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Abstract

Recent approaches for understanding the neural basis of pain empathy emphasize the dynamic construction of
neural networks underlying this multifaceted social cognitive process. Inter-subject phase synchronization (ISPS)
is an approach for exploratory analysis of task-based fMRI data that reveals brain networks dynamically
synchronized to task-features across subjects. We applied ISPS to task-fMRI data assessing vicarious pain
empathy in healthy subjects (n=238). The task employed physical (limb) and affective (faces) painful and
corresponding non-painful visual stimuli. ISPS revealed two distinct networks synchronized during physical
pain observation, one encompassing anterior insula and midcingulate regions strongly engaged in (vicarious)
pain, and another encompassing parietal and inferior frontal regions associated with social cognitive processes
which may further modulate and support the pain empathic response. No robust network synchronization was
observed while processing facial expressions of pain, possibly reflecting high inter-individual variation in
response to socially transmitted pain experience. ISPS also revealed networks related to task onset or general
processing of physical (limb) or affective (face) stimuli which encompassed networks engaged in object
manipulation or face processing, respectively. Together, the ISPS approach permits segregation of networks
engaged in different psychological processes, providing additional insight into shared neural mechanisms of

empathy for physical pain across individuals.
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Introduction

Observing others in pain elicits pain empathetic responses in humans. Pain empathy refers to vicariously
experiencing and - at least to some extent — understanding the feelings of other’s pain by connecting with those
same feelings in one’s self. The anterior insula (Al) and the anterior cingulate cortex (ACC) - which represent
core nodes of the pain matrix (Price, 2000; Wager et al., 2013) and larger salience network (Uddin, 2015)-
respond both during experiencing first-hand pain as well as observing pain in others (Bernhardt & Singer, 2012;
Jackson, Rainville, & Decety, 2006; Singer et al., 2004). Meta-analyses of fMRI studies have furthermore
confirmed robust engagement of the Al and cingulate regions, specifically dorsal ACC and anterior portions of
the midcingulate cortex (MCC) during empathic processes, including pain empathy (Fan, Duncan, de Greck, &
Northoff, 2011; Lamm, Decety, & Singer, 2011; Timmers et al., 2018). Empathy is a multifaceted social-
cognitive process which employs several emotional and cognitive systems (Shamay-Tsoory, 2011), such as the
mirror-neuron system underlying simulation and affect sharing which comprises the inferior frontal gyrus (IFG)
and inferior parietal lobule (IPL) (Iacoboni & Dapretto, 2006), mentalizing and self-other discrimination which
additionally engage the temporoparietal junction (TPJ), the medial prefrontal cortex (mPFC), the posterior
cingulate cortex (PCC) and the medial temporal lobe (MTL) (Kurczek et al., 2015; Saxe & Kanwisher, 2003;
Schurz, Radua, Aichhorn, Richlan, & Perner, 2014; Uddin, Iacoboni, Lange, & Keenan, 2007).

Inspired by approaches adapted from network neuroscience, researchers have recently begun to move away
from trying to pinpoint specific patterns of regional brain activation associated with pain empathy and to consider
pain empathy as a process relying on the dynamic construction of neural networks (Betti & Aglioti, 2016). These
network-based approaches have the advantage of moving beyond the cognitive subtraction methodology of
identifying functional specialization and can describe the contribution of interactions among brain regions that
dynamically associate across time (Kucyi & Davis, 2015). The conventional general linear model (GLM)
approach for analysis of task-fMRI data is hypothesis-driven such that a hypothesized reference function that
specifies onset and duration of task-specific conditions is convolved with the assumed blood-oxygen-level
dependent (BOLD) time courses (Friston et al., 1994). This approach relies on priors with respect to the temporal
structure of the task as well as the neural response in terms of the BOLD-signal as described in the hemodynamic

response function (HRF). These assumptions may be violated in studies examining complex and dynamic
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processes like pain empathy, such that behavioral and neural responses to pain stimuli may last longer, and may
not immediately stop as soon as the stimuli disappear. Analysis of task-driven brain activity during these
paradigms may thus require alternate modeling approaches.

For over a decade, inter-subject synchronization measures of brain activation have been well established in
tasks related to auditory stimuli (Hejnar, Kiehl, & Calhoun, 2007), narrated stories (Finn, Corlett, Chen,
Bandettini, & Constable, 2018) and movies (Glerean, Salmi, Lahnakoski, Jddskeldinen, & Sams, 2012; Hasson,
Nir, Levy, Fuhrmann, & Malach, 2004; Kauppi, Jadskeldinen, Sams, & Tohka, 2010). These studies are based
on earlier work demonstrating that brain regions produce similar temporal dynamics across participants
experiencing the same task event concurrently (Hanson, Gagliardi, & Hanson, 2009). Recently, an inter-subject
phase synchronization (ISPS) analysis which combines the instantaneous phase synchronization measure
(Glerean et al., 2012; Kauppi, Pajula, & Tohka, 2014) and independent component analysis (ICA) (Beckmann
& Smith, 2004, 2005; Calhoun, Kiehl, & Pearlson, 2008) has been introduced as a means for conducting
exploratory analysis of task-based fMRI data (Bolt, Nomi, Vij, Chang, & Uddin, 2018). This approach estimates
the task relevant brain networks that dynamically synchronize during the task across participants in a data-driven
manner, without dependence on a priori reference functions. The advantage of such an approach over the
traditional GLM approach is that one can potentially gain information about brain responses that is not predicted
by the hypothesized temporal structure of the task. The efficiency and power of the ISPS approach have recently
been demonstrated in a simple motor task and a social cognitive task provided by the Human Connectome Project
(Barch et al., 2013; Bolt et al., 2018). In the current study, we applied this data-driven approach to a large sample
of fMRI data collected during performance of a pain empathy task employing affective and physical pain
empathy stimuli as well as corresponding non-painful control stimuli in order to explore neural network

synchronization during vicarious pain empathy.

Methods
Participants and task paradigm
252 healthy adults were recruited for the study, which was approved by the local ethics committee at the

University of Electronic Science and Technology of China. All participants signed written informed consent and
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received monetary compensation for their participation. The study was approved by the local ethics committee
and was in accordance with the latest revision of the Declaration of Helsinki. Neuroimaging data from six
subjects were lost due to technical failure. Furthermore, four left-handed participants and four participants with
head motion exceeding 3.0 mm translation or 3° rotation were excluded. Consequently, 238 participants (120
males; 17-29 years old, mean age = 21.58 + 2.32 years) remained in the final analysis. These data have been
previously published in a study examining the common and specific associations of autistic traits and alexithymia
with neural reactivity (Li et al., 2019). Importantly, the previous study employed a mass-univariate GLM
approach, and the focus of the previous study was independent from the aim of the present study.

The pain empathy paradigm (see also Li et al., 2019) employed a blocked design including four
experimental conditions (physical pain, affective pain, physical control, affective control). The physical stimuli
showed a person’s hand or foot in painful or non-painful everyday situations from a first-person perspective (see
Meng et al., 2012) and the affective stimuli consisted of painful and neutral facial expressions from 16 Chinese
subjects (8 males) (see Sheng & Han,2012). A total of 16 picture blocks (4 blocks per condition) were presented
in a pseudorandomized order (for all participants) and interspersed with a jittered inter-block interval of 8/10/12s
showing a red fixation cross. Each picture block (16s) had four homogeneous stimuli displayed for 3s followed
by a 1s white fixation cross on a gray background. The total duration of the task was 436s acquired in a single

fMRI run. Participants were required to passively view the stimuli.

Image acquisition and data preprocessing

Neuroimaging data were collected on a 3.0-T GE Discovery MR750 system (General Electric Medical
System, Milwaukee, WI, USA). Functional time-series were acquired using a T2*-weighted echo-planar imaging
(EPI) sequence (repetition time: 2000 ms; echo time: 30 ms; flip angle: 90°; number of slices: 39 (interleaved
ascending order); slice thickness: 3.4 mm; slice gap: 0.6 mm; field of view: 240 x 240 mm?; resolution: 64 x
64). To improve normalization of the functional MRI data, high resolution T1-weighted structural images were
additionally acquired using a 3D spoiled gradient recalled (SPGR) sequence (repetition time: 6 ms; echo time:
minimum; flip angle: 9°; number of slices: 156; slice thickness: 1 mm without gap; field of view: 256 x 256

mm?; acquisition matrix: 256 x 256). OptoActive MRI headphones (http://www .optoacoustics.com/) were used
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to reduce acoustic noise exposure for the participants during MRI data acquisition.

Preprocessing was conducted using standard procedures in SPM12 (Statistical Parametric Mapping,
http://www fil.ion.ucl.ac.uk/spm/), including removal of the first 10 volumes to allow MRI equilibration and
active noise cancelling, head motion correction using a six-parameter rigid body algorithm, tissue segmentation
and skull-stripped bias-correction for the high-resolution structural images, co-registration of the mean
functional image to structural image, normalization (resampling at 3 x 3 x 3 mm) to Montreal Neurological
Institute (MNI) space and spatial smoothing with 8mm full-width at half maximum (FWHM) Gaussian kernel.

Additionally, we performed denoising using ICA-AROMA (Pruim et al., 2015).

Inter-subject phase synchronization (ISPS) analysis

Following previous work (Bolt et al., 2018), preprocessing for the synchronization analysis additionally
included detrending and filtering (0.01-0.1 Hz) using DPARSF (http://www restfmri.net/forum/DPARSF, Yan
& Zang, 2010). For each subject, time-series of each voxel were extracted and z-transformed. The inter-subject
instantaneous phase synchronization analysis (Bolt et al., 2018; Glerean et al., 2012) works by first creating an
analytic (i.e. complex-valued) representation of the preprocessed BOLD signal using the Hilbert transformation.
We calculated phase synchronization at each time point using a metric known as circular variance. This metric
measures the dispersion of phase angles across all subject’s analytic (complex-valued) time series at each time
point. This measure provides a single summary statistic across participants at each time point, as opposed to the
subject pair-wise average angular distance measure used in previous studies (Bolt et al., 2018; Kauppi et al.,
2014). At each time point, we subtracted the circular variance from 1 to obtain the synchronization measure. The
synchronization measure varies from 0 to 1, where a value of 1 represents complete similarity of phase signals,
and a value of O represents the complete absence of similarity of phase signals.

Thus, the result of the instantaneous phase synchronization analysis is a time-series of synchronization
values for each voxel in the brain, representing the average synchrony (the average absolute angular distance)
across participants for each time point (TR). Rather than a conventional region-of-interest (ROI-based) analysis
of synchronization, we chose to use a data-driven independent component analysis (ICA) that incorporates

synchronization time signals across the entire brain to estimate possible synchronization networks that appear


https://doi.org/10.1101/841197
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/841197; this version posted November 13, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

across the course of the task scan. ICA was implemented through FSL's MELODIC software (Beckmann,
DeLuca, Devlin, & Smith, 2005). This approach is equivalent to a single-subject ICA applied to group-level
synchronization time series across all voxels in the brain, rather than the original signal time-courses of all voxels.
As in previous work (Bolt et al., 2018), a 10-component ICA solution yielded the highest replicability compared
with 15 and 20 component solutions. In the present data set, the 10 component ICA solution was also more
replicable compared with the 15 component ICA solution (see SI). Thus, results from the 10-component ICA
solution are presented. Components were labeled as unclassified if the spatial weights had characteristic artifact
patterns, such as strong weights in white matter, cerebrospinal fluid (CSF) or along the surface of the brain. The
time course of independent components (ICs) of interest represents the degree of synchronized BOLD activity

across all subjects at each time point.

General linear model (GL.M) analysis

To compare the brain networks from the phase synchronization analysis to the standard GLM approach,
conventional GLM analyses on ICA-AROMA denoised data were conducted using SPM12. On the first level 4
condition-specific regressors (physical pain, affective pain, physical control, affective control) were modelled
using a boxcar function and convolved with the canonical HRF. The six head motion parameters were
additionally included as nuisance regressors. A 128 s high-pass filter was applied to further control low-
frequency noise artifacts. At the second level, one sample #-tests were conducted to determine condition-specific
activation maps, and physical and affective pain networks respectively, employing subtraction contrasts between

the pain and their respective control conditions.

Association of task block regressors with synchronization time series

To examine the relationship between the synchronization time series resulting from the ICA with each task
condition we used the convolved block regressors of the GLM as reference functions. As noted by others
(Nummenmaa et al., 2014), conventional double-gamma HRF convolved regressors attempt to model a late
undershoot of the HRF, which would not presumably be present in the case of a voxel synchronization time

course (which would exhibit no undershoot). Thus, to get the suitable reference functions, we computed another
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GLM model using the gamma HRF in FSL to account for HRF lag and width, without an undershoot. The
association between the synchronization time series and a chosen reference function was computed using the
Pearson correlation with Bonferroni correction (8 condition x 9 components, see Table S1). The more positive
the correlation, the stronger the association between the reference function and synchronization timeseries from

ICs of interest.

Results
Conventional GLM results

Brain activation maps produced by the standard GLM approach revealed that all conditions engaged visual
cortices and fronto-parietal areas, which may reflect the visual nature of all stimuli and general attention
processes (see Fig. 1). Subtraction contrasts between pain and control in both physical and affective conditions
revealed typical pain empathy networks. Physical pain compared with the control condition revealed increased
activations in bilateral clusters including the IPL, dorsomedial prefrontal cortex (dmPFC), insula and IFG, as
well as right lateralized clusters in the MTL, inferior occipital gyrus (I0G), amygdala and thalamus (FWE peak
level corrected, p < 0.05). Subtraction contrasts between affective pain and control showed increased activation

in the bilateral IPL, MTL and TPJ (FWE peak level corrected, p < 0.05).
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Fig.1 Activation maps (unthresholded) from the conventional GLM approach. The BOLD activation maps for
each task condition (middle) as compared to baseline (left), or the relative subtraction contrasts between pain
and control in physical and affective conditions, respectively (right).

Synchronization results

One of the resulting ten ICs was labeled as unclassified because the spatial weights were mostly in white
matter and CSF and could not be replicated in split half sample replication (see Fig. S1). Five of the nine
remaining components were related to physical stimuli (domain general networks: C2 and C3; task condition-
specific networks: C1,C5, C9) and the other three components corresponded to affective stimuli (domain general
networks: C4 and C6; task condition-specific network: C8) and one corresponds to the default mode network
(C7) (see Fig. 2).

The synchronization time series of ICA components C2 and C3 were highly correlated with the reference
function of physical (limb) stimuli blocks (C2: r = 0.377, p < 0.001; C3: r = 0.598, p < 0.001; see Table S1).
The spatial map of C2 exhibited the strongest weights in the visual network including the bilateral middle/inferior
occipital gyrus, with visual inspection revealing that synchronization peaks of the C2 component were
pronounced at the onset of each task block, suggesting that C2 may capture synchronization in a visual network

predominantly engaged during the onsets of blocks displaying physical stimuli. In addition, C3 was temporally
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related to both physical conditions, such that this component significantly correlated with the reference function
of physical pain blocks (r =0.423, p <0.001) as well as physical control blocks (r =0.316, p < 0.001; Fisher z-
test,z =1.268, p = 0.205; ; see Table S1), with the spatial pattern of C3 suggesting synchronization in a network
incorporating the bilateral middle occipital and middle temporal as well as inferior parietal, and
ACC/ventromedial prefrontal cortex (vmPFC) regions.

The synchronization time series of C1 and C5 were highly correlated with the reference function of physical
pain blocks. Although C1 showed a domain general association with all physical stimuli (C1: r = 0.568, p <
0.001), examination of the condition-specific reference functions revealed that this component demonstrated a
stronger association with the temporal reference function of physical pain blocks (r = 0.553, p < 0.001) rather
than physical control blocks (r = 0.149, p = 0.032; significant difference between the conditions according to
Fisher z-test,z=4.773, p <0.001, Cohen’s g = 0.473; medium effect size, details see also Table S1). The spatial
pattern of C1 had strongest weights in the inferior/superior parietal regions, including the bilateral postcentral
and supramarginal gyrus, as well as additional clusters in the bilateral insula and adjacent IFG. Furthermore,
component C5 was also temporally related to the physical pain blocks (r =0.253, p < 0.001) rather than physical
control blocks (r =-0.045, p =0.519; Fisher z-test,z=3.072, p = 0.002, Cohen’s g = 0.304; medium effect size).
The spatial pattern of C5 had strongest weights in the bilateral Al and the adjacent IFG as well as dmPFC and
adjacent MCC regions.

The synchronization time series of C9 were highly correlated with the reference function of physical control
blocks (r = 0.472, p < 0.001) but not physical pain blocks (r =- 0.344, p < 0.001; Fisher z-test, z = 8.821, p <
0.001, Cohen’s g = 0.871; large effect size; see Table S1) with the spatial pattern indicating strongest weights in
the bilateral precentral and postcentral gyrus.

The synchronization time series of C4 and C6 were highly correlated with the reference function of affective
(face) stimuli blocks (C4: r =0.528, p < 0.001; C6: r =0.213, p = 0.002; see Table S1). The spatial pattern of
C6 had strong weights predominantly located in the medial and superior occipital visual regions including the

cuneus, calcarine and lingual gyrus, and regions engaged in social and face processing including the fusiform

and superior temporal gyrus. And precuneus. Thus, C6 may capture visual network related to face processing.

C4 was temporally related to both affective pain blocks (r = 0.396, p < 0.001) and affective control blocks (r =
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0.255,p <0.001; Fisher z- test, z = 1.600, p = 0.110; see Table S1) and had strong spatial weights in the bilateral
posterior cerebellum, occipital and temporal regions including cuneus, fusiform gyrus and precuneus, as well as
the thalamus and superior frontal regions.

The synchronization time series of C8 was correlated with the reference function of affective control blocks
(neutral facial expression, r = 0.257, p < 0.001) but not affective pain blocks (r =- 0.132, p < 0.001; Fisher z-
test, z = 3.996, p < 0.001, Cohen’s g = 0.395; large effect size; see Table S1) and the spatial pattern indicated
strongest weights in the right inferior and middle temporal gyrus including the fusiform gyrus, and superior
mPFC. None of the components specifically related to the temporal reference function of the affective pain
condition.

Finally, the synchronization time series of C7 was not specifically associated with a specific task condition
(all r <0.133, p > 0.055) and was observed to have strong spatial weights predominantly located in the default

mode network (precuneus, posterior cingulate cortex and vmPFC).
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Fig.2 Synchronization of the nine components. (C = Component; R = Right; L = Left). The left panel displays
correlation coefficients of each component and the most associated task condition. The middle panal displays
the synchronization time courses for each component and the GLM reference functions it is most associated with.
The right panel shows the spatial weights for each component (visualized with BrainNet Viewer (Xia, Wang, &
He, 2013)).

Discussion
The present study employed a data-driven ISPS approach to a large task-fMRI data set of healthy subjects

that used visual stimuli to engage pain empathic brain networks by presenting affective and physical pain stimuli
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as well as corresponding non-painful control stimuli. The synchronization approach determined networks that
were engaged across processing of physical or affective stimuli, respectively. Moreover, task condition-specific
networks were observed for physical pain, physical control and affective control stimuli, while no robust
networks were determined for the affective pain stimuli.

With respect to the processing of physical stimuli, the ISPS approach reliably identified networks engaged
in domain-general processing of physical stimuli as well as pain empathy specific networks. Components C2
and C3 were associated with the reference functions modelling both physical pain and physical control
conditions, suggesting general inter-subject synchronization of these components for physical stimuli
irrespective of pain empathic processing. Component C2 predominately captured a network encompassing
primary visual processing areas in the medial and inferior occipital lobe, likely reflecting processing of low-level
visual features and object categorization (DiCarlo, Zoccolan, & Rust, 2012). Visual inspection revealed
pronounced synchronization during the beginning of physical stimuli blocks, which may reflect stronger
engagement of object categorization or novelty detection at the onset of the condition-specific block (Ranganath
& Rainer, 2003) or unspecific mechanisms related to repeated presentation of similar visual stimuli in visual
processing areas such as habituation or repetition suppression processes (Vidyasagar, Stancak, & Parkes, 2010).
Component C3 primarily encompassed middle temporal and inferior parietal, as well as mPFC regions. This
synchronized network overlaps with parietal and temporal regions engaged during action observation (Caspers,
Zilles, Laird, & Eickhoff, 2010; Molenberghs, Cunnington, & Mattingley, 2012), including observation of
complex hand-object manipulations (Errante & Fogassi, 2019) that have been determined employing traditional
BOLD level subtraction methods. The mPFC is a functionally highly heterogenous region involved in a broad
range of emotional and cognitive functions, which in concert with parietal and temporal regions, supports social
cognitive functions including mentalizing during action observation and decoding of goals based on observed
body-part motions (Spunt, Satpute, & Lieberman, 2010; Van Overwalle & Baetens, 2009).

Consistent with previous studies employing hypothesis driven GLM approaches and subtraction contrasts
comparing physical pain with matched non-painful stimuli, the synchronization time series of two components
(C1, C5) specifically correlated with the temporal reference function of physical pain blocks. The components

encompassed a network primarily including the inferior and lateral parietal regions, the postcentral and
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supramarginal gyrus, Al and adjacent IFG as well as the dmPFC and adjacent MCC regions. Previous meta-
analytic results from studies employing subtraction contrasts revealed a highly overlapping network engaged
during empathic responses, including pain empathy (Fan et al., 2011; Lamm et al., 2011; Timmers et al., 2018).
More specifically, component C5 exhibited predominately associations with core nodes of the network engaged
in experiencing first-hand as well as vicarious pain, such as the Al and MCC (Bernhardt & Singer, 2012; Jackson
et al., 2006; Singer et al., 2004), whereas component C1 encompassed regions engaged in social cognitive
processes that coactivate with empathy responses (Bernhardt & Singer, 2012; Shamay-Tsoory, 2011) and may
support or modulate the experience of empathy, including the inferior parietal, inferior frontal and dmPFC
regions engaged in mirror neuron(Molenberghs et al., 2012) and mentalizing processes (Schurz et al., 2014).
Together this suggests that the ISPS approach can identify the core networks engaged in pain empathic processes
and, in addition, compared with the standard subtraction method, it can differentiate networks primary engaged
in the pain-associated response from social cognitive networks considered to modulate and support the pain
empathic response. The physical control condition was additionally associated with a separate component (C9)
primarily encompassing bilateral precentral and postcentral gyrus.

Two components (C4, C6) were correlated with the reference function for both affective pain and affective
control (facial) stimuli, suggesting that these components may capture aspects underlying general face
processing independent of pain. Component C6 encompassed primary visual processing regions in the occipital
cortex, including medial occipital and calcarine regions, possibly reflecting primary visual processing of facial
stimuli. C4 additionally encompassed temporal and superior frontal regions strongly involved in face processing
and face recognition, such as the fusiform gyrus (Fusar-Poli et al., 2009; Sabatinelli et al., 2011), suggesting that
the synchronization approach was able to differentiate the networks engaged in these sub-processes. The
affective control condition was additionally associated with a separate component (C8) primarily encompassing
inferior temporal and superior mPFC regions.

Surprisingly, the reference function for affective pain stimuli was not significantly associated with any of
the identified components, suggesting that the concomitant pain information may have interfered with
synchronicity across participants. Although the present standard GLM subtraction analysis and previous meta-

analysis encompassing studies using facial pain stimuli revealed activation in pain empathy networks (Timmers
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et al., 2018) a corresponding network that specifically associated with the reference function of the affective
pain blocks was not found using the synchronization approach. The lack of condition-specific associations for
this condition might be explained in the context of the group level strategy the ISPS is based upon, such that
larger individual differences during affective pain observation may have contributed to the lack of synchronized
networks in this condition. If the affective pain stimuli induced highly variable responses across subjects, this
inter-subject variability would reduce inter-subject synchronization during this condition. Previous studies
suggest that dimensional variables such as trait alexithymia and autism (Li et al., 2019) as well as categorical
variables including sex and genotype (Warrier et al., 2018) modulate neural affective pain processing and may
have specifically affected processing of painful faces. Finally, the affective pain pictures can be considered as
the most ambiguous in the paradigm — the other stimuli are pretty easily identifiable to the observer, however
the interpretation of the painful faces (without displaying a noxious agent in difference to the limb pain pictures)
may need more interpretation and may additionally vary as a function of previous experience of the participants.
Finally, a component encompassing core regions of the default mode network, specifically posterior parietal and
medial frontal regions (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010) did not synchronize with
any of the task-dependent reference functions.

The findings of the present study need to be considered in the context of some limitations. First, the
exploratory ISPS approach cannot account for individual differences such as sex differences. Second, despite
the split half replication approach employed here, replications in independent samples are required to fully
elucidate the robustness of the findings.

Together, the present results further demonstrate that the ISPS approach may represent a valuable
exploratory analysis method that can reveal network synchronization in the context of task-based fMRI analyses
and can separate networks that support complex social emotional processes such as empathy. In the context of
growing evidence for dysregulations in pain empathic processes in subjects with high levels of pathology-
relevant traits such as alexithymia or autism (Bird & Viding, 2014; Li et al., 2019) as well as in patient
populations with depression (Xu et al.,2019) or schizophrenia (Vistoli, Lavoie, Sutliff, Jackson, & Achim, 2017)
the ISPS method may furthermore allow to dissect impaired network-level integration underlying social

cognitive deficits.
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Supplementary Material
Assessment of number of components and replication

We compared 10 and 15 component ICA solutions in the current data set. All subjects were randomly split
into two subgroups (original sample and confirmatory sample) three times for replication and assessment of
number of components. ‘Replicability’ was measured in three ways: 1) the number of components that had
‘matching’ component pairs in the confirmatory sample in terms of visual examination between the original and
confirmatory ICA solutions, 2) the spatial correlation between the ‘matching’” component pairs from the original
and confirmatory ICA solutions, and 3) the temporal correlation between the ‘matched’ components from the
original and confirmatory ICA solutions. This replicability analysis also allowed an assessment of the degree to
which the synchronization approach replicates across samples. Results suggested that the 10-component ICA
solution (1st/2nd/3rd time of grouping: matching components: 9/9/9 out of 10; rSpatial: 0.69/0.66/0.64,
rTemporal: 0.73/0.70/0.69) was more replicable compared with the 15 component ICA solution (matching
components: 13/13/13 out of 15; rSpatial: 0.54/0.61/0.52, rTemporal: 0.65/0.67/0.63). Thus, results from the 10-

component ICA solution are presented.

o 4 N &

Component 10

Synchronization
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1

o

Fig. S1 Unclassified component in pain empathy task. C10 was labeled as unclassified based on voxel weight
spatial patterns in white matter and cerebrospinal fluid regions, and it also could not be replicated in split half

sample replication.
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Table S1 Temporal correlation between ICA components and GLM hypothesized reference functions.

Physical ~ Physical Affective Affective
Physical ~ Affective Pain  Control
Pain Control Pain Control

Cl  0.55* 0.15 ¢ -0.37* -0.32* 0.57* -0.56* 0.15 -0.14
C2  0.25* 0.21 -0.57* -0.36* 0.38%* -0.75%* -0.25*  -0.12
C3  0.42* 0.32%* -0.42% -0.48* 0.60* -0.73* -0.00 -0.13
C4 -0.20 -0.31* 0.40%* 0.26* -0.41* 0.53* 0.16 -0.04
C5  0.25% -0.04 7§ -0.43* 0.04 T 0.17 -0.31* -0.14 -0.00
Cc6 -0.14 -0.27* 0.10 0.16 -0.33* 0.21 -0.03 -0.08
C7  0.09 0.13 -0.04 -0.11 0.18 -0.12 0.04 0.02
c8  0.05 -0.02 -0.13 0.26* 7 0.02 0.10 -0.07 0.19
C9  -0.34%* 047* ¥ -0.13 0.06 0.10 -0.05 -0.38* 0.43*

* p < 0.05 Bonferroni-corrected (x 72) for correlation coefficient.

1 p < 0.05 Fisher z- test for correlations between pain and control.
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