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Abstract

Genome-wide association studies (GWAS) in samples of European ancestry have identified
thousands of genetic variants associated with complex traits in humans. However, it remains
largely unclear whether these associations can be used in non-European populations. Here, we
seek to quantify the proportion of genetic variation for a complex trait shared between
continental populations. We estimated the between-population correlation of genetic effects at
all SNPs (r;) or genome-wide significant SNPs (7 cws)) for height and body mass index (BMI) in
samples of European (EUR; n = 49,839) and African (AFR; n = 17,426) ancestry. The 7,
between EUR and AFR was 0.75 (s.e.= 0.035) for height and 0.68 (s.e.= 0.062) for BMI, and
the corresponding 7y gws) was 0.82 (s.e.= 0.030) for height and 0.87 (s. e. = 0.064) for BMI,
suggesting that a large proportion of GWAS findings discovered in Europeans are likely
applicable to non-Europeans for height and BMI. There was no evidence that 7, differs in SNP
groups with different levels of between-population difference in allele frequency or linkage

disequilibrium, which, however, can be due to the lack of power.
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Introduction

Most traits and common diseases in humans are complex because they are influenced by many
genetic variants as well as environmental factorsl2. Genome-wide association studies (GWASs)
have discovered >70,000 genetic variants associated with human complex traits and diseases3+4.
However, most GWASs have been heavily biased toward samples of European (EUR) ancestry
(~79% of the GWAS participants are of EUR descent)s. Progress has been made in recent years
in uncovering the genetic architecture of traits and diseases in a broader range of populationss-
11, Given the population genetic differentiation among worldwide populations5.12-15, the extent to
which the associations discovered in EUR populations can be used in non-EUR such as Africans
(AFR) and Asians remains unclear. Genetic correlation (7, ) is the correlation between the
additive genetic values of two traits in a population1t. However, by definition, we cannot
observe the trait in AFR and EUR in the same individuals. Therefore, Ty is better defined by the
correlation between the additive effects of causal variants in the two populations. 7; can be less
than 1 due to genotype by environment interactions if the two populations are in different
environments. Unfortunately, not all the causal variants for complex traits are known so we
estimate 7; based on the correlation between the apparent effects of genetic markers such as
SNPs. This can be estimated by using the genomic relationship matrix (GRM) among all the
individuals or, if only summary data is available, the correlation between estimated SNP
effects!317-19.. 1, estimated from SNPs can be less than thatbased on causal variants if the LD
between causal variants and SNPs differs between the populations. Galinsky et al.14 estimated
this effect using simulation and found it to be small but this conclusion may not apply to rare

causal variants.

Previous trans-ethnic genetic studies have shown that the estimates of 7; at common SNPs (e.g,,
those with minor allele frequencies (MAF) > 0.01) between EUR and East Asian (EAS)
populations are high for inflammatory bowel diseases (7; = 0.76 with a standard error (s.e.) of
0.04 for Crohn’s disease and 7; = 0.79 with s. e. = 0.04 for ulcerative colitis)?° and bipolar
disorder (7; = 0.68)2! and modest for rheumatoid arthritis (7; = 0.46 withs.e.= 0.06)'3 and
major depressive disorder (7, = 0.33 with a 95% confidence interval (CI) of 0.27-0.39)22 If the
between-population 7; for a trait estimated from SNPs is not unity, then it is of interest to know
whether the between-population genetic heterogeneity differs at SNPs with different levels of
between-population difference in allele frequency (i.e., Wright's fixation index23, Fsr) or LD, and
whether the between-population 7; estimated from all common SNPs (MAF > 0.01) can be used

to measure the correlation of genetic effects between populations at the genome-wide
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significant SNPs. Answers to these questions are important to inform the design of gene
mapping experiments24-28, the genetic risk prediction of complex diseases>29 in the future in
non-EUR populations and the detection of signatures of natural selection that has resulted in
genetic differentiation among worldwide populations. In this study, we focus on estimating the
correlation of genetic effects at all SNPs (denoted by ;) between continental populations using
a bivariate GREML analysis30 (treating the phenotypes in the two populations as different traits)
for two model complex traits, i.e., height and body mass index (BMI). We investigate the
influence of the between-population differences in allele frequencies or LD on the between-
population genetic heterogeneity. To do this, we first used genome-wide SNP genotype data to
estimate r; between AFR and EUR populations for height and BMI. We also estimated the
correlation of genetic effects between continental populations at the genome-wide significant
SNPs (74 6ws)) identified from an EUR GWAS using the bivariate GREML method3 or a summary
level data-based method3!l. We then examined whether the between-population genetic overlap
is enriched (or depleted) at the SNPs with stronger between-population differentiation in allele

frequency or LD.

Results

Genetic correlation (r;) between worldwide populations for height and BMI

We used GWAS data on 49,839 individuals of EUR ancestry from the UK Biobank (UKB) and
17,426 individuals of AFR ancestry from multiple publicly available datasets including the UKB
(Supplementary Fig. 1; Methods). Note that we used only ~50K EUR individuals from the UKB
for the ease of computation. All the individuals were not related in a sense that the estimated
pairwise genetic relatedness was < 0.05 within a population. The EUR genotype data were
imputed by the UKB (version 3) using the Haplotype Reference Consortium (HRC) and UK10K
imputation reference panel32. We imputed the AFR data to the 1000 Genomes Project (1000G)
reference panel (Methods). After quality control (QC), 1,018,256 HapMap3 SNPs with

MAF >0.01 in both the two data sets were retained for analysis (Methods). We first used the
bivariate GREML approach3? to estimate ; between populations as well as the SNP-based
heritability (hZyp) in each population for height and BML. It has been shown in Galinsky et al.14
that the estimate of 7; from a between-population bivariate GREML analysis is equivalent to the
correlation of genetic effect at all SNPs. The GRM used in our bivariate GREML analysis was
computed using two different strategies: 1) SNP genotypes standardized using allele
frequencies estimated from a combined sample of the two populations (denoted as GRM-
average); 2) SNP genotypes standardized using allele frequencies estimated from each

population specifically (denoted as GRM-specific; Methods). The 7, based on GRM-specific was
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0.75 (s.e.= 0.035) for height and 0.68 (s.e.= 0.062) for BMI, suggesting strong genetic overlap
between EUR and AFR for both height and BMI (Table 1). The 7; between EUR and AFR for
height was very similar to that between EUR and SAS estimated from the UKB data reported in
Galinsky et al. (0.77 with s.e.= 0.26)14 We did not observe a substantial difference in 7;
between the analyses based on GRM-average (Supplementary Table 1) and GRM-specific (Table
1). The h2yp in EUR and AFR from the bivariate GREML analysis were 0.50 (s.e.= 0.0077) and
0.39 (s.e.= 0.024) for height, and 0.25 (s.e.= 0.0080) and 0.22 (s.e. = 0.025) for BMI,
respectively (Table 1), highly consistent with those from the univariate GREML analysis33 where
the corresponding estimates were 0.50 (s.e.= 0.0078) and 0.40 (s.e.= 0.026) for height, and
0.25 (s.e.= 0.0080) and 0.23 (s.e. = 0.025) for BML. It is of note that the height AZyp in EUR was
significantly larger than that in AFR (P = 1.3 x 10~%), which is consistent with the result from a
recent study in European-Americans and African-Americans!5, presumably because the causal
variants in non-Europeans, especially those with MAF <0.01, were less well tagged by the SNPs
on the SNP arrays compared to those in Europeans. Such a difference was much smaller and not
statistically significant for BMI (P = 0.35), which can be partly explained by that the imperfect
tagging is proportional to trait heritability34. We further estimated 7; between EUR and EAS for
BMI by a summary-data-based 1; approach'® using summary statistics from the GIANT
consortium (n = 253,288)35 and the Biobank Japan project (BB],n = 158,284)10 (note that the
GWAS data with comparable sample size for EAS and the BB] summary-level data for height
were not available to us). The 7; between EUR and EAS was 0.80 (s. e. = 0.037) for BMI, which
was also significantly different from 1 (P = 8.36 x 1078), in line with the estimate (0.75, s.e. =
0.023) from Martin et al.5> based on GWAS summary data from the UKB and BB]J.

Correlation of SNP effects between populations at the top associated SNPs

We have quantified above the between-population 7; for height and BMI using all HapMap3
SNPs with MAF >0.01. The estimates were high but statistically significantly smaller than 1
(Table 1), suggesting there is a between-population genetic heterogeneity for both traits. We
know from a previous study that 7; estimated from all SNPs is close to the estimated causal
effect correlation (p,) between EUR and SAS'4. We then sought to ask whether the estimated 7;
from all SNPs is consistent with that estimated at genome-wide significant SNPs identified in
EUR (i.e., 74gws))- We estimated 1y cws) between EUR and AFR using the recently developed
method3! that can estimate SNP effect correlation using summary data accounting for errors in
the estimated SNP effects (Methods). We used the trait-associated SNPs identified in previous
GWAS meta-analyses conducted by the GIANT consortium3536 (with SNP effects re-estimated in

our AFR and EUR samples to avoid biases due to the winner’s curse; see Methods). There were
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538 and 57 nearly independent SNPs for height and BMI respectively at P < 5.0 X 1078 selected
from clumping analyses (LD r2 threshold = 0.01 and window size = 1Mb) of the GIANT summary
data (Methods)37. To avoid potential bias in estimating 7, gws) due to remaining LD among
these sentinel SNPs, we did an additional round of clumping using a window size of 10Mb
(Methods) and obtained 531 and 56 SNPs for height and BMI respectively. We call these the

sentinel SNPs hereafter.

We first estimated 74w s) between our EUR sample and GIANT as a “negative control”; the
estimate was 0.98 (s.e.= 0.0045) for height and 0.99 (s.e.= 0.0069) for BMI, suggesting no
significant differences in SNP effects between the GIANT (a meta-analysis of samples of EUR
ancestry) and our sample of EUR participants from the UKB (Figure 1). We then estimated
Tgews) between EUR and AFR (SNP effects re-estimated in our samples). We found an estimate
of 0.81 (s.e.= 0.032) for height (Figure 1a) and of 0.94 (s.e.= 0.049) for BMI (Figure 1b). Since
individual-level data were available in our EUR and AFR samples, we performed a bivariate
GREML analysis to estimate 7, (gws) only using the sentinel SNPs (Methods); the estimate was
0.82 (s.e.= 0.030) for height and 0.87 (s.e.= 0.064) for BMI, similar to the corresponding
estimates using the summary data above. Moreover, summary data-based 7y gws) between EUR
(SNP effects re-estimated in this study) and EAS (SNP effects from the BB] data38) was 0.90
(s.e.= 0.043) for BMI. All these results suggest that a large proportion of GWAS findings
discovered in Europeans are likely replicable in non-Europeans for the two traits (see below for
more discussion). In addition, 7; estimated using all SNPs was largely consistent with 7 gws) for

height, but some differences have been observed for BMI (see below for discussion).

Genetic correlation estimated at SNPs stratified by population difference in allele
frequency or LD

If there is an effect of the between-population differences in allele frequencies on the between-
population genetic heterogeneity for a trait, we hypothesised that the estimate of r; at SNPs
with higher Fsr is different from that at SNPs with lower Fsr. To test this, we first calculated the
F¢r values of the HapMap3 SNPs between EUR and AFR. To avoid difference in within-
population allele frequency or LD between the two Fsr groups, we divided the SNPs into a large
number of bins according to their allele frequencies and LD scores in each population and then
stratified the SNPs into two groups with equal number by their Fs values in each MAF-LD bin
(Methods). We show that there was no difference in allele frequency or LD score between the
two Fgr groups after applying this SNP-binning strategy (Supplementary Fig. 2). We performed

a two-component bivariate GREML analysis (based on GRM-specific) to estimate 7 in each Fg
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group and found no significant difference in 7; between the two Fs; groups for both traits
although the standard errors of 7; were large (Table 2). Even if our previous study has shown
that height increasing alleles are more frequent in EUR than AFR39, which might explain the
mean difference in height phenotype between EUR and AFR, the result reported here suggests
that the population differentiation of frequencies of the height-associated SNPs does not seem
to affect the genetic correlation between populations. Nevertheless, it is possible that there is a
difference in 1; between the two Fgr groups but the power of this study is not large enough to

detect it.

We applied the same SNP-binning strategy to test whether the estimate of genetic correlation
differs when the SNPs are ascertained by difference in LD between populations (Supplementary
Fig. 3). We used a metric called LDCV (i.e., coefficient of variation of the LD scores across
populations) proposed in a previous study3° to measure the differentiation of LD-score between
EUR and AFR for each SNP (Methods). We stratified the SNPs into two LDCV groups with no
difference in MAF or LD score between the groups in each individual population using the
approach described above (Methods; Supplementary Fig. 4) and estimated r; by a two-
component bivariate GREML analysis. We found no significant difference in the estimate of
between the two LDCV groups (Table 2), which does not support a significant role of LD
difference in the between-population genetic heterogeneity at common SNPs but also could be

due to the lack of power if the difference in r; between the two LDCV groups is very small.

Discussion

In this study we showed a substantial genetic overlap at HapMap3 SNPs (MAF > 0.01) for height
and BMI between EUR and AFR (7; = 0.75 with s.e. = 0.035 for height and 0.68 with s.e. =
0.062 for BMI; Table 1) from a cross-population bivariate GREML analysis of individual-level
genotype data3® and between EUR and EAS (7, = 0.80 with s.e.= 0.037 for BMI) by a summary-
data-based approachis. All these estimates were significantly smaller than 1 (Table 1),
suggesting some genetic heterogeneity between populations for both traits. We then used the
recently developed r;, approach3! that is able to estimate the correlation of SNP effects between
populations accounting for estimation errors in estimated SNP effects (Figure 1), and confirmed
the estimates by a bivariate GREML analysis using individual-level data. The bivariate GREML
estimate of r; at the sentinel SNPs between EUR and AFR was marginally larger than the
estimate of r; for height (7 cws) = 0.82 withs.e.= 0.030 vs.7; = 0.75 withs.e.= 0.035; P =
0.13), but the difference was larger for BMI (7 gws) = 0.87 with s.e.= 0.064 vs.7; = 0.68 with

s.e.= 0.062; P = 0.032), which may due to a difference in genetic architecture between the two
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traits and/or the relatively small number of sentinel SNPs used for BMI. The estimated strong
correlation in SNP effect between populations is in line with the finding from previous studies
that GWAS results from EUR population are largely consistent with those from non-EUR
populations for a certain number of complex traits17.40-45, However, the extent to which the EUR-
based GWAS findings can be replicated in non-EUR populations can be trait-dependent, given
the estimates of genetic correlation varied across different traits>22. We also attempted to
quantify the effect of population differentiation in SNP allele frequencies on the between-
population genetic heterogeneity by comparing 7; estimated from SNPs with higher Fgr to that
estimated from SNPs with lower Fg; but found no significant difference in 7; between the two
Fgr groups (Table 2). In addition, it should be noted that differences in SNP effects between
populations could reflect the differences in causal effects and/or LD between SNPs and causal
variants. Our estimated genetic effect correlation at all SNPs between EUR and AFR for height
(fy = 0.75 with s.e.= 0.035; Table 1) was largely consistent with the causal effect correlation
between EUR and SAS (p, = 0.78, s.e.= 0.26) estimated in a previous study!4. Although the
standard error of pj, is large, the causal effect correlation between EUR and AFR is similar to
that between EUR and SAS. Then, the results seem to imply that, on average, the extent to which
the difference in SNP effects between populations due to the difference in LD is unlikely to be
large for common SNPs. This implication is consistent with our LDCV partitioning analysis
which showed no significant difference in 7; between common SNPs with higher and lower
LDCV (Table 2). However, it should be noted that LDCV may differ from the between-population

difference in LD between SNPs and causal variants.

In summary, our study confirmed a large estimate of genetic correlation at common SNPs
between worldwide populations for height!4 and showed a similar level of between-population
genetic correlation for BMI. We observed that the estimate of SNP effect correlation at the
genome-wide significant SNPs was only marginally larger than the estimate of genetic
correlation using all SNPs for height but the difference was more pronounced for BMI. We
caution that the difference between 7 cws) and 7; needs to be quantified in higher precision
and the extent to which the between-population genetic heterogeneity for a trait due to
differences in allele frequency and LD need to be tested in data sets with larger sample sizes in
the future. Moreover, an observed between-population genetic heterogeneity for a complex trait
could also be due to the interactions between genetic (G) and environmental (E) factors. The
genotype-by-environment interaction component would be partially eliminated in 7; estimation
in the study design where two populations differ in genetic ancestry but live in the same

environment conditions. We acknowledge that all the conclusions are restricted to common
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SNPs. The between-population genetic heterogeneity for complex traits at rare variants (or the
variants that are rare in one population but common in another) remains to be explored with
whole-genome sequence data in large samples#6. Nevertheless, all our results are consistent
with the conclusion that most GWAS findings at common SNPs from EUR populations are
largely applicable to non-EUR for height and BMI for variant/gene discovery purposes.
However, cautions are required for phenotype (or disease risk) prediction given the limited
accuracy of genetic prediction using EUR-based GWAS results in non-EUR populations as

demonstrated in recent studies>29,

Methods

Data

GWAS data of 456,422 individuals of European ancestry were from the UKB (EUR-UKB). GWAS
data of 24,077 individuals of African ancestry were from the UKB (AFR-UKB, n = 8,230), the
Women'’s Health Initiative (WHI; n = 7,480), and the National Heart, Lung, and Blood Institute’s
Candidate Gene Association Resource (CARe) including ARIC, JHS, CARDIA, CFS and MESA (n =
8,367)47. QC of the UKB SNP genotypes had been conducted by the UKB QC team32 and the EUR-
UKB data had been imputed to the HRC and UK10K reference panel. For the EUR-UKB imputed
data (hard-call genotypes), we filtered out SNPs with missing genotype rate >0.05, MAF <0.01,
imputation INFO score <0.03 or P-value for HWE test <10-6, We cleaned the WHI and CARe
(AFR-WC) genotype data following the protocol provided by the dbGaP data submitters. We
further removed SNPs with SNP call rate <0.95, MAF <0.01 or Hardy-Weinberg Equilibrium
(HWE) test P <0.001, and removed individuals with sample call rate <0.9. We imputed the AFR-
UKB and AFR-WC data to the 1000G using IMPUTEZ248, and applied the same filtering thresholds
as above to the imputed data. We then combined the cleaned AFR-UKB and AFR-WC as one AFR
data set. Since the AFR samples are ancestrally more heterogeneous than the EUR-UKB sample,
we removed the AFR individuals whose PC1 or PC2 were more than 6 s.d. away from the mean
of the AFR in 1000G in AFR-WC and AFR-UKB separately (the PC-based QC of the EUR-UKB
sample was described in a previous study#9). Only the SNPs in common with those in HapMap3
SNPs (m = ~1,018,000) were retained for analysis. We used GCTAS5? to construct the GRM in
each population based on all the HapMap3 SNPs and removed one of each pair of individuals
with estimated genetic relatedness >0.05 in each population (retained 348,501 and 17,693
unrelated individuals in the EUR-UKB and AFR, respectively). These unrelated AFR individuals
were a subset of the AFR samples after PC-based QC. The first 20 principal components (PCs)
were derived from the GRM in each population. Phenotypes in each population were adjusted

for covariates (i.e., age in AFR-WC, and age and assessment centre in EUR-UKB and AFR-UKB) in
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each gender group of each cohort and inverse-normal transformed after removing outliers that

were 5 s.d. from the mean for height and 7 s.d. from the mean for BML

GREML analyses to estimate hZp and r4 using all HapMap3 SNPs

To estimate hiyp and cross-population 1y for each trait, we conducted a bivariate GREML
analysis using all HapMap3 SNPs in the unrelated individuals (genetic relatedness <0.05). For
the ease of computation, only 50,000 EUR individuals randomly sampled from the EUR-UKB
data were included in the GREML analysis (all the AFR unrelated individuals were included in
the analysis). To build the GRM for the bivariate GRM analysis (denoted by GRM-specific), the

SNP genotypes were standardized based on the allele frequencies in a specific population (i.e.,

(x—2p)

V2p(1-p)
using GCTA (--sub-popu option)s0. The bivariate GREML analyses were then performed for
height and BMI using the GRM-specific in a combined sample of EUR and AFR. The first 20 PCs

with x being coded as 0, 1 or 2 and p being the allele frequency in EUR, for example)

generated from the GRM-specific were fitted as covariates in the bivariate GREML to control for
population stratification. Only the samples that have both the genotype and phenotype data
were included in the bivariate GREML analysis (n = 49,839 for EUR and n = 17,426 for AFR). We
also performed the bivariate GREML analyses based on GRMs (and PCs thereof) for which the
SNP genotypes were standardized using the allele frequencies computed from the combined

sample of EUR and AFR. The bivariate GREML analyses were also performed to estimate 7,gwys)

using the GRM-specific built from the sentinel SNPs for both traits.

To compare the difference in f; between SNP groups with higher and lower Fsr, we computed
Fgr between EUR and AFR for each SNP in GCTA (--fst option)50. We first split the SNPs into 125
bins according to their MAF in EUR and 125 bins based on the frequencies of the same alleles in
AFR (125*125 frequency bins in total). We next split each frequency bin into 4 LD bins
according to LD scores of the SNPs34 in EUR and 4 bins based on LD scores in AFR. We thereby
obtained 250,000 (125*125*4*4) bins in total. We then equally divided the SNPs in each bin

(m = 4 in most bins) into two groups according to the sorted Fgr values. There were a small
number of bins with only 3 SNPs. For those bins, we randomly allocated 1 or 2 SNPs to the high-
Fgr group and the remaining SNPs to the low-Fg group. Finally, we combined the SNPs across
all the bins with high and low Fg; respectively and computed the GRM-specific for each of the
two SNP groups, and fitted the two GRMs jointly in a bivariate GREML analysis to estimate the
between-population r; and the population-specific h2\p in each Fg; group for height and BML.
The first 20 PCs generated from the GRM-specific were fitted as covariates in the GREML

analysis. The same strategy was applied to the LDCV stratification based on 250,000 bins
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including 20*20 frequency bins and 25*25 LD bins. The method to compute LDCV has been

described elsewhere39.

Testing the difference in 7; between SNP sets
We tested the difference in 7; between two SNP sets (e.g., the two Fsr-stratified SNP sets
described above). We computed the P-value for the difference using a y? statistic with one

(Pg,~Tg,)?

with 7, and representing the estimates of the
var(fg —rgz)

degree of freedom, where x% =

two SNP sets respectively, and var ( ?gz) var ( ) + var (rg ) - 2cov(1“”g1, ?gz). In the

"9,
C . .
bivariate GREML analysis, 7 is defined as7; = —9®1P2) _ \yhere C is genetic covariance
9 Js@nVawa) 9(P1,2)

between populations; Vg, ) (or Vy(p,)) is the genetic variance in a population. The sampling

variance of the estimate of Ty ina SNP set is

Var( ) Var( (pl))+Var( (pz))+var( (plpz))+C0V( 9(1) g(pz))
T Wi, Cpr2) 2V5w0)Vaw2)
COV( (pl)'Cg(pl Pz)) COV( (pz)'Cg(plpz))
Vg(pl)c (p1p2) Vg(pz)C (p1,02)

The sampling covariance of the estimates of r; between two SNP sets is

COV( 9(p151)’ Vg(lhsz)) COV( 9(p151)’ Vg(stz)) COV( 9(p151)’ Cg(lhpzsz))
4V, (P151)V9(P152) 4V, (P151)V9(P252) 2V, (P151)C (p1b252)

cov(f‘gl,f”gz) = rg1rg2[

COV( 9(P251)’ Vg(lhsz)) COV( 9(P251)’ Vg(stz)) COV( 9(P251)’ Cg(lhpzsz))
4V, (P251)V9(P152) 4V, (P251)V9(P252) 2V, (P251)C (p1b2S2)

COV( (P152)’CQ(P1P251)) COV( (stz)’Cg(P1P251)) COV( (P1P251)’CQ(P1P252))]

2V, (P152)C (p1p251) 2V, (stz)C (p1p251) CQ(P1P251)C (p1D252)

where the subscripts s; (or s,) represents a SNP set. In practice, the parameters in the
equations above can be replaced by their estimates to compute the estimates of Var(f”g) and

A

cov (rgl, rgz).

Estimation of SNP effect correlation between populations from GWAS summary data

We obtained the trait-associated SNPs for height and BMI from the GIANT meta-analyses35.3¢.
We used the r, method developed by Qi et al.3! to estimate the correlation of SNP effects
between populations at the top associated SNPs accounting for sampling errors in the estimated
SNP effects. To avoid bias due to ‘winner’s curse’, we re-estimated the SNP effects in our
samples (independent from the samples used in the GIANT meta-analysis) using fastGWAS5L1.

Since fastGWA controls for relatedness5:, we used all the samples passed QC (including close
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relatives) for the GWAS analysis (n = 456,422 for EUR and 23,355 for AFR after PC-based QC).
The phenotypes were cleaned and normalized using the same strategy described above. The
first 20 PCs were included as covariates in the fastGWA analysis to control for population
stratification. To get a set of independent SNPs associated with a trait, we did a LD-based
clumping analysis in PLINK37 (threshold P-value = 5 x 10~8, window size = 1Mb and LD r?
threshold = 0.01). After the clumping analysis, there were 538 and 57 near-independent SNPs
associated with height and BMI respectively, which we call sentinel SNPs. To avoid potential
bias in 7y gws) due to remaining LD between the sentinel SNPs, we performed an additional
round of the clumping analysis with a much larger window size (i.e., 10Mb) and obtained 531

and 56 sentinel SNPs for height and BMI respectively. The sampling variance of 7y cws) was

computed by a Jackknife resampling process31.

URLs

GCTA: http://cnsgenomics.com/software/gcta

PLINK: https://www.cog-genomics.org/plink2
GWAS summary data for height and BMI in GIANT:

https://www.broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files

GWAS summary data for BMI in Biobank Japan in NBDC Human Database:

https://humandbs.biosciencedbc.jp/en/

UKB consortium: http://www.ukbiobank.ac.uk/

Data availability

See URLs and Acknowledgements for GWAS summary data and individual data respectively.
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Figure 1 Estimated genetic effect correlation between AFR and EUR for height (a) and BMI (b)

at genome-wide significant SNPs. The near-independent trait-associated SNPs were discovered
in GIANT with their effects re-estimated in our EUR (n = 456,422) and AFR (n = 23,355) data.
The blue dots show a comparison of SNP effects between EUR and AFR and the grey ones show
the comparison within EUR (i.e., GIANT vs. EUR-UKB).


https://doi.org/10.1101/839373
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/839373; this version posted November 14, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 1 Estimated 7; between EUR and AFR using HapMap3 SNPs
based on GRMs-specific for height and BMI.

hiyg (s.e) hZcg (s.e) 74 (s.€) P(ry=1)
Height  0.50(0.0077)  0.39(0.024)  0.75(0.035)  6.8x1013
BMI 0.25 (0.0080)  0.22 (0.025)  0.68(0.062)  2.1x107
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Table 2 Difference of the estimated 7; for EUR-AFR between SNP sets stratified by

allele frequency- and LD-matched Fgr (and LDCV) for height and BMI respectively.

F¢r stratified LDCV stratified
f‘g-l (S-e-] f‘g-h (S-e-] Paifterence f:g—l (S-e-] fg—h (S-e-] Paifterence

Height 0.84 (0.15) 0.68 (0.099) 0.509 0.92(0.12)  0.59 (0.087) 0.076
BMI 0.73(0.19) 0.62 (0.23)  0.785 0.82(0.29) 0.63(0.15)  0.640

l and h indicate the SNP group with lower Fs; (or LDCV) and higher Fg; (or LDCV),

respectively.
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