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Abstract	

Genome-wide	association	studies	(GWAS)	in	samples	of	European	ancestry	have	identified	

thousands	of	genetic	variants	associated	with	complex	traits	in	humans.	However,	it	remains	

largely	unclear	whether	these	associations	can	be	used	in	non-European	populations.	Here,	we	

seek	to	quantify	the	proportion	of	genetic	variation	for	a	complex	trait	shared	between	

continental	populations.	We	estimated	the	between-population	correlation	of	genetic	effects	at	

all	SNPs	(𝑟")	or	genome-wide	significant	SNPs	(𝑟"($%&))	for	height	and	body	mass	index	(BMI)	in	

samples	of	European	(EUR;	𝑛 = 49,839)	and	African	(AFR;	𝑛 = 17,426)	ancestry.	The	𝑟̂" 	

between	EUR	and	AFR	was	0.75	(s. e. = 0.035)	for	height	and	0.68	(s. e. = 0.062)	for	BMI,	and	

the	corresponding	𝑟̂"($%&) 	was	0.82	(s. e. = 0.030)	for	height	and	0.87	(s. e. = 0.064)	for	BMI,	

suggesting	that	a	large	proportion	of	GWAS	findings	discovered	in	Europeans	are	likely	

applicable	to	non-Europeans	for	height	and	BMI.	There	was	no	evidence	that	𝑟̂" 	differs	in	SNP	

groups	with	different	levels	of	between-population	difference	in	allele	frequency	or	linkage	

disequilibrium,	which,	however,	can	be	due	to	the	lack	of	power.	
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Introduction	

Most	traits	and	common	diseases	in	humans	are	complex	because	they	are	influenced	by	many	

genetic	variants	as	well	as	environmental	factors1,2.	Genome-wide	association	studies	(GWASs)	

have	discovered	>70,000	genetic	variants	associated	with	human	complex	traits	and	diseases3,4.	

However,	most	GWASs	have	been	heavily	biased	toward	samples	of	European	(EUR)	ancestry	

(~79%	of	the	GWAS	participants	are	of	EUR	descent)5.	Progress	has	been	made	in	recent	years	

in	uncovering	the	genetic	architecture	of	traits	and	diseases	in	a	broader	range	of	populations6-

11.	Given	the	population	genetic	differentiation	among	worldwide	populations5,12-15,	the	extent	to	

which	the	associations	discovered	in	EUR	populations	can	be	used	in	non-EUR	such	as	Africans	

(AFR)	and	Asians	remains	unclear.	Genetic	correlation	(𝑟")	is	the	correlation	between	the	

additive	genetic	values	of	two	traits	in	a	population16.	However,	by	definition,	we	cannot	

observe	the	trait	in	AFR	and	EUR	in	the	same	individuals.	Therefore,	𝑟" 	is	better	defined	by	the	

correlation	between	the	additive	effects	of	causal	variants	in	the	two	populations.	𝑟" 	can	be	less	

than	1	due	to	genotype	by	environment	interactions	if	the	two	populations	are	in	different	

environments.	Unfortunately,	not	all	the	causal	variants	for	complex	traits	are	known	so	we	

estimate	𝑟" 	based	on	the	correlation	between	the	apparent	effects	of	genetic	markers	such	as	

SNPs.	This	can	be	estimated	by	using	the	genomic	relationship	matrix	(GRM)	among	all	the	

individuals	or,	if	only	summary	data	is	available,	the	correlation	between	estimated	SNP	

effects13,17-19	.	𝑟" 	estimated	from	SNPs	can	be	less	than	that	based	on	causal	variants	if	the	LD	

between	causal	variants	and	SNPs	differs	between	the	populations.	Galinsky	et	al.14	estimated	

this	effect	using	simulation	and	found	it	to	be	small	but	this	conclusion	may	not	apply	to	rare	

causal	variants.		

	

Previous	trans-ethnic	genetic	studies	have	shown	that	the	estimates	of	𝑟" 	at	common	SNPs	(e.g.,	

those	with	minor	allele	frequencies	(MAF)	>	0.01)	between	EUR	and	East	Asian	(EAS)	

populations	are	high	for	inflammatory	bowel	diseases	(𝑟̂" = 0.76	with	a	standard	error	(s.e.)	of	

0.04	for	Crohn’s	disease	and	𝑟̂" = 0.79	with	s. e. = 0.04	for	ulcerative	colitis)20	and	bipolar	

disorder	(𝑟̂" = 0.68)21	and	modest	for	rheumatoid	arthritis	(𝑟̂" = 0.46	with	s. e. = 0.06)13	and	

major	depressive	disorder	(𝑟̂" = 0.33	with	a	95%	confidence	interval	(CI)	of	0.27-0.39)22.	If	the	

between-population	𝑟" 	for	a	trait	estimated	from	SNPs	is	not	unity,	then	it	is	of	interest	to	know	

whether	the	between-population	genetic	heterogeneity	differs	at	SNPs	with	different	levels	of	

between-population	difference	in	allele	frequency	(i.e.,	Wright’s	fixation	index23,	FST)	or	LD,	and	

whether	the	between-population	𝑟" 	estimated	from	all	common	SNPs	(MAF	>	0.01)	can	be	used	

to	measure	the	correlation	of	genetic	effects	between	populations	at	the	genome-wide	
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significant	SNPs.	Answers	to	these	questions	are	important	to	inform	the	design	of	gene	

mapping	experiments24-28,	the	genetic	risk	prediction	of	complex	diseases5,29	in	the	future	in	

non-EUR	populations	and	the	detection	of	signatures	of	natural	selection	that	has	resulted	in	

genetic	differentiation	among	worldwide	populations.	In	this	study,	we	focus	on	estimating	the	

correlation	of	genetic	effects	at	all	SNPs	(denoted	by	𝑟")	between	continental	populations	using	

a	bivariate	GREML	analysis30	(treating	the	phenotypes	in	the	two	populations	as	different	traits)	

for	two	model	complex	traits,	i.e.,	height	and	body	mass	index	(BMI).	We	investigate	the	

influence	of	the	between-population	differences	in	allele	frequencies	or	LD	on	the	between-

population	genetic	heterogeneity.	To	do	this,	we	first	used	genome-wide	SNP	genotype	data	to	

estimate	𝑟" 	between	AFR	and	EUR	populations	for	height	and	BMI.	We	also	estimated	the	

correlation	of	genetic	effects	between	continental	populations	at	the	genome-wide	significant	

SNPs	(𝑟"($%&))	identified	from	an	EUR	GWAS	using	the	bivariate	GREML	method30	or	a	summary	

level	data-based	method31.	We	then	examined	whether	the	between-population	genetic	overlap	

is	enriched	(or	depleted)	at	the	SNPs	with	stronger	between-population	differentiation	in	allele	

frequency	or	LD.	

	

Results	

Genetic	correlation	(𝒓𝒈)	between	worldwide	populations	for	height	and	BMI	

We	used	GWAS	data	on	49,839	individuals	of	EUR	ancestry	from	the	UK	Biobank	(UKB)	and	

17,426	individuals	of	AFR	ancestry	from	multiple	publicly	available	datasets	including	the	UKB	

(Supplementary	Fig.	1;	Methods).	Note	that	we	used	only	~50K	EUR	individuals	from	the	UKB	

for	the	ease	of	computation.	All	the	individuals	were	not	related	in	a	sense	that	the	estimated	

pairwise	genetic	relatedness	was	<	0.05	within	a	population.	The	EUR	genotype	data	were	

imputed	by	the	UKB	(version	3)	using	the	Haplotype	Reference	Consortium	(HRC)	and	UK10K	

imputation	reference	panel32.	We	imputed	the	AFR	data	to	the	1000	Genomes	Project	(1000G)	

reference	panel	(Methods).	After	quality	control	(QC),	1,018,256	HapMap3	SNPs	with	

MAF	>0.01	in	both	the	two	data	sets	were	retained	for	analysis	(Methods).	We	first	used	the	

bivariate	GREML	approach30	to	estimate	𝑟" 	between	populations	as	well	as	the	SNP-based	

heritability	(ℎ<=>? )	in	each	population	for	height	and	BMI.	It	has	been	shown	in	Galinsky	et	al.14	

that	the	estimate	of	𝑟" 	from	a	between-population	bivariate	GREML	analysis	is	equivalent	to	the	

correlation	of	genetic	effect	at	all	SNPs.	The	GRM	used	in	our	bivariate	GREML	analysis	was	

computed	using	two	different	strategies:	1)	SNP	genotypes	standardized	using	allele	

frequencies	estimated	from	a	combined	sample	of	the	two	populations	(denoted	as	GRM-

average);	2)	SNP	genotypes	standardized	using	allele	frequencies	estimated	from	each	

population	specifically	(denoted	as	GRM-specific;	Methods).	The	𝑟̂" 	based	on	GRM-specific	was	
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0.75	(s. e. = 0.035)	for	height	and	0.68	(s. e. = 0.062)	for	BMI,	suggesting	strong	genetic	overlap	

between	EUR	and	AFR	for	both	height	and	BMI	(Table	1).	The	𝑟̂" 	between	EUR	and	AFR	for	

height	was	very	similar	to	that	between	EUR	and	SAS	estimated	from	the	UKB	data	reported	in	

Galinsky	et	al.	(0.77	with	s. e. = 0.26)14.	We	did	not	observe	a	substantial	difference	in	𝑟̂" 	

between	the	analyses	based	on	GRM-average	(Supplementary	Table	1)	and	GRM-specific	(Table	

1).	The	ℎ@<=>? 	in	EUR	and	AFR	from	the	bivariate	GREML	analysis	were	0.50	(s. e. = 0.0077)	and	

0.39	(s. e. = 0.024)	for	height,	and	0.25	(s. e. = 0.0080)	and	0.22	(s. e. = 0.025)	for	BMI,	

respectively	(Table	1),	highly	consistent	with	those	from	the	univariate	GREML	analysis33	where	

the	corresponding	estimates	were	0.50	(s. e. = 0.0078)	and	0.40	(s. e. = 0.026)	for	height,	and	

0.25	(s. e. = 0.0080)	and	0.23	(s. e. = 0.025)	for	BMI.	It	is	of	note	that	the	height	ℎ@<=>? 	in	EUR	was	

significantly	larger	than	that	in	AFR	(𝑃 = 1.3 × 10CD),	which	is	consistent	with	the	result	from	a	

recent	study	in	European-Americans	and	African-Americans15,	presumably	because	the	causal	

variants	in	non-Europeans,	especially	those	with	MAF	<0.01,	were	less	well	tagged	by	the	SNPs	

on	the	SNP	arrays	compared	to	those	in	Europeans.	Such	a	difference	was	much	smaller	and	not	

statistically	significant	for	BMI	(𝑃 = 0.35),	which	can	be	partly	explained	by	that	the	imperfect 

tagging is proportional to trait heritability34.	We	further	estimated	𝑟" 	between	EUR	and	EAS	for	

BMI	by	a	summary-data-based	𝑟" 	approach13	using	summary	statistics	from	the	GIANT	

consortium	(𝑛 = 253,288)35	and	the	Biobank	Japan	project	(BBJ,	𝑛  =  158,284)10	(note	that	the	

GWAS	data	with	comparable	sample	size	for	EAS	and	the	BBJ	summary-level	data	for	height	

were	not	available	to	us).	The	𝑟̂" 	between	EUR	and	EAS	was	0.80	(s. e. = 0.037)	for	BMI,	which	

was	also	significantly	different	from	1	(𝑃 = 8.36 × 10CF),	in	line	with	the	estimate	(0.75,	s. e. =

0.023)	from	Martin	et	al.5	based	on	GWAS	summary	data	from	the	UKB	and	BBJ.	

	

Correlation	of	SNP	effects	between	populations	at	the	top	associated	SNPs		

We	have	quantified	above	the	between-population	𝑟" 	for	height	and	BMI	using	all	HapMap3	

SNPs	with	MAF	>0.01.	The	estimates	were	high	but	statistically	significantly	smaller	than	1	

(Table	1),	suggesting	there	is	a	between-population	genetic	heterogeneity	for	both	traits.	We	

know	from	a	previous	study	that	𝑟̂" 	estimated	from	all	SNPs	is	close	to	the	estimated	causal	

effect	correlation	(𝜌HI)	between	EUR	and	SAS14.	We	then	sought	to	ask	whether	the	estimated	𝑟" 	

from	all	SNPs	is	consistent	with	that	estimated	at	genome-wide	significant	SNPs	identified	in	

EUR	(i.e.,	𝑟"($%&)).	We	estimated	𝑟"($%&)	between	EUR	and	AFR	using	the	recently	developed	

method31	that	can	estimate	SNP	effect	correlation	using	summary	data	accounting	for	errors	in	

the	estimated	SNP	effects	(Methods).	We	used	the	trait-associated	SNPs	identified	in	previous	

GWAS	meta-analyses	conducted	by	the	GIANT	consortium35,36	(with	SNP	effects	re-estimated	in	

our	AFR	and	EUR	samples	to	avoid	biases	due	to	the	winner’s	curse;	see	Methods).	There	were	
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538	and	57	nearly	independent	SNPs	for	height	and	BMI	respectively	at	𝑃 < 5.0 × 10CF	selected	

from	clumping	analyses	(LD	r2	threshold	=	0.01	and	window	size	=	1Mb)	of	the	GIANT	summary	

data	(Methods)37.	To	avoid	potential	bias	in	estimating	𝑟"($%&)	due	to	remaining	LD	among	

these	sentinel	SNPs,	we	did	an	additional	round	of	clumping	using	a	window	size	of	10Mb	

(Methods)	and	obtained	531	and	56	SNPs	for	height	and	BMI	respectively.	We	call	these	the	

sentinel	SNPs	hereafter.	

	

We	first	estimated	𝑟"($%&)	between	our	EUR	sample	and	GIANT	as	a	“negative	control”;	the	

estimate	was	0.98	(s. e. = 0.0045)	for	height	and	0.99	(s. e. = 0.0069)	for	BMI,	suggesting	no	

significant	differences	in	SNP	effects	between	the	GIANT	(a	meta-analysis	of	samples	of	EUR	

ancestry)	and	our	sample	of	EUR	participants	from	the	UKB	(Figure	1).	We	then	estimated	

𝑟"($%&)	between	EUR	and	AFR	(SNP	effects	re-estimated	in	our	samples).	We	found	an	estimate	

of	0.81	(s. e. = 0.032)	for	height	(Figure	1a)	and	of	0.94	(s. e. = 0.049)	for	BMI	(Figure	1b).	Since	

individual-level	data	were	available	in	our	EUR	and	AFR	samples,	we	performed	a	bivariate	

GREML	analysis	to	estimate	𝑟"($%&) 	only	using	the	sentinel	SNPs	(Methods);	the	estimate	was	

0.82	(s. e. = 0.030)	for	height	and	0.87	(s. e. = 0.064)	for	BMI,	similar	to	the	corresponding	

estimates	using	the	summary	data	above.	Moreover,	summary	data-based	𝑟̂"($%&)	between	EUR	

(SNP	effects	re-estimated	in	this	study)	and	EAS	(SNP	effects	from	the	BBJ	data38)	was	0.90	

(s. e. = 0.043)	for	BMI.	All	these	results	suggest	that	a	large	proportion	of	GWAS	findings	

discovered	in	Europeans	are	likely	replicable	in	non-Europeans	for	the	two	traits	(see	below	for	

more	discussion).	In	addition,	𝑟̂" 	estimated	using	all	SNPs	was	largely	consistent	with	𝑟̂"($%&)	for	

height,	but	some	differences	have	been	observed	for	BMI	(see	below	for	discussion).	

	

Genetic	correlation	estimated	at	SNPs	stratified	by	population	difference	in	allele	

frequency	or	LD	

If	there	is	an	effect	of	the	between-population	differences	in	allele	frequencies	on	the	between-

population	genetic	heterogeneity	for	a	trait,	we	hypothesised	that	the	estimate	of	𝑟" 	at	SNPs	

with	higher	FST	is	different	from	that	at	SNPs	with	lower	FST.	To	test	this,	we	first	calculated	the	

𝐹&L	values	of	the	HapMap3	SNPs	between	EUR	and	AFR.	To	avoid	difference	in	within-

population	allele	frequency	or	LD	between	the	two	FST	groups,	we	divided	the	SNPs	into	a	large	

number	of	bins	according	to	their	allele	frequencies	and	LD	scores	in	each	population	and	then	

stratified	the	SNPs	into	two	groups	with	equal	number	by	their	𝐹&L	values	in	each	MAF-LD	bin	

(Methods).	We	show	that	there	was	no	difference	in	allele	frequency	or	LD	score	between	the	

two	𝐹&L	groups	after	applying	this	SNP-binning	strategy	(Supplementary	Fig.	2).	We	performed	

a	two-component	bivariate	GREML	analysis	(based	on	GRM-specific)	to	estimate	𝑟" 	in	each	𝐹&L	
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group	and	found	no	significant	difference	in	𝑟̂" 	between	the	two	𝐹&L	groups	for	both	traits	

although	the	standard	errors	of	𝑟̂" 	were	large	(Table	2).	Even	if	our	previous	study	has	shown	

that	height	increasing	alleles	are	more	frequent	in	EUR	than	AFR39,	which	might	explain	the	

mean	difference	in	height	phenotype	between	EUR	and	AFR,	the	result	reported	here	suggests	

that	the	population	differentiation	of	frequencies	of	the	height-associated	SNPs	does	not	seem	

to	affect	the	genetic	correlation	between	populations.	Nevertheless,	it	is	possible	that	there	is	a	

difference	in	𝑟" 	between	the	two	𝐹&L	groups	but	the	power	of	this	study	is	not	large	enough	to	

detect	it.		

	

We	applied	the	same	SNP-binning	strategy	to	test	whether	the	estimate	of	genetic	correlation	

differs	when	the	SNPs	are	ascertained	by	difference	in	LD	between	populations	(Supplementary	

Fig.	3).	We	used	a	metric	called	LDCV	(i.e.,	coefficient	of	variation	of	the	LD	scores	across	

populations)	proposed	in	a	previous	study39	to	measure	the	differentiation	of	LD-score	between	

EUR	and	AFR	for	each	SNP	(Methods).	We	stratified	the	SNPs	into	two	LDCV	groups	with	no	

difference	in	MAF	or	LD	score	between	the	groups	in	each	individual	population	using	the	

approach	described	above	(Methods;	Supplementary	Fig.	4)	and	estimated	𝑟" 	by	a	two-

component	bivariate	GREML	analysis.	We	found	no	significant	difference	in	the	estimate	of	𝑟̂" 	

between	the	two	LDCV	groups	(Table	2),	which	does	not	support	a	significant	role	of	LD	

difference	in	the	between-population	genetic	heterogeneity	at	common	SNPs	but	also	could	be	

due	to	the	lack	of	power	if	the	difference	in	𝑟" 	between	the	two	LDCV	groups	is	very	small.		

	

Discussion	

In	this	study	we	showed	a	substantial	genetic	overlap	at	HapMap3	SNPs	(MAF	>	0.01)	for	height	

and	BMI	between	EUR	and	AFR	(𝑟̂" = 0.75	with	s. e. = 0.035	for	height	and	0.68	with	s. e. =

0.062	for	BMI;	Table	1)	from	a	cross-population	bivariate	GREML	analysis	of	individual-level	

genotype	data30	and	between	EUR	and	EAS	(𝑟̂" = 0.80	with	s. e. = 0.037	for	BMI)	by	a	summary-

data-based	approach13.	All	these	estimates	were	significantly	smaller	than	1	(Table	1),	

suggesting	some	genetic	heterogeneity	between	populations	for	both	traits.	We	then	used	the	

recently	developed	𝑟I 	approach31	that	is	able	to	estimate	the	correlation	of	SNP	effects	between	

populations	accounting	for	estimation	errors	in	estimated	SNP	effects	(Figure	1),	and	confirmed	

the	estimates	by	a	bivariate	GREML	analysis	using	individual-level	data.	The	bivariate	GREML	

estimate	of	𝑟" 	at	the	sentinel	SNPs	between	EUR	and	AFR	was	marginally	larger	than	the	

estimate	of	𝑟" 	for	height	(𝑟̂"($%&) =	0.82	with	s. e. = 0.030	vs.	𝑟̂" = 0.75	with	s. e. = 0.035;	𝑃 =

0.13),	but	the	difference	was	larger	for	BMI	(𝑟̂"($%&) =	0.87	with	s. e. = 0.064	vs.	𝑟̂" = 0.68	with	

s. e. = 0.062;	𝑃 = 0.032),	which	may	due	to	a	difference	in	genetic	architecture	between	the	two	
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traits	and/or	the	relatively	small	number	of	sentinel	SNPs	used	for	BMI.	The	estimated	strong	

correlation	in	SNP	effect	between	populations	is	in	line	with	the	finding	from	previous	studies	

that	GWAS	results	from	EUR	population	are	largely	consistent	with	those	from	non-EUR	

populations	for	a	certain	number	of	complex	traits17,40-45.	However,	the	extent	to	which	the	EUR-

based	GWAS	findings	can	be	replicated	in	non-EUR	populations	can	be	trait-dependent,	given	

the	estimates	of	genetic	correlation	varied	across	different	traits5,22.	We	also	attempted	to	

quantify	the	effect	of	population	differentiation	in	SNP	allele	frequencies	on	the	between-

population	genetic	heterogeneity	by	comparing	𝑟̂" 	estimated	from	SNPs	with	higher	𝐹&L	to	that	

estimated	from	SNPs	with	lower	𝐹&L	but	found	no	significant	difference	in	𝑟̂" 	between	the	two	

𝐹&L	groups	(Table	2).	In	addition,	it	should	be	noted	that	differences	in	SNP	effects	between	

populations	could	reflect	the	differences	in	causal	effects	and/or	LD	between	SNPs	and	causal	

variants.	Our	estimated	genetic	effect	correlation	at	all	SNPs	between	EUR	and	AFR	for	height	

(𝑟̂" = 0.75	with	s. e. = 0.035;	Table	1)	was	largely	consistent	with	the	causal	effect	correlation	

between	EUR	and	SAS	(𝜌HI = 0.78,	s. e. = 0.26)	estimated	in	a	previous	study14.	Although	the	

standard	error	of	𝜌HI	is	large,	the	causal	effect	correlation	between	EUR	and	AFR	is	similar	to	

that	between	EUR	and	SAS.	Then,	the	results	seem	to	imply	that,	on	average,	the	extent	to	which	

the	difference	in	SNP	effects	between	populations	due	to	the	difference	in	LD	is	unlikely	to	be	

large	for	common	SNPs.	This	implication	is	consistent	with	our	LDCV	partitioning	analysis	

which	showed	no	significant	difference	in	𝑟̂" 	between	common	SNPs	with	higher	and	lower	

LDCV	(Table	2).	However,	it	should	be	noted	that	LDCV	may	differ	from	the	between-population	

difference	in	LD	between	SNPs	and	causal	variants.	

	

In	summary,	our	study	confirmed	a	large	estimate	of	genetic	correlation	at	common	SNPs	

between	worldwide	populations	for	height14	and	showed	a	similar	level	of	between-population	

genetic	correlation	for	BMI.	We	observed	that	the	estimate	of	SNP	effect	correlation	at	the	

genome-wide	significant	SNPs	was	only	marginally	larger	than	the	estimate	of	genetic	

correlation	using	all	SNPs	for	height	but	the	difference	was	more	pronounced	for	BMI.	We	

caution	that	the	difference	between	𝑟̂"($%&)	and	𝑟̂" 	needs	to	be	quantified	in	higher	precision	

and	the	extent	to	which	the	between-population	genetic	heterogeneity	for	a	trait	due	to	

differences	in	allele	frequency	and	LD	need	to	be	tested	in	data	sets	with	larger	sample	sizes	in	

the	future.	Moreover,	an	observed	between-population	genetic	heterogeneity	for	a	complex	trait	

could	also	be	due	to	the	interactions	between	genetic	(G)	and	environmental	(E)	factors.	The	

genotype-by-environment	interaction	component	would	be	partially	eliminated	in	𝑟" 	estimation	

in	the	study	design	where	two	populations	differ	in	genetic	ancestry	but	live	in	the	same	

environment	conditions.	We	acknowledge	that	all	the	conclusions	are	restricted	to	common	
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SNPs.	The	between-population	genetic	heterogeneity	for	complex	traits	at	rare	variants	(or	the	

variants	that	are	rare	in	one	population	but	common	in	another)	remains	to	be	explored	with	

whole-genome	sequence	data	in	large	samples46.	Nevertheless,	all	our	results	are	consistent	

with	the	conclusion	that	most	GWAS	findings	at	common	SNPs	from	EUR	populations	are	

largely	applicable	to	non-EUR	for	height	and	BMI	for	variant/gene	discovery	purposes.	

However,	cautions	are	required	for	phenotype	(or	disease	risk)	prediction	given	the	limited	

accuracy	of	genetic	prediction	using	EUR-based	GWAS	results	in	non-EUR	populations	as	

demonstrated	in	recent	studies5,29.	

	

Methods	

Data	

GWAS	data	of	456,422	individuals	of	European	ancestry	were	from	the	UKB	(EUR-UKB).	GWAS	

data	of	24,077	individuals	of	African	ancestry	were	from	the	UKB	(AFR-UKB,	𝑛 = 8,230),	the	

Women’s	Health	Initiative	(WHI;	𝑛 = 7,480),	and	the	National	Heart,	Lung,	and	Blood	Institute’s	

Candidate	Gene	Association	Resource	(CARe)	including	ARIC,	JHS,	CARDIA,	CFS	and	MESA	(𝑛 =

8,367)47.	QC	of	the	UKB	SNP	genotypes	had	been	conducted	by	the	UKB	QC	team32	and	the	EUR-

UKB	data	had	been	imputed	to	the	HRC	and	UK10K	reference	panel.	For	the	EUR-UKB	imputed	

data	(hard-call	genotypes),	we	filtered	out	SNPs	with	missing	genotype	rate	>0.05,	MAF	<0.01,	

imputation	INFO	score	<0.03	or	P-value	for	HWE	test	<10-6.	We	cleaned	the	WHI	and	CARe	

(AFR-WC)	genotype	data	following	the	protocol	provided	by	the	dbGaP	data	submitters.	We	

further	removed	SNPs	with	SNP	call	rate	<0.95,	MAF	<0.01	or	Hardy-Weinberg	Equilibrium	

(HWE)	test	P	<0.001,	and	removed	individuals	with	sample	call	rate	<0.9.	We	imputed	the	AFR-

UKB	and	AFR-WC	data	to	the	1000G	using	IMPUTE248,	and	applied	the	same	filtering	thresholds	

as	above	to	the	imputed	data.	We	then	combined	the	cleaned	AFR-UKB	and	AFR-WC	as	one	AFR	

data	set.	Since	the	AFR	samples	are	ancestrally	more	heterogeneous	than	the	EUR-UKB	sample,	

we	removed	the	AFR	individuals	whose	PC1	or	PC2	were	more	than	6	s.d.	away	from	the	mean	

of	the	AFR	in	1000G	in	AFR-WC	and	AFR-UKB	separately	(the	PC-based	QC	of	the	EUR-UKB	

sample	was	described	in	a	previous	study49).	Only	the	SNPs	in	common	with	those	in	HapMap3	

SNPs	(𝑚 = ~1,018,000)	were	retained	for	analysis.	We	used	GCTA50	to	construct	the	GRM	in	

each	population	based	on	all	the	HapMap3	SNPs	and	removed	one	of	each	pair	of	individuals	

with	estimated	genetic	relatedness	>0.05	in	each	population	(retained	348,501	and	17,693	

unrelated	individuals	in	the	EUR-UKB	and	AFR,	respectively).	These	unrelated	AFR	individuals	

were	a	subset	of	the	AFR	samples	after	PC-based	QC.	The	first	20	principal	components	(PCs)	

were	derived	from	the	GRM	in	each	population.	Phenotypes	in	each	population	were	adjusted	

for	covariates	(i.e.,	age	in	AFR-WC,	and	age	and	assessment	centre	in	EUR-UKB	and	AFR-UKB)	in	
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each	gender	group	of	each	cohort	and	inverse-normal	transformed	after	removing	outliers	that	

were	5	s.d.	from	the	mean	for	height	and	7	s.d.	from	the	mean	for	BMI.	

	

GREML	analyses	to	estimate	𝒉𝐒𝐍𝐏𝟐 	and	𝒓𝒈	using	all	HapMap3	SNPs	

To	estimate	ℎ<=>? 	and	cross-population	𝑟" 	for	each	trait,	we	conducted	a	bivariate	GREML	

analysis	using	all	HapMap3	SNPs	in	the	unrelated	individuals	(genetic	relatedness	<0.05).	For	

the	ease	of	computation,	only	50,000	EUR	individuals	randomly	sampled	from	the	EUR-UKB	

data	were	included	in	the	GREML	analysis	(all	the	AFR	unrelated	individuals	were	included	in	

the	analysis).	To	build	the	GRM	for	the	bivariate	GRM	analysis	(denoted	by	GRM-specific),	the	

SNP	genotypes	were	standardized	based	on	the	allele	frequencies	in	a	specific	population	(i.e.,	
(UC?V)

W?V(XCV)
	with	𝑥	being	coded	as	0,	1	or	2	and	𝑝	being	the	allele	frequency	in	EUR,	for	example)	

using	GCTA	(--sub-popu	option)50.	The	bivariate	GREML	analyses	were	then	performed	for	

height	and	BMI	using	the	GRM-specific	in	a	combined	sample	of	EUR	and	AFR.	The	first	20	PCs	

generated	from	the	GRM-specific	were	fitted	as	covariates	in	the	bivariate	GREML	to	control	for	

population	stratification.	Only	the	samples	that	have	both	the	genotype	and	phenotype	data	

were	included	in	the	bivariate	GREML	analysis	(n	=	49,839	for	EUR	and	n	=	17,426	for	AFR).	We	

also	performed	the	bivariate	GREML	analyses	based	on	GRMs	(and	PCs	thereof)	for	which	the	

SNP	genotypes	were	standardized	using	the	allele	frequencies	computed	from	the	combined	

sample	of	EUR	and	AFR.	The	bivariate	GREML	analyses	were	also	performed	to	estimate	𝑟"($%&)	

using	the	GRM-specific	built	from	the	sentinel	SNPs	for	both	traits.		

	

To	compare	the	difference	in	𝑟̂" 	between	SNP	groups	with	higher	and	lower	𝐹&L,	we	computed	

𝐹&L	between	EUR	and	AFR	for	each	SNP	in	GCTA	(--fst	option)50.	We	first	split	the	SNPs	into	125	

bins	according	to	their	MAF	in	EUR	and	125	bins	based	on	the	frequencies	of	the	same	alleles	in	

AFR	(125*125	frequency	bins	in	total).	We	next	split	each	frequency	bin	into	4	LD	bins	

according	to	LD	scores	of	the	SNPs34	in	EUR	and	4	bins	based	on	LD	scores	in	AFR.	We	thereby	

obtained	250,000	(125*125*4*4)	bins	in	total.	We	then	equally	divided	the	SNPs	in	each	bin	

(𝑚 = 4	in	most	bins)	into	two	groups	according	to	the	sorted	𝐹&L	values.	There	were	a	small	

number	of	bins	with	only	3	SNPs.	For	those	bins,	we	randomly	allocated	1	or	2	SNPs	to	the	high-

𝐹&L	group	and	the	remaining	SNPs	to	the	low-𝐹&L	group.	Finally,	we	combined	the	SNPs	across	

all	the	bins	with	high	and	low	𝐹&L	respectively	and	computed	the	GRM-specific	for	each	of	the	

two	SNP	groups,	and	fitted	the	two	GRMs	jointly	in	a	bivariate	GREML	analysis	to	estimate	the	

between-population	𝑟" 	and	the	population-specific	ℎ<=>? 	in	each	𝐹&L	group	for	height	and	BMI.	

The	first	20	PCs	generated	from	the	GRM-specific	were	fitted	as	covariates	in	the	GREML	

analysis.	The	same	strategy	was	applied	to	the	LDCV	stratification	based	on	250,000	bins	
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including	20*20	frequency	bins	and	25*25	LD	bins.	The	method	to	compute	LDCV	has	been	

described	elsewhere39.		

	

Testing	the	difference	in	𝒓H𝒈	between	SNP	sets	

We	tested	the	difference	in	𝑟̂" 	between	two	SNP	sets	(e.g.,	the	two	FST-stratified	SNP	sets	

described	above).	We	computed	the	P-value	for	the	difference	using	a	𝜒?	statistic	with	one	

degree	of	freedom,	where	𝜒? =
(\̂]^C\̂]_)

_

`ab(\̂]^C\̂]_)
	with	𝑟̂"X	and	𝑟̂"?	representing	the	estimates	of	the	

two	SNP	sets	respectively,	and	var f𝑟̂"X − 𝑟̂"?h = var f𝑟̂"Xh + var f𝑟̂"?h − 2cov(𝑟̂"X, 𝑟̂"?).	In	the	

bivariate	GREML	analysis,	𝑟" 	is	defined	as	𝑟" 	=
l](m^,m_)

Wn](m^)n](m_)
		where	𝐶"(V^,V_)	is	genetic	covariance	

between	populations;	𝑉"(V^)	(or	𝑉"(V_))	is	the	genetic	variance	in	a	population.	The	sampling	

variance	of	the	estimate	of		𝑟" 	in	a	SNP	set	is	

varq𝑟̂"r = 𝑟"? s
varq𝑉@"(V^)r
4𝑉"(V^)

? +
varq𝑉@"(V_)r
4𝑉"(V_)

? +
varq𝐶t"(V^,V_)r
𝐶"(V^,V_)
? +

covq𝑉@"(V^), 𝑉@"(V_)r
2𝑉"(V^)𝑉"(V_)

−
covq𝑉@"(V^), 𝐶t"(V^,V_)r

𝑉"(V^)𝐶"(V^,V_)
−
covq𝑉@"(V_), 𝐶t"(V^,V_)r

𝑉"(V_)𝐶"(V^,V_)
u.			

The	sampling	covariance	of	the	estimates	of	𝑟" 	between	two	SNP	sets	is	

covq𝑟̂"X, 𝑟̂"?r = 𝑟"X𝑟"?[
covq𝑉@"(V^w^), 𝑉@"(V^w_)r
4𝑉"(V^w^)𝑉"(V^w_)

+
covq𝑉@"(V^w^), 𝑉@"(V_w_)r
4𝑉"(V^w^)𝑉"(V_w_)

−
covq𝑉@"(V^w^), 𝐶t"(V^V_w_)r
2𝑉"(V^w^)𝐶"(V^V_w_)

	

+
covq𝑉@"(V_w^), 𝑉@"(V^w_)r
4𝑉"(V_w^)𝑉"(V^w_)

+
covq𝑉@"(V_w^), 𝑉@"(V_w_)r
4𝑉"(V_w^)𝑉"(V_w_)

−
covq𝑉@"(V_w^), 𝐶t"(V^V_w_)r
2𝑉"(V_w^)𝐶"(V^V_w_)

	

−
covq𝑉@"(V^w_), 𝐶t"(V^V_w^)r
2𝑉"(V^w_)𝐶"(V^V_w^)

−
covq𝑉@"(V_w_), 𝐶t"(V^V_w^)r
2𝑉"(V_w_)𝐶"(V^V_w^)

+
covq𝐶t"(V^V_w^), 𝐶t"(V^V_w_)r

𝐶"(V^V_w^)𝐶"(V^V_w_)
]	

	

where	the	subscripts	𝑠X	(or	𝑠?)	represents	a	SNP	set.	In	practice,	the	parameters	in	the	

equations	above	can	be	replaced	by	their	estimates	to	compute	the	estimates	of	varq𝑟̂"r	and	

cov f𝑟̂"X, 𝑟̂"?h.	

	

Estimation	of	SNP	effect	correlation	between	populations	from	GWAS	summary	data	

We	obtained	the	trait-associated	SNPs	for	height	and	BMI	from	the	GIANT	meta-analyses35,36.	

We	used	the	rb	method	developed	by	Qi	et	al.31	to	estimate	the	correlation	of	SNP	effects	

between	populations	at	the	top	associated	SNPs	accounting	for	sampling	errors	in	the	estimated	

SNP	effects.	To	avoid	bias	due	to	‘winner’s	curse’,	we	re-estimated	the	SNP	effects	in	our	

samples	(independent	from	the	samples	used	in	the	GIANT	meta-analysis)	using	fastGWA51.	

Since	fastGWA	controls	for	relatedness51,	we	used	all	the	samples	passed	QC	(including	close	
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relatives)	for	the	GWAS	analysis	(𝑛 = 456,422	for	EUR	and	23,355	for	AFR	after	PC-based	QC).	

The	phenotypes	were	cleaned	and	normalized	using	the	same	strategy	described	above.	The	

first	20	PCs	were	included	as	covariates	in	the	fastGWA	analysis	to	control	for	population	

stratification.	To	get	a	set	of	independent	SNPs	associated	with	a	trait,	we	did	a	LD-based	

clumping	analysis	in	PLINK37	(threshold	P-value	=	5 × 10CF ,	window	size	=	1Mb	and	LD	𝑟?	

threshold	= 0.01).	After	the	clumping	analysis,	there	were	538	and	57	near-independent	SNPs	

associated	with	height	and	BMI	respectively,	which	we	call	sentinel	SNPs.	To	avoid	potential	

bias	in	𝑟̂"($%&)	due	to	remaining	LD	between	the	sentinel	SNPs,	we	performed	an	additional	

round	of	the	clumping	analysis	with	a	much	larger	window	size	(i.e.,	10Mb)	and	obtained	531	

and	56	sentinel	SNPs	for	height	and	BMI	respectively.	The	sampling	variance	of	𝑟̂"($%&)	was	

computed	by	a	Jackknife	resampling	process31.	

	

URLs	

GCTA:	http://cnsgenomics.com/software/gcta	

PLINK:	https://www.cog-genomics.org/plink2	

GWAS	summary	data	for	height	and	BMI	in	GIANT:	

https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files	

GWAS	summary	data	for	BMI	in	Biobank	Japan	in	NBDC	Human	Database:	

https://humandbs.biosciencedbc.jp/en/	

UKB	consortium:	http://www.ukbiobank.ac.uk/ 
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Figure	1	Estimated	genetic	effect	correlation	between	AFR	and	EUR	for	height	(a)	and	BMI	(b)	

at	genome-wide	significant	SNPs.	The	near-independent	trait-associated	SNPs	were	discovered	

in	GIANT	with	their	effects	re-estimated	in	our	EUR	(𝑛 = 456,422)	and	AFR	(𝑛 = 23,355)	data.	

The	blue	dots	show	a	comparison	of	SNP	effects	between	EUR	and	AFR	and	the	grey	ones	show	

the	comparison	within	EUR	(i.e.,	GIANT	vs.	EUR-UKB).		
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Table	1	Estimated	𝑟̂" 	between	EUR	and	AFR	using	HapMap3	SNPs	

based	on	GRMs-specific	for	height	and	BMI.	

		 𝒉{𝐄𝐔𝐑𝟐 	(s.e.)	 𝒉{𝐀𝐅𝐑𝟐 	(s.e.)	 𝒓H𝒈	(s.e)	 P	(𝒓𝒈 = 𝟏)	

Height	 0.50	(0.0077)	 0.39	(0.024)	 0.75	(0.035)	 6.8´10-13	
BMI	 0.25	(0.0080)	 0.22	(0.025)	 0.68	(0.062)	 2.1´10-7	
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Table	2	Difference	of	the	estimated	𝑟̂" 	for	EUR-AFR	between	SNP	sets	stratified	by	

allele	frequency-	and	LD-matched	𝐹&L	(and	LDCV)	for	height	and	BMI	respectively.	

		 𝑭𝑺𝑻	stratified	 LDCV	stratified	

	 𝑟̂"C�	(s.e.)	 𝑟̂"C�	(s.e.)	 Pdifference	 𝑟̂"C�	(s.e.)	 𝑟̂"C�	(s.e.)	 Pdifference	

Height	 0.84	(0.15)	 0.68	(0.099)	 0.509	 0.92	(0.12)	 0.59	(0.087)	 0.076	

BMI	 0.73	(0.19)	 0.62	(0.23)	 0.785	 0.82	(0.29)	 0.63	(0.15)	 0.640	

l	and	h	indicate	the	SNP	group	with	lower	𝐹&L	(or	LDCV)	and	higher	𝐹&L	(or	LDCV),	

respectively.	
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