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Most rewards in our lives require effort to obtain them. It is known that effort is seen
by humans as carrying an intrinsic disutility which devalues the obtainable reward. Estab-
lished models for effort discounting account for this by using participant-specific discounting
parameters inferred from experiments. These parameters offer only a static glance into the
bigger picture of effort exertion. The mechanism underlying the dynamic changes in a par-
ticipant’s willingness to exert effort is still unclear and an active topic of research. Here,
we modeled dynamic effort exertion as a consequence of effort- and probability-discounting
mechanisms during goal reaching, sequential behavior. To do this, we developed a novel
sequential decision-making task in which participants make binary choices to reach a mini-
mum number of points. Importantly, the time points and circumstances of effort allocation
are decided by participants according to their own preferences and not imposed directly by
the task. Using the computational model to analyze participants’ choices, we show that the
dynamics of effort exertion arise from a combination of changing task needs and forward
planning. In other words, the interplay between a participant’s inferred discounting param-
eters is sufficient to explain the dynamic allocation of effort during goal reaching. Using
formal model comparison, we also infer the forward-planning strategy used by participants.
The model allows us to characterize a participant’s effort exertion in terms of only a few
parameters. Moreover, the model can be adapted to a number of tasks used in establishing
the neural underpinnings of forward-planning behavior and meta-control, allowing for the
characterization of behavior in terms of model parameters.
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Introduction

It has been known for long that physical effort appears to bear an inherent cost both in
humans and other animals (Hull, 1943; Walton, Kennerley, Bannerman, Phillips, & Rush-
worth, 2006). Although the nature of cognitive effort remains elusive (Shenhav et al., 2017),
the role of mental effort has been studied more recently in the same vein (Apps, Grima,
Manohar, & Husain, 2015; Kool, McGuire, Rosen, & Botvinick, 2010; Pessiglione, Vinckier,
Bouret, Daunizeau, & Le Bouc, 2018; Schmidt, Lebreton, Cléry-Melin, Daunizeau, & Pes-
siglione, 2012), as well as its neural underpinnings, e.g., (Radulescu, Nagai, & Critchley,
2015). Generally, effort seems to carry a disutility that diminishes the value of reward an ac-
tion entails, a phenomenon known as effort discounting (Botvinick, Huffstetler, & McGuire,
2009; Westbrook, Kester, & Braver, 2013).

In psychology and economics, much effort has been put into establishing so-called ef-
fort discount functions, i.e., parameterized functions of how the subjective value of a re-
ward diminishes as a specific amount of effort is required to obtain it. As with delay-
and probability-discounting, several parametric shapes of the effort discounting function
have been suggested: hyperbolic (Prévost, Pessiglione, Météreau, Cléry-Melin, & Dreher,
2010), inspired by delay- and probability-discounting; linear (Skvortsova, Palminteri, &
Pessiglione, 2014); bilinear (Phillips, Walton, & Jhou, 2007); parabolic (Hartmann, Hager,
Tobler, & Kaiser, 2013); and sigmoidal (Klein-Flügge, Kennerley, Saraiva, Penny, & Best-
mann, 2015). Additionally, a framework based on prospect theory conceptualizes effort
discounting as a shift of the status-quo (Kivetz, 2003). See also (Białaszek, Marcowski, &
Ostaszewski, 2017; Klein-Flügge et al., 2015; Talmi & Pine, 2012) for comparisons between
these different models.

While these studies established a mathematical description of how required effort affects
the valuation of a reward, the experiments are typically constrained to the particular case
where the decision to invest effort to obtain reward must be made immediately. However, in
most cases of goal-directed behavior in daily life, the reward is not obtainable immediately
but must be pursued over an extended time period. This means that in typical effort
discounting experiments one cannot address the question of when people will invest effort
to obtain a reward that remains obtainable over an extended period of time. For example,
an employee may be given a deadline of two weeks to complete an assignment that takes one
day. The question for this employee on every day until assignment completion is whether
she should invest the effort today or wait until later (Steel & König, 2006). This question
is outside the domain of typical effort discounting experiments because there is no ’wait
until later’ option. Some individuals would probably do the assignment early because there
may be an unforeseen situation that prevents them from finishing later. Others would
prefer to wait and intend to do the assignment late, e.g., just before the deadline runs out,
because perhaps it turns out that the assignment is no longer required. Clearly, all possible
courses of actions (do the effort early or late) have their advantages and disadvantages
and put individuals into a decision dilemma. We believe that this dilemma is central to
the meta-control question of how effort discounts potential reward because the dilemma
emerges typically when one is pursuing goals that cannot be obtained now but only after
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some extended time (Goschke, 2014).

In order to induce this dilemma, it is necessary to put participants in a situation where
forward planning and future contingencies are important, as opposed to the single-trial
experiments traditionally used to elicit discounting. By forward planning, we mean that to
make a decision one has to plan several time steps into the future to predict the consequences
of possible courses of actions (Dolan & Dayan, 2013). For example, the employee may on
day one simulate through in her mind several alternatives of when to do the assignment,
select one of these alternatives and execute the first action of this alternative. The question
is how one can model decision making in this dilemma by combining forward planning over
several trials and previously established effort discounting models for a single trial.

To address this question, we developed a sequential decision making task that captures
the effort-investment decision dilemma described above. In each trial of a trial sequence,
participants were given the choice to exert effort right away to improve their chances of
obtaining a reward at the end of the trial sequence, or wait and not invest effort to see
how the situation evolves, so that eventually the need for effort might disappear, however
at the price of lowering the chances of reward. We found that the proposed computational
model was able to explain different time points at which different participants invested
effort. Using formal model comparison, we inferred the forward-planning strategy used
by participants during the task. We also show that the inferred effort- and probability-
discounting parameters provide for an easily interpretable explanation of the early versus
late effort allocation effect observed in the choice data.

In summary, we present a computational-experimental approach, in the form of a novel
experimental task and a sequential decision-making model, that enables future studies into
the effects of pursuing long-term goals based on moment-by-moment decisions about effort
investment in human participants.

Methods

Participants were recruited from a pool of potential participants organized by the Tech-
nische Universität Dresden that includes students as well as individuals from the general
population. Of N = 60 participants taking part in the experiment, five had to be ex-
cluded based on their poor performance during an initial training period. This left N = 55
participants (18 female, with an average age of M = 26.0, SD = 10.8) for our analyses.

Participants went through two different experimental tasks which, together with intro-
duction and training, took an average of 1.5 hours. The two experimental tasks were a
single-task effort/probability discounting paradigm and the novel sequential task. In this
work, we report only the analysis of the sequential task data that was performed before the
single-trial task. For this reason, we describe here only the sequential task.

Payoff was a basic reimbursement of 9 Euros for participating, plus a performance-
based bonus of up to 5 Euros for the sequential task. Some participants traded the basic
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reimbursement for course credit. On average, participants who did not trade the basic
reimbursement for course credit earned around 14 Euros for the whole experiment.

The study was approved by the Institutional Review Board of the Technische Universität
Dresden (protocol number EK 541122015) and conducted in accordance with the declaration
of Helsinki. All subjects gave their written, informed consent.

Sequential task

In this task, participants are instructed to accumulate points over the course of a mini-
block (a trial sequence) of ten trials, with the objective of surpassing a point threshold at
the end of a mini-block. To do this, they must, at every trial, choose between a mentally
effortful and a probabilistic option, both of which can eventually lead to a reward at the end
of a mini-block. At each trial, the current number of points is displayed as a bar shown on
the bottom of the screen (see Figure 1B) during the cue and decision phase (see Figure 1C).
In order to fill the bar in the mini-block, five points are necessary. If during a mini-block
the bar is filled, 20 Euro cents are added to the participant’s final reward. Otherwise, they
gain no reward for the mini-block. Each participant went through 25 mini-blocks, plus ten
mini-blocks during an initial practice period, for which the participant did not earn any
monetary reward. Monetary reward was contingent on winning mini-blocks (as opposed
to simply maximizing points) to give special significance to winning a mini-block and to
implicitly dissuade participants from focusing on getting the maximum number of points
by always choosing the effortful option.

For the effortful option, we used a number-sorting task, in which a set of numbers is
shown on screen with five digits each that can differ in any of the digits (see Figure 1A). The
participant must sort the set of numbers in ascending order by sequential mouse clicks on
the displayed numbers within a fixed time period. This time is adapted to each participant
during training such that their performance on the number-sorting task is around 90% (see
Section ’Procedure’) to equalize the required effort across all participants. If the numbers
are sorted correctly, participants gain one point.

For the probabilistic option, participants were to complete a number-sorting task as
well, but all numbers had a single digit, rendering the task practically cognitively effortless.
Participants had a 50% chance of gaining a point for correctly completing the sorting task,
which was told to them in the instructions. The probabilistic option corresponds to waiting
until a later trial to exert effort, if it ever becomes necessary. The probability associated with
the probabilistic option is included to create mini-blocks in which the participant can win
without having to exert any effort by choosing this option at every trial and being “lucky”
with the outcomes. We included the single-digit sorting trial to equalize the physical effort
that comes from using the mouse to click on the numbers.

Thus, each trial of the sequential task is divided into three phases: (1) the cue and
decision phase (Figure 1B), in which participants must choose between the two options
using the keyboard (“c” for the option shown on the left, “m” for the option shown on
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Figure 1 . Effort and sequential task. (A) Number-sorting task, where participants must select
the shown numbers in ascending order to correctly complete a single trial of the sequential effort-
investment task. To select a single number, participants can click anywhere in the box containing
this number. (B) Cue and decision phase of the sequential task. Participants must choose between
the easy option (Leicht, in the original German), which corresponds to the probabilistic option (see
main text), and a hard option (Schwierig), which corresponds to the effortful option, which leads to
the task shown in (A). The choice is made with keyboard keys C and M, for the option on the left
and right, respectively; the side on which each option appears is randomly selected at every trial.
(C) Schedule of the different phases of a single trial in the sequential task. The times for each screen
are shown at the bottom, along with the name of each phase. The main experiment consisted of 25
mini-blocks (sequences of trials) with ten trials each.
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the right). The left/right position of the two options (probabilistic and effortful) on the
screen is randomized every trial. This phase lasts until the participant makes the decision,
but no longer than three seconds; (2) the sorting phase, in which participants must carry
out the selected task. This phase lasts between four and ten seconds, depending on the
participant’s performance during training (see below); and (3) the feedback phase, in which
participants are told whether they correctly completed the task or not. This phase lasts half
a second. Figure 1C shows a diagram of the trial timing, including all the screens observed
by participants as well as the timings of each phase of the trials.

Importantly, the number of points required to win a mini-block is only half of the
number of trials in the mini-block. This, combined with the 50% chance of getting a point
with the probabilistic option, has the effect that, by just choosing the probabilistic option,
the participant can win on average half the mini-blocks in the experiment. Additionally,
because the difficulty of the effortful task was set such that expected performance is close
to 100%, the participant is almost guaranteed to win every mini-block, regardless of the
strategy chosen, as long she is willing to invest the effort associated with the effortful option
when it becomes necessary, i.e., when she would otherwise risk not having enough points at
the end of the mini-block.

Procedure

The experimental session began with instructions shown on the screen. No instructions
were given by the experimenter. Then, the participant went through an introduction to the
number-sorting task with the intention of getting them acquainted with how the mouse is
used to sort the numbers. During this familiarization period, participants completed twelve
trials, divided into six single-digit sorting tasks and six five-digit sorting tasks. Training
followed, during which participants’ response times for the main experiment were adjusted.
Participants first had to go through a block of 40 trials, in which they had to sort the four
numbers as quickly as possible within a fixed time-interval of twelve seconds per trial. This
is long enough that no participant timed out. After this initial block, the new interval was
chosen to be the 95% percentile of the participant’s reaction times. After that, three more
blocks of 40 trials were possible; after each of them, the participant’s performance (i.e., the
percentage of times they correctly sorted the numbers before the deadline) was measured.
If the performance was below 85%, the deadline was increased. If above 95%, the deadline
was decreased. This was repeated for a maximum of four training blocks. If after the
training phase the performance was not between 85% and 95%, we excluded the participant
from further analysis. The duration of the training phase varied across participants. Once
training was done, participants received instructions for the sequential experiment, followed
by ten practice mini-blocks, in which they earned no reward (stated in the instructions).
Once they finished these, they performed the main experiment with 25 mini-blocks, earning
monetary reward for each one completed successfully.
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Single-trial discounting models

The sequential decision-making model proposed in this work is based on classical single-
trial discounting models. For completeness, we briefly describe their mathematical form in
this section.

It is now well accepted that the best-fitting discounting function for probability discount-
ing is a hyperbola-like one (Ostaszewski, Green, & Myerson, 1998), whose mathematical
form is given by:

V̂ = V fp(p) (1)

where V̂ is the subjective value, p is the probability of obtaining the reward, V is the
objective reward value (e.g. the amount of money) and fp is given by:

fp(p) = 1(
1 + κp

1−p
p

)s (2)

where κp and s are the model’s free parameters which are to be fit to behavioral data.
These two parameters have the effect of creating steeper discounting the higher their values
are; κp is regarded as a probability-scaling parameter, while s is regarded as a non-linear
sensitivity to probability (Green & Myerson, 2004).

We made use of this model during our study with one caveat: while the inclusion of the
parameter s has been previously found to add explanatory power to the model, it makes
comparison between groups more difficult (McKerchar & Renda, 2012), as discounting is
affected by these two parameters, and it severely complicates parameter fitting due to the
high correlation between the parameters (Myerson, Green, & Warusawitharana, 2001). For
this reason, we chose to fix s to 1 for all participants.

For effort discounting it is less clear which discounting function describes behavioral data
best (Białaszek et al., 2017; Kivetz, 2003; Klein-Flügge, Kennerley, Friston, & Bestmann,
2016; Klein-Flügge et al., 2015; Kool et al., 2010). Formal model comparison has been
performed between different discount functions, with differing results (Białaszek et al., 2017;
Klein-Flügge et al., 2015).

In this work, we exemplify our model using hyperbolic and sigmoid effort discount
functions. We chose hyperbolic discounting for its long tradition in probability- and delay-
discounting, which makes it a prime candidate for effort discounting. Sigmoid discounting,
on the other hand, has the property of being concave for low effort levels and convex for
high effort levels, which Klein-Flügge et al. (2015) argued was an integral part of effort
discounting. However, note that our modeling approach presented below can be applied to
any other discount function.

The hyperbolic effort discount function is given by:

fε(ε) = 1
1 + κεε

(3)
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where ε is the effort level and κε is the only free parameter, which, as with probability
discounting (Equation 2), represents effort scaling.

The sigmoid discount function is given by:

fε(ε) =
(

1−
( 1

1 + e−m(ε−ε0) −
1

1 + emε0

) (
1 + e−mε0)) (4)

with free parameters m and ε0 that correspond to slope of the function at the center (where
the value of the function is 0.5) and the coordinate of the center.

While the interpretation of ε = 0 is clear (there is no effort), effort does not have a
natural scale like those of delay and probability. Instead, we chose the units of effort such
that the effort level of one number-sorting task is M − 1, where M is the number of digits
of each number to sort. In this scale, the probabilistic option (see Section ’Sequential task’)
has an effort level of zero and the effortful task has an effort level of four.

Sequential discounting models

In this work we present a novel family of models that bring the single-trial discounting
models of the previous section into the realm of sequential decision-making models of goal-
directed behavior. To do this, we built on eqs. (1) to (4) and added a component that
implements forward planning over future trials to achieve the goal of filling the point bar
during a mini-block.

Action sequences. For our forward-planning model, we first introduce the concept
of action sequences π, which we define as a list of actions to perform in future trials, one for
every trial left in the mini-block. Because in the sequential task, the participant must make
forced choices between an effortful and a probabilistic option, an action sequence consists of
these binary choices, one for each remaining trial until the end of a mini-block. For example,
at the very beginning of a mini-block (with ten trials left), an action sequence could consist
of only the probabilistic choices at every trial in the future. This would be the policy of
a participant who, at the beginning of the mini-block, prefers not to choose the effortful
options throughout the mini-block. Another would be an action sequence consisting only
of choosing the effortful options. Planning for more nuanced strategies is also possible, i.e.
a mix of both options.

The model evaluates every possible action sequence in a way that reflects the overarching
goal leading to reward, i.e., filling the point bar. Since at every trial the choice is binary,
the total number of possible action sequences at the beginning of trial t is 2T−t+1, including
the one to be made at trial t, where T is the total number of trials in a mini-block (ten in
our experiment).

It is unlikely that human participants use such a brute-force, binary-tree search algo-
rithm to find the best strategy, as the number of action sequences grows exponentially with
the number of trials left; therefore, we created a model in which the only two strategies
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available are (1) committing to choosing the probabilistic option for the remaining trials in
the mini-block and (2) committing to choosing the effortful option for the rest of the mini-
block, or until the point bar has been filled. Using only these two action sequences captures
the essence of the task, in which a frugal decision-making agent would choose to exert no
effort unless it becomes absolutely necessary, and a more reward-sensitive agent (i.e., one
that wants to maximize the probability of obtaining reward, disregarding the cost of effort)
would prefer exerting effort until the probability of winning the mini-block is high enough
to risk the probabilistic option. We discuss the validity and usefulness of this reduction in
the number of policies in the Discussion section.

We define these two action sequences with πp as the action sequence of all-probabilistic
choices and πε as the action sequence of all-effortful choices. With these, we define the set
A = {πp, πε}.

For every action sequence π ∈ A the model must produce an evaluation z(π) which
determines how beneficial this action sequence is for achieving the goal. Then, the model
will select an action (probabilistic or effortful) using these valuations. Concretely, the action
at at trial t is sampled according to:

at ∼ σβ (z(πp), z(πε)) (5)

where σβ is the softmax function with inverse-temperature parameter β. We fix the value of
this parameter to 5 for all models and participants, which produced posterior probabilities
(for effort and probability) in the full range of 0 to 1.

The evaluation function z is defined in terms of the single-trial discounting models
discussed in Section ’Single-trial discounting models’. In what follows, we discuss z(πp) and
z(πε) separately.

Forward planning with probability. When planning to choose the probabilistic
option for every trial into the future, we propose two natural ways of calculating z(πp),
where one aim of the study will be to use model comparison to disambiguate between these
two ways. The first way is to stack the discounting function as many times as there are
trials left:

z(πp) = V fp(p)(T−t+1) (6)

= V

 1
1 + κp

1−p
p

T−t+1

(7)

where fp(p) is given by Equation 2 with s = 1. This simply means that the objective reward
V obtained at the end of the mini-block is discounted once for each remaining trial. We refer
to this variant as “stack”. Note that we explicitly do not call this variant ’multiply’ because
some other discounting functions (not considered in this paper) are not multiplicative.

With the second variant, one calculates the overall probability of winning the reward by
choosing the probabilistic option in every remaining trial in the mini-block, as if it were a
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single action with an overall probability. The calculation of this overall probability is done
with the binomial distribution and the resulting probability is used to apply hyperbolic
probability discounting:

pall =
inf∑

x̂=X−x
B(x̂, p, T − t+ 1) (8)

z(πp) = V fp(pall) (9)

= V

 1
1 + κp

1−pall
pall

 (10)

where B(x̂, p, T − t + 1) is the probability mass function of the binomial distribution, x̂ is
the number of successes for the binomial, p is the probability of success and T − t + 1 is
the number of trials left; X is the number of points necessary to win the mini-block and x
is the current number of points. fp(·) is given by Equation 2. We refer to this variant as
“add”.

To summarize, with the stack and add variants, we describe two ways to compute at trial
t the subjective value of reward obtained at the end of the mini-block. The stack variant
simply assumes that the single-trial probabilistic discounting is applied as many times as
there are remaining trials. The add variant calculates values of probability and effort that
take into account the structure of the sequential task and applies the single-trial discount
function to these values just once.

Forward planning with effort. In analogy to the probabilistic action sequence, we
propose two variants of the effortful action sequence evaluation. The first variant is the
direct counterpart of the stack variant in probability:

z(πε) = V fε(ε)T−t+1 (11)

where f(ε) can be hyperbolic effort discounting (Equation 3) or sigmoid effort discounting
(Equation 4). As for the probabilistic action sequence, we refer to this version as ’stack’.

The second variant is the direct counterpart of the add variant in probability, and is
defined by adding all the future efforts as if it were a single action and discounting the
resulting added effort using the hyperbolic or sigmoid functions:

εall = (T − t+ 1)ε (12)
z(πε) = V fε(εall) (13)

where fε(·) can be the hyperbolic effort discounting (Equation 3) or sigmoid effort dis-
counting (Equation 4). As for the probabilistic action sequence, we refer to this version as
’add’.

Model variants. We define the different variants of the sequential model depending
on the type of forward planning used for effort and probability, each of which can be “stack”
or “add”. This gives us a total of four variants of the sequential component, naming the
effort variant first: add/add, stack/add, add/stack, stack/stack. For example, we refer to
the variant in which effort is stacked and probability is added as stack/add.
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Model comparison

In total, we propose a family of eight (2 × 2 × 2) models: (sigmoid or hyperbolic)
× (stacking or adding probability) × (stacking or adding effort). In order to select the
one that fits our data best, we implemented the hierarchical model proposed by Stephan,
Penny, Daunizeau, Moran, and Friston (2009), which we only briefly describe here. Note
that Stephan et al. (2009) suggest using the so-called exceedance probability to produce
a ranking between several models, which takes into account both how many times each
model was inferred to be the best for participants, and the uncertainty derived from the
inference procedure, making it a more appropriate measure for model comparison than
approximations to the model evidence such as the Bayesian information criterion (Schwarz,
1978).

Stephan et al. (2009) defined a hierarchical model in which the models to be compared
are first fit to the data of each participant using Bayesian methods. From this fitting, the
model evidence can be calculated for every combination of participant and model. This
matrix of model evidences is then used as “data” for the hierarchical model. Formally, the
model evidence is introduced as p(d|m), where d is the data (participants’ choices) and m
represents one of the 8 variants we propose, defined as a vector of zeros with a single 1 in the
place of the model (for example, the third model is represented by m = (0, 0, 1, 0, 0, 0, 0, 0)).
This is used to infer, using Bayes theorem, which model best fits the data of all participants
together.

The hierarchical model then defines the probability of the model m given an auxiliary
variable r:

p(m|r) =
8∏
i=1

rmi
i (14)

The variable ri can be interpreted as the number of participants for which modelmi was the
best model (highest model evidence), although this is a simplification. The last component
to define is the prior probability of r, which we defined as a flat Dirichlet distribution (as
was done by Stephan et al. (2009) in their examples):

p(r) = Dirichlet(α) (15)

where α is a vector of ones, which reflects that we do not have any hypothesis a priori
regarding which of the variants of our model fits the data best.

Finally, the full generative model is given by:

p(d,m, r) = p(d|m)p(m|r)p(r) (16)

which we inverted to produce the posterior probability q(m|d) by using the NUTS sam-
pler as implemented in PYMC3 (Salvatier, Wiecki, & Fonnesbeck, 2016). These posterior
distributions can then be used to perform model comparison via the computation of the
exceedance probability, which is a way of determine how much more likely is one model to
better describe the data than all other models (Stephan et al., 2009).
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MODELLING DYNAMIC EFFORT DISCOUNTING 12

To calculate the exceedance probability for model i, it suffices to calculate the cum-
mulative distribution of p(ri|data) over all values for which p(ri|data) > p(rj |data), for all
j 6= i.

Dividing participants into groups

We divided participants into three groups based on their effort exertion strategy which
we determined given their choice data. The first group, called all-effort group, consisted of
those participants who chose the effortful option in more than 90% of trials. This implies
that these participants used the effortful option even after winning the mini-block.

The remaining participants were divided into two groups: those who applied effort early
in the mini-block (early-effort group) and those who applied it late (late-effort group). To
divide participants we made use of the frequency of effort calculated at every trial number
across mini-blocks. Intuitively, the frequency of effort for participants in the early-effort
group decreases as the trial number increases (until the mini-block has been won), while
late-effort group increases their frequency with trial number. To quantify this, we calculated
the change in frequency of effort between each trial and the next one:

mt = Ft+1 − Ft, ∀t ∈ [0, 10) (17)

where Ft is the overall frequency of effort for trial number t. We found that to classify
participants based on when they exerted effort, the best strategy was to count the number
of times, for each participant, that the slope was positive for all trials and subtracted the
number of times it was negative:

ξparticipant = dim{t|mt > 0} − dim{t|mt ≤ 0} (18)

where dim() is a function that returns the number of elements in a set. ξparticipant
determines whether a participant belongs to the early-effort group (ξ ≤ 0) or to the late-
effort group (ξ > 0).

Parameter estimation

Parameter estimation was done using a variational inference scheme implemented in
PYMC3 (Salvatier et al., 2016), which uses the mean-field approximation. The outcome
of this Bayesian inference scheme is estimations for the mean and standard deviations of
Gaussian posteriors for each model parameter (see Section ’Sequential discounting mod-
els’), providing both a single-point estimate, e.g. the mean of the Gaussian posterior, and
estimations for the uncertainty of the inference.

Additionally, the model evidence for all models and participants is calculated as the
negative loss produced by PYMC3, which is used for model comparison in Section ’Model
comparison’.
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MODELLING DYNAMIC EFFORT DISCOUNTING 13

Parameter estimation was done using the following generative model:

q(θ|d) = p(d|θ)p(θ) (19)
p(θ) ∼ Uniform (20)

where p(·) is a probability distribution, θ is the set of parameters to fit to the data and q(θ)
is the posterior distribution over the parameters. Uniform refers to uninformative priors, i.e.
prior distributions in which no special prior information is encoded. p(d|θ) is the likelihood
function provided by our decision-making model.

Results

We first show that there are inter-participant differences in the strategies used to reach
the goal, which are reflected in the circumstances under which participants chose the effortful
option instead of the probabilistic one. Furthermore, we divided the participants according
to three behavioral categories, based on their strategies. This is followed by formal Bayesian
model comparison to identify the best among eight different models, which differ in terms
of how forward planning computes the subjective value of reward, and which out of two
discount functions is used. Having selected the best model for our data, we will show
that this model correctly captured the overall preference for effort shown by participants.
Finally, we show that the overall preference for effort can be understood in terms of the
inferred discounting parameters (more specifically, their ratio), providing for an intuitive
description of apparent effort preference in participants.

Behavioral analysis

5 participants were excluded from analysis due to their low success rates in the number-
sorting task throughout the experiment. The remaining 55 participants were used for the
following analyses.

Preference for effort. As a first step to determine whether our task elicited differ-
ences in the adaptation of effortful choices between participants, we calculated the overall
frequency of effort for each participant in the sequential task, i.e. in which percentage of
trials the participant chose the effortful option. The results are summarized in Figure 2A;
to determine whether participants had fully understood the instructions regarding reward
contingencies (i.e. that gaining points after filling the point bar brings no further reward),
the trials were separated into before and after having won the mini-block (i.e. filled the
points bar), displayed as blue and green bars, respectively. It can be seen that, on average,
participants chose the effortful option much less frequently after having won the mini-block,
which is congruent with the rules of the task (i.e. that getting more points after having
filled the bar is of no use).

In total, we identified three different groups of participants, differing on when they chose
to exert effort (see Figure 2B and Section ’Dividing participants into groups’ in Methods
for more details).
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Figure 2 . Preference for effort for all participants. (A) Histogram of participants’ overall frequency
of choosing effort averaged across all trials, separated into before (blue) winning the mini-block and
after (green). (B) Classification of participants into the three groups all-, early-, and late-effort, see
main text. (C) Frequency of effort as a function of trial number for the three groups of participants,
averaged over participants in each group. Here, only decisions made before the mini-block has been
won are included. The different ranges of the lines (e.g. all-effort only reaches trial 8) is due to
participants who chose effort more often won the mini-block earlier.

We found that 14 (25%) of all participants continued to choose to do effort even after
they had won the mini-block. We refer to these participants as the all-effort group for the
rest of this work. In the remaining participants we identified two further distinct categories
of behavior when looking at those trials before the mini-block had been won, i.e. trials for
which the number of obtained points is smaller than five. The first category comprises six
(11%) participants that showed a lower frequency of effortful choices at the beginning of the
mini-block, averaged across all mini-blocks, and only later increased their frequency. We
refer to these participants as the “late-effort” group. The second category, which included
35 (64%) participants, pertains to participants with the opposite behavior; they started
every mini-block with a high frequency of effort and only later in the mini-block, when they
had accumulated many points (not necessarily having won the mini-block), started choosing
the probabilistic option. We refer to these participants as the “early-effort” group.

We considered that all-effort participants may have misinterpreted the instructions of
the task. To discard this possibility, we asked all participants in a post-task questionnaire if
they understood that gaining points after filling the bar led to no further reward, to which
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all participants but one responded that they had understood this; the one participant who
responded that she did not understand was part of the all-effort group. Importantly, the
task was designed such that all participants could easily win all mini-blocks; we found that
across all participants, only four mini-blocks were lost (in all cases by a single point) and
no participant lost more than one. We will discuss potential reasons for the choice behavior
of the all-effort group in the Discussion.

The model-based analysis results we present in the following sections can account for
the all-effort group simply by inferring very low effort-discounting parameters so that the
effortful action no longer comes with disutility and thus can be selected freely. However,
the choice data of the all-effort group is rather uninformative about the way individuals
resolve the dilemma of when to invest effort to reach a goal that is a few trials away, as one
might expect given that they always chose to exert effort. Therefore, the all-effort group
will be excluded from the following analyses except when explicitly stated.

The dynamics of the frequency with which participants chose the effortful option can be
seen in Figure 2C for the three categories of participants (late-, early- and all-effort). For
this figure, we averaged, for every trial number, all the choices made by all the participants
in each group, using only the trials before the mini-block had been won. It is worth noting
that even early-effort participants’ frequency of effort increased in the final two trials. This
is because in those mini-blocks when early participants made it to such high trial numbers
without having won the mini-block, they urgently needed to accumulate points and thus
effort was required to ensure filling the point bar.

Model-based analysis

In this section, we discuss several hypotheses on how exactly human participants select
choices in the sequential task. To do this, we use a series of model-based analyses, using
Bayesian model comparison to select the best models.

For all analyses that follow, only trials before the mini-block were used, as only these
trials represent goal-seeking behavior.

Forward-planning strategies. We first determined which strategy participants used
for forward planning, i.e., how they took into consideration all the possible actions that can
be taken in the future and their potential outcomes to decide whether they would exert effort
or not at any given trial. Effectively, the question we address here is how the discounting
models used to describe single-trial behavior are used by participants in tasks that require
forward-planning, goal-reaching behavior.

We considered, for each discounting type (effort or probability), two different ways in
which participants computed the subjective value of a reward that can only be obtained
after several trials. For future efforts, participants may have used either the strategy to
apply the effort discount function as many times as necessary to win the mini-block (we call
this “stack”), or adding all necessary efforts to win the mini-block and using the discount
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function on this sum (we call this “add”). For probability, the strategy can be stacking
the discount function (“stack”), or calculating the probability of winning by choosing the
probabilistic option all remaining trials (“add”). In total, this resulted in four (two variants
for effort × two variants for probability; for details see Section ’Sequential discounting
models’). We refer to the model variants as (effort strategy)/(probability strategy), with the
four variants being: add/add, add/stack, stack/add, stack/stack. For example, add/stack
refers to the strategy where effort is added and probability stacked. To determine which
forward-planning strategy was used by participants, we performed formal model comparison
between the four forward-planning strategies, following (Stephan et al., 2009).

The results of the model comparison between forward-planning strategies, done by
marginalizing over discount functions, can be seen in Figure 3. The posterior distributions
over the different variants clearly favor the stack/add variant, with an exceedance probabil-
ity of ~ 0.99, which means that this forward-planning strategy is orders of magnitude more
likely than the others, given the participants’ choices.

Discount functions. Having selected the forward-planning strategy with the highest
posterior probability given the data (i.e. stack/add), we set out to determine which effort
discount function (sigmoid or hyperbolic) best fit our participants’ data. To do this, we
performed model comparison between the two discount functions. Our results clearly indi-
cate that hyperbolic effort discounting fits the data better than sigmoid discounting, with
an exceedance probability ~1.

These analyses were performed with the data of early- and late-effort participants only,
excluding the all-effort group. For completeness, we performed the same analysis including
all participants and found that the results do not change. This is due to the fact that, for
all models, the effort discounting parameter κε (from Equation 3) for all-effort participants
is estimated to be very low, which causes the model evidence of all models to be the same
for that participant. This greatly simplifies model-based data analysis, as it obviates the
need for arbitrary exclusion criteria.

Modeling effort preferences. Having selected the best-fitting model for the partic-
ipants’ data (hyperbolic effort discounting, with stack/add forward planning), we show in
this section that this model indeed captures participants’ behavior in a measure not directly
used for model comparison: the overall frequency of effort for each participant.

To this end, we compared our best-fit models to the experimental data by calculating
the overall frequency of effort for each participant across all mini-blocks and doing the same
for the models. We performed the analysis only for the early- and late-effort groups. We
summarize the results of the comparison in Figure 4A, where we show the observed (exper-
imental) and modeled frequencies of effort for each participant separately. We separated
the participants into the late- and early-effort groups; the division is shown as a vertical
line, to the left of which are the late-effort and to the right, the early-effort participants.

As can be seen in Figure 4B, the model estimates the probability of choosing effort very
well, being within 5% (in frequency of effortful choices) of the experimental data for most
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Figure 3 . Comparison of the four variants of the sequential model. The label add/stack, for exam-
ple, refers to effort/probability forward-planning strategy, i.e., effort is added, probability stacked.
Each distribution, e.g., green curve and histogram, represents the estimated posterior probability
that the model, e.g., stack/add was the best for the data for all participants. The colored lines are
an interpolation with a Gaussian kernel. The two effort discount functions (hyperbolic and sigmoid)
have been marginalized to compare only the forward-planning components. The y-axis is the proba-
bility density of ri given the data (p(ri|data) in Equation 14); the x-axis spans all the possible values
of r. The peak of the red (add/stack) curve is not shown because the vertical range was cut short
for visual clarity.

participants. Only for three participants we found an error greater than 15%.

It is clear from Figure 4A that the fit is better for higher frequencies of effort. This is
due to the fact that the frequency of effort for a participant has lower variability the higher
it is, to the point that those participants with an overall frequency of effort (in the early-
and late-effort groups) ~ 1 have almost zero variability in their choices.

Note that for the late-effort group in Figure 4A, one participant can be seen with a
high frequency of effort. For this participant, effort frequency started very high early in
the mini-block and increased as the mini-blocks progressed, meeting our definition of the
late-effort group.

Effort allocation. In this section, we show that the overall frequency of effort ob-
served in participants can be explained in terms of the discounting parameters fitted from
our model. More specifically, we show that participants with a higher frequency of effort

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2019. ; https://doi.org/10.1101/839456doi: bioRxiv preprint 

https://doi.org/10.1101/839456
http://creativecommons.org/licenses/by-nd/4.0/


MODELLING DYNAMIC EFFORT DISCOUNTING 18

Figure 4 . Frequency of effort for each participant (excluding the all-effort group) and the best-
fitting models. Only trials before winning the mini-block are included. (A) For each participant,
two colored dots are shown, which represent the experimental data (green) and the model prediction
(brown). Each dot represents the total frequency of effort for the whole experiment. The two dots
for each participant are horizontally offset and connected by a line for visual clarity. Participants
are divided by the vertical dashed line into late-effort and early-effort. (B) Histogram of absolute
error between the model and the experimental frequency of error shown in (A).

are those who discount probability more steeply than effort.

To do this, we selected the best-fitting model, the stack/add, hyperbolic model, and cal-
culated, for each participant, the ratio of the posterior means of the probability discounting
parameter κp from hyperbolic probability discounting, to κε from effort discounting. Figure
5 shows these ratios plotted against the individual overall frequencies of effortful choices. It
can be seen that there is a monotonically-increasing relation between the ratio of discount
parameters and the overall preference for effort, save for two outliers (one of which has a
large absolute difference in Figure 4, belonging to the early-effort group).

This monotonically-increasing relation can be interpreted in terms of the comparison
between the two options in the task: a participant with a high ratio discounts probability
more steeply than effort, which translates into a lower valuation of any probabilistic offer,
compared to an effortful one. At values of the frequency of effort ~1, the log-ratio increases
rapidly (faster than exponentially) due to the nature of the model, as the probability of
effort grows more slowly than exponentially as κε decreases linearly.
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Figure 5 . Frequency of effort vs. log-ratio of probability to effort discounting parameters. Each
dot represents a participant, divided into late-effort (dark dots) and early-effort (light dots). We
plot the frequency with which a participant chose the effortful action (until reaching the goal of a
mini-block) on the x-axis and the log-ratio of the parameters for probability to effort discounting,
i.e. κp to κε, on the y-axis (log-scale for clarity).

Discussion

We designed a sequential decision-making task in which participants could choose, in
each trial, to exert mental effort in order to improve their chances of obtaining reward at the
end of a mini-block (i.e., sequence) of ten trials. In this task, participants had the option to
exert effort immediately to ensure future reward or choose a probabilistic option and wait
until a later trial to re-evaluate if effort needed to be exerted. With this task, we aimed at
determining when participants choose to exert effort and which forward-planning strategy
they employ to make such a decision. To this end, we proposed a forward-planning model
for goal-directed, sequential decision-making behavior that incorporates different strategies
for the consideration of future exertion of effort.

Our results show inter-participant variation in when they chose to exert effort, with
most participants choosing to start a mini-block with effort and only later chose to not exert
effort. Additionally, the results of our model comparison between four different forward-
planning strategies show that most participants considered future efforts by stacking the
effort discount function, i.e., by applying the function as many times as they planned to
exert effort in future trials. For probability discounting, we found that the best-fitting
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model calculates the overall probability of reaching the goal (winning a mini-block) when
always choosing the probabilistic option. We also found that hyperbolic effort discounting
fits the data of our experiment better than sigmoid effort discounting. Finally, we showed
that the overall frequency of effort for a participant can be explained by the ratio of the
inferred probability discounting to the effort discounting parameters.

Preference for effort

We found that most participants had a strong preference for effort. A quarter of par-
ticipants (the all-effort group) went as far as choosing to exert effort even when it brought
no extra monetary reward. In particular, participants in the all-effort group did not seem
to be following the instructions of the task. A similar phenomenon, i.e., continuing to exert
effort when it no longer is necessary, has been observed in physical effort experiments (Bouc
et al., 2016; Schmidt et al., 2008).

There may be two possible reasons for this phenomenon: First, the level of cognitive
effort in our number-sorting task was probably not high enough to trigger a cost/benefit
analysis in participants in the all-effort group. In our task, the effortful option came im-
plicitly tied to an increase in the probability of earning monetary reward, which added
to the overall benefit of exerting some effort. Moreover, other reasons may be that for
some participants, the number-sorting task was interesting on its own (Inzlicht, Shenhav, &
Olivola, 2018), participants did not want to wait for the next trial while doing nothing, and
wanted to make sure they did not lose practice, all of which were reported by our partici-
pants in a post-task questionnaire. A related possibility was suggested by Pessiglione et al.
(2018), namely that participants might want to “make an impression on the experimenter”
by always choosing to exert effort.

Second, we speculate that highly motivated individuals might “flatten” their effort dis-
count curves (e.g., by making κε smaller) to more easily attain highly-valued rewards in a
scenrario like a psychological experiment, which they might misunderstand as a competetive
scenario. This context-dependent meta-control could come in the form of a meta-parameter
that controls the size of κε depending on higher-level goals (e.g. “how much do I want to
win each mini-block?”). As volunteer participants can be assumed to be highly motivated,
especially when monetary reward is contingent on performance (Hertwig & Ortmann, 2001),
this would mean that their effort discounting parameters are lower, causing the observed
high frequency of effort.

Testing these two possible explanations could prove fruitful in future research. Testing
the low-effort level possibility would require a task that parametrically varies the effort
level to establish higher levels of cognitive effort, as is done typically with physical effort
(Prévost et al., 2010). Based on these variations, the proposed model-based approach can
be used to infer meta-control by establishing differences in individual effort and probability
discounting parameters between different levels of effort requirements.
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Action sequences

As part of the present model’s definition, we limited the action sequences considered by
the model to the all-effort (πε) and the all-probability (πp) action sequences (see Section
’Sequential discounting models’). Here, we discuss the reasoning behind this choice and its
ramifications.

We posit that as a means to prune the decision tree, participants developed a strategy
in which they evaluate the current state of the task and determine it to be “good” or “bad”,
which in turn allowed them to simplify the decision tree to the two action sequences πε and
πp. A good state is one in which the participant is close to winning. A bad state is one in
which losing seems likely. A good state is then one in which the participant can afford to
choose the probabilistic option without it becoming too likely to lose the mini-block, while
a bad one is one in which effort needs to be exerted to continue to have a chance at winning.
It depends on the participant where exactly this change from good to bad state lies.

In a bad state, effort is, by definition of the bad state, necessary not only in the current
trial, but also for all the remaining ones, as otherwise the probabilistic option would still
be viable and the state would be good. Therefore considering a mixed action sequence (i.e.
one in which both effort and probability can be planned for future trials) is unnecessary in
bad states.

In contrast, in a good state, the probabilistic option is still viable. This definition does
not preclude future necessity of effort, as things could go wrong and all probabilistic options
be lost, which eventually would lead to a bad state. However, as states are evaluated at every
trial during the experiment, it is unnecessary to consider this possibility when evaluating
the action sequences during a good state; instead, the participant can simply wait until the
state has actually become bad in the future and then switch to the all-effort strategy. This
implies that good states only require the evaluation of πp.

How is this state evaluation carried out? Since the only viable option in a good state is
πp and the only viable option in a bad state is πε, one can turn this around and define a
good state as one in which z(πp) > z(πε), where z(·) is the valuation function (Equation 7),
and a bad state as one in which the opposite is true. Therefore, the decision-making agent
can decide between effort and probability by comparing the valuations of πp and πε, as done
in the proposed model. This evaluation could be affected by the meta-control we discussed
in Section ’Preference for effort’; for example, a highly-motivated individual would classify
states as “bad” more often than one with low motivation. Whether motivation and, more
generally, meta-control could change which action sequences are evaluated at all should be
the target of future research.

This evaluation could be affected by the meta-control we discussed in Section ’Preference
for effort’; for example, a highly-motivated individual would classify states as “bad” more
often than one with low motivation. Whether motivation and, more generally, meta-control
could change which action sequences are evaluated at all should be the target of future
research.
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Effort and goal reaching

It has been suggested that individuals generally tend to avoid cognitive effort (Kool et
al., 2010; Westbrook et al., 2013). However, in the tasks used in the experiments by Kool
et al. (2010) and Westbrook et al. (2013), there was no set goal that could be reached more
readily via the exertion of cognitive effort. In the study by Kool et al. (2010), participants
could not earn additional money if they chose the more effortful task more often. In the
experiments in (Westbrook et al., 2013), the association between the actual investment of
effort in an increasingly difficult n-back task, the choice behavior in the titration procedure
used to determine the subjective value of redoing the different n-back levels, and the actual
payment based on four randomly selected choices in the titration procedure may simply
have been too unconstrained. In the present task, it was clear in every trial and mini-block
that choosing the effortful option would be beneficial for obtaining the reward.

In the present experiment, the frequency of choices of the effortful option was lower after
a mini-block had been won (see Figure 2A). The early-effort group tried to reduce effort
during the course of a mini-block and increased it only towards the end of the mini-block if
they had not already won that block (see Figure 2B). Likewise, the late-effort group only
gradually increased their effort, especially in later trials of a mini-block when facing to lose
the mini-block. Thus, our results suggest that individuals may tend to avoid cognitive effort
unless its exertion is necessary to reach their goals.

This caveat to the assumption of a general tendency of individuals to avoid the exertion
of cognitive effort is also backed by the observation that stable individual differences in
personality traits related to the tendency to willingly exert cognitive effort have been found
to be associated with effort discounting: Kool and Botvinick (2013) found that individuals
with higher scores in Self-Control showed less avoidance of cognitive demand, andWestbrook
et al. (2013) observed that participants with higher scores in Need for Cognition showed
less effort discounting. While Self-Control is characterized by the investment of mental
effort to control one’s impulses that interfere with long-term goals (Tangney, Baumeister,
& Boone, 2004), Need for Cognition refers to the tendency to engage in and enjoy effortful
mental activities (Cacioppo, Petty, Feinstein, & Jarvis, 1996), which can be summarized
as cognitive motivation. It remains to be determined whether our participants’ habitual
cognitive motivation may have played a modulatory role in their decisions to choose the
effortful condition more frequently because of their intrinsic motivation to invest cognitive
effort. Taken together, our results partly corroborate the seminal findings by Kool and
Botvinick (2013) and Westbrook et al. (2013) in pointing to individual differences in the
willingness to invest cognitive effort and extend them by showing that the assumption of a
general tendency for the avoidance of the exertion of cognitive effort only holds if there is
no goal to be attained that can be achieved more readily by the exertion of effort.

Our computational modelling approach shares similarities with three other areas of
research. First, to model goal reaching in sequential decision making tasks with proba-
bilistic outcomes, some method of forward planning based on computing and evaluating
the consequences of action sequences is required, e.g. using the active inference frame-
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work (Cuevas Rivera, Ott, Markovic, Strobel, & Kiebel, 2018; FitzGerald, Schwartenbeck,
Moutoussis, Dolan, & Friston, 2015; Schwartenbeck, FitzGerald, Mathys, Dolan, & Friston,
2015) or – as in the present study – using backward induction based on maximization of
expected value (e.g., Kolling, Wittmann, & Rushworth, 2014; Korn & Bach, 2018). We
add to this modelling work by showing how one can compute the apparent cost of exerting
mental effort to reach a goal after several trials.

Second, modelling the dilemma between the apparent costs of exerting effort and reach-
ing a goal with high probability is a long-standing research question at the interface be-
tween psychology and economics. For example, Steel and König (2006) describe a compu-
tational framework that aims at qualitatively modelling, as a function of time towards a
deadline, how people compute preferences of options. Their model of the procrastination
phenomenon, based on a preference reversal close to the goal, is similar to the proposed
mechanism how the late-effort group increases their effort frequency close to the goal. The
main difference of the here-proposed approach and the approach taken by Steel and König
(2006) is that we use probabilistic inference and model comparison to fit several models to
participant data and select the best among alternative models.

Third, it is still an open question whether individuals with a lower tolerance for risk
should be more willing to exert effort to increase their chances of winning, e.g., (Briys &
Schlesinger, 1990; Jullien, Salanié, & Salanié, 1999). However, while these studies presented
a mathematical framework to compare effort and probability discounting, they did not allow
for the evolution of the state of the task, making it more akin to single-trial discounting
paradigms and models.

The model we present is highly generalizable by modifying the underlying transition
structure. This makes the model applicable to any sequential decision-making task which
involves the exertion of effort, as well as considerations of probability and delays. This
can enable researchers to characterize, using the model parameters, forward-planning, goal-
reaching behavior in many tasks, for example in foraging tasks, where plans for future
patch switches can incorporate the associated costs in effort (Kolling, Behrens, Mars, &
Rushworth, 2012; Shenhav, Straccia, Cohen, & Botvinick, 2014, e.g.). Moreover, more
complex effort/reward structures can be modeled, such as sub-goals necessary for the main
goal, or states that open/close doors to reward options.

In conclusion, we have presented a novel combination of a sequential decision making
task and a computational model based on discounting effects to describe how participants
plan forward to exert effort to reach a goal. We believe that this computational-experimental
approach will be highly useful for future studies in the analysis of how participants meta-
control the cost/benefit ratio during goal reaching.
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