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Abstract 

Recent approaches for understanding the neural basis of pain empathy emphasize the dynamic construction of 

neural networks underlying this multifaceted social cognitive process. Inter-subject phase synchronization (ISPS) 

is an approach for exploratory analysis of task-based fMRI data that reveals brain networks dynamically 

synchronized to task-features across subjects. We applied ISPS to task-fMRI data assessing vicarious pain 

empathy in healthy subjects (n=238). The task employed physical (limb) and affective (faces) painful and 

corresponding non-painful visual stimuli. ISPS revealed two distinct networks synchronized during physical 

pain observation, one encompassing anterior insula and midcingulate regions strongly engaged in (vicarious) 

pain, and another encompassing parietal and inferior frontal regions associated with social cognitive processes 

which may further modulate and support the pain empathic response. No robust network synchronization was 

observed while processing facial expressions of pain, possibly reflecting high inter-individual variation in 

response to socially transmitted pain experience. ISPS also revealed networks related to task onset or general 

processing of physical (limb) or affective (face) stimuli which encompassed networks engaged in object 

manipulation or face processing, respectively. Together, the ISPS approach permits segregation of networks 

engaged in different psychological processes, providing additional insight into shared neural mechanisms of 

empathy for physical pain across individuals.   
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Introduction 

Observing others in pain elicits pain empathetic responses in humans. Pain empathy refers to vicariously 

experiencing and - at least to some extent – understanding the feelings of other’s pain by connecting with those 

same feelings in one’s self. The anterior insula (AI) and the anterior cingulate cortex (ACC) - which represent 

core nodes of the pain matrix (Price, 2000; Wager et al., 2013) and larger salience network (Uddin, 2015)- 

respond both during experiencing first-hand pain as well as observing pain in others (Bernhardt & Singer, 2012; 

Jackson, Rainville, & Decety, 2006; Singer et al., 2004). Meta-analyses of fMRI studies have furthermore 

confirmed robust engagement of the AI and cingulate regions, specifically dorsal ACC and anterior portions of 

the midcingulate cortex (MCC) during empathic processes, including pain empathy (Fan, Duncan, de Greck, & 

Northoff, 2011; Lamm, Decety, & Singer, 2011; Timmers et al., 2018). Empathy is a multifaceted social-

cognitive process which employs several emotional and cognitive systems (Shamay-Tsoory, 2011), such as the 

mirror-neuron system underlying simulation and affect sharing which comprises the inferior frontal gyrus (IFG) 

and inferior parietal lobule (IPL) (Iacoboni & Dapretto, 2006), mentalizing and self-other discrimination which 

additionally engage the temporoparietal junction (TPJ), the medial prefrontal cortex (mPFC), the posterior 

cingulate cortex (PCC) and the medial temporal lobe (MTL) (Kurczek et al., 2015; Saxe & Kanwisher, 2003; 

Schurz, Radua, Aichhorn, Richlan, & Perner, 2014; Uddin, Iacoboni, Lange, & Keenan, 2007).  

Inspired by approaches adapted from network neuroscience, researchers have recently begun to move away 

from trying to pinpoint specific patterns of regional brain activation associated with pain empathy and to consider 

pain empathy as a process relying on the dynamic construction of neural networks (Betti & Aglioti, 2016). These 

network-based approaches have the advantage of moving beyond the cognitive subtraction methodology of 

identifying functional specialization and can describe the contribution of interactions among brain regions that 

dynamically associate across time (Kucyi & Davis, 2015). The conventional general linear model (GLM) 

approach for analysis of task-fMRI data is hypothesis-driven such that a hypothesized reference function that 

specifies onset and duration of task-specific conditions is convolved with the assumed blood-oxygen-level 

dependent (BOLD) time courses (Friston et al., 1994). This approach relies on priors with respect to the temporal 

structure of the task as well as the neural response in terms of the BOLD-signal as described in the hemodynamic 

response function (HRF). These assumptions may be violated in studies examining complex and dynamic 
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processes like pain empathy, such that behavioral and neural responses to pain stimuli may last longer, and may 

not immediately stop as soon as the stimuli disappear. Analysis of task-driven brain activity during these 

paradigms may thus require alternate modeling approaches.  

For over a decade, inter-subject synchronization measures of brain activation have been well established in 

tasks related to auditory stimuli (Hejnar, Kiehl, & Calhoun, 2007), narrated stories (Finn, Corlett, Chen, 

Bandettini, & Constable, 2018) and movies (Glerean, Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012; Hasson, 

Nir, Levy, Fuhrmann, & Malach, 2004; Kauppi, Jääskeläinen, Sams, & Tohka, 2010). These studies are based 

on earlier work demonstrating that brain regions produce similar temporal dynamics across participants 

experiencing the same task event concurrently (Hanson, Gagliardi, & Hanson, 2009). Recently, an inter-subject 

phase synchronization (ISPS) analysis which combines the instantaneous phase synchronization measure 

(Glerean et al., 2012; Kauppi, Pajula, & Tohka, 2014) and independent component analysis (ICA) (Beckmann 

& Smith, 2004, 2005; Calhoun, Kiehl, & Pearlson, 2008) has been introduced as a means for conducting 

exploratory analysis of task-based fMRI data (Bolt, Nomi, Vij, Chang, & Uddin, 2018). This approach estimates 

the task relevant brain networks that dynamically synchronize during the task across participants in a data-driven 

manner, without dependence on a priori reference functions. The advantage of such an approach over the 

traditional GLM approach is that one can potentially gain information about brain responses that is not predicted 

by the hypothesized temporal structure of the task. The efficiency and power of the ISPS approach have recently 

been demonstrated in a simple motor task and a social cognitive task provided by the Human Connectome Project 

(Barch et al., 2013; Bolt et al., 2018). In the current study, we applied this data-driven approach to a large sample 

of fMRI data collected during performance of a pain empathy task employing affective and physical pain 

empathy stimuli as well as corresponding non-painful control stimuli in order to explore neural network 

synchronization during vicarious pain empathy. 

 

Methods  

Participants and task paradigm  

252 healthy adults were recruited for the study, which was approved by the local ethics committee at the 

University of Electronic Science and Technology of China. All participants signed written informed consent and 
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received monetary compensation for their participation. The study was approved by the local ethics committee 

and was in accordance with the latest revision of the Declaration of Helsinki. Neuroimaging data from six 

subjects were lost due to technical failure. Furthermore, four left-handed participants and four participants with 

head motion exceeding 3.0 mm translation or 3° rotation were excluded. Consequently, 238 participants (120 

males; 17-29 years old, mean age = 21.58 ± 2.32 years) remained in the final analysis. These data have been 

previously published in a study examining the common and specific associations of autistic traits and alexithymia 

with neural reactivity (Li et al., 2019). Importantly, the previous study employed a mass-univariate GLM 

approach, and the focus of the previous study was independent from the aim of the present study.  

The pain empathy paradigm (see also Li et al., 2019) employed a blocked design including four 

experimental conditions (physical pain, affective pain, physical control, affective control). The physical stimuli 

showed a person’s hand or foot in painful or non-painful everyday situations from a first-person perspective (see 

Meng et al., 2012) and the affective stimuli consisted of painful and neutral facial expressions from 16 Chinese 

subjects (8 males) (see  Sheng & Han, 2012). A total of 16 picture blocks (4 blocks per condition) were presented 

in a pseudorandomized order (for all participants) and interspersed with a jittered inter-block interval of 8/10/12s 

showing a red fixation cross. Each picture block (16s) had four homogeneous stimuli displayed for 3s followed 

by a 1s white fixation cross on a gray background. The total duration of the task was 436s acquired in a single 

fMRI run. Participants were required to passively view the stimuli.  

 

Image acquisition and data preprocessing  

Neuroimaging data were collected on a 3.0-T GE Discovery MR750 system (General Electric Medical 

System, Milwaukee, WI, USA). Functional time-series were acquired using a T2*-weighted echo-planar imaging 

(EPI) sequence (repetition time: 2000 ms; echo time: 30 ms; flip angle: 90°; number of slices: 39 (interleaved 

ascending order); slice thickness: 3.4 mm; slice gap: 0.6 mm; field of view: 240 × 240 mm2; resolution: 64 × 

64). To improve normalization of the functional MRI data, high resolution T1-weighted structural images were 

additionally acquired using a 3D spoiled gradient recalled (SPGR) sequence (repetition time: 6 ms; echo time: 

minimum; flip angle: 9°; number of slices: 156; slice thickness: 1 mm without gap; field of view: 256 × 256 

mm2; acquisition matrix: 256 × 256). OptoActive MRI headphones (http://www.optoacoustics.com/) were used 
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to reduce acoustic noise exposure for the participants during MRI data acquisition. 

Preprocessing was conducted using standard procedures in SPM12 (Statistical Parametric Mapping, 

http://www.fil.ion.ucl.ac.uk/spm/), including removal of the first 10 volumes to allow MRI equilibration and 

active noise cancelling, head motion correction using a six-parameter rigid body algorithm, tissue segmentation 

and skull-stripped bias-correction for the high-resolution structural images, co-registration of the mean 

functional image to structural image, normalization (resampling at 3 × 3 × 3 mm) to Montreal Neurological 

Institute (MNI) space and spatial smoothing with 8mm full-width at half maximum (FWHM) Gaussian kernel. 

Additionally, we performed denoising using ICA-AROMA (Pruim et al., 2015).  

 

Inter-subject phase synchronization (ISPS) analysis 

Following previous work (Bolt et al., 2018), preprocessing for the synchronization analysis additionally 

included detrending and filtering (0.01-0.1 Hz) using DPARSF (http://www.restfmri.net/forum/DPARSF, Yan 

& Zang, 2010). For each subject, time-series of each voxel were extracted and z-transformed. The inter-subject 

instantaneous phase synchronization analysis (Bolt et al., 2018; Glerean et al., 2012) works by first creating an 

analytic (i.e. complex-valued) representation of the preprocessed BOLD signal using the Hilbert transformation. 

We calculated phase synchronization at each time point using a metric known as circular variance. This metric 

measures the dispersion of phase angles across all subject’s analytic (complex-valued) time series at each time 

point. This measure provides a single summary statistic across participants at each time point, as opposed to the 

subject pair-wise average angular distance measure used in previous studies (Bolt et al., 2018; Kauppi et al., 

2014). At each time point, we subtracted the circular variance from 1 to obtain the synchronization measure. The 

synchronization measure varies from 0 to 1, where a value of 1 represents complete similarity of phase signals, 

and a value of 0 represents the complete absence of similarity of phase signals. 

Thus, the result of the instantaneous phase synchronization analysis is a time-series of synchronization 

values for each voxel in the brain, representing the average synchrony (the average absolute angular distance) 

across participants for each time point (TR). Rather than a conventional region-of-interest (ROI-based) analysis 

of synchronization, we chose to use a data-driven independent component analysis (ICA) that incorporates 

synchronization time signals across the entire brain to estimate possible synchronization networks that appear 
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across the course of the task scan. ICA was implemented through FSL's MELODIC software (Beckmann, 

DeLuca, Devlin, & Smith, 2005). This approach is equivalent to a single-subject ICA applied to group-level 

synchronization time series across all voxels in the brain, rather than the original signal time-courses of all voxels. 

As in previous work (Bolt et al., 2018), a 10-component ICA solution yielded the highest replicability compared 

with 15 and 20 component solutions. In the present data set, the 10 component ICA solution was also more 

replicable compared with the 15 component ICA solution (see SI). Thus, results from the 10-component ICA 

solution are presented. Components were labeled as unclassified if the spatial weights had characteristic artifact 

patterns, such as strong weights in white matter, cerebrospinal fluid (CSF) or along the surface of the brain. The 

time course of independent components (ICs) of interest represents the degree of synchronized BOLD activity 

across all subjects at each time point.  

 

General linear model (GLM) analysis 

To compare the brain networks from the phase synchronization analysis to the standard GLM approach, 

conventional GLM analyses on ICA-AROMA denoised data were conducted using SPM12. On the first level 4 

condition-specific regressors (physical pain, affective pain, physical control, affective control) were modelled 

using a boxcar function and convolved with the canonical HRF. The six head motion parameters were 

additionally included as nuisance regressors. A 128 s high-pass filter was applied to further control low-

frequency noise artifacts. At the second level, one sample t-tests were conducted to determine condition-specific 

activation maps, and physical and affective pain networks respectively, employing subtraction contrasts between 

the pain and their respective control conditions. 

 

Association of task block regressors with synchronization time series 

To examine the relationship between the synchronization time series resulting from the ICA with each task 

condition we used the convolved block regressors of the GLM as reference functions. As noted by others 

(Nummenmaa et al., 2014), conventional double-gamma HRF convolved regressors attempt to model a late 

undershoot of the HRF, which would not presumably be present in the case of a voxel synchronization time 

course (which would exhibit no undershoot). Thus, to get the suitable reference functions, we computed another 
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GLM model using the gamma HRF in FSL to account for HRF lag and width, without an undershoot. The 

association between the synchronization time series and a chosen reference function was computed using the 

Pearson correlation with Bonferroni correction (8 condition x 9 components, see Table S1). The more positive 

the correlation, the stronger the association between the reference function and synchronization timeseries from 

ICs of interest.   

 

Results 

Conventional GLM results 

Brain activation maps produced by the standard GLM approach revealed that all conditions engaged visual 

cortices and fronto-parietal areas, which may reflect the visual nature of all stimuli and general attention 

processes (see Fig. 1). Subtraction contrasts between pain and control in both physical and affective conditions 

revealed typical pain empathy networks. Physical pain compared with the control condition revealed increased 

activations in bilateral clusters including the IPL, dorsomedial prefrontal cortex (dmPFC), insula and IFG, as 

well as right lateralized clusters in the MTL, inferior occipital gyrus (IOG), amygdala and thalamus (FWE peak 

level corrected, p < 0.05).  Subtraction contrasts between affective pain and control showed increased activation 

in the bilateral IPL, MTL and TPJ (FWE peak level corrected, p < 0.05).  
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Fig. 1   Activation maps (unthresholded) from the conventional GLM approach. The BOLD activation maps for 
each task condition (middle) as compared to baseline (left), or the relative subtraction contrasts between pain 
and control in physical and affective conditions, respectively (right). 

 

Synchronization results  

One of the resulting ten ICs was labeled as unclassified because the spatial weights were mostly in white 

matter and CSF and could not be replicated in split half sample replication (see Fig. S1). Five of the nine 

remaining components were related to physical stimuli (domain general networks: C2 and C3; task condition-

specific networks: C1, C5, C9) and the other three components corresponded to affective stimuli (domain general 

networks: C4 and C6; task condition-specific network: C8) and one corresponds to the default mode network 

(C7) (see Fig. 2). 

The synchronization time series of ICA components C2 and C3 were highly correlated with the reference 

function of physical (limb) stimuli blocks (C2: r = 0.377, p < 0.001; C3: r = 0.598, p < 0.001; see Table S1). 

The spatial map of C2 exhibited the strongest weights in the visual network including the bilateral middle/inferior 

occipital gyrus, with visual inspection revealing that synchronization peaks of the C2 component were 

pronounced at the onset of each task block, suggesting that C2 may capture synchronization in a visual network 

predominantly engaged during the onsets of blocks displaying physical stimuli. In addition, C3 was temporally 

Physical Control Physical Pain Physical (Pain-Control)

Affective
Control

Affective Pain Affective (Pain-Control)
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related to both physical conditions, such that this component significantly correlated with the reference function 

of physical pain blocks (r = 0.423, p < 0.001) as well as physical control blocks (r = 0.316, p < 0.001; Fisher z-

test, z = 1.268, p = 0.205; ; see Table S1), with the spatial pattern of C3 suggesting synchronization in a network 

incorporating the bilateral middle occipital and middle temporal as well as inferior parietal, and 

ACC/ventromedial prefrontal cortex (vmPFC) regions.  

The synchronization time series of C1 and C5 were highly correlated with the reference function of physical 

pain blocks. Although C1 showed a domain general association with all physical stimuli (C1: r = 0.568, p < 

0.001), examination of the condition-specific reference functions revealed that this component demonstrated a 

stronger association with the temporal reference function of physical pain blocks (r = 0.553, p < 0.001) rather 

than physical control blocks (r = 0.149, p = 0.032; significant difference between the conditions according to 

Fisher z-test, z = 4.773, p < 0.001, Cohen’s q = 0.473; medium effect size, details see also Table S1). The spatial 

pattern of C1 had strongest weights in the inferior/superior parietal regions, including the bilateral postcentral 

and supramarginal gyrus, as well as additional clusters in the bilateral insula and adjacent IFG. Furthermore, 

component C5 was also temporally related to the physical pain blocks (r = 0.253, p < 0.001) rather than physical 

control blocks (r = -0.045, p = 0.519; Fisher z-test, z = 3.072, p = 0.002, Cohen’s q = 0.304; medium effect size). 

The spatial pattern of C5 had strongest weights in the bilateral AI and the adjacent IFG as well as dmPFC and 

adjacent MCC regions.  

The synchronization time series of C9 were highly correlated with the reference function of physical control 

blocks (r = 0.472, p < 0.001) but not physical pain blocks (r =- 0.344, p < 0.001; Fisher z-test, z = 8.821, p < 

0.001, Cohen’s q = 0.871; large effect size; see Table S1) with the spatial pattern indicating strongest weights in 

the bilateral precentral and postcentral gyrus.  

The synchronization time series of C4 and C6 were highly correlated with the reference function of affective 

(face) stimuli blocks (C4: r = 0.528, p < 0.001; C6: r = 0.213, p = 0.002; see Table S1). The spatial pattern of 

C6 had strong weights predominantly located in the medial and superior occipital visual regions including the 

cuneus, calcarine and lingual gyrus, and regions engaged in social and face processing including the fusiform 

and superior temporal gyrus. And precuneus. Thus, C6 may capture visual network related to face processing. 

C4 was temporally related to both affective pain blocks (r = 0.396, p < 0.001) and affective control blocks (r = 
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0.255, p < 0.001; Fisher z- test, z = 1.600, p = 0.110; see Table S1) and had strong spatial weights in the bilateral 

posterior cerebellum, occipital and temporal regions including cuneus, fusiform gyrus and precuneus, as well as 

the thalamus and superior frontal regions.  

The synchronization time series of C8 was correlated with the reference function of affective control blocks 

(neutral facial expression, r = 0.257, p < 0.001) but not affective pain blocks (r =- 0.132, p < 0.001; Fisher z-

test, z = 3.996, p < 0.001, Cohen’s q = 0.395; large effect size; see Table S1) and the spatial pattern indicated 

strongest weights in the right inferior and middle temporal gyrus including the fusiform gyrus, and superior 

mPFC. None of the components specifically related to the temporal reference function of the affective pain 

condition. 

Finally, the synchronization time series of C7 was not specifically associated with a specific task condition 

(all r < 0.133, p > 0.055) and was observed to have strong spatial weights predominantly located in the default 

mode network (precuneus, posterior cingulate cortex and vmPFC).  

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2019. ; https://doi.org/10.1101/841197doi: bioRxiv preprint 

https://doi.org/10.1101/841197
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 2   Synchronization of the nine components. (C = Component; R = Right; L = Left). The left panel displays 
correlation coefficients of each component and the most associated task condition. The middle panal displays 
the synchronization time courses for each component and the GLM reference functions it is most associated with. 
The right panel shows the spatial weights for each component (visualized with BrainNet Viewer (Xia, Wang, & 
He, 2013)). 
 

Discussion  

The present study employed a data-driven ISPS approach to a large task-fMRI data set of healthy subjects 

that used visual stimuli to engage pain empathic brain networks by presenting affective and physical pain stimuli 
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as well as corresponding non-painful control stimuli. The synchronization approach determined networks that 

were engaged across processing of physical or affective stimuli, respectively. Moreover, task condition-specific 

networks were observed for physical pain, physical control and affective control stimuli, while no robust 

networks were determined for the affective pain stimuli.  

With respect to the processing of physical stimuli, the ISPS approach reliably identified networks engaged 

in domain-general processing of physical stimuli as well as pain empathy specific networks. Components C2 

and C3 were associated with the reference functions modelling both physical pain and physical control 

conditions, suggesting general inter-subject synchronization of these components for physical stimuli 

irrespective of pain empathic processing. Component C2 predominately captured a network encompassing 

primary visual processing areas in the medial and inferior occipital lobe, likely reflecting processing of low-level 

visual features and object categorization (DiCarlo, Zoccolan, & Rust, 2012). Visual inspection revealed 

pronounced synchronization during the beginning of physical stimuli blocks, which may reflect stronger 

engagement of object categorization or novelty detection at the onset of the condition-specific block (Ranganath 

& Rainer, 2003) or unspecific mechanisms related to repeated presentation of similar visual stimuli in visual 

processing areas such as habituation or repetition suppression processes (Vidyasagar, Stancak, & Parkes, 2010). 

Component C3 primarily encompassed middle temporal and inferior parietal, as well as mPFC regions. This 

synchronized network overlaps with parietal and temporal regions engaged during action observation (Caspers, 

Zilles, Laird, & Eickhoff, 2010; Molenberghs, Cunnington, & Mattingley, 2012), including observation of 

complex hand-object manipulations (Errante & Fogassi, 2019) that have been determined employing traditional 

BOLD level subtraction methods. The mPFC is a functionally highly heterogenous region involved in a broad 

range of emotional and cognitive functions, which in concert with parietal and temporal regions, supports social 

cognitive functions including mentalizing during action observation and decoding of goals based on observed 

body-part motions (Spunt, Satpute, & Lieberman, 2010; Van Overwalle & Baetens, 2009).  

Consistent with previous studies employing hypothesis driven GLM approaches and subtraction contrasts 

comparing physical pain with matched non-painful stimuli, the synchronization time series of two components 

(C1, C5) specifically correlated with the temporal reference function of physical pain blocks. The components 

encompassed a network primarily including the inferior and lateral parietal regions, the postcentral and 
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supramarginal gyrus, AI and adjacent IFG as well as the dmPFC and adjacent MCC regions. Previous meta-

analytic results from studies employing subtraction contrasts revealed a highly overlapping network engaged 

during empathic responses, including pain empathy (Fan et al., 2011; Lamm et al., 2011; Timmers et al., 2018). 

More specifically, component C5 exhibited predominately associations with core nodes of the network engaged 

in experiencing first-hand as well as vicarious pain, such as the AI and MCC (Bernhardt & Singer, 2012; Jackson 

et al., 2006; Singer et al., 2004), whereas component C1 encompassed regions engaged in social cognitive 

processes that coactivate with empathy responses (Bernhardt & Singer, 2012; Shamay-Tsoory, 2011) and may 

support or modulate the experience of empathy, including the inferior parietal, inferior frontal and dmPFC 

regions engaged in mirror neuron(Molenberghs et al., 2012) and mentalizing processes (Schurz et al., 2014). 

Together this suggests that the ISPS approach can identify the core networks engaged in pain empathic processes 

and, in addition, compared with the standard subtraction method, it can differentiate networks primary engaged 

in the pain-associated response from social cognitive networks considered to modulate and support the pain 

empathic response. The physical control condition was additionally associated with a separate component (C9) 

primarily encompassing bilateral precentral and postcentral gyrus.  

Two components (C4, C6) were correlated with the reference function for both affective pain and affective 

control (facial) stimuli, suggesting that these components may capture aspects underlying general face 

processing independent of pain. Component C6 encompassed primary visual processing regions in the occipital 

cortex, including medial occipital and calcarine regions, possibly reflecting primary visual processing of facial 

stimuli. C4 additionally encompassed temporal and superior frontal regions strongly involved in face processing 

and face recognition, such as the fusiform gyrus (Fusar-Poli et al., 2009; Sabatinelli et al., 2011), suggesting that 

the synchronization approach was able to differentiate the networks engaged in these sub-processes. The 

affective control condition was additionally associated with a separate component (C8) primarily encompassing 

inferior temporal and superior mPFC regions.  

Surprisingly, the reference function for affective pain stimuli was not significantly associated with any of 

the identified components, suggesting that the concomitant pain information may have interfered with 

synchronicity across participants. Although the present standard GLM subtraction analysis and previous meta-

analysis encompassing studies using facial pain stimuli revealed activation in pain empathy networks (Timmers 
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et al., 2018) a corresponding network that specifically associated with the reference function of the affective 

pain blocks was not found using the synchronization approach. The lack of condition-specific associations for 

this condition might be explained in the context of the group level strategy the ISPS is based upon, such that 

larger individual differences during affective pain observation may have contributed to the lack of synchronized 

networks in this condition. If the affective pain stimuli induced highly variable responses across subjects, this 

inter-subject variability would reduce inter-subject synchronization during this condition. Previous studies 

suggest that dimensional variables such as trait alexithymia and autism (Li et al., 2019) as well as categorical 

variables including sex and genotype (Warrier et al., 2018) modulate neural affective pain processing and may 

have specifically affected processing of painful faces. Finally, the affective pain pictures can be considered as 

the most ambiguous in the paradigm – the other stimuli are pretty easily identifiable to the observer, however 

the interpretation of the painful faces (without displaying a noxious agent in difference to the limb pain pictures) 

may need more interpretation and may additionally vary as a function of previous experience of the participants. 

Finally, a component encompassing core regions of the default mode network, specifically posterior parietal and 

medial frontal regions (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010) did not synchronize with 

any of the task-dependent reference functions.  

The findings of the present study need to be considered in the context of some limitations. First, the 

exploratory ISPS approach cannot account for individual differences such as sex differences. Second, despite 

the split half replication approach employed here, replications in independent samples are required to fully 

elucidate the robustness of the findings. 

Together, the present results further demonstrate that the ISPS approach may represent a valuable 

exploratory analysis method that can reveal network synchronization in the context of task-based fMRI analyses 

and can separate networks that support complex social emotional processes such as empathy. In the context of 

growing evidence for dysregulations in pain empathic processes in subjects with high levels of pathology-

relevant traits such as alexithymia or autism (Bird & Viding, 2014; Li et al., 2019) as well as in patient 

populations with depression (Xu et al., 2019) or schizophrenia (Vistoli, Lavoie, Sutliff, Jackson, & Achim, 2017) 

the ISPS method may furthermore allow to dissect impaired network-level integration underlying social 

cognitive deficits.  
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Supplementary Material 

Assessment of number of components and replication 

We compared 10 and 15 component ICA solutions in the current data set. All subjects were randomly split 

into two subgroups (original sample and confirmatory sample) three times for replication and assessment of 

number of components. ‘Replicability’ was measured in three ways: 1) the number of components that had 

‘matching’ component pairs in the confirmatory sample in terms of visual examination between the original and 

confirmatory ICA solutions, 2) the spatial correlation between the ‘matching’ component pairs from the original 

and confirmatory ICA solutions, and 3) the temporal correlation between the ‘matched’ components from the 

original and confirmatory ICA solutions. This replicability analysis also allowed an assessment of the degree to 

which the synchronization approach replicates across samples. Results suggested that the 10-component ICA 

solution (1st/2nd/3rd time of grouping: matching components: 9/9/9 out of 10; rSpatial: 0.69/0.66/0.64, 

rTemporal: 0.73/0.70/0.69) was more replicable compared with the 15 component ICA solution (matching 

components: 13/13/13 out of 15; rSpatial: 0.54/0.61/0.52, rTemporal: 0.65/0.67/0.63). Thus, results from the 10-

component ICA solution are presented.  

 

 

 

Fig. S1   Unclassified component in pain empathy task. C10 was labeled as unclassified based on voxel weight 

spatial patterns in white matter and cerebrospinal fluid regions, and it also could not be replicated in split half 

sample replication. 
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Table S1   Temporal correlation between ICA components and GLM hypothesized reference functions. 

 Physical 

Pain 

Physical 

Control 

 Affective 

Pain 

Affective 

Control 

  
Physical Affective 

 
Pain Control 

C1 0.55* 0.15 † -0.37* -0.32*   0.57* -0.56*  0.15 -0.14 

C2 0.25* 0.21  -0.57* -0.36* †  0.38* -0.75*  -0.25* -0.12 

C3 0.42* 0.32*  -0.42* -0.48*   0.60* -0.73*  -0.00 -0.13 

C4 -0.20 -0.31*  0.40* 0.26*   -0.41* 0.53*  0.16 -0.04 

C5 0.25* -0.04 † -0.43* 0.04 †  0.17 -0.31*  -0.14 -0.00 

C6 -0.14 -0.27*  0.10 0.16   -0.33* 0.21  -0.03 -0.08 

C7 0.09 0.13  -0.04 -0.11   0.18 -0.12  0.04 0.02 

C8 0.05 -0.02  -0.13 0.26* †  0.02 0.10  -0.07 0.19 

C9 -0.34* 0.47* † -0.13 0.06   0.10 -0.05  -0.38* 0.43* 

* p < 0.05 Bonferroni-corrected (x 72) for correlation coefficient. 

† p < 0.05 Fisher z- test for correlations between pain and control. 
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