

Recurrent Neoantigens in Colorectal Cancer as Potential Immunotherapy Targets

Chao Chen,^{1,2,3} Songming Liu^{1,2,3}, Bo Li,^{2,3,*}

¹ BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.

² BGI-Shenzhen, Shenzhen 518083, China.

³ BGI-GenoImmune, Wuhan 430079, China

*Corresponding author: Bo Li, BGI-GenoImmune, Wuhan 430079, China

Abstract

This study was aimed to investigate the mutations in colorectal cancer (CRC) for recurrent neoantigen identification. A total of 1,779 samples with whole exome sequencing (WES) data were obtained from 7 published CRC cohorts. Common HLA genotypes were used to predict the probability of neoantigens at high frequency mutants in the dataset. Based on the WES data, we not only obtained the most comprehensive CRC mutation landscape so far, but also found 1550 mutation sites which could be identified in at least 5 or more patients, including *KRAS* G12D (8%), *KRAS* G12V (5.8%), *PIK3CA* E545K (3.5%), *PIK3CA* H1047R (2.5%) and *BMPR2* N583Tfs*44 (2.8%). These mutations can also be recognized by multiple common HLA molecules as potential ‘public’ neoantigens. Many of these mutations also have high mutation rates in metastatic pan-cancers, suggesting their value as therapeutic targets in different cancer types. Overall, our analysis provides recurrent neoantigens as potential cancer immunotherapy targets.

1. Introduction

Colorectal cancer (CRC) is the third most common malignancy in the world and the second leading cause of cancer-related mortality[1, 2]. Traditional treatments, such as surgery, chemotherapy and radiation, have been important in prolonging patients' survival, but for patients with advanced CRC, especially those with metastatic disease, these treatments are limited and often intolerant[3].

In recent years, immunotherapy, including immune checkpoint inhibitors (ICIs), cancer vaccines and neoantigen-based tumor-infiltrating lymphocytes (TILs), has played an increasingly important role in cancer therapy[4]. Certain CRC patients with microsatellite instability (MSI) could potentially benefit from ICIs treatment[5]. However, not all CRC patients with MSI show clinical efficacy in ICIs treatment. Neoantigen-based immunotherapy is complementary to ICIs since it has no specific

requirement for patient's MSI status nor tumor mutation burden (TMB). Current studies on CRC genomics mainly focus on the dissection of tumor occurrence and metastasis mechanisms, and rarely analyze into tumor-specific neoantigens [6-11]. By integrating the mutation data of already existing CRC cohorts and combining the common HLA genotypes in this population[12, 13], our study is expected to find the common neoantigens in CRC patients and facilitate further development of off-the-shelf neoantigen-based immunotherapy.

2. Materials and Methods

2.1. Genomic Data of CRC

This study was approved by the Institutional Review Board on Bioethics and Biosafety of BGI group. All somatic mutations, including single nucleotide variants (SNVs) and short insertion/deletion (indels), were downloaded from the latest publications (Table 1 and Supplementary Table S1), which represent seven geographically diverse study groups involving 1779 CRC patients. Since all data used in this study were from public databases with informed consent from participants in the original genome study, no additional informed consent was required.

Table 1: Summary of clinical information of CRC cohort, including patients from seven studies and 1779 CRC samples.

Characteristic	Baylor (n=110)	Beijing (n=98)	COCA-CN (n=321)	Genetech (n=74)	Harvard (n=619)	TCGA (n=528)	Texas (n=29)	Total (n=1779)
Age (years)								
<60	38 (34.5%)	48 (49.0%)	155 (48.3%)	0 (0%)	67 (10.8%)	158 (29.9%)	0 (0%)	466 (26.2%)
≥60	70 (63.6%)	50 (51.0%)	166 (51.7%)	0 (0%)	550 (88.9%)	366 (69.3%)	0 (0%)	1202 (67.6%)
Unknown	2 (1.8%)	0 (0%)	0 (0%)	74 (100%)	2 (0.3%)	4 (0.8%)	29 (100%)	111 (6.2%)
Sex								
Female	65 (59.1%)	50 (51.0%)	127 (39.6%)	0 (0%)	380 (61.4%)	253 (47.9%)	15 (51.7%)	890 (50.0%)
Male	45 (40.9%)	48 (49.0%)	194 (60.4%)	0 (0%)	239 (38.6%)	273 (51.7%)	14 (48.3%)	813 (45.7%)
Unknown	0 (0%)	0 (0%)	0 (0%)	74 (100%)	0 (0%)	2 (0.4%)	0 (0%)	76 (4.3%)
Stage								
I	12 (10.9%)	10 (10.2%)	40 (12.5%)	0 (0%)	152 (24.6%)	94 (17.8%)	0 (0%)	308 (17.3%)
II	42 (38.2%)	44 (44.9%)	94 (29.3%)	0 (0%)	187 (30.2%)	196 (37.1%)	0 (0%)	563 (31.6%)
III	48 (43.6%)	39 (39.8%)	130 (40.5%)	0 (0%)	159 (25.7%)	150 (28.4%)	1 (3.4%)	527 (29.6%)
IV	8 (7.3%)	4 (4.1%)	56 (17.4%)	0 (0%)	65 (10.5%)	69 (13.1%)	28 (96.6%)	230 (12.9%)
Unknown	0 (0%)	1 (1.0%)	1 (0.3%)	74 (100%)	56 (9.0%)	19 (3.6%)	0 (0%)	151 (8.5%)
MSI.Status								
MSI-H	24 (21.8%)	8 (8.2%)	0 (0%)	15 (20.3%)	91 (14.7%)	65 (12.3%)	0 (0%)	203 (11.4%)
MSI-L	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	77 (14.6%)	0 (0%)	77 (4.3%)
MSS	81 (73.6%)	32 (32.7%)	0 (0%)	59 (79.7%)	438 (70.8%)	346 (65.5%)	29 (100%)	985 (55.4%)
Unknown	5 (4.5%)	58 (59.2%)	321 (100%)	0 (0%)	90 (14.5%)	40 (7.6%)	0 (0%)	514 (28.9%)

2.2. Pipeline for Neoantigen Prediction

For neoantigen prediction, a total of 43 HLA genotypes were selected with frequencies greater than 5% in the Chinese or TCGA cohort. Mutations, which include 76 non-silent somatic SNVs and 973 indels, could be identified in at least 5 patients. All these mutations were then used for neoantigen prediction by NetMHC[14],

NetMHCpan[15], PickPocket[16], PSSMHCpan[17], and SMM[18]. According to our previous research[19], neoantigen peptides need to meet the following three criteria: (1) Between 8-11 mers length; (2) Affinity $IC_{50} < 500\text{nM}$ on at least two tools; (3) Mutant (MT) peptides affinity of score lower than the wild type (WT).

2.3. Statistical Analysis.

The statistical analysis was done in R-studio and the mutation analysis and drawing were done with the maftools package[20]. If no special instructions were given, $P < 0.05$ was considered significant.

3. Results and Discussion

3.1. The Integrated Mutation Landscape of CRC Patients

The mutation status of all samples is shown in **Figure 1** and **Figure S1**. In general, missense mutation is the most main type of mutations. At the base substitution level, $C > T$ is the dominant mutant form, followed by $C > A$ (**Figure S2**), which is consistent with TCGA and previous reports[21, 22]. The median number of mutations in each sample was 110, among which *APC*, *MUC16*, *TP53*, *SYNE1*, *KRAS* and *PIK3CA* were the most frequently mutated genes. Apart from the samples without MSI information, there are 203 MSI-H samples in the combined cohort (**Table 1**), accounting for 11.4%. The mutation load of MSI samples is higher than the MSS samples with more indel mutations (**Figure S3-S4**).

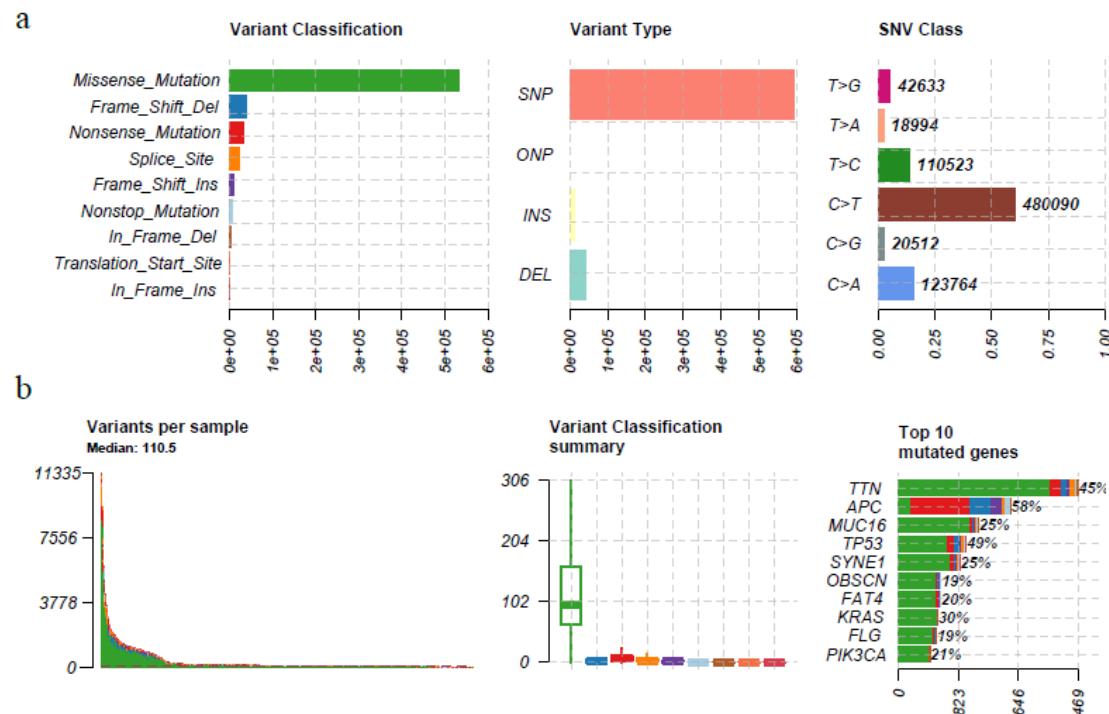


Figure 1 The mutation landscape in CRC cohort. (a) from left to right, counts of each variant

classification, counts of each variant type, counts of each SNV class. (b) from left to right, variants number per sample, variant classification and top 10 significantly mutated genes.

Interestingly, through the integration analysis of mutation pattern in MSS samples, we found the mutation of four genes, including *TENM1*, *SOX9*, *PIK3CA* and *KRAS*, and the mutation of *TP53* gene, were mutually exclusive (Fisher's exact test, $P<0.05$, **Figure S5**). This different mutation pattern may suggest that the carcinogenic mechanisms are different in CRC patients carrying mutations in these four genes and in those carrying *TP53* mutation. Correspondingly, there is no such mutual exclusion effect in MSI samples (**Figure S6**).

There are many hot spot mutations in CRC samples. Of these, 1550 recurrent mutations could be identified in at least 5 patients, with 476 SNVs and 974 indels, respectively. Previous studies have shown that common neoantigens in cancers could be used as potential immunotherapy targets[19, 23]. Therefore, in order to find out whether there are common neoantigens in CRC populations, we used these mutations in downstream analyses to predict tumour-specific neoantigens.

3.2. Neoantigens Shared among CRC Patients

Due to the difference in the frequency of HLA in different populations, in order to search for 'public' neoantigens in CRC populations, we selected high-frequency HLA in Chinese (HLA frequency >5% in Han Chinese [13]) and high-frequency HLA in Americans (HLA frequency >5% in TCGA [24]) for neoantigen analysis. Finally, a total of 43 HLA alleles were used for neoantigen prediction (**Table S2**).

Table 2. Top ten SNVs and the corresponding neoantigens in CRC cohort.

Chr	Location	Gene	AA-change	Peptide	Frequency	HLA-types
chr12	25398284	<i>KRAS</i>	G12D	VVVGADGVGK	143	A11:01
chr12	25398284	<i>KRAS</i>	G12V	VVGAVGVGK	104	A11:01
chr3	1.79E+08	<i>PIK3CA</i>	E545K	STRDPLSEITK	63	A03:01; A11:01
chr3	1.79E+08	<i>PIK3CA</i>	E545K	ITKQEKFDFLW	63	B57:01
chr3	1.79E+08	<i>PIK3CA</i>	H1047R	ARHGGWTTK	45	B27:05
chr3	1.79E+08	<i>PIK3CA</i>	R88Q	REEFFDETRQL	30	B40:01
chr2	70315174	<i>PCBP1</i>	L100Q	RPPVTQRLVV	28	B07:02
chr2	70315174	<i>PCBP1</i>	L100Q	SRPPVTQRL	28	C06:02; C07:01; C07:02
chr22	29091840	<i>CHEK2</i>	K373E	SEILGETSL	21	B18:01; B40:01
chr12	25398284	<i>KRAS</i>	G12A	VVVGAAAGVGK	19	A11:01

We detected 274 SNV derived neoantigens and 1269 indel derived neoantigens (**Table S3-4**). Each SNV usually produces 1-2 high-affinity peptides, while each indel can produce multiple high-affinity peptides. The top ten high frequency mutation sites and neoantigen peptides in SNV and indel are shown in **Table 2** and **Table 3**, respectively. In terms of SNV, mutations of *KRAS*, *PIK3CA*, *PCBP1* and *CHEK2* can produce 10 neoantigens with the highest frequency. In terms of indel, although the mutation frequency is not as high as SNV, generally one indel can produce about 5-10 neoantigen peptides.

Table 3. Top ten indels and the corresponding frequency in CRC cohort.

Chr	Location	Gene	AA-change	Frequency
chr2	203420130	<i>BMPR2</i>	N583Tfs*44	50
chr10	890939	<i>LARP4B</i>	T163Hfs*47	37
chr1	1290110	<i>MXRA8</i>	R301Gfs*107	31
chr18	34205516	<i>FHOD3</i>	S336Vfs*138	29
chr15	45003781	<i>B2M</i>	L15Ffs*41	28
chr12	110019240	<i>MVK</i>	A141Rfs*18	27
chr3	168833257	<i>MECOM</i>	G614Efs*30	26
chr22	20130522	<i>ZDHHC8</i>	T459Rfs*177	20
chr8	103289349	<i>UBR5</i>	E2121Kfs*28	20
chr6	158508009	<i>SYNJ2</i>	P1113Lfs*5	19

3.3. Comparison of Neoantigens in Different Subtypes of CRC

By comparing the neoantigen profiles of different subtypes of CRC, we found that there were more SNV and indel derived neoantigens in MSI-H CRC than in MSS patients (Fisher's exact test, $P<0.01$, **Figure 2a**). The 1269 indel related neoantigens can cover 86.7% of patients with MSI-H colorectal cancer, but only 3.9% of MSS patients were covered, indicating that indel is the main source neoantigens of MSI-H CRC. SNV derived neoantigens can cover 41% of MSS patients and 66% of MSI patients, respectively.

In the comparison of age classification, patients older than 60 carry more neoantigens, with both SNV derived and indel derived neoantigens (Fisher's exact test, $P<0.01$, **Figure 2b**). Women tend to carry more neoantigens than men, especially those derived from indels. In terms of cancer stage, Stage II CRC patients carry the most abundant neoantigens, which may be related to the mutation load of the corresponding subgroup (**Figure 2c-d**).

3.4. Hotspot Mutation-related Neoantigens that May be A Potential Source of Immunotherapy Target in CRC and Pan-cancer

To further investigate the potential significance of these high frequency neoantigens, we focused on sites with the highest mutation frequency, including G12D (*KRAS*), G12V (*KRAS*), E545K (*PIK3CA*), and H1047R (*PIK3CA*), because these sites not only

produce recurrent neoantigens, but also have a higher mutation frequency in CRC cohort (**Figure 3a-b**).

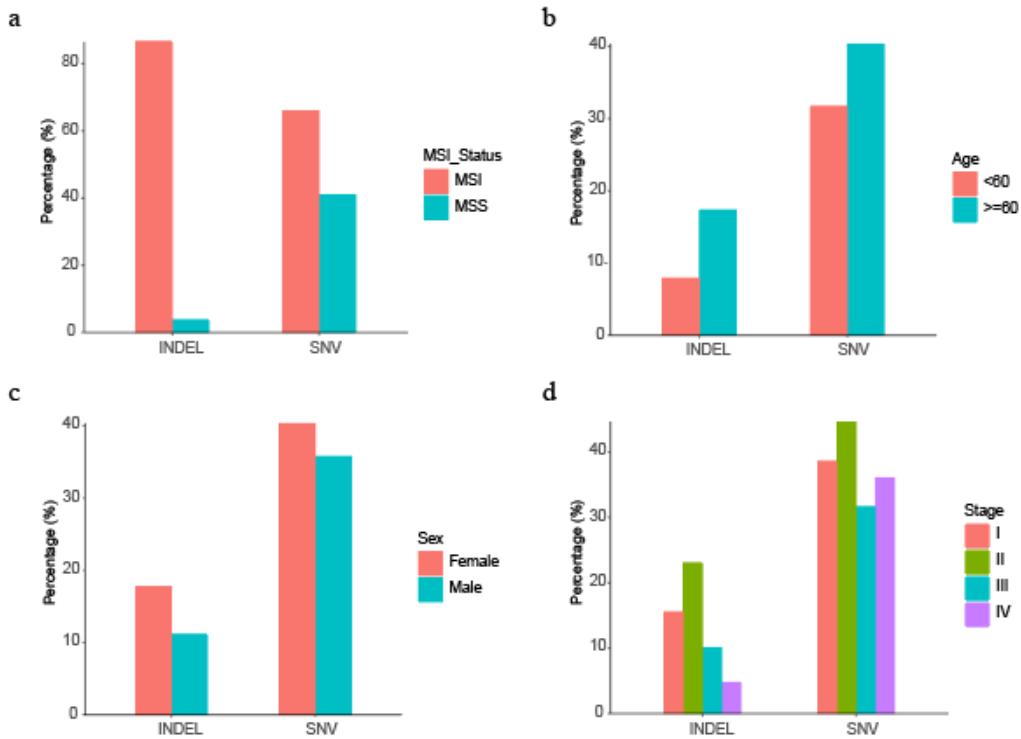


Figure 2 The comparation of neoantigens between different subgroups. (a) between different MSI type; (b) between age ≥ 60 and age <60 groups; (c) between female and male groups; (d) between different stage. These analyses excluded patients with unknown subtypes.

KRAS Gly12 (including G12V, G12C, and G12D) is a classic cancer mutation that occurs more than 20% in the metastatic pancreatic and appendiceal cancers [24]. Both G12D and G12V are highly mutated in multiple metastatic cancers, including Endometrial, CRC, and non-small cell lung cancer (**Figure 4a-b**). Witkiewicz et al. have reported the high frequency of *KRAS* G12D mutations in pancreatic cancer [23,25]. Liang et al. also demonstrated by mass spectrometry in 2019 that *KRAS* G12V mutated neoantigen can be presented by HLA-A11:01 cell lines[25]. And as far as we know, clinical trials for *KRAS* G12V mutations in patients with HLA-A11:01 cancer are already under way (NCT03190941).

PIK3CA is one of the hot driving genes in gastrointestinal malignancies[26, 27]. *PIK3CA* E545K is a hot spot mutation in breast cancer and has corresponding first-line drugs (Alpelisib and Fulvestrant)[28]. In addition to breast cancer, this mutation could be found in more than 5% bladder, Head and Neck, and colorectal cancer patients (**Figure 4c**). *PIK3CA* H1047R is most commonly found in breast cancer[29] and is also frequently mutated among multiple tumor types in the MSK-IMPACT metastatic cancers (**Figure 4d**). Our previous studies have shown that this mutation can be presented by multiple HLA molecules (e.g., HLA-C07:02, HLA-C 07:01, HLA-A30:01, HLA-B58:01) and can be a potential neoantigen in patients with gastric cancer[19].

Combined with the results of this study, it is suggested that this mutation can be used as an important therapeutic target for patients with gastrointestinal tumors.

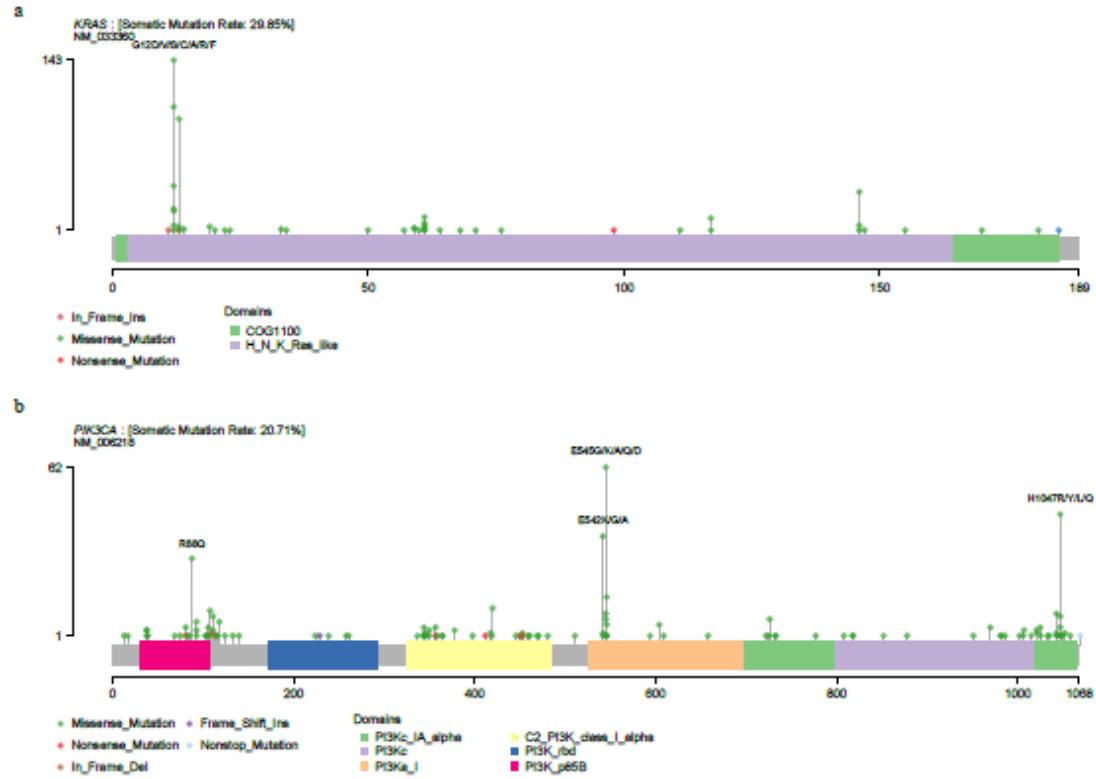


Figure 3 Mutational spectrum of KRAS (a) and PIK3CA (b) in 1179 CRC patients.

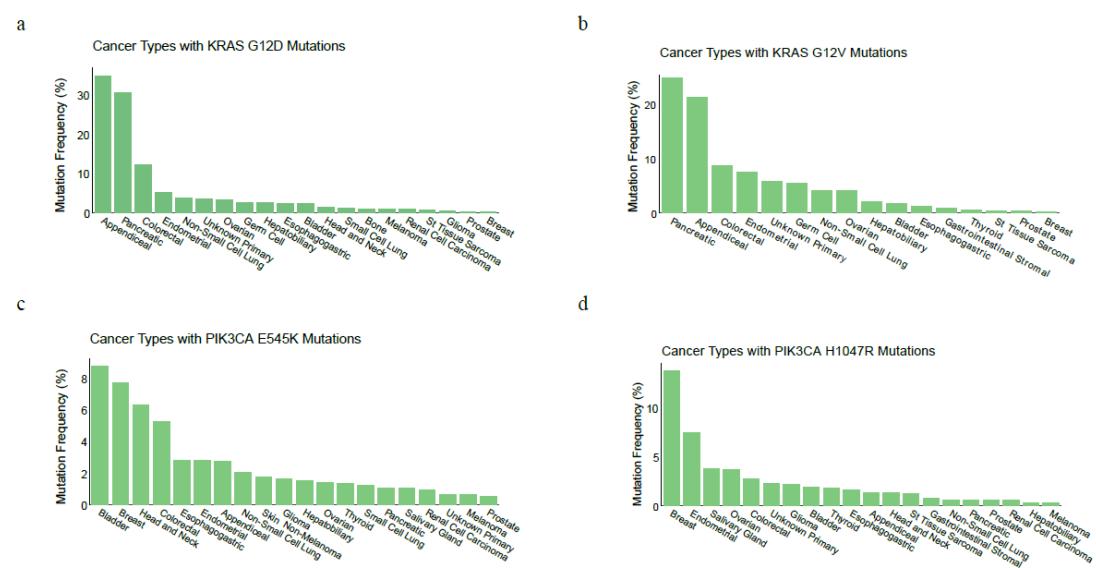


Figure 4 Mutation frequency in MSK-IMPACT cohorts. KRAS G12D (a), KRAS G12V (b), PIK3CA E545K (c), PIK3CA H1047R (d) in MSK-IMPACT pan-cancer cohorts.

4. Conclusion

Based on the analysis of the published WES data of CRC, the most complete mutation

landscape of CRC was constructed. We selected HLA subtypes with high frequency in Chinese and TCGA cohort to predict the common neoantigens in the population. The high frequency mutations, including *KRAS* G12D (8%), *KRAS* G12V (5.8%), *PIK3CA* E545K (3.5%), *PIK3CA* H1047R and *BMPR2* N583Tfs*44, can be recognized by many HLA genes, such as HLA-A1101, HLA-A03:01 and HLA-B57:01. These HLA genotypes are the main HLA subtypes in Chinese and Americans, indicating the broad spectrum of the neoantigens we identified. In conclusion, we have found a series of public neoantigens for CRC, which provide important resources for immunotherapy of CRC in the future.

Conflict of Interest

The authors declare no apparent or potential conflicts of interest related to the publication of this article.

Acknowledgements

We thank for the support of the National Natural Science Foundation of China (No.81702826), the Science, Technology and Innovation Commission of Shenzhen Municipality under grant No. JSGG20170824152728492, the Science, Technology and Innovation Commission of Shenzhen Municipality under grant No. JCYJ20170303151334808.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A: **Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.** *CA: a cancer journal for clinicians* 2018, **68**(6):394-424.
2. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F: **Global patterns and trends in colorectal cancer incidence and mortality.** *Gut* 2017, **66**(4):683-691.
3. Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, Suarez CJ, Berghoff AS, Cremolini C, Falcone A *et al*: **Quantitative evidence for early metastatic seeding in colorectal cancer.** *Nature genetics* 2019, **51**(7):1113-1122.
4. Klebanoff CA, Rosenberg SA, Restifo NP: **Prospects for gene-engineered T cell immunotherapy for solid cancers.** *Nature medicine* 2016, **22**(1):26-36.
5. Dudley JC, Lin MT, Le DT, Eshleman JR: **Microsatellite Instability as a Biomarker for PD-1 Blockade.** *Clinical cancer research : an official journal of the American Association for Cancer Research* 2016, **22**(4):813-820.
6. **Comprehensive molecular characterization of human colon and rectal cancer.**

Nature 2012, **487**(7407):330-337.

7. Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, Bahl S, Cao Y, Amin - Mansour A, Yamauchi M *et al*: **Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma.** *Cell reports* 2016, **15**(4):857-865.
8. Guda K, Veigl ML, Varadan V, Nosrati A, Ravi L, Lutterbaugh J, Beard L, Willson JK, Sedwick WD, Wang ZJ *et al*: **Novel recurrently mutated genes in African American colon cancers.** *Proceedings of the National Academy of Sciences of the United States of America* 2015, **112**(4):1149-1154.
9. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, Chaudhuri S, Guan Y, Janakiraman V, Jaiswal BS *et al*: **Recurrent R-spondin fusions in colon cancer.** *Nature* 2012, **488**(7413):660-664.
10. Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, Dou Y, Zhang Y, Shi Z, Arshad OA *et al*: **Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities.** *Cell* 2019, **177**(4):1035-1049 e1019.
11. Liu Z, Yang C, Li X: **The landscape of somatic mutation in sporadic Chinese colorectal cancer.** *Oncotarget* 2018, **9**(44):27412-27422.
12. Santos E, McCabe A, Gonzalez-Galarza FF, Jones AR, Middleton D: **Allele Frequencies Net Database: Improvements for storage of individual genotypes and analysis of existing data.** *Human immunology* 2016, **77**(3):238-248.
13. Zhou F, Cao H, Zuo X, Zhang T, Zhang X, Liu X, Xu R, Chen G, Zhang Y, Zheng X *et al*: **Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease.** *Nature genetics* 2016, **48**(7):740-746.
14. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M: **NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.** *Nucleic acids research* 2008, **36**(Web Server issue):W509-512.
15. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, Buus S, Nielsen M: **NetMHCpan, a method for MHC class I binding prediction beyond humans.** *Immunogenetics* 2009, **61**(1):1-13.
16. Zhang H, Lund O, Nielsen M: **The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding.** *Bioinformatics* 2009, **25**(10):1293-1299.
17. Liu G, Li D, Li Z, Qiu S, Li W, Chao CC, Yang N, Li H, Cheng Z, Song X *et al*: **PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity.** *GigaScience* 2017, **6**(5):1-11.
18. Peters B, Sette A: **Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method.** *BMC bioinformatics* 2005, **6**:132.
19. Chen C, Zhou Q, Wu R, Li B, Chen Q, Zhang X, Shi C: **A Comprehensive Survey of Genomic Alterations in Gastric Cancer Reveals Recurrent Neoantigens as Potential Therapeutic Targets.** *BioMed research international* 2019, **2019**:1-10.
20. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP: **Maftools: efficient and comprehensive analysis of somatic variants in cancer.** *Genome research* 2018, **28**(11):1747-1756.

21. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, Siu HC, Deng S, Chu KM, Law S *et al*: **Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer.** *Nature genetics* 2014, **46**(6):573-582.
22. Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A *et al*: **Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes.** *Nature genetics* 2012, **44**(5):570-574.
23. Zhou J, Zhao W, Wu J, Lu J, Ding Y, Wu S, Wang H, Ding D, Mo F, Zhou Z *et al*: **Neoantigens Derived from Recurrently Mutated Genes as Potential Immunotherapy Targets for Gastric Cancer.** *BioMed research international* 2019, **2019**:8103142.
24. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z: **Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade.** *Cell reports* 2017, **18**(1):248-262.
25. Liang Z, Qin L, Chen L, Li W, Chen C, Huang Y, Zhang L, Liu S, Qiu S, Ge Y *et al*: **The common neoantigens in colorectal cancer are predicted and validated to be presented or immunogenic.** *bioRxiv* 2019.
26. **Comprehensive molecular characterization of gastric adenocarcinoma.** *Nature* 2014, **513**(7517):202-209.
27. Chen C, Shi C, Huang X, Zheng J, Zhu Z, Li Q, Qiu S, Huang Z, Zhuang Z, Wu R *et al*: **Molecular Profiles and Metastasis Markers in Chinese Patients with Gastric Carcinoma.** *Scientific Reports* 2019, **9**(1).
28. Juric D, Janku F, Rodon J, Burris HA, Mayer IA, Schuler M, Seggewiss-Bernhardt R, Gil-Martin M, Middleton MR, Baselga J *et al*: **Alpelisib Plus Fulvestrant in PIK3CA-Altered and PIK3CA-Wild-Type Estrogen Receptor-Positive Advanced Breast Cancer: A Phase 1b Clinical Trial.** *JAMA oncology* 2019, **5**(2):e184475.
29. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y *et al*: **Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers.** *Nature medicine* 2008, **14**(12):1351-1356.