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Abstract

Eye movements are vital for human vision, and it is therefore important to understand how
observers decide where to look. Meaning maps (MMs), a technique to capture
the distribution of semantic importance across an image, have recently been proposed to
support the hypothesis that meaning rather than image features guide human gaze. MMs
have the potential to be an important tool far beyond eye-movements research. Here, we
examine central assumptions underlying MMs. First, we compared the performance of MMs
in predicting fixations to saliency models, showing that DeepGaze Il — a deep neural network
trained to predict fixations based on high-level features rather than meaning — outperforms
MMs. Second, we show that whereas human observers respond to changes in meaning
induced by manipulating object-context relationships, MMs and DeepGaze Il do not.
Together, these findings challenge central assumptions underlying the use of MMs to

measure the distribution of meaning in images.

Keywords: eye movements, natural scenes, saliency, deep neural networks, meaning maps
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Introduction

Human eyes resolve fine detail only in a small, central part of the visual field, with resolution
dropping off rapidly in the periphery. To sample details, we move our eyes to orient the high-
resolution part of our visual system successively to different parts of a visual scene.
Information about these small scene parts is extracted during fixations — short periods in
which the eyes are relatively stable. Thus, due to the structure of our visual system, human
vision depends on eye movements. How the brain decides where to look in a visual scene is
therefore an important question. A long-standing hypothesis suggests that semantic content
of image regions is important in guiding eye movements. Recent work presented meaning
maps (MMs) as a tool to test this hypothesis (Henderson & Hayes, 2017, 2018). This technique
aims to index the spatial distribution of meaning across an image, which has potential
applications far beyond eye-movement research. Here, we assess and challenge central

assumptions of this novel tool.

A classic finding in eye-movement research shows that the specific task of an observer has an
influence on where they direct their eyes (Yarbus, 1967; Hayhoe & Ballard, 2005). But in
everyday life, we frequently move our eyes without any goal other than to explore the
environment. In the lab, this behavior is examined in free-viewing paradigms, during which
eye movements are recorded while images are viewed without an explicit task (Koehler, Guo,
Zhang, & Eckstein, 2014, but see Tatler, Hayhoe, Land, & Ballard, 2011). To explain what

guides eye movements during free viewing, two opposing accounts have been put forward.

According to the first account, eye movements are guided primarily by image characteristics
(Boriji, Sihite, & Itti, 2013; Itti & Koch, 2001; Parkhurst, Law, & Niebur, 2002). Potential support
for this view comes from saliency models: algorithms, which exclusively use visual features of
an image to predict human fixations. Although early models, which used only simple features
such as local intensity or colors (Itti & Koch, 2000), are now deemed only moderately
successful (Bylinskii et al., 2014), more recent saliency models achieve a remarkably high
performance (Kimmerer, Wallis, Gatys, & Bethge, 2017). These models harness deep
convolutional neural networks — biologically inspired machine learning algorithms, that
somewhat resemble the human visual system (Kietzmann, McClure, & Kriegeskorte, 2019).

However, even such models rely solely on visual features, albeit high-level ones.
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In contrast to the idea underlying saliency models, several authors have argued that during
free viewing, eye movements are mainly guided by the semantic content of the visual scene
(Henderson, Malcolm, & Schandl, 2009; Nystrom & Holmgvist, 2008; Onat, Acik, Schumann,
& Konig, 2014; Rider, Coutrot, Pellicano, Dakin, & Mareschal, 2018; Stoll, Thrun, Nuthmann,
& Einhduser, 2015). This perspective differs fundamentally from the saliency-based approach.
Attributing meaning to certain parts of the scene is impossible without prior knowledge of
the world, i.e., a factor that is independent of the visual input (Hegde & Kersten, 2010; Teufel,
Dakin, & Fletcher, 2018). Consequently, the notion that semantic content guides eye-
movements is inconsistent with the idea that the allocation of fixations is dependent solely
on the distribution of image features. Given that meaning is not image-computable, the
notion that semantic content guides eye-movements is inconsistent with the idea that the

eye-movements are dependent solely on the distribution of image features.

A string of recent studies has claimed to provide support for the role of meaning in driving
eye movements (Hayes & Henderson, 2019; Henderson & Hayes, 2017, 2018; Henderson,
Hayes, Rehrig, & Ferreira, 2018; Peacock, Hayes, & Henderson, 2018). These studies
(reviewed in Henderson, Hayes, Peacock, & Rehrig, 2019) are based on a novel technique
called meaning maps (MMs). A MM for a given image is created by breaking it down into small
isolated patches, which are rated for their meaningfulness independently from the rest of the
visual scene. These ratings are pooled together into a smooth map, which is supposed to
capture the distribution of meaning across the image. Compared to outputs from a simple
saliency model (GBVS, Harel et al., 2006), MMs were more predictive of human fixations. On
that basis it has been claimed that meaning guides human fixations in natural scene viewing

(Henderson & Hayes, 2017, 2018). Here, we examined central predictions of this claim.

First, if MMs measure meaning and if meaning guides human eye-movements, MMs should
be better in predicting locations of fixations than saliency models because these models rely
solely on image features. Therefore, we compared MM s to a range of classic and state-of-the-
art models. We replicate the finding that MMs perform better than some of the most basic
saliency models. Contrary to the prediction, however, DeepGaze Il (DGII; Kimmerer, Wallis,
& Bethge, 2016; Kimmerer et al.,, 2017), a model based on a deep convolutional neural

network, outperforms MMs.
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90 A second prediction is that if MMs are sensitive to meaning and if meaning guides human
91 gaze, differences in eye movements that result from changes in meaning should be reflected
92 in equivalent differences in MMs. We probed this prediction experimentally using a well-
93  established effect: the same object, when presented in an atypical context (e.g., a shoe on a
94  bathroom sink) attracts more fixations than when presented in a typical context because of
95 the change in the semantic object-context relationship (Henderson, Weeks, & Hollingworth,
96  1999; Ohlschldger & V8, 2017). Replicating previous studies, image regions attracted more
97 fixations when they contained context-inconsistent compared to context-consistent objects.
98  Crucially, however, MMs of the modified scenes did not attribute more 'meaning' to these

99 regions. DGII also failed to adjust its predictions accordingly.

100 Together, these findings suggest that semantic information contained in visual scenes is
101  critical for the control of eye movements. However, this information is captured neither by
102  MMs nor DGII. We suggest that similar to saliency models, MMs index the distribution of

103  visual features rather than meaning.

104
105 Method

106  We conducted a single experiment in which human observers free-viewed natural scenes
107  while their eye-movements were being recorded. The obtained data was analyzed in two
108 complimentary ways. First, we compared how well MMs and different saliency models predict
109 locations of human fixations in natural scenes. Subsequently, we assessed the sensitivity of
110 MMs and the best-performing saliency model to manipulations of scene meaning. The
111  reported experiment was not preregistered. The data, the code to create MMs, and all openly
112 available resources used in the study can be accessed via the links provided in the

113  Supplement.
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a b

Fig. 1. lllustration of sample stimuli in (a) the Consistent and (b) the Inconsistent condition
with the Critical Region outlined in yellow and (c, d) human fixations recorded in both
conditions. In this example, a hair brush on a bathroom sink (a) — an object consistent with

the scene context — has been exchanged for a shoe (b) to introduce semantic inconsistency.

Stimuli. We used images from two conditions of the SCEGRAM database (Ohlschliger & V8,
2017): the Consistent and the Semantically Inconsistent conditions (called ‘Inconsistent’
here). In the Consistent condition (used in both analyses), scenes contain only objects that
are typical for a given context. In the Inconsistent condition (used only in the second analysis),
one of the objects is contextually inconsistent. For example, a hairbrush in the context of a
bathroom sink from the Consistent condition is replaced with a flip-flop in the Inconsistent
condition (see Figs. 1a and 1b). Such changes in object-context relationship alter the meaning
attached to the manipulated object. For every scene, we indexed the location of the
consistent and inconsistent objects with the superimposed bounding boxes for both objects
(see Figs. 1a and 1b). We refer to this location as the Critical Region, because it is the only
part of the image that changes between Consistent and Inconsistent conditions. We used 36

selected scenes in both conditions (72 photographs in total, listed in the Supplement together

5
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132 with the selection criteria). We also replicated the main finding of the first analysis in an

133  additional set of 30, very different, images (reported in the Supplement).
134

135 Procedure. The procedure consisted of 3 blocks, interleaved with breaks. Participants were
136  instructed to ‘look carefully at each’ image. Experimental blocks began with an eye tracker
137  calibration/validation. Within each block, observers free-viewed a series of 24 photographs
138 from both SCEGRAM conditions, each for 7 seconds. After image offset, observers were
139  required to press a button to view the next image. Then, a fixation point appeared centrally
140 on a screen and once observers fixate on it (as determined online by their eye-trace), the
141  actual image was displayed. Before starting the experiment, observers viewed a sample image
142  inanidentical regime to familiarize themselves with the procedure. Each stimulus was shown
143 once and the order of presentation was fully randomized. The stimuli were presented against
144  a uniform grey background and had a width of 688 pixels and a height of 524 pixels, which
145  subtended approximately 19.7 and 15 degrees of visual angle, respectively. Stimulus
146  presentation time and size were adopted from a previous study with the SCEGRAM database

147  (Ohlschliger & V8, 2017).
148

149  Observers. 20 volunteers (3 male; mean age 19.4) recruited from the Cardiff University
150 undergraduate population took part in the study. All reported normal or corrected-to-normal
151  vision, provided written consent, and received course credits in return for participation. The
152  study was approved by the Cardiff University School of Psychology Research Ethics
153  Committee. The primary units of interest in our analyses were the distributions of fixations
154  overimages. The number of observers we recruited guarantees that including more observers

155  would not change these distributions significantly (demonstrated in the Supplement).
156

157  Apparatus. The study was conducted in a dimly lit room. SCEGRAM images from both
158  conditions were presented on an LCD monitor (liyama ProLite B2280HS, resolution 1920 by
159 1080 pixels, 21 inches diagonal). Chin and forehead rests were used to ensure that observers

160 maintained the constant distance of 49 cm from the screen. Their eye movements were
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recorded with the frequency of 500 Hz using an EyelLink 1000+ eye tracker placed on a tower
mount. The experiment was controlled by custom-written Matlab (R2017a version) scripts
using Psychophysics Toolbox Version 3 (Kleiner, Brainard, & Pelli, 2007).
a b e
’ YTT'TT“ 4
COWRRRS ] > L\ Step 1
(<3 =)
"‘E‘gwaf“ K ’:"‘ Step 2
{a.m!‘m‘!m)
NS,
C Step 3
Step 4
| -
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E IEI P = Y, pixelWithinPatch;
= n
\ 4

Fig. 2. Illustration of the stimuli and procedure used for creating meaning maps. (a) Grids of
equally spaced circles were used to cut images into fine and coarse patches (only the latter
are illustrated here). The red circle indicates a sample patch in the grid. (b) Here, the sample
patch is highlighted in one of the scenes from the Consistent condition. (c) Patches were
presented in isolation and rated for their meaningfulness by three independent observers on
a scale from 1 to 6. The panel has illustrative purpose only —the scale presented to observers
included additional labels (ranging from ‘Very Low’ to ‘Very High’). (d) Illustration of a
meaning map with greyscale values indicating ‘meaningfulness’. (e) Simplifying illustration of
how meaning maps are generated from ratings. For simplicity sake, only two patches are
shown (step 1). Each patch is rated in isolation (step 2; here only one rating per patch is
shown). All pixels within an image area are then assigned average rating values, taking into
account all ratings for patches that overlap with this area (step 3). For the area of the original
patch (step 4), all pixels are then averaged and the resulting value is assigned to the center of
the patch (step 5). Finally, the patch centers were used as interpolation nodes for thin-plate

splineinterpolation producing a smooth distribution of values over the image (not illustrated).
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181  This procedure was conducted separately for the fine and coarse grid, and the meaning map
182  fora given image was created by averaging the two outcomes and normalizing the result to a

183  range between 0 and 1.
184

185  Creating MMs. To create MMs for our stimuli, we followed the procedure described by
186  Henderson & Hayes (2017, 2018; for details see Fig. 2). Each image was segmented into
187  partially overlapping patches of two sizes: fine patches had a diameter of 107 pixels (3 degrees
188  of the visual angle, or 16 % of the image width), coarse patches of 247 pixels (7 degrees or
189  36% of the image width) (Fig. 2a and b). Their centers were 58 pixels (fine) and 97 pixels

190 (coarse) apart from each other.

191  Next, we collected meaningfulness ratings from human subjects for all patches. Each patch
192  was presented in isolation and rated for its meaningfulness on a 6 point Likert scale (Fig. 2).
193  Asin Henderson and Hayes (2017), we used a Qualtrics survey completed by naive observers
194  recruited via the crowdsourcing platform Amazon Mechanical Turk (see Supplement for
195 eligibility criteria). Each participant provided ratings for 305 or 303 patches of both sizes
196  (selected randomly from all images), on average spent approximately 14 min on the task, and
197  received 2.18 USD as remuneration. In total, 69 individuals were used as raters, with three
198 individuals rating each individual patch. The collected ratings were then used to create MMs

199 (see Fig. 2).

200  When creating MMs for images from both conditions, we exploited the fact that photographs
201  from the Consistent and Inconsistent conditions differ only in the Critical Region (the part of
202 the image containing the manipulated object) while the remaining parts overlap. We
203  collected meaningfulness ratings for the patches belonging to overlapping areas only once,
204  and the separate sets of ratings for Consistent and Inconsistent condition were collected only
205 for those patches that contained at least one pixel belonging to the Critical Region. In total,
206  the number of patches rated in the study amounted to 7013: 4840 fine patches (of which 520
207  belonged to the images from the Inconsistent condition) and 2173 coarse patches (445

208  Inconsistent).

209
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210  Saliency models. In the first analysis, we compared predictive performance of MMs to four
211  saliency models of different complexity. The first two models — GBVS (Harel et al., 2006) and
212 AWS (Garcia-Diaz, Fdez-Vidal, Pardo, & Dosil, 2012) — rely on simple visual features, such as
213 local colors and edge orientations, and share the assumption that fixations land on image
214  regions distinct from their surroundings in terms of values of these features. By contrast to
215  GBVS, AWS includes a statistical whitening procedure to improve performance. Both these
216  models were previously used to estimate the influence of image features relative to cognitive
217  factors on the deployment of fixations: GBVS in the previous studies with MMs, AWS
218  elsewhere (Stoll et al., 2015).

219  Two other models that we compared to MMs — ICF and DeepGaze Il (DGIl) — were designed
220 in a data-driven manner (Kimmerer et al., 2017). Both have the same architecture, consisting
221 of a fixed network that extracts sets of features from images and a readout network that is
222 trained on human fixations separately for each model to combine the features in a way to
223 maximize the models’ predictive power. While the fixed network of ICF extracts only simple
224  visual features (local intensity and contrast), DGII is tuned to features extracted by a deep
225  convolutional neural network pre-trained for object recognition (VGG-19; Simonyan &

226 Zisserman, 2014).

227  All saliency models output smooth maps that predict the probability of image regions to be
228  fixated. Human observers have the tendency to look at the center of images (Tatler, 2007),
229  and therefore this probability is usually higher in the central region of the image. This ‘center
230  bias’ has important consequences for the evaluation of saliency models. Their performance
231  differs depending on whether they are evaluated using a metric expecting some form of this
232 bias or not (Kiimmerer, Wallis, & Bethge, 2018). Here, for the sake of simplicity, we do not
233 incorporate center bias in the models or in the MMs (unlike the original authors) and use an
234  appropriate metric for this situation (see Performance metrics section). Importantly, analyses
235  addressing the issue of center bias in a more extensive way (reported in the Supplement)

236 provide only further support for our conclusions.
237

238  Data pre-processing. Fixation locations from the eye tracker recordings were extracted using

239  the algorithm provided by the device manufacturer operating with the default parameter
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240  values. Thereby, we obtained a discrete distribution of fixations on each image (see Fig. 1c
241  and 1d). Then, in line with the previous MMs studies, we smoothed these discrete
242  distributions with a Gaussian filter with a cutoff frequency of -6 dB, using the function

243  provided by Bylinskii and colleagues (2014).

244  Next, smooth distributions from fixations, models, and MMs were separately normalized to a
245 range from O to 1 for each image. Finally, for each scene, histograms of all distributions from
246 both conditions were matched to histograms of smoothed fixations from Consistent condition
247  using the Matlab imhistmatch function, as in the original MMs studies. Histogram matching
248  makes distributions directly comparable as it ensures that they differ only with respect to

249  their shape, and not their total mass.
250

251  Performance metrics. To compare the ability of MMs and models to predict locations of
252 human fixations in Experiment 1, we use two well-established metrics (Bylinskii, Judd, Oliva,
253  Torralba, & Durand, 2016): Correlation and Shuffled Area Under ROC curve (sAUC; Zhang,
254  Marks, Tong, Shan, & Cottrell, 2007) with the implementations provided by Bylinskii and

255  colleagues (2014).

256  Correlation, used in the previous studies on MMs, is calculated as Pearson's linear correlation
257  coefficient between a smoothed distribution of observers’ fixations over the image and
258 predictions of a saliency model or MMs. We additionally used sAUC (Zhang et al., 2008),
259  which, unlike Correlation, guarantees that the measured differences in performance between
260  models are driven by their sensitivity to factors guiding fixations, and not by the degree to
261  which they include human center bias in their predictions, even implicitly (Kimmerer, Wallis,

262 & Bethge, 2015; Kiimmerer et al., 2018).
263
264 Comparing meaning maps and saliency models — results

265 In the first analysis, we compared performance of four saliency models to MMs in predicting
266  human fixations in the Consistent condition, i.e., when viewing typical scenes with no obvious

267  object-context inconsistencies (Tab. 1, Fig. 3). If human gaze is guided by meaning, and if MMs

10
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provide an index for the distribution of meaning, we would expect MMs to outperform all

saliency models because these models are based solely on image features.

0.8

0.6

0.4

Correlation

0.2

0.8

0.6

sAUC

0.4

0.2

*% n.s. *% *k%k

MMs DGl MMs AWS MMs ICF MMs GBVS
Fkk n.s. n.s. Fkk

MMs DGl MMs AWS MMs ICF MMs GBVS

Fig. 3. Performance of MMs and saliency models in predicting human fixations according to

(a) Correlation and (b) sAUC metrics. Note that according to both metrics DGII predicted

human fixations better than MMs. Asterisks indicate p-values from statistical tests comparing

MMs to different models (reported in Table 1.): * indicates p <.05, ** p <.01, *** <.001 and

‘n.s.” indicates the lack of statistical significance. Grey lines connect values obtained for

individual images. Black vertical bars indicate 95% confidence intervals for the medians.

Predictive power. Correlation and sAUC values obtained for MMs and for each of the models

were compared using Bonferroni-corrected paired Wilcoxon tests (Fig. 3; Tab. 1). We used

non-parametric tests because for some of the distributions the assumptions of normality was

11
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283  not met. For the same reason we chose a median as a measure of centrality (we calculate
284  confidence intervals for median using a bootstrapping method — see details in the
285  Supplement). Additionally, we calculated JZS Bayes Factor (Rouder, Speckman, Sun, Morey, &
286  lverson, 2009) to quantify the evidence for (or against) the differences between models and
287  MMs (Tab. 1). While deviations from normality can be problematic for Bayes factor analyses,
288  they are most likely not an issue in the current situation: the Bayes factors for the key finding

289  are large and the deviations from normality are small.

290  As shown in Tab. 1 and on Fig. 3, according to both measures, MMs outperformed GBVS in
291  predicting human fixations, thereby replicating the results of Henderson and Hayes (2017,
292  2018) using new images and new participants. Contrary to expectations, however, both
293  metrics indicated that DGII predicted fixations better than MMs. Furthermore, performance
294  of AWS and MMs did not differ significantly irrespective of the metrics. Finally, MMs
295  outperformed ICF according to Correlation, but not sAUC. In fact, for the latter metric, JZS-

296  Bayes Factor indicated support for the null hypothesis.
297

298 Table 1. Comparison of Predictive Power of Saliency Models and MMs Using Correlation and

299  sAUC.
Model Median of Median of p-value JZS Bayes
prediction values differences from Z statistic (Bonferroni- Factor
with 95% MMs with 95% corrected)
confidence intervals  confidence intervals
Correlation
DGl 0.83[0.78, 0.87] 0.07 [0.03, 0.11] -3.11 0.00738 32.26
MMs 0.77[0.72,0.81] - - - -
AWS 0.73[0.67,0.76] -0.06 [-0.12, -0.01] -2.23 0.10412 1.48
ICF 0.68[0.61, 0.71] -0.12 [-0.18, -0.06] -3.04 0.00936 16.90
GBVS 0.62 [0.56, 0.68] -0.11 [-0.26, -0.05] -3.97 <.001 396.96
sAUC
DGl 0.79[0.77,0.82] 0.06 [0.05, 0.08] -6.36 <.001 > 1000
MMs 0.73[0.69, 0.76] - - - -
AWS 0.75[0.72,0.77] 0.02 [0.01, 0.04] -2.49 0.0507 0.60
ICF 0.74 [0.70, 0.76] 0.01 [-0.01, 0.02] -0.77 1.00 0.19
GBVS 0.64 [0.60, 0.66] -0.10[-0.12, -0.08] -5.96 <.001 > 1000

12
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300

301 Semi-partial correlations. Because predictions of models and MMs overlap, we quantified
302 their distinct predictive power using semi-partial correlations. We conducted these analyses
303 for GBVS (used in the original MMs studies) and DGIl (the only model which markedly
304 outperformed MMs).

305 For each scene from the Consistent condition, we calculated two semi-partial correlations
306  with the distribution from smoothed fixations: one for MMs while controlling for GBVS, and
307 one for GBVS while controlling for MMs (see Fig. 4). Consistent with findings by Henderson
308 and Hayes (2018), MMs explain more unique variance than GBVS (Fig. 6a), as indicated by the
309 significantly higher coefficients in the former than the latter case (mean difference 0.28, 95%
310 confidence interval (Cl) [0.17, 0.39]; paired t-test, t(35) = 5.22, p < .001). Interestingly, the
311  identical analysis with DGII revealed that DGII explained significantly more unique variance

312  than MMs (mean difference 0.15, 95% CI [0.07, 0.24]; t(35) = 3.60, p < .001, see also Fig. 4b).

313
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315  Fig. 4. Comparison of semi-partial correlations with smoothed human fixations for (a) MMs
316  and GBVS and for (b) MMs and DGII. The obtained coefficients were significantly higher when
317 assessing MMs while controlling for GBVS compared to when assessing GBVS when
318 controlling for MMs. The opposite was true for the analyses with DGII. All figure

319 characteristics are as in Fig. 3. except that medians instead of means are presented.
320
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321 Internal replication. To demonstrate the generalizability of our conclusions beyond SCEGRAM

322  images, we replicated the main results with a different stimulus set (see the Supplement).
323
324 Comparing meaning maps and saliency models — discussion

325 If human gaze is guided by meaning, and if MMs index the distribution of meaning across an
326 image, MMs should outperform saliency models that are exclusively based on image features.
327  Our first analysis showed that this prediction does not hold. In fact, DGIl generated better
328 predictions and explained more unique variance than MMs. Therefore, at least one of the two
329  premises of our prediction is wrong: either human eye-movements are not sensitive to
330 meaning or MM do not index meaning. The second analysis allowed us to distinguish between

331 these alternatives.
332
333 Analyzing the effects of semantic inconsistencies within scenes — method

334 In the second analysis, we assessed how human observers, DGIl, and MMs respond to
335 experimental changes in meaning induced by altered object-context relationships. We used
336 eye-movement data from both the Consistent and the Inconsistent condition. These
337 conditions differed solely in the Critical Region, an area that either contained an object that
338  was either consistent with the scene context or induce semantic conflict. For each scene, we
339  calculated the mass of the distributions of human gaze, DGII, and MMs falling into the Critical
340 Region, respectively, and divided it by the Region’s area for normalization. Our primary
341 interest was the comparison between conditions: to the extent to which humans, DGII, and
342  MMs are sensitive to meaning, they should fixate more (humans) or predict more fixations

343  (DGIl and MMs) on the Critical Region in the Inconsistent than the Consistent condition.
344
345 Analyzing the effects of semantic inconsistencies within scenes — results

346  Our comparison indicated that, as predicted, observers fixated more on inconsistent than
347  consistent objects (Fig. 5a). By contrast, behavior of both MMs and DGII did not change across

348  conditions (Fig. 5b and c). These impressions were confirmed by a 2x3 ANOVA, with condition
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349  (Consistent vs. Inconsistent) as a within-subjects factor and the distribution source (human
350 fixations vs. MMs vs. DGII) as a between-subjects factor. We found a statistically significant
351  main effect of distribution source, F(2, 105) = 13.09, p < .001, w? = 0.16 and condition, F(1,
352 105) = 7.41 p = 0.0076 X, w? = 0.005. These main effects were qualified by a significant
353 interaction, F(2, 105) = 16.90, p < .001 X, w? = 0.026. Tukey post-hoc tests showed that human
354  observers looked more at the Critical Regions in the Inconsistent, than the Consistent
355  condition, t(105) = -6.22, p < .001. In contrast, no significant differences between conditions
356  were found for DGII, t(105) = -0.09 p = 1.0, and MM, t(105) = 1.60 p = 0.6028. Comparisons
357  within conditions indicated that human fixations differed from MMs in the Inconsistent
358  condition, t(129.91) = 5.78 p < .001, but not the Consistent condition, t(129.91) = 2.16 p =
359  0.2662. A significant difference between DGIl and human fixations was detected in both
360 Consistent, t(129.91) = -2.96 p = 0.0420, and Inconsistent conditions, t(129.91) = -5.79 p <

361 .001.
362
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364  Fig. 5. Normalized distribution mass falling within Critical Regions in both conditions for (a)

365 smoothed human fixations, (b) MMs, and (c) DGII. All figure characteristics are as in Fig. 3.
366

367  Additionally, conditions differed regarding the number of fixations per image, t(35) = 5.67 p

368 <.001.0n average, there were 6% fewer fixations in the Inconsistent condition. This excludes
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369 the possibility that higher number of fixations in this condition might drive the observed

370 increase in the distribution mass falling within the Critical Regions.

371  Finally, systematic differences in object size between Consistent and Inconsistent conditions
372  could affect our results because larger objects may attract more fixations solely because they
373  occupy a larger image area. However, this factor was minimized by showing each object in a
374  consistent and an inconsistent context. Yet, the same object might be shown in a slightly
375  different position in the two conditions and might therefore occupy slightly different amounts
376  of the image. This was, however, not the case: the JZS Bayes Factor of 4.26 indicated that the
377 two conditions did not differ in the size of the bounding boxes of each manipulated object
378 (objects in the Inconsistent condition were on average 1562.28 pixels larger; 95% confidence

379  interval: [-2582.74, 5707.29]).

380 To summarize, semantic changes induced by altering object-context relationships elicited
381 changes in distributions of human fixations, but neither MMs nor DGII could predict them.
382 These results suggest that both models might be sensitive to image features, which are

383 frequently correlated with image meaning, rather than to meaning itself.

384

385 Discussion

386 A long-standing debate in visual perception concerns the extent to which visual features vs.
387 semantic content guide human eye-movements in free viewing of natural scenes. To
388  distinguish these hypotheses, indexing the distributions both of features and meaning across
389  animage is critical. While image-based saliency models have been used to index features for
390 two decades, measuring semantic importance has been difficult until meaning maps (MMs)
391 have recently been proposed. Here, we assessed the extent to which MMs indeed capture
392 the distribution of meaning across an image. First, we demonstrate that despite the
393  purported importance of meaning as measured by MMs for gaze control, MMs are not better
394  predictors of locations of human fixations than at least some saliency models, which are based
395 solely on image features. In fact, DeepGaze Il (DGII), a model using deep neural network
396 features, outperformed MMs. Second, we assessed the sensitivity of human eye-movements,

397 MMs, and DGII to changes in image meaning induced by violations of typical object-context
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398 relationships. Observers fixated more often on regions containing objects inconsistent with
399  scene context (thus replicating previous findings) but these regions were not indexed as more
400 meaningful by MMs, or as more salient by DGII. Together, these findings challenge central
401  assumptions of MMs, suggesting that they are insensitive to the semantic information

402 contained in the stimulus.

403 The good performance of DGII in predicting human gaze might be attributable to the high-
404 level features it extracts from images. Three other models, which use low-level features,
405 failed to decisively outperform MMs. However, unlike two of them (GBVS and AWS), DGII is
406  trained with data on human fixations to optimize performance (Kiimmerer et al., 2016, 2017).
407  Yet, training alone cannot explain the difference in performance. The third low-level feature
408 model (ICF) is trained in the same way (Kimmerer et al., 2017) but still achieves a lower
409  performance than DGIl. These findings suggest that feature type is indeed critical for a
410 model’s performance. Importantly, however, while DGII uses high-level features transferred
411  from a deep neural network trained on object recognition (Simonyan & Zisserman, 2014), this
412  is not equivalent to indexing meaning. Rather, the good performance of DGII is likely due to

413  meaning supervening on, or correlating with, some of the features indexed by this model.

414  Correlation between visual features and meaning as the source of good performance in
415  saliency models has already been considered by the authors of MMs (Henderson & Hayes,
416  2017). Our findings suggest that MMs might share this characteristic with saliency models.
417  Specifically, the ratings used to construct MMs might be based on visual properties in such a
418  way that highly structured patches that contain high-level features receive high ratings. These
419  features often correlate with meaning, but in and of themselves do not amount to meaning.
420  According to this interpretation, both DGIl and MMs index high-level features. Their success
421  in predicting human behavior derives from the typically strong correlation between high-level

422  features and meaning, with a higher correlation for the features extracted by DGII than MMs.

423  Analternative interpretation of the finding that DGIl outperforms MMs is that image features
424  rather than meaning guide human fixations. However, this interpretation is inconsistent with
425  our second analysis. Here, observers clearly exhibited sensitivity to meaning, as indicated by
426  changed gaze patterns after introducing semantic inconsistencies into the scenes. This
427  experimental manipulation targets a type of meaning that is based on how objects relate to

428  the broader context in which they occur. While specific, it is precisely this kind of meaning
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429 that is of high theoretical importance in eye-movement research (Henderson, 2017;
430 Henderson et al., 2009). Thus, even if MMs were to measure other types of meaning, as has
431  been suggested (Henderson et al., 2018), the fact that they are not sensitive to meaning
432  derived from object-context relationships seriously limits their usefulness. Moreover, the idea
433  that MMs indeed index other kinds of meaning that are important for guidance of fixations is
434  not consistent with our findings. If this were the case, then we would expect MMs to predict
435  human fixations better than saliency models that solely rely on image features, which is not

436  the case.

437  The insensitivity to semantic inconsistencies reveals inherent limitations of both MMs and
438  DGII. The way in which MMs are constructed implicitly assumes that meaning is a local image-
439  property, which is not true for object-context (in)consistency. This limitation may potentially
440 be alleviated by ‘contextualized MMs’ (Peacock, Hayes, & Henderson, 2019), a recently
441  suggested modification of the ‘standard’ MMs. These novel maps are created from
442  meaningfulness ratings by observers who see the whole scenes from which the to-be-rated
443  patches were derived. It is yet to be seen what this approach can reveal about fixation
444  selection beyond the fact that humans asked to indicate meaningful or interesting regions
445  within scenes highlight areas, which tend to be frequently fixated by other observers
446  (Nystrom & Holmqvist, 2008; Onat et al., 2014). DGII, in turn, does not explicitly encode
447  semantic information, and was not trained on the relationship between eye movements and
448  semantic (in)consistency. But its failure highlights an opportunity to improve saliency models

449 by incorporating semantic relationships (Bayat, Koh, Nand, Pereira, & Pomplun, 2018).

450  Taken together, our results suggest that, contrary to their core promise as a methodology,
451  meaning maps (MMs) do not offer a way to measure the spatial distribution of meaning across
452  an image. Instead of meaning per-se, they seem to index high-level features that have the
453  potential to carry meaning in typical natural scenes. They share this characteristic with state-
454  of-the-art saliency models, which are easier to use, do not require human annotation, and yet

455  predict locations of human fixations better than MMs.
456
457
458
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