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Abstract 16 

Eye movements are vital for human vision, and it is therefore important to understand how 17 

observers decide where to look. Meaning maps (MMs), a technique to capture 18 

the distribution of semantic importance across an image, have recently been proposed to 19 

support the hypothesis that meaning rather than image features guide human gaze. MMs 20 

have the potential to be an important tool far beyond eye-movements research. Here, we 21 

examine central assumptions underlying MMs. First, we compared the performance of MMs 22 

in predicting fixations to saliency models, showing that DeepGaze II – a deep neural network 23 

trained to predict fixations based on high-level features rather than meaning – outperforms 24 

MMs. Second, we show that whereas human observers respond to changes in meaning 25 

induced by manipulating object-context relationships, MMs and DeepGaze II do not. 26 

Together, these findings challenge central assumptions underlying the use of MMs to 27 

measure the distribution of meaning in images. 28 
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Introduction 30 

Human eyes resolve fine detail only in a small, central part of the visual field, with resolution 31 

dropping off rapidly in the periphery. To sample details, we move our eyes to orient the high-32 

resolution part of our visual system successively to different parts of a visual scene. 33 

Information about these small scene parts is extracted during fixations – short periods in 34 

which the eyes are relatively stable. Thus, due to the structure of our visual system, human 35 

vision depends on eye movements. How the brain decides where to look in a visual scene is 36 

therefore an important question. A long-standing hypothesis suggests that semantic content 37 

of image regions is important in guiding eye movements. Recent work presented meaning 38 

maps (MMs) as a tool to test this hypothesis (Henderson & Hayes, 2017, 2018). This technique 39 

aims to index the spatial distribution of meaning across an image, which has potential 40 

applications far beyond eye-movement research. Here, we assess and challenge central 41 

assumptions of this novel tool. 42 

A classic finding in eye-movement research shows that the specific task of an observer has an 43 

influence on where they direct their eyes (Yarbus, 1967; Hayhoe & Ballard, 2005). But in 44 

everyday life, we frequently move our eyes without any goal other than to explore the 45 

environment. In the lab, this behavior is examined in free-viewing paradigms, during which 46 

eye movements are recorded while images are viewed without an explicit task (Koehler, Guo, 47 

Zhang, & Eckstein, 2014, but see Tatler, Hayhoe, Land, & Ballard, 2011). To explain what 48 

guides eye movements during free viewing, two opposing accounts have been put forward. 49 

According to the first account, eye movements are guided primarily by image characteristics 50 

(Borji, Sihite, & Itti, 2013; Itti & Koch, 2001; Parkhurst, Law, & Niebur, 2002). Potential support 51 

for this view comes from saliency models: algorithms, which exclusively use visual features of 52 

an image to predict human fixations. Although early models, which used only simple features 53 

such as local intensity or colors (Itti & Koch, 2000), are now deemed only moderately 54 

successful (Bylinskii et al., 2014), more recent saliency models achieve a remarkably high 55 

performance (Kümmerer, Wallis, Gatys, & Bethge, 2017). These models harness deep 56 

convolutional neural networks – biologically inspired machine learning algorithms, that 57 

somewhat resemble the human visual system (Kietzmann, McClure, & Kriegeskorte, 2019). 58 

However, even such models rely solely on visual features, albeit high-level ones. 59 
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In contrast to the idea underlying saliency models, several authors have argued that during 60 

free viewing, eye movements are mainly guided by the semantic content of the visual scene 61 

(Henderson, Malcolm, & Schandl, 2009; Nyström & Holmqvist, 2008; Onat, Açik, Schumann, 62 

& König, 2014; Rider, Coutrot, Pellicano, Dakin, & Mareschal, 2018; Stoll, Thrun, Nuthmann, 63 

& Einhäuser, 2015). This perspective differs fundamentally from the saliency-based approach. 64 

Attributing meaning to certain parts of the scene is impossible without prior knowledge of 65 

the world, i.e., a factor that is independent of the visual input (Hegde & Kersten, 2010; Teufel, 66 

Dakin, & Fletcher, 2018). Consequently, the notion that semantic content guides eye-67 

movements is inconsistent with the idea that the allocation of fixations is dependent solely 68 

on the distribution of image features. Given that meaning is not image-computable, the 69 

notion that semantic content guides eye-movements is inconsistent with the idea that the 70 

eye-movements are dependent solely on the distribution of image features. 71 

A string of recent studies has claimed to provide support for the role of meaning in driving 72 

eye movements (Hayes & Henderson, 2019; Henderson & Hayes, 2017, 2018; Henderson, 73 

Hayes, Rehrig, & Ferreira, 2018; Peacock, Hayes, & Henderson, 2018). These studies 74 

(reviewed in Henderson, Hayes, Peacock, & Rehrig, 2019) are based on a novel technique 75 

called meaning maps (MMs). A MM for a given image is created by breaking it down into small 76 

isolated patches, which are rated for their meaningfulness independently from the rest of the 77 

visual scene. These ratings are pooled together into a smooth map, which is supposed to 78 

capture the distribution of meaning across the image. Compared to outputs from a simple 79 

saliency model (GBVS, Harel et al., 2006), MMs were more predictive of human fixations. On 80 

that basis it has been claimed that meaning guides human fixations in natural scene viewing 81 

(Henderson & Hayes, 2017, 2018). Here, we examined central predictions of this claim. 82 

First, if MMs measure meaning and if meaning guides human eye-movements, MMs should 83 

be better in predicting locations of fixations than saliency models because these models rely 84 

solely on image features. Therefore, we compared MMs to a range of classic and state-of-the-85 

art models. We replicate the finding that MMs perform better than some of the most basic 86 

saliency models. Contrary to the prediction, however, DeepGaze II (DGII; Kümmerer, Wallis, 87 

& Bethge, 2016; Kümmerer et al., 2017), a model based on a deep convolutional neural 88 

network, outperforms MMs. 89 
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A second prediction is that if MMs are sensitive to meaning and if meaning guides human 90 

gaze, differences in eye movements that result from changes in meaning should be reflected 91 

in equivalent differences in MMs. We probed this prediction experimentally using a well-92 

established effect: the same object, when presented in an atypical context (e.g., a shoe on a 93 

bathroom sink) attracts more fixations than when presented in a typical context because of 94 

the change in the semantic object-context relationship (Henderson, Weeks, & Hollingworth, 95 

1999; Öhlschläger & Võ, 2017). Replicating previous studies, image regions attracted more 96 

fixations when they contained context-inconsistent compared to context-consistent objects. 97 

Crucially, however, MMs of the modified scenes did not attribute more 'meaning' to these 98 

regions. DGII also failed to adjust its predictions accordingly. 99 

Together, these findings suggest that semantic information contained in visual scenes is 100 

critical for the control of eye movements. However, this information is captured neither by 101 

MMs nor DGII. We suggest that similar to saliency models, MMs index the distribution of 102 

visual features rather than meaning. 103 

 104 

Method 105 

We conducted a single experiment in which human observers free-viewed natural scenes 106 

while their eye-movements were being recorded. The obtained data was analyzed in two 107 

complimentary ways. First, we compared how well MMs and different saliency models predict 108 

locations of human fixations in natural scenes. Subsequently, we assessed the sensitivity of 109 

MMs and the best-performing saliency model to manipulations of scene meaning. The 110 

reported experiment was not preregistered. The data, the code to create MMs, and all openly 111 

available resources used in the study can be accessed via the links provided in the 112 

Supplement. 113 
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  114 

Fig. 1. Illustration of sample stimuli in (a) the Consistent and (b) the Inconsistent condition 115 

with the Critical Region outlined in yellow and (c, d) human fixations recorded in both 116 

conditions. In this example, a hair brush on a bathroom sink (a) – an object consistent with 117 

the scene context – has been exchanged for a shoe (b) to introduce semantic inconsistency. 118 

  119 

Stimuli. We used images from two conditions of the SCEGRAM database (Öhlschläger & Võ, 120 

2017): the Consistent and the Semantically Inconsistent conditions (called ‘Inconsistent’ 121 

here). In the Consistent condition (used in both analyses), scenes contain only objects that 122 

are typical for a given context. In the Inconsistent condition (used only in the second analysis), 123 

one of the objects is contextually inconsistent. For example, a hairbrush in the context of a 124 

bathroom sink from the Consistent condition is replaced with a flip-flop in the Inconsistent 125 

condition (see Figs. 1a and 1b). Such changes in object-context relationship alter the meaning 126 

attached to the manipulated object. For every scene, we indexed the location of the 127 

consistent and inconsistent objects with the superimposed bounding boxes for both objects 128 

(see Figs. 1a and 1b). We refer to this location as the Critical Region, because it is the only 129 

part of the image that changes between Consistent and Inconsistent conditions. We used 36 130 

selected scenes in both conditions (72 photographs in total, listed in the Supplement together 131 
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with the selection criteria). We also replicated the main finding of the first analysis in an 132 

additional set of 30, very different, images (reported in the Supplement).  133 

 134 

Procedure. The procedure consisted of 3 blocks, interleaved with breaks. Participants were 135 

instructed to ‘look carefully at each’ image. Experimental blocks began with an eye tracker 136 

calibration/validation. Within each block, observers free-viewed a series of 24 photographs 137 

from both SCEGRAM conditions, each for 7 seconds. After image offset, observers were 138 

required to press a button to view the next image. Then, a fixation point appeared centrally 139 

on a screen and once observers fixate on it (as determined online by their eye-trace), the 140 

actual image was displayed. Before starting the experiment, observers viewed a sample image 141 

in an identical regime to familiarize themselves with the procedure. Each stimulus was shown 142 

once and the order of presentation was fully randomized. The stimuli were presented against 143 

a uniform grey background and had a width of 688 pixels and a height of 524 pixels, which 144 

subtended approximately 19.7 and 15 degrees of visual angle, respectively. Stimulus 145 

presentation time and size were adopted from a previous study with the SCEGRAM database 146 

(Öhlschläger & Võ, 2017). 147 

 148 

Observers. 20 volunteers (3 male; mean age 19.4) recruited from the Cardiff University 149 

undergraduate population took part in the study. All reported normal or corrected-to-normal 150 

vision, provided written consent, and received course credits in return for participation. The 151 

study was approved by the Cardiff University School of Psychology Research Ethics 152 

Committee. The primary units of interest in our analyses were the distributions of fixations 153 

over images. The number of observers we recruited guarantees that including more observers 154 

would not change these distributions significantly (demonstrated in the Supplement).  155 

 156 

Apparatus. The study was conducted in a dimly lit room. SCEGRAM images from both 157 

conditions were presented on an LCD monitor (Iiyama ProLite B2280HS, resolution 1920 by 158 

1080 pixels, 21 inches diagonal). Chin and forehead rests were used to ensure that observers 159 

maintained the constant distance of 49 cm from the screen. Their eye movements were 160 
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recorded with the frequency of 500 Hz using an EyeLink 1000+ eye tracker placed on a tower 161 

mount. The experiment was controlled by custom-written Matlab (R2017a version) scripts 162 

using Psychophysics Toolbox Version 3 (Kleiner, Brainard, & Pelli, 2007). 163 

 164 

 165 

Fig. 2. Illustration of the stimuli and procedure used for creating meaning maps. (a) Grids of 166 

equally spaced circles were used to cut images into fine and coarse patches (only the latter 167 

are illustrated here). The red circle indicates a sample patch in the grid. (b) Here, the sample 168 

patch is highlighted in one of the scenes from the Consistent condition. (c) Patches were 169 

presented in isolation and rated for their meaningfulness by three independent observers on 170 

a scale from 1 to 6. The panel has illustrative purpose only – the scale presented to observers 171 

included additional labels (ranging from ‘Very Low’ to ‘Very High’). (d) Illustration of a 172 

meaning map with greyscale values indicating ‘meaningfulness’. (e) Simplifying illustration of 173 

how meaning maps are generated from ratings. For simplicity sake, only two patches are 174 

shown (step 1). Each patch is rated in isolation (step 2; here only one rating per patch is 175 

shown). All pixels within an image area are then assigned average rating values, taking into 176 

account all ratings for patches that overlap with this area (step 3). For the area of the original 177 

patch (step 4), all pixels are then averaged and the resulting value is assigned to the center of 178 

the patch (step 5). Finally, the patch centers were used as interpolation nodes for thin-plate 179 

spline interpolation producing a smooth distribution of values over the image (not illustrated). 180 
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This procedure was conducted separately for the fine and coarse grid, and the meaning map 181 

for a given image was created by averaging the two outcomes and normalizing the result to a 182 

range between 0 and 1.  183 

 184 

Creating MMs. To create MMs for our stimuli, we followed the procedure described by 185 

Henderson & Hayes (2017, 2018; for details see Fig. 2). Each image was segmented into 186 

partially overlapping patches of two sizes: fine patches had a diameter of 107 pixels (3 degrees 187 

of the visual angle, or 16 % of the image width), coarse patches of 247 pixels (7 degrees or 188 

36% of the image width) (Fig. 2a and b). Their centers were 58 pixels (fine) and 97 pixels 189 

(coarse) apart from each other. 190 

Next, we collected meaningfulness ratings from human subjects for all patches. Each patch 191 

was presented in isolation and rated for its meaningfulness on a 6 point Likert scale (Fig. 2). 192 

As in Henderson and Hayes (2017), we used a Qualtrics survey completed by naive observers 193 

recruited via the crowdsourcing platform Amazon Mechanical Turk (see Supplement for 194 

eligibility criteria). Each participant provided ratings for 305 or 303 patches of both sizes 195 

(selected randomly from all images), on average spent approximately 14 min on the task, and 196 

received 2.18 USD as remuneration. In total, 69 individuals were used as raters, with three 197 

individuals rating each individual patch. The collected ratings were then used to create MMs 198 

(see Fig. 2). 199 

When creating MMs for images from both conditions, we exploited the fact that photographs 200 

from the Consistent and Inconsistent conditions differ only in the Critical Region (the part of 201 

the image containing the manipulated object) while the remaining parts overlap. We 202 

collected meaningfulness ratings for the patches belonging to overlapping areas only once, 203 

and the separate sets of ratings for Consistent and Inconsistent condition were collected only 204 

for those patches that contained at least one pixel belonging to the Critical Region. In total, 205 

the number of patches rated in the study amounted to 7013: 4840 fine patches (of which 520 206 

belonged to the images from the Inconsistent condition) and 2173 coarse patches (445 207 

Inconsistent). 208 

 209 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 14, 2019. ; https://doi.org/10.1101/840256doi: bioRxiv preprint 

https://doi.org/10.1101/840256
http://creativecommons.org/licenses/by/4.0/


Pedziwiatr et al. 

9 

 

Saliency models. In the first analysis, we compared predictive performance of MMs to four 210 

saliency models of different complexity. The first two models – GBVS (Harel et al., 2006) and 211 

AWS (Garcia-Diaz, Fdez-Vidal, Pardo, & Dosil, 2012) – rely on simple visual features, such as 212 

local colors and edge orientations, and share the assumption that fixations land on image 213 

regions distinct from their surroundings in terms of values of these features. By contrast to 214 

GBVS, AWS includes a statistical whitening procedure to improve performance. Both these 215 

models were previously used to estimate the influence of image features relative to cognitive 216 

factors on the deployment of fixations: GBVS in the previous studies with MMs, AWS 217 

elsewhere (Stoll et al., 2015). 218 

Two other models that we compared to MMs – ICF and DeepGaze II (DGII) – were designed 219 

in a data-driven manner (Kümmerer et al., 2017). Both have the same architecture, consisting 220 

of a fixed network that extracts sets of features from images and a readout network that is 221 

trained on human fixations separately for each model to combine the features in a way to 222 

maximize the models’ predictive power. While the fixed network of ICF extracts only simple 223 

visual features (local intensity and contrast), DGII is tuned to features extracted by a deep 224 

convolutional neural network pre-trained for object recognition (VGG-19; Simonyan & 225 

Zisserman, 2014). 226 

All saliency models output smooth maps that predict the probability of image regions to be 227 

fixated. Human observers have the tendency to look at the center of images (Tatler, 2007), 228 

and therefore this probability is usually higher in the central region of the image. This ‘center 229 

bias’ has important consequences for the evaluation of saliency models. Their performance 230 

differs depending on whether they are evaluated using a metric expecting some form of this 231 

bias or not (Kümmerer, Wallis, & Bethge, 2018). Here, for the sake of simplicity, we do not 232 

incorporate center bias in the models or in the MMs (unlike the original authors) and use an 233 

appropriate metric for this situation (see Performance metrics section). Importantly, analyses 234 

addressing the issue of center bias in a more extensive way (reported in the Supplement) 235 

provide only further support for our conclusions.  236 

 237 

Data pre-processing. Fixation locations from the eye tracker recordings were extracted using 238 

the algorithm provided by the device manufacturer operating with the default parameter 239 
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values. Thereby, we obtained a discrete distribution of fixations on each image (see Fig. 1c 240 

and 1d). Then, in line with the previous MMs studies, we smoothed these discrete 241 

distributions with a Gaussian filter with a cutoff frequency of -6 dB, using the function 242 

provided by Bylinskii and colleagues (2014).  243 

Next, smooth distributions from fixations, models, and MMs were separately normalized to a 244 

range from 0 to 1 for each image. Finally, for each scene, histograms of all distributions from 245 

both conditions were matched to histograms of smoothed fixations from Consistent condition 246 

using the Matlab imhistmatch function, as in the original MMs studies. Histogram matching 247 

makes distributions directly comparable as it ensures that they differ only with respect to 248 

their shape, and not their total mass.  249 

 250 

Performance metrics. To compare the ability of MMs and models to predict locations of 251 

human fixations in Experiment 1, we use two well-established metrics (Bylinskii, Judd, Oliva, 252 

Torralba, & Durand, 2016): Correlation and Shuffled Area Under ROC curve (sAUC; Zhang, 253 

Marks, Tong, Shan, & Cottrell, 2007) with the implementations provided by Bylinskii and 254 

colleagues (2014). 255 

Correlation, used in the previous studies on MMs, is calculated as Pearson's linear correlation 256 

coefficient between a smoothed distribution of observers’ fixations over the image and 257 

predictions of a saliency model or MMs. We additionally used sAUC (Zhang et al., 2008), 258 

which, unlike Correlation, guarantees that the measured differences in performance between 259 

models are driven by their sensitivity to factors guiding fixations, and not by the degree to 260 

which they include human center bias in their predictions, even implicitly (Kümmerer, Wallis, 261 

& Bethge, 2015; Kümmerer et al., 2018). 262 

 263 

Comparing meaning maps and saliency models – results 264 

In the first analysis, we compared performance of four saliency models to MMs in predicting 265 

human fixations in the Consistent condition, i.e., when viewing typical scenes with no obvious 266 

object-context inconsistencies (Tab. 1, Fig. 3). If human gaze is guided by meaning, and if MMs 267 
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provide an index for the distribution of meaning, we would expect MMs to outperform all 268 

saliency models because these models are based solely on image features. 269 

 270 

 271 

 272 

Fig. 3. Performance of MMs and saliency models in predicting human fixations according to 273 

(a) Correlation and (b) sAUC metrics. Note that according to both metrics DGII predicted 274 

human fixations better than MMs. Asterisks indicate p-values from statistical tests comparing 275 

MMs to different models (reported in Table 1.): * indicates p ≤ .05, ** p ≤ .01, *** ≤ .001 and 276 

‘n.s.’ indicates the lack of statistical significance. Grey lines connect values obtained for 277 

individual images. Black vertical bars indicate 95% confidence intervals for the medians. 278 

 279 

Predictive power. Correlation and sAUC values obtained for MMs and for each of the models 280 

were compared using Bonferroni-corrected paired Wilcoxon tests (Fig. 3; Tab. 1). We used 281 

non-parametric tests because for some of the distributions the assumptions of normality was 282 
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not met. For the same reason we chose a median as a measure of centrality (we calculate 283 

confidence intervals for median using a bootstrapping method – see details in the 284 

Supplement). Additionally, we calculated JZS Bayes Factor (Rouder, Speckman, Sun, Morey, & 285 

Iverson, 2009) to quantify the evidence for (or against) the differences between models and 286 

MMs (Tab. 1). While deviations from normality can be problematic for Bayes factor analyses, 287 

they are most likely not an issue in the current situation: the Bayes factors for the key finding 288 

are large and the deviations from normality are small.  289 

As shown in Tab. 1 and on Fig. 3, according to both measures, MMs outperformed GBVS in 290 

predicting human fixations, thereby replicating the results of Henderson and Hayes (2017, 291 

2018) using new images and new participants. Contrary to expectations, however, both 292 

metrics indicated that DGII predicted fixations better than MMs. Furthermore, performance 293 

of AWS and MMs did not differ significantly irrespective of the metrics. Finally, MMs 294 

outperformed ICF according to Correlation, but not sAUC. In fact, for the latter metric, JZS-295 

Bayes Factor indicated support for the null hypothesis. 296 

 297 

Table 1. Comparison of Predictive Power of Saliency Models and MMs Using Correlation and 298 

sAUC.  299 

Model Median of 

prediction values 

with 95% 

confidence intervals  

Median of 

differences from 

MMs with 95% 

confidence intervals 

 

Z statistic 

p-value 

(Bonferroni-

corrected) 

JZS Bayes 

Factor 

Correlation      

DGII 0.83 [0.78, 0.87] 0.07 [0.03, 0.11] -3.11 0.00738 32.26 

MMs 0.77 [0.72, 0.81] – – – – 

AWS 0.73 [0.67, 0.76] -0.06 [-0.12, -0.01] -2.23 0.10412 1.48 

ICF 0.68 [0.61, 0.71] -0.12 [-0.18, -0.06] -3.04 0.00936 16.90 

GBVS 0.62 [0.56, 0.68] -0.11 [-0.26, -0.05] -3.97 < .001  396.96 

sAUC      

DGII 0.79 [0.77, 0.82] 0.06 [0.05, 0.08] -6.36 < .001 > 1000 

MMs 0.73 [0.69, 0.76] – – – – 

AWS 0.75 [0.72, 0.77] 0.02 [0.01, 0.04] -2.49 0.0507 0.60 

ICF 0.74 [0.70, 0.76] 0.01 [-0.01, 0.02] -0.77 1.00 0.19 

GBVS 0.64 [0.60, 0.66] -0.10 [-0.12, -0.08] -5.96 < .001 > 1000 
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 300 

Semi-partial correlations. Because predictions of models and MMs overlap, we quantified 301 

their distinct predictive power using semi-partial correlations. We conducted these analyses 302 

for GBVS (used in the original MMs studies) and DGII (the only model which markedly 303 

outperformed MMs). 304 

For each scene from the Consistent condition, we calculated two semi-partial correlations 305 

with the distribution from smoothed fixations: one for MMs while controlling for GBVS, and 306 

one for GBVS while controlling for MMs (see Fig. 4). Consistent with findings by Henderson 307 

and Hayes (2018), MMs explain more unique variance than GBVS (Fig. 6a), as indicated by the 308 

significantly higher coefficients in the former than the latter case (mean difference 0.28, 95% 309 

confidence interval (CI) [0.17, 0.39]; paired t-test, t(35) = 5.22, p < .001). Interestingly, the 310 

identical analysis with DGII revealed that DGII explained significantly more unique variance 311 

than MMs (mean difference 0.15, 95% CI [0.07, 0.24]; t(35) = 3.60, p < .001, see also Fig. 4b).  312 

 313 

 314 

Fig. 4. Comparison of semi-partial correlations with smoothed human fixations for (a) MMs 315 

and GBVS and for (b) MMs and DGII. The obtained coefficients were significantly higher when 316 

assessing MMs while controlling for GBVS compared to when assessing GBVS when 317 

controlling for MMs. The opposite was true for the analyses with DGII. All figure 318 

characteristics are as in Fig. 3. except that medians instead of means are presented. 319 

 320 
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Internal replication. To demonstrate the generalizability of our conclusions beyond SCEGRAM 321 

images, we replicated the main results with a different stimulus set (see the Supplement). 322 

 323 

Comparing meaning maps and saliency models – discussion 324 

If human gaze is guided by meaning, and if MMs index the distribution of meaning across an 325 

image, MMs should outperform saliency models that are exclusively based on image features. 326 

Our first analysis showed that this prediction does not hold. In fact, DGII generated better 327 

predictions and explained more unique variance than MMs. Therefore, at least one of the two 328 

premises of our prediction is wrong: either human eye-movements are not sensitive to 329 

meaning or MM do not index meaning. The second analysis allowed us to distinguish between 330 

these alternatives. 331 

 332 

Analyzing the effects of semantic inconsistencies within scenes – method 333 

In the second analysis, we assessed how human observers, DGII, and MMs respond to 334 

experimental changes in meaning induced by altered object-context relationships. We used 335 

eye-movement data from both the Consistent and the Inconsistent condition. These 336 

conditions differed solely in the Critical Region, an area that either contained an object that 337 

was either consistent with the scene context or induce semantic conflict. For each scene, we 338 

calculated the mass of the distributions of human gaze, DGII, and MMs falling into the Critical 339 

Region, respectively, and divided it by the Region’s area for normalization. Our primary 340 

interest was the comparison between conditions: to the extent to which humans, DGII, and 341 

MMs are sensitive to meaning, they should fixate more (humans) or predict more fixations 342 

(DGII and MMs) on the Critical Region in the Inconsistent than the Consistent condition.  343 

 344 

Analyzing the effects of semantic inconsistencies within scenes – results 345 

Our comparison indicated that, as predicted, observers fixated more on inconsistent than 346 

consistent objects (Fig. 5a). By contrast, behavior of both MMs and DGII did not change across 347 

conditions (Fig. 5b and c). These impressions were confirmed by a 2x3 ANOVA, with condition 348 
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(Consistent vs. Inconsistent) as a within-subjects factor and the distribution source (human 349 

fixations vs. MMs vs. DGII) as a between-subjects factor. We found a statistically significant 350 

main effect of distribution source, F(2, 105) = 13.09, p < .001, ω2 = 0.16 and condition, F(1, 351 

105) = 7.41 p = 0.0076  X, ω2 = 0.005. These main effects were qualified by a significant 352 

interaction, F(2, 105) = 16.90, p < .001 X, ω2 = 0.026. Tukey post-hoc tests showed that human 353 

observers looked more at the Critical Regions in the Inconsistent, than the Consistent 354 

condition, t(105) = -6.22, p < .001. In contrast, no significant differences between conditions 355 

were found for DGII, t(105) = -0.09 p = 1.0, and MMs, t(105) = 1.60 p = 0.6028. Comparisons 356 

within conditions indicated that human fixations differed from MMs in the Inconsistent 357 

condition, t(129.91) = 5.78 p < .001, but not the Consistent condition, t(129.91) = 2.16 p = 358 

0.2662. A significant difference between DGII and human fixations was detected in both 359 

Consistent, t(129.91) = -2.96 p = 0.0420, and Inconsistent conditions, t(129.91) = -5.79 p < 360 

.001. 361 

 362 

 363 

Fig. 5. Normalized distribution mass falling within Critical Regions in both conditions for (a) 364 

smoothed human fixations, (b) MMs, and (c) DGII. All figure characteristics are as in Fig. 3.  365 

 366 

Additionally, conditions differed regarding the number of fixations per image, t(35) = 5.67 p 367 

< .001. On average, there were 6% fewer fixations in the Inconsistent condition. This excludes 368 
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the possibility that higher number of fixations in this condition might drive the observed 369 

increase in the distribution mass falling within the Critical Regions. 370 

Finally, systematic differences in object size between Consistent and Inconsistent conditions 371 

could affect our results because larger objects may attract more fixations solely because they 372 

occupy a larger image area. However, this factor was minimized by showing each object in a 373 

consistent and an inconsistent context. Yet, the same object might be shown in a slightly 374 

different position in the two conditions and might therefore occupy slightly different amounts 375 

of the image. This was, however, not the case: the JZS Bayes Factor of 4.26 indicated that the 376 

two conditions did not differ in the size of the bounding boxes of each manipulated object 377 

(objects in the Inconsistent condition were on average 1562.28 pixels larger; 95% confidence 378 

interval: [-2582.74, 5707.29]). 379 

To summarize, semantic changes induced by altering object-context relationships elicited 380 

changes in distributions of human fixations, but neither MMs nor DGII could predict them. 381 

These results suggest that both models might be sensitive to image features, which are 382 

frequently correlated with image meaning, rather than to meaning itself. 383 

 384 

Discussion 385 

A long-standing debate in visual perception concerns the extent to which visual features vs. 386 

semantic content guide human eye-movements in free viewing of natural scenes. To 387 

distinguish these hypotheses, indexing the distributions both of features and meaning across 388 

an image is critical. While image-based saliency models have been used to index features for 389 

two decades, measuring semantic importance has been difficult until meaning maps (MMs) 390 

have recently been proposed. Here, we assessed the extent to which MMs indeed capture 391 

the distribution of meaning across an image. First, we demonstrate that despite the 392 

purported importance of meaning as measured by MMs for gaze control, MMs are not better 393 

predictors of locations of human fixations than at least some saliency models, which are based 394 

solely on image features. In fact, DeepGaze II (DGII), a model using deep neural network 395 

features, outperformed MMs. Second, we assessed the sensitivity of human eye-movements, 396 

MMs, and DGII to changes in image meaning induced by violations of typical object-context 397 
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relationships. Observers fixated more often on regions containing objects inconsistent with 398 

scene context (thus replicating previous findings) but these regions were not indexed as more 399 

meaningful by MMs, or as more salient by DGII. Together, these findings challenge central 400 

assumptions of MMs, suggesting that they are insensitive to the semantic information 401 

contained in the stimulus.  402 

The good performance of DGII in predicting human gaze might be attributable to the high-403 

level features it extracts from images. Three other models, which use low-level features, 404 

failed to decisively outperform MMs. However, unlike two of them (GBVS and AWS), DGII is 405 

trained with data on human fixations to optimize performance (Kümmerer et al., 2016, 2017). 406 

Yet, training alone cannot explain the difference in performance. The third low-level feature 407 

model (ICF) is trained in the same way (Kümmerer et al., 2017) but still achieves a lower 408 

performance than DGII. These findings suggest that feature type is indeed critical for a 409 

model’s performance. Importantly, however, while DGII uses high-level features transferred 410 

from a deep neural network trained on object recognition (Simonyan & Zisserman, 2014), this 411 

is not equivalent to indexing meaning. Rather, the good performance of DGII is likely due to 412 

meaning supervening on, or correlating with, some of the features indexed by this model. 413 

Correlation between visual features and meaning as the source of good performance in 414 

saliency models has already been considered by the authors of MMs (Henderson & Hayes, 415 

2017). Our findings suggest that MMs might share this characteristic with saliency models. 416 

Specifically, the ratings used to construct MMs might be based on visual properties in such a 417 

way that highly structured patches that contain high-level features receive high ratings. These 418 

features often correlate with meaning, but in and of themselves do not amount to meaning. 419 

According to this interpretation, both DGII and MMs index high-level features. Their success 420 

in predicting human behavior derives from the typically strong correlation between high-level 421 

features and meaning, with a higher correlation for the features extracted by DGII than MMs.  422 

An alternative interpretation of the finding that DGII outperforms MMs is that image features 423 

rather than meaning guide human fixations. However, this interpretation is inconsistent with 424 

our second analysis. Here, observers clearly exhibited sensitivity to meaning, as indicated by 425 

changed gaze patterns after introducing semantic inconsistencies into the scenes. This 426 

experimental manipulation targets a type of meaning that is based on how objects relate to 427 

the broader context in which they occur. While specific, it is precisely this kind of meaning 428 
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that is of high theoretical importance in eye-movement research (Henderson, 2017; 429 

Henderson et al., 2009). Thus, even if MMs were to measure other types of meaning, as has 430 

been suggested (Henderson et al., 2018), the fact that they are not sensitive to meaning 431 

derived from object-context relationships seriously limits their usefulness. Moreover, the idea 432 

that MMs indeed index other kinds of meaning that are important for guidance of fixations is 433 

not consistent with our findings. If this were the case, then we would expect MMs to predict 434 

human fixations better than saliency models that solely rely on image features, which is not 435 

the case. 436 

The insensitivity to semantic inconsistencies reveals inherent limitations of both MMs and 437 

DGII. The way in which MMs are constructed implicitly assumes that meaning is a local image-438 

property, which is not true for object-context (in)consistency. This limitation may potentially 439 

be alleviated by ‘contextualized MMs’ (Peacock, Hayes, & Henderson, 2019), a recently 440 

suggested modification of the ‘standard’ MMs. These novel maps are created from 441 

meaningfulness ratings by observers who see the whole scenes from which the to-be-rated 442 

patches were derived. It is yet to be seen what this approach can reveal about fixation 443 

selection beyond the fact that humans asked to indicate meaningful or interesting regions 444 

within scenes highlight areas, which tend to be frequently fixated by other observers 445 

(Nyström & Holmqvist, 2008; Onat et al., 2014). DGII, in turn, does not explicitly encode 446 

semantic information, and was not trained on the relationship between eye movements and 447 

semantic (in)consistency. But its failure highlights an opportunity to improve saliency models 448 

by incorporating semantic relationships (Bayat, Koh, Nand, Pereira, & Pomplun, 2018). 449 

Taken together, our results suggest that, contrary to their core promise as a methodology, 450 

meaning maps (MMs) do not offer a way to measure the spatial distribution of meaning across 451 

an image. Instead of meaning per-se, they seem to index high-level features that have the 452 

potential to carry meaning in typical natural scenes. They share this characteristic with state-453 

of-the-art saliency models, which are easier to use, do not require human annotation, and yet 454 

predict locations of human fixations better than MMs. 455 

 456 

 457 

 458 
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