but  does  so  when  sparsely-bursting  and  bursty  neurons  are

compared (B: 0.49 ± 0.06 mV/ms; SB: 0.34 ± 0.05 mV/ms; p=0.00015, Kruskal Wallis).  Finally,

visual inspection suggests that there are no high-frequency membrane-potential oscillations, which

would have been expected if the bursts resulted from electric resonances. 

The averaged autocorrelations (Fig. 3B, left panel) and inter-spike intervals (Fig. 3C, left panel) of

sparsely-bursting cells show that although these neurons rarely generate spike sequences with short

ISIs – only 2% of all their ISIs are less than 8ms – if they do fire such bursts, there is a pronounced

short ISI that is only 4.30 ± 0.81ms long (see the black arrows in Figs. 3B and C). Both types of

bursty neurons exhibit prominent ISI- and autocorrelation peaks at short time scales (Fig. 3B,  C,

middle and right panels). Population averages within each group show that the most likely ISI of

cells without a DAP is significantly shorter than that of cells with a DAP (4.12 ± 0.12 ms vs. 6.96 ±

3.73 ms, p=0.01, Kruskal Wallis); the same is true for the autocorrelation peaks (4.13 ± 0.11 ms vs.

9.46 ± 4.41 ms, p=0.001, Kruskal Wallis). These differences are readily explained by the different

time  courses  of  the  post-spike  voltage  deflections:  The  rapid  fAHP time  course  of  BDcells

strongly reduces the chance that a second AP is fired directly after the first AP, whereas in BD—

cells  the  down-stroke  of  the  first  AP stops  abruptly  at  depolarized  levels,  often  above  the  AP

threshold (see Fig. 1B, 3A), resulting in a rather short absolute refractory period (mean of 10 %

shortest ISI in BD—cells: 3.45 ms versus 5.24 ms in BDcells). Consistent with this picture, the

DAP opens a wide "window of opportunity" for a second AP in BD cells, resulting in broader ISI

distributions (6.7 ± 3.27 ms vs. 3.66 ± 0.36 ms, p=0.01, Kruskal Wallis) for BDcells, compared to

BD—cells. Finally, a direct role of the post-AP dynamics in burst behavior is also suggested by the

observation that for BDcells, the most likely ISI mirrors  tDAP, the time interval between an AP

and the succeeding DAP peak (no difference of median values, p=0.61, median=5.13 ms, median

test).  
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The intrinsic voltage dynamics alone do not explain why sparsely-bursting cells have much broader

ISI distributions (see Fig. 3C). Other features correlated with sparsely bursting behavior, though.

All  identified SB cells  were pyramidal  neurons,  whereas only one out  of four BD—  cells  were

pyramidal; four of the five SB cells were in LIII, whereas BD— cells were solely found  in LII.  By

contrast, the BD— and BD groups were not distinguished by cell-type or the layer in which they

were  found,  which  makes  it  unlikely  that  anatomical  differences   can  explain  the  observed

variations in the spike trains of bursty neurons.  

In vitro, stellate cells often produce spike doublets or brief bursts (Alessi et al., 2016). We tested

whether  spike  trains  in  vivo showed  similar  preferences.  For  this  purpose,  we  computed  the

frequency with which cells fired two, three, or more spikes in a burst. The frequency of bursts with

exactly n spikes decreases monotonically with n, and does so for all three cell groups. Doublets and

triplets  were  not  overrepresented  (Fig. 3D).  In  21 out  of  the  24 cells,  the  distribution  for  n  is

consistent with an exponential  distribution (Chi-Square Goodness of Fit Test for the correlation

between linear fit and data after logarithmic transformation; p>0.05). There is thus no preferred

burst size or "unit of information", such as a spike doublet or triplet. In the spirit of hippocampal

"complex spike bursts" (Ranck, 1973), a grid-cell burst can be regarded as just a sequence of two or

more spikes with short inter-spike intervals. The exact choice of the cutoff threshold is not critical;

qualitatively similar results were obtained using ISI thresholds from 8 ms up to 15 ms (data not

shown). 

Spike-train characteristics of bursty cells are conserved across 1D and 2D environments.

So far,  the analysis  was based on a  relatively small  number of neurons recorded in head-fixed

animals running in a virtual linear corridor (Domnisoru et al., 2013). To explore whether these data

generalize to other experimental conditions, we analyzed a complementary data set that contained
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112 grid cells  from mice that foraged at random in a square environment (Latuske et al., 2015).

Although  these  extracellular  recordings  do  not  offer  direct  access  to  the  membrane-potential

dynamics, they might still  reveal signatures of the different post-AP dynamics. In particular, we

expected that grid cells would not only show the bursty vs. non-bursty dichotomy described by

Latuske  at  al.  (2015),  but  that  there  would  also  be  qualitative  differences  within  the  bursty

subpopulation.  

To facilitate the comparison between the two data sets we kept the maximum lag of 50 ms and the

1 ms-binning  when  analyzing  spike-time  autocorrelations.  To  minimize  observer  bias,  k-means

cluster analyses were performed on the 50-dimensional raw autocorrelations as well as in principal-

component spaces with N=2-4 dimensions.  We analyzed the robustness of the k-means clustering

results by calculating silhouette scores for each value of k (Rousseuw et al., 1987). Irrespective of

the dimensionality N of the data, separation into three clusters led to the best performance; the

clusters hardly changed when using different numbers of principal components. Cluster assignment

was stable, regardless of whether the autocorrelations were computed from the first or second half

of a cell’s spike train: 91.1% of the cells kept their cluster identity (Fig. 4-1) from the first to the

second half when using N=3 principal components. To compare these data with the previous results,

we  again  plot  the  first  two  principal  components  against  each  other  (Fig. 4A).  The  mean

autocorrelation  (Fig. 4B)  closely  resembled  the  one  obtained  from  the  virtual-track  data  (see

Fig. 2B);  and so did the principal  components  (cf.  Fig. 4C and Fig. 2C),  as  quantified by their

similarity (the scalar product computed for time lags up to 50 ms) of 0.86 for PC1 and 0.63 for PC2

when the two experimental conditions are compared. 

There is also a high similarity between the corresponding group-averaged autocorrelations in both

data  sets  (SB  cells:  0.93,  BD—cells:  0.93,  BD:cells:  094),  cf.  Fig. 4D and  Fig. 3B.  This  is

remarkable as the cluster analysis of the open-field data (Latuske et al.,  2015) only reflects the

overall structure of the grid-cell autocorrelations and is not informed by intracellular measurements.
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There is, however, one prominent difference between both data sets. The sparsely bursting neurons

recorded  by  Latuske  et  al.  (Fig. 4D,  left  panel)  fire  hardly  any  spike  within  the  first  few

milliseconds (so that the authors named them "non-bursty" neurons) and their autocorrelation has a

pronounced peak at around 15 ms. The autocorrelation function of the sparsely bursting neurons

recorded by Domnisoru et al. (Fig. 3B, left panel) exhibits a local peak at around 4 ms, and grows

more slowly, with a local maximum at 30-40 ms. On the other hand, the average autocorrelations of

the BD and BD— cells are almost identical when compared across both experimental conditions.  

In the virtual-track data, the autocorrelations of the BD—neurons (n=7) peak at 4.13 ms with a cell-

to-cell variability of 0.11 ms (SD). The autocorrelations of the corresponding cells from the open-

field recordings (n=25) have their peak at 3.56 ms (SD: 0.27 ms). There are  biophysical differences

between intra- and extracellular signals that might contribute to a longer delay being measured  for

the intervals between successive spikes (Anastassiou et al., 2015). The two experimental conditions

also  differ  in  the  measured  grid-field  sizes:  these  are  larger  in  virtual  reality  than  open-field

environments (c.f.,  Domnisoru et al.,  2013, supp. Fig 9). Consistent with this observation, other

spike-train measures also reflect longer timescales in virtual reality versus open fields, e.g., the most

likely ISI (Fig. 5A), the width of the ISI histogram (Fig. 5B) or the fraction of inter-spike-intervals

below 8 ms (Fig. 5C). Within each experimental setting, however, the three cell groups exhibited

the same temporal features, albeit on slightly different timescales. On the other hand, the firing rates

(Fig. 5D) are rather similar across experimental conditions and cell groups, which might reflect a

general network-level regulation of the average firing rate. 

Spatial response properties are shared across all three grid-cell groups.

In the next step of our analysis, we asked whether the pronounced differences between the temporal

response characteristics of the three grid-cell groups translate into differences in their spatial firing
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patterns.  The  study  of  Latuske  et  al.  (2015)  had  shown that  this  was  not the  case  when  one

compares bursty with sparsely-bursting grid cells. However, the two groups of bursty neurons might

still differ in their spatial behavior. To obtain reliable field estimates, we used the open-field data for

this  analysis.  We tested  various  measures,  including grid  score  (Sargolini  et  al.,  2006),  spatial

information (Skaggs et al., 1996), and head-direction score (Sargolini et al., 2006), but could not

detect any significant differences between BDand BD—cells (Fig. 5E-G). 

Slice experiments show that depolarizing afterpotentials of stellate cells can be modulated; if the

holding  potential  is  decreased,  the  amplitude  VDAP of  the  following  DAP increases,  and  it

decreases whenever the holding potential is increased (Alessi et  al.,  2016). As demonstrated by

Domnisoru et al. (2013), a grid cell is depolarized when the animal is located in a firing field of that

cell  and hyperpolarized  in  the  out-of-field  regions.  We therefore  wondered  whether  a  BDcell

might preferentially generate DAP-mediated bursts when one of its grid field is entered, as the

membrane-potential ramp might facilitate larger DAPs and thus make DAP-mediated burst firing in

these neurons more likely.  

To test this hypothesis, we took open-field data from Latuske et al. (2015) and investigated in detail

whether spikes belonging to the bursts of a BDcell had an above-chance probability to occur at the

edges of its firing fields and, more generally, whether those spikes differed in their spatial statistics

from other spikes of the same neuron, in the spirit of a place-cell study by Harris et al. (2001). In

particular, we analyzed the distribution of spike distances from the respective firing-field centers as

well as topological features of the discharge patterns of BDcells, with special focus on inter-spike

intervals  expected  for  DAP-triggered  bursts.  Despite  extensive  efforts,  we  could  not  find  any

significant  differences  between the spatial  firing characteristics of BD versus BD—  cells.  As a

complementary check,  we used the data from Domnisoru et  al.  (2013) to search whether  DAP

deflections measured in the firing fields of BD cells were smaller than the DAP deflections of out-

of-field spikes but did not find any obvious changes either.
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These findings suggest that despite the striking differences in the spike-train patterns of bursty cells

with and without DAP, these differences have no obvious consequences for the cells' spatial tuning

properties. Temporal variations in the membrane potential, in particular the large theta-oscillations

observed in some bursty grid cells, are uncorrelated with the animal's trajectory and may easily

mask  less  prominent  spatial  dependencies.  In  fact,  decoupling  of  spatial  and  temporal  tuning

characteristics might endow the system with added plasticity and computational flexibility. 

Bursty grid cells: One continuum or two clusters?

Since BD and BD— cells showed indistinguishable spatial tuning, we reconsidered their partition

into two distinct groups based on their temporal firing characteristics. Could it be that the data are

better described as a single group with continuously varying parameters? 

To answer this  question,  we went back to the grid-cell  data from Domnisoru et  al.  (2013) and

analyzed  how  the  cells’  salient  spike-train  characteristics  depended  on  the  two  biophysical

parameters  V1 and  V2 (Fig. 6).  The  mean  firing  rate  does  not  correlate  with  V1 and  V2

(Fig. 6A,B).  There  are  also  no  significant  dependencies  within  the  BD and  BD—groups  (V1:

pBD+=0.88,  pBD-=0.24;  V2:  pBD+=0.58,  pBD-=0.90,  as  tested  by  independently  shuffling  the  two

coordinates  of  the  respective  data  points  and  computing  the  Pearson correlation  for  each  new

sample. The p-value is given by the fraction of samples for which the correlation value was larger

than in the original sample.). 

A different picture emerges when the fraction of short ISIs (below 8 ms) is considered (Fig. 6C,D).

Visual inspection suggests a joint trend for BD and BD—cells; the larger  V1, the more frequent

are short ISIs (Fig. 6C). With a p-value of 0.013, this trend is statistically significantly different

from the null-hypothesis (no increase/decrease as a function of  V1), and in agreement with our
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earlier functional interpretation of depolarizing afterpotentials: For negative V1 (i.e., BD cells),

cells quickly hyperpolarize, making very short ISIs rare. 

Consistent with this observation, the location of the ISI peak tends to grow for increasingly negative

V1 (Fig. 6E) and increasingly positive V2 (Fig. 6F) if the entire population of bursty neurons is

considered (V1: p=0.04,  V2: p=0.01). Within the BD— population, however, the ISI peak does

hardly vary at all, as emphasized before.  

These results indicate that there is no clear-cut answer to the question whether the population of

bursty  neurons  forms  one  joint  though  under-sampled  cloud  or  contains  two  distinct  sub-

populations. More importantly, however, is the observation that in either case, certain spike-train

characteristics do depend on the cells'  individual DAP properties, which supports the view that

DAPs do not only exist under in-vivo conditions but may also play a functional rule. 

Non-grid cells show same DAP and spike-train characteristics as grid cells.

In the last step of our analysis, we asked whether non-grid cells differed from grid cells in their

DAP behavior or spike-time autocorrelation characteristics. To this end, we first determined the

DAP parameters  V1 and  V2 for all 40 neurons on linear tracks in virtual reality. As shown in

Fig. 7A,  non-grid  cells  (represented  by  "x")  fall  into  the  same  data  clouds  as  the  grid  cells

(represented by "o") when these two intracellular measures are considered. Similarly, a principal-

component analysis of the spike-train autocorrelations of the entire data set (Fig. 7B) exhibits a two-

dimensional structure that is highly reminiscent of that when only grid cells are taken into account

(c.f.,  Fig. 2A).  The  same  is  true  for  the  principal-component  analysis  of  the  spike-train

autocorrelations of the open-field data from Latuske et al. (2015) shown in (Fig. 7C). In fact, even

the principal components themselves are highly similar when computed for grid cells only or for

non-grid cells only (Fig. 7-1). Moreover, the entire data set exhibits the same ambiguity concerning
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the "one continuum vs. two clusters" question (Fig. 6-1) as when only grid cells are considered

(Fig. 6).

Consistent with this observation, the remarkably small cell-to-cell variability in the autocorrelation

peaks of BD— grid cells (virtual linear track: 4.13 ± 0.11ms; open field: 3.56 ± 0.27ms ) is also

shared by the non-grid BD— cells (virtual linear track: 4.05 ± 0.25 ms, open field: 3.67 ± 0.60 ms),

and these peaks are significantly shorter than the autocorrelation peaks of the non-grid BD cells

(virtual linear track: 9.29 ± 3.53 ms, p=0.02, Kruskal Wallis; open field: 6.99 ± 3.52ms, p=1.15e-29,

Kruskal Wallis). All data: mean values ± standard deviation.

Taken together, our findings demonstrate not only that the DAP characteristics of grid cells have no

consequences for their spatial firing properties (c.f., Fig. 5E-G) but that in addition, non-grid cells

and grid cells fall into the same three subgroups – sparsely bursting neurons, bursty with DAP and

bursty without DAP. Both results suggest that DAPs and burst  firing are not critical for spatial

navigation. 

Discussion 

Tetrode recordings in freely moving rats (Mizuseki et al., 2009, Ebbesen et al.,  2016) and mice

(Latuske et al. (2015) have shown that principal neurons in superficial MEC layers come in two

functional subclasses, cells that burst frequently and others that do not or only rarely burst. Our

analysis of whole-cell data from mice running on linear virtual tracks (Domnisoru et al.,  2013)

suggests that principal cells located in Layer-III tend to be "sparsely bursting" (SB) and that they do

not generate depolarizing afterpotentials (DAPs), in agreement with previous slice studies in rats

(Canto and Witter, 2012). 

Bursty neurons varied strongly in the overall shape of their autocorrelations (as shown for grid cells

in  Fig.  3B)  and  their  inter-spike  interval  (ISI)  distributions  (Fig.  3C).  This  diversity  can  be
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understood in terms of the cell-specific shapes of spike afterpotentials: Neurons without a DAP

("BD—cells")  had  inter-spike  interval  (ISI)  distributions  that  peaked  sharply  at  around  four

milliseconds and varied only minimally across that group of cells whereas the ISIs of neurons with

a DAP ("BDcells") were most frequent between 5 and 15 ms. 

At first sight, the gap between BD and BD—cells in the V1-V2 diagram (Fig. 1C) speaks against

a continuum of bursty grid cells and rather points to the existence of two separate subgroups. This

impression  might,  however,  be  due  to  a  sampling  artefact;  there  are  only  15  such  cells  with

intracellular recordings in the data set from Domnisoru et al. (2013). We therefore investigated the

dependencies of various spike-train characteristics on V1 and V2 (Fig. 6). The smooth behavior of

some measures, such as the burstiness, i.e., the fraction of ISIs below 8ms, or the ISI-peak location,

and the lack of any sharp transitions in the other measures, support the assumption of one single,

though sparsely populated group of neurons.  Although based on small numbers, the equal stellate-

to-pyramidal-cell ratio (3:1) of the BD and BD—grid-cell subgroups points in the same direction.

Non-grid cells behave in an almost identical manner (Fig. 7A) as grid cells, see also Fig. 7-1.

Consistent with the hypothesis of one single group of bursty neurons, The physiological properties

of individual cells could either be fixed or undergo plastic changes that move the biophysical cell

parameters between the BD and BD—regions. In the  V1-V2 space (Figs. 1C,7A), a transition

from BD to BD— corresponds to an increase in V1 accompanied by a somewhat smaller decrease

in V2. Such a parameter change can be achieved through modifications of the AP-threshold, fAHP-

minimum and/or DAP-maximum, as illustrated by the arrows in Fig. 1-1. Various ion channels have

been implicated in DAP generation,  from sodium and calcium channels (Alessi et  a.,  2016), to

potassium (Eder et al. 1991) and HCN channels (Dickson et al., 2000), which also play a key role

for slower grid-cell rhythms  (Giocomo and Hasselmo, 2009). These channels could be regulated,

e.g.,  by cholinergic stimulation, which has been shown to induce DAPs and after discharges in
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MEC-Layer-II neurons (Magistretti et al., 2004). Such modulations would have a direct impact on

the precise temporal characteristics of bursting neurons. 

Modulations of the biophysical parameters governing the afterpotentials might even occur at the

time scale of single runs through the animal's environment. Indeed, close inspection of individual

membrane-potential  traces  suggests  that  BDcells  do  not  generate  a  DAP  after  every  AP;

conversely, some action potentials of BD—cells are followed by a DAP. One might even speculate

that most bursty cells are capable of generating DAPs – slice experiments in rats suggest 85% of

Layer-II stellate cells and 73% of Layer-II pyramids have DAPs (Canto and Witter, 2012) – but that

this mechanism is under external control so as to switch cells between BD and BD— behavior.

Remarkably, the ISI distributions of BD— cells have ultra-sharp peaks, whose location varies only

minimally within that  group.  Notably,  the same short  ISIs  are  elicited by the sparsely bursting

neurons in Layer III (see also Mizuseki et al., 2009) and could be mediated by specific couplings

between Layer-II BD—cells and Layer-III SB neurons. The precise function of burst sequences in

the 250-300 Hz regime remains an open question. Similarly, it is not obvious how cells with highly

distinct  firing  characteristics  can  be  orchestrated  to  create  one  joint  grid-cell  network  (but  see

Pastoll et al., 2013), in which the SB, BD— and BDcell classes have roughly the same grid score,

spatial information and head direction score (Fig. 5E-G). With their high rate of bursts, BD—neurons

might be ideally suited to drive other neurons in the network, whereas the DAPs of BDcells might

trigger synaptic plasticity, similar to their function in CA3 pyramidal neurons (Mishra et al., 2016),

and  thus  play  a  critical  role  for  network  reconfiguration  when  the  animal  learns  about  new

environments (Krupic et al., 2018) or goals (Boccara et al., 2019).  

Switching  on  the  DAP mechanism (without  interfering  with  the  preceding  fAHP)  would  then

increase the probability of additional APs (Alessi et al., 2016) as well as provide a trace for the

long-term  potentiation  of  incoming  synapses  (Mishra  et  al.,  2016).  Once  these  synapses  are
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strengthened and the DAP mechanism has been turned off  again (or masked),  the cell  can fire

precisely tuned bursts with short ISIs. These cell-intrinsic processes could be complemented by

precisely wired and timed synaptic inputs (Varga et al., 2010; Couey et al.,  2013; Pastoll et al.,

2013;  Buetfering  et  al.,  2014;  Fuchs et  al.,  2016;  Schmidt  et  al.,  2017;  Winterer  et  al.,  2017).

Through short-term plasticity and integrative postsynaptic processes (Lisman, 1997; Izhikevich et

al., 2003) such reorganization could result in a stronger influence on downstream neurons. 

In contrast to what one might have expected, the strong dependence of DAPs on the neuron's recent

history (Alonso and Klink, 1993; Canto and Witter, 2012; Alessi, 2016) does not seem to translate

into a spatial burst code. For example, one might have hypothesized that the DAP of a Layer-II

stellate cell should be particularly large when the animal is moving into one of the cell's firing

fields,  as  this  corresponds  to  raising  the  membrane  potential  from  its  previous  out-of-field

hyperpolarization. However, we could not find any signature for the ring-like burst-field structure

expected in this  scenario.  In  fact,  we could not  find  any spatial  dependencies  despite  vigorous

search. This came as a surprise, given the role of burst firing for spatial coding in the hippocampus

(Harris et al., 2001) or subiculum (Simonnet and Brecht, 2019). Similarly, spike doublets do not

seem to play any special role for burst coding. Together, these findings suggest that grid-cell bursts

are either not utilized for spatial coding, apart  from their  contribution to theta-phase precession

(Hafting et al., 2008, Reifenstein et al., 2012), or that the spatial coding is masked by temporal

fluctuations that are uncorrelated with spatial coordinates.

It is well known that after-spike potentials play a critical role in the control of AP firing patterns.

For example, medium afterhyperpolarizations control theta-band clustering of action potentials in

MEC stellate neurons (Fransen et al., 2004; Pastoll et al., 2013). Our study extends these and related

findings to the 250-300 Hz range and provides a novel mechanistic explanation of burst firing of

principal neurons in medial entorhinal cortex. 
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Legends

Figure 1. 

Spike afterpotentials of MEC grid cells from mice moving in virtual corridors.

A, typical examples of grid-cell burst behavior. Left panel: autocorrelation function of a sparsely 

bursting cell; middle panel: a bursting cell with broad autocorrelation flanks; right panel: a bursting 

cell with sharply peaked autocorrelation. Note the different scale.

B, grid cells differ in their spike afterpotentials. Left panel: a monotone repolarization that is 

gradually slowing down; middle panel: fast hyperpolarization (fAHP) followed by a depolarizing 

afterpotential (DAP); right panel: a short repolarization that abruptly turns into a much slower 

voltage decay, which may include an initial flat shoulder.

C, characterization of spike afterpotentials. Inset: Definition of parameters. Main panel: group data. 

To characterize afterpotentials for cells without DAPs, the two parameters V1 and V2 take the 

role of VfAHP and VDAP. The new parameters are determined in the same way as VfAHP and VDAP,

at times t1 and t2, respectively. These times are obtained from averages of tfAHP and tDAP across 

the population of DAP cells. Finally, for DAP cells, V1 and V2 are used instead of VfAHP and 

VDAP, to simplify the notation.

Figure 2.

Spike-time autocorrelations of MEC grid cells from mice moving in virtual corridors.

A, visual inspection of spike-time autocorrelations suggests a separation in two major groups, 

sparsely bursting and bursting. Based on the intracellular measurements (see Fig.1), the group of 

bursting neurons can be subdivided in cells with DAP (" BD "), which are shown in red, and cells 

without detectable DAP (" BD— "), shown in yellow. The arrows mark the example neurons shown 
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in Fig.1. One cell has intermediate properties and is assigned to the sparsely-bursting group (blue) 

by k-means clustering (k=2).

B, mean autocorrelation.

C, the first two principal components of the spike-time autocorrelations. The pronounced peaks in B

and C demonstrate that inter-spike intervals of around 4 ms are indicative of both the mean grid-cell

discharge patterns and their cell-to-cell variability. 

Figure 3.

Group-level analysis of MEC grid cells from mice moving in virtual corridors.

A, population average of the spike-triggered membrane potential for isolated action potentials (no 

further AP within 25ms before and after the AP). The main plot shows data that were aligned to AP 

onset before the group average was taken, the inset illustrates the absolute membrane potential 

values. Shaded area: standard deviation

B, population-averaged autocorrelation functions. 

C, population-averaged inter-spike intervals distributions. Arrows in B and C highlight bursts of 

sparsely bursting cells, inset in C with logarithmic time scale emphasizes theta-band activity.

D, population-averaged intra-burst spike count distributions.

Figure 4.

Spike-time autocorrelations of MEC grid cells from mice moving in open arenas.

A, k-means cluster analysis (k=3) of spike-time autocorrelations.

B, mean autocorrelation across the grid cells. 

C, the first two principal components of the spike-time autocorrelations. The sharp peaks in B and 

C again demonstrate the prevalence of short inter-spike intervals (here around 3.5 ms) in the mean 
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grid-cell discharge patterns as well as their cell-to-cell variability.

D, autocorrelations averaged across all neurons from each cell group reveal a striking similarity 

between cells recorded on virtual tracks and in open fields. Strongest deviations are shown by non-

bursting/sparsely bursting cells in the Latuske et al. vs. Domnisoru et al. data.

Figure 5. 

Grid-cell spike-train characteristics across data sets and spatial coding.

A-D, comparison of linear-track data (filled symbols) and data from the open arena (un-filled 

symbols); E-G, spatial properties of grid fields recorded in the open arena. 

A, ISI peak, i.e., most likely inter-spike interval.

B, width of the ISI distribution.

C, fraction of ISIs below 8ms ("burstiness").

D, mean firing rates.

E, grid score.

F, spatial information.

G, head direction score.

Despite strong differences in temporal spike-train characteristics (A-C), mean firing rates (D) and 

spatial coding properties (E-G) of grid cells are largely conserved across all three cell groups.

Figure 6. 

Cluster structure of the bursty-grid-cell population.

Dependence of key spike-train parameters on the amplitude of fast afterhyperpolarization (V1) and

afterdepolarization (V2).

A and B, mean firing rates. 
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C and D, fraction of ISIs below 8 ms ("burstiness"). Across the entire population of bursty neurons, 

the larger V1, the more frequent are short ISIs

E and F, location of ISI peak.

While the firing rates do not exhibit a trend, neither within the two cell groups nor across the 

groups, the other quantities depicted show trends that differ from the null-hypothesis (no 

increase/decrease as a function of V1 or V2). The data also suggest that the population of bursty 

neurons either forms one joint though under-sampled cloud or contains two distinct sub-

populations. In either case the spike-train characteristics do depend on the cells' DAP properties.

Figure 7. 

Comparison of the characteristics of grid cells and non-grid cells.

A, quantification of spike afterpotentials as in Fig. 1C but now for all principal cells recorded on the

virtual linear track.

B, PC analysis of spike-time autocorrelations as in Fig. 2A but now for all principal cells recorded 

on the virtual linear track.

C, PC analysis of spike-time autocorrelations as in Fig. 4A but now for all principal cells recorded 

in the open environment.

The high similarity between grid cells and non-grid cells suggests that the three functional cell 

classes identified in this study are universal across all principal cells in the superficial MEC layers.
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Figure 1-1.

Stability of afterpotential parameters.

To quantify the reliability of the parameters characterizing the spike afterpotentials, we carried out a

bootstrapping analysis. Error bars indicate s.e.m. as obtained from 1000 samples and demonstrate 

that the fAHP and DAP parameters can be reliably estimated. The three arrows show how a cell's 

position in the V1-V2 space changes when the respective parameter is increased. 

Figure 4-1.

Robustness of cluster analysis.

To test the robustness of the PCA-based class assignment of the grid-cell data from Latuske et al. 

(2015), we separately considered the first and second half of all spikes for each neuron. We then 

computed the autocorrelations within these two sets and projected the results into the PC space of 

the full grid-cell data. K-means clustering (k=3), carried out in the same way as had been done for 

the full data set, results in some neurons switching group identity. But only 8.9% of cells switch 

identity, when 1st and 2nd halves are compared, underscoring the robustness of the cluster analysis.

Figure 6-1.

Cluster structure of all bursty principal cells recorded in virtual reality.

Dependence of key spike-train parameters on fast afterhyperpolarization (V1) and 

afterdepolarization (V2).

A and B, mean firing rates. 

C and D, fraction of ISIs below 8 ms ("burstiness").

E and F, location of ISI peak.

There is no apparent difference to the grid-cell cluster structure shown in Fig. 6. 
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Figure 7-1.

Principal components of the spike-time autocorrelations of grid cells and non-grid cells.

A , First principal components (left panel) and second principal components (right panel) of the dataset 

from Domnisoru et al. (2013) for grid cells and non-grid cells. The similarity of the PC components is 

measured by the scalar product for time lags up to 50 ms.

B, As in A, but now for the dataset from Latuske et al., (2015).

The values of the scalar products are rather close to their maximal value of 1 and underscore the similarity 

of the grid-cell and non-grid-cell autocorrelations and their cluster structure.
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Figure 1:
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Figure 2:
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Figure 3:
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Figure  4:
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