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Abstract  

Workflows for large-scale (MS)-based shotgun proteomics can potentially lead to costly errors in 

the form of incorrect peptide spectrum matches (PSMs).  To improve robustness of these 

workflows, we have investigated the use of the precursor mass discrepancy (PMD) to detect and 

filter potentially false PSMs that have, nonetheless, a high confidence score. We identified and 

addressed three cases of unexpected bias in PMD results: time of acquisition within a LC-MS run, 

decoy PSMs, and length of peptide. We created a post-analysis Bayesian confidence measure 

based on score and PMD, called PMD-FDR. We tested PMD-FDR on four datasets across three 

types of MS-based proteomics projects: standard (single organism; reference database), 

proteogenomics (single organism; customized genomic-based database plus reference), and 

metaproteomics (microorganism community; customized conglomerate database). On a ground 

truth dataset and other representative data, PMD-FDR was able to detect 60-80% of likely incorrect 

PSMs (false-hits) while losing only 5% of correct PSMs (true-hits). PMD-FDR can also be used 

to evaluate data quality for results generated within different experimental PSM-generating 

workflows, assisting in method development.  Going forward, PMD-FDR should provide detection 

of high-scoring but likely false-hits, aiding applications which rely heavily on accurate PSMs, such 

as proteogenomics and metaproteomics. 

Keywords: Peptide-Spectrum Match; tandem mass spectrometry, precursor mass discrepancy; 

false discovery rate; statistical analysis; proteogenomics; metaproteomics 
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Introduction 

Proteomics is now an important tool in many biological and medical applications. One of the 

common proteomics tools is shotgun proteomics where mass spectrometry (MS) is used to identify 

fractionated peptides within complex mixtures, derived from proteolysis of intact proteins from a 

biological sample. After high-performance liquid chromatography (HPLC), a mass spectrometer 

generates a series of digital files representing many mass spectra, including tandem mass spectra 

(MS/MS), which contain information on fragmented peptide sequences.  There are many protocols 

for analyzing these files, but the initial goal of these protocols is to assign a single peptide sequence 

to each MS/MS spectra in the dataset. Each assignment is referred to as a peptide spectrum match 

(PSM). In addition, each PSM comes with a score, a measure of confidence that the assignment is 

correct. The PSMs are then filtered based on score, generating a list of peptides for further analysis, 

such as inferring the presence of specific proteins within the sample.  

Recently, the emergence of new applications such as metaproteomics 1-2 and proteogenomics3-4 

has led to a new emphasis on the accuracy of PSMs3, 5-7. These new applications, along with a 

steady interest in post-translational modification (PTM) identifications depend heavily on peptide-

level identifications (Figure 1).  For example, metaproteomics researchers might find that a PSM 

identifies a peptide mapping to a specific species within a complex community of bacteria, and 

proteogenomics researchers might use a PSM to identify a novel disease-associated peptide 

carrying an amino acid sequence variation.  For all these applications, inaccurate PSMs can support 

erroneous and costly conclusions, leading researchers to waste resources and time on validating 

false leads.   

Given the central role of accurate PSM assignments to these shotgun proteomics applications, a 

robust and reproducible statistical framework for determining the probable correctness of  PSMs 
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is vital to guide this filtering process to find the peptide sequences most worthy of further 

investigation8.  Because it is not possible to classify each putative PSM as true or false with 

complete certainty, the investigator must accept a defined threshold on a confidence measure, 

Figure 1. Three common types of MS-based proteomics workflows, all of which depend 

heavily on accurate PSMs.  Standard shotgun proteomics (A) matches MS/MS data against a 

reference database of known protein sequences, attempting to identify peptides (with and 

without PTMs), and, finally, infer proteins.  In metaproteomics (B), proteins are isolated from 

a community of microorganisms, analyzed by LC-MS/MS, and matched against an aggregate 

MS/MS protein sequence database encompassing all probable organisms in the community. 

These sequences are used to determine taxonomic composition and functional state of the 

system.  In proteogenomics (C), nucleic acid sequence data are obtained from the sample and 

translated in silico to produce a database of hypothetical expressed peptides and proteins, 

including sequence variants.   
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presumably probabilistic in nature, that a particular discovery is likely to be correct.  One such 

statistic is the group-wise false discovery rate (gFDR), defined as the probability that a randomly 

selected PSM within a group of PSMs is incorrect.  Another statistic, the individual FDR (iFDR) 

(usually called a “local FDR”), often calculated from the gFDR, is the probability that a specific 

PSM is incorrect. In other words, while gFDR and iFDR ostensibly measure the same thing, iFDR 

provides a different value for every PSM rather than for the whole group9. The greater the accuracy 

in estimating the gFDR and iFDR statistics, the higher the likelihood of correctly filtering PSMs 

to those with the highest probability of being correct. 

As PSM-centric applications continue to gain momentum, a conceptually simple filter that 

detects high scoring but likely incorrect PSMs while retaining those of highest confidence would 

be of great value to many researchers.  One metric available for all generated PSM reports, 

irrespective of algorithm or workflow used, is the precursor mass discrepancy (PMD).  The PMD 

is relative difference between the empirically measured precursor mass and the computed mass of 

the peptide sequence assigned to the corresponding MS/MS spectrum; this statistic is usually 

reported in parts-per-million (ppm).  A PMD value of zero represents complete concordance 

between the measured and computed peptide masses; however, PMD can be positive or negative, 

depending on whether the measured mass is greater or less than the computed mass, respectively. 

Traditionally, PMD has been used to filter potential candidate peptide sequences for matching 

to MS/MS10, reducing the search space to a more manageable size.  Researchers will often use 

PMD to provide additional evidence (or lack thereof) for a particular PSM – including only PSMs 

with PMD close to zero for further consideration (e.g. within +/- 5 ppm) after they have been 

scored by the sequence database search algorithm.  Surprisingly, however, PMD is rarely used 

explicitly to score PSMs.  
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As such, we sought to improve the accuracy of the gFDR and iFDR statistics using a scalable 

computational methodology based on PMD that would provide information that is at least partially 

orthogonal to the existing PSM scoring algorithms. While most algorithms do not use PMD 

explicitly, there are a few that do, such as Wenger et al. with COMPASS11, Cox et al. with 

Perseus12 and Petyuk et al. with DTARefinery13 which are focused on shotgun LC-MS/MS data.  

One method called ProteinProcessor was described for identifying purified proteins from tryptic 

digests using MALDI-TOF/TOF MS, which included PMD of precursor peptide mass 

measurements coupled with MS/MS data to increase confident peptide identification and overall 

protein inference, in a hybrid peptide mass fingerprinting and MS/MS-based method14. In addition, 

some algorithms use PMD and other post-scoring analyses explicitly to change a confidence score 

(c.f. PeptideProphet15, and Percolator16), or estimate both iFDR and gFDR17-19.   

Although these usages of PMD are valuable, here we sought to develop a new and more flexible 

implementation of PMD, using applications in metaproteomics and proteogenomics as use cases 

for our work.  We conducted a rigorous re-examination of the underlying statistical assumptions 

traditionally made when employing PMD (e.g. normal distribution of data, time-independence of 

mass error measures).   Our findings demonstrate that many of these assumptions do not hold. As 

such we have developed a new algorithm that addresses these failed assumptions and that performs 

post-analysis on previously scored PSMs.  Our overarching motivation in this work was to improve 

confidence in reported PSMs and provide researchers an additional means to assess their accuracy 

– providing a tool especially valuable for assessing results generated from metaproteomic and 

proteogenomic pipelines20-22.  
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Materials and Methods 

Datasets for development and evaluation 

To develop and evaluate the PMD-FDR method, we used data from three publicly-available MS-

based shotgun proteomics studies 22-24, the details of which are shown in Tables 1 and 2.  We used 

four PSM datasets derived from data generated in these three studies.  The first of these 

(Pyrococcus) was derived from a standard single-organism proteomics workflow24 where PSMs 

were generated from a Pyrococcus furiousus sample, which has a proteome sequence orthogonal 

to the human proteome (except for only a handful of tryptic peptides).  Matching peptide MS/MS 

spectra from a Pyrococcus sample against a protein sequence database that combines sequences 

from both Pyrococcus and humans provides an ideal ground-truth database for testing methods for 

PSM scoring methods24-25.  PSMs to human peptide sequences represent false matches, and can be 

used to estimate actual false positive rates for algorithms being utilized.   

Two additional datasets included PSMs generated using a metaproteomics analysis of previously 

generated MS/MS data from human saliva (Oral 737)23 using two different workflows 

implemented in the Galaxy for proteomics (Galaxy-P) platform5.  One workflow used our 

previously published two-step method26 generating results we called the Oral 737 (two-step) 

dataset.  The second workflow used a more updated approach dividing the large database into 

smaller sections and matching MS/MS to each section, leading to the creation of a database 

combining the proteins identified from each section, which are then searched in a second step.  We 

called this the Oral 737 (combined) dataset.  These different workflows provided slightly different 

PSM results from the same input data, and provide valuable datasets for testing the PMD-FDR 

approach. 
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  A final PSM dataset was derived from a proteogenomics workflow (Mouse Proteogenomics 

dataset), where transcriptome sequences were used to generate a large database of proteins 

sequences using data from a previously published study22. Collectively, these datasets provided a 

diverse selection of PSMs from different workflows for testing and evaluating the basis and 

effectiveness of the PMD-FDR approach.  The basic algorithms for sequence database searching 

and initial PSM score assignments utilized in these workflows to produce these PSM datasets have 

been described5, 20 and are based on the well-described SearchGUI/PeptideShaker platform27-28.  
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Table 1. Metaproteomics Dataset Descriptions 

 Oral 737 (two-step) Oral 737 (combined) 

Databases 
Human Oral Microbiome Database (HOMD)  

Contaminant Database (common repository of adventitious proteins) 

Manipulations 
Analyzed using a traditional two-step 
database searching method 

Analyzed using a modified two-step 
database searching method, where the 
database is searched in sections, and 
potential proteins present are combined to 
make a new database which is searched in 
a second step 

Biological 
Sample 

Cultured oral sample, one participant, without sugar addition 

Biological 
Purpose 

Metaproteomics study to investigate effect of sugar on taxonomic diversity of oral
biofilms 

Instrument LTQ Orbitrap Velos 

Link to 
Publication 

https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-015-
0136-z  

See reference23 

Link to Public 
Data 

http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD003151 
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Table 2. Single-organism proteomics and proteogenomics dataset descriptions 

 Pyrococcus Mouse Proteogenomics 

Databases 

Pyrococcus furiosus (Uniprot)  

Contaminants  

Human (Uniprot) 

Contaminants + Uniprot 

Mouse: 3-frame translation of Ensemble 
cDNA 

Sample RNA-Seq: Observed 

Splice junction variants 

3-frame translation of long non-coding 
RNA (lncRNA) 

Single amino acid variant (SAV) 

ManipulationsCombined into one database 

Combined into one large database 

Data sectioned into five parts, each matched 
to MS/MS sequentially 

Results combined 

Biological 
Sample 

Pyrococcus furiosus 
Mouse Developmental B-Cell 
(Pre-Pro-B and Prob-B stages) 

Biological 
Purpose 

Single organism validation data 
Prediction of Gene Activity in Early B-cell 
Development 

Instrument LTQ Orbitrap Velos LTQ Orbitrap Elite 

Link to 
Publication 

https://pubs.acs.org/doi/full/ 
10.1021/pr300055q 

See reference25 

https://www.ncbi.nlm.nih.gov/pmc/ 
articles/PMC4276347/ 

See reference22 

Link to Public 
Data 

https://www.ebi.ac.uk/pride 
/archive/projects/PXD001077 

https://usegalaxy.org/u/thereddylab/p/predic
tion-of-gene-activity-in-early-b-cell-
development-based-on-an-integrative-multi-
omics-analysis 
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Post‐scoring analysis using PMD 

Qualitative grouping of Peptide-Spectral Matches 

In order to perform the necessary post-scoring analysis using PMD, we needed to separate the 

set of all PSMs into several groups based on peptide length, due to the observed scoring 

dependence on length. Table 3 describes this methodology and Figure 2 shows the resulting 

structure for the first dataset (Oral 737 (two-step)).  We utilized this data and methodology to test 

underlying assumptions of PMD filtering and, from the results, developed our modified approach 

for PSM confidence assessment. 

For evaluating PMD for post-scoring analysis, it was necessary to define populations of PSMs 

as either “good” or “bad”, to determine whether a PMD analysis could distinguish between these 

extreme cases.  As such, we defined good PSMs as those assigned a perfect confidence score of 

100 by the PeptideShaker algorithm, while bad PSMs were matches to decoy peptide sequences 

which by definition are false.  As shown in Table 3, it was then necessary to sub-divide these 

defined peptides into populations for training the algorithm and then testing out its effectiveness.  

Ultimately PMD operates on the assumption that any given dataset being analyzes is composed of 

these two populations – good hits and hits that are false but have still qualified based on set scoring 

thresholds.   

Evaluation of common PMD assumptions 

We estimated the PMD distribution of true-hits by applying a modified density to the good-

testing group, restricting the results to the range of PMD values allowed in the original database 

search (-10 ppm to +10 ppm). The modified density function assumes that the distribution is 

unimodal (i.e. a single local maximum in the density plot) and that variation from that assumption 

is noise. It applies the density function from R and rearranges the values on the left of the mode 

(the maximum point within the unimodal plot) so that they are non-decreasing and rearranged the 
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values on the right of the mode so that they are non-increasing. Further, we applied the same 

function to the bad group (long peptides only) to estimate the PMD distribution of the false-hits, 

with false-hits being estimated by PSMs to the reverse-decoy sequences selected by 

PeptideShaker. 
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Table 3. Levels of data quality and definitions for PSMs used in this work 

Term General principle Our implementation 

True-hit PSM correctly matches peptide to 
spectrum   

Not implemented. (True-hits are 
theoretical constructs of which we 
can never be certain.) 

False-hit PSM that incorrectly matches peptide 
to spectrum 

Not implemented. (False-hits are 
theoretical constructs of which we 
can rarely be certain.) 

Good Hit PSM that is almost certainly a True-hit. PSMs whose PeptideShaker 
Confidence score is exactly 100 and 
the peptide is not a decoy peptide. 

Bad Hit A PSM that we are certain is a False-
hit 

A PSM reporting a match to a decoy 
peptide 

Good-
Training 

The PSM is in the training group (from 
which we derive local medians), which 
is a sub-population of the Good PSMs. 

Every other PSM found in the Good 
group (i.e. half of the Good PSMs). 

Good-Testing The PSM is in the testing group, the 
one used to report results.  Good-
Training and Good-Testing must be 
disjoint.  

Every Good PSM that is not a 
Good-Training PSM. 

Bad-Training A PSM that is used for identifying the 
PMD distribution of a Bad Hit, one that 
is unlikely to have a correct precursor 
mass 

Bad Hit PSMs used to define 
statistics for identifying PSMs most 
likely false based on PMD 

Other Everything that is not Good or Bad.  Everything that is not Good or Bad. 

Bad-Short A Bad hit identifying a short peptide. 
These are more likely to have correct 
mass than Bad-Testing peptides greater 
than 11 amino acids 

A bad PSM that is less than 11 
amino acids long.  

Bad-Long A Bad hit that is unlikely to have the 
correct precursor mass 

A bad PSM that is at least 11 amino 
acids long. These are the PSMs that 
make up the Bad-Training dataset. 
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  To assess possible PMD effects within false-hits, we evaluated the distribution of PMD for all 

decoy-matching PSMs.  We investigated several potential confounders to using PMD of decoy 

hits as a proxy for the false-hit distribution: peptide length (number of amino acids), mass, 

charge state, and isotope state.  Of these, we observed that PMD only showed a dependence on 

peptide length, and none of the other factors.   To investigate peptide length, we split the range of 

lengths (6 – 50) into contiguous groups of approximately equal size, from which we analyzed the 

 

Figure 2. PSM data categories and the numbers within each category for the metaproteomics 

Oral 737 (two-step) data used for evaluation of our PMD analysis approach. See Table 3 for 

a definition of the groups. 𝐿ത is the average peptide length of the group (number of amino 

acids). n is the size of the group. The green box highlights the group that we used to estimate 

the density of the correct PSM group (true-hits), while the yellow box highlights the group 

that we used to estimate the density of the incorrect PSM group (false-hits). Color of the box 

is a qualitative estimate of the proportion of true-hits in the group. 
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bad PSMs (i.e. decoy hits). Once again, we applied the density function from R (unmodified this 

time) to visualize the PMD distributions for each subset of bad PSMs. 

To check if there was an edge effect on the distribution of bad PSMs, we needed a statistical test 

that compared the edge of the density distribution with that of the center.  We separated the ppm 

range (-10 to +10 ppm) into pieces of size 1 ppm and computed the proportion of PSMs falling in 

that range.  Next, we computed a credible interval of the proportion (effectively a Bayesian 

estimate of the confidence interval), using in-house code to compute the highest posterior density 

interval to a specified precision (0.001) (method described in Supplemental Information). The 

primary purpose of this experiment was to show that the depletion of the edges of the PMD 

distribution was statistically significant. 

Identifying invariants 

An important part of creating a successful mixture model is to identify features that can 

distinguish between multiple groups (here: true- and false-hits). These features must remain 

constant (invariant) for all members of the specific group; otherwise, one cannot calculate the 

relative proportion between the two groups.  Here, we are estimating the distributions of true-hits 

and false-hits; if we are to use these distributions in a mixture model, they must be invariant 

throughout the experiment.  We can then cross-reference these invariants against the distribution 

of a mixed population to estimate the proportion of true- and false-hits within that population. 

Because our experiments showed that PMD drifts during the acquisition process of LC-MS/MS 

data (see Results section below and Figure 4), the PMD distribution is not invariant for true-hits 

throughout an MS/MS dataset and needed correction.  Using spectrum index (also known as scan 

number), which is directly related to the time of MS/MS data acquisition within an LC-MS/MS 

experiment, we sorted the good-training PSMs, and split them into contiguous subsets of 
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approximately 100 good-training elements, being careful not to cross scan number boundaries. 

Next, we used these temporally ordered subsets to compute a local median, by which we translated 

all PSMs within the same spectrum index range. In other words, we shifted every PSM within a 

temporal subset by the local median PMD of the training PSMs.  Finally, we used good-testing 

PSMs, split into 100 different subsets based on spectrum index of roughly the same size (in terms 

of good-testing PSMs, not in terms of total PSMs). We were careful to not use the same data 

(testing vs. training) nor the same data divisions (100 subsets vs. 100 good-training PSMs per 

subset), to avoid introducing analytical artifacts. 

Score-based FDR (sFDR) 

We used the following procedure to assign a PMD-FDR for a particular PSM.  We refer to the 

PMD-FDR of the ith PSM as 𝐹𝐷𝑅௜. We also need to require that every PSM belongs to some 

subset of all PSMs; we use j to designate the index of that group.   PSMs were assembled into 

groups based on assigned scores, using score ranges to ensure PSMs were divided up into 10 

groups of approximately the same size.  Analyzing groups of approximately equal size was import 

to keep similar variance in measured variables between the groups.  In order to use Bayes’ Rule to 

compute an individual FDR from a mixture we need to know three things: 

 The likelihood that a true-hit could produce the 𝑖th PMD, given that it was a true-hit. 

Designate this 𝑡௜ . 

 The likelihood that a false-hit could produce the 𝑖th PMD, given that it was a false-hit. 

Designate this 𝑓௜ . 

 The probability that the PSM is a false-hit, given that the PSM is a member group 𝑗. 

Designate this 𝛼௝ .  

Given these requirements and notation, we have the following formula: 
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 𝐹𝐷𝑅௜ ൌ
ఈೕ௙೔

൫ଵିఈೕ൯௧೔ାఈೕ௙೔
 (1) 

Equation 1 presents the challenge of requiring some form of a group-wise FDR (𝛼௝) to compute 

the individual FDR. We bootstrap that process by 1) estimating a group-wise FDR for a collection 

of PSMs with similar scores; 2) we estimate the mean score for each group of scores; and 3) 

interpolating those scores and corresponding FDR estimates. 

The first part: 𝛼௝ is an estimated FDR for all PSMs with a score in the 𝑗th range, calculated using 

𝛼௝ ൌ
𝑚் െ 𝑚௝

𝑚் െ 𝑚ி
 

where 𝑚் is the maximum density for the true-hits, 𝑚௝ is the maximum density for the group 𝑗, 

𝑚ி is the maximum density for the false-hits. 

Second, we create a function calculating 

𝑠௝ ൌ mean
௫ ௜௡ ௚௥௢௨௣ ௝

ሺscoreሺ𝑥ሻሻ 

Third, we interpolate the estimated FDR between all pairs ሺ𝛼௝, 𝑠௝ሻ, creating a new, interpolation 

function mapping all possible score values (𝑆) to the interval ሾ0,1ሿ  

𝛼ሺ∙ሻ: 𝑆 → ሾ0,1ሿ 

This new value is effectively a groupwise FDR that is specific to any particular PSM based only 

on its score. It is conceptually similar to grouping all PSMs by score and computing the groupwise-

FDR for that subset. However, by using larger groupings of scores, we improve our precision and, 

hopefully, reduce noise of the measurement. The interpolation creates a more continuous function. 

Individual FDR (iFDR) 

Now we have the tools to estimate iFDR (more commonly known as the local FDR). One of the 

issues that arises when using the formula above to estimate 𝐹𝐷𝑅௜ is that we must have a large 

enough population in group j to be able to estimate 𝛼௝. However, by creating a score-based 
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interpolation, we can use the entire dataset to estimate the group-wise FDR for a given score.  In 

other words, by replacing 𝛼௝ by 𝛼ሺ𝑠௜ሻ in the formula for 𝐹𝐷𝑅௜(above) we get the following 

estimate of the 𝑖th FDR, without explicit reference to the subsets of the data.  

𝐹𝐷𝑅௜ ൌ
𝛼ሺ𝑠௜ሻ𝑓௜

ሺ1 െ 𝛼ሺ𝑠௜ሻሻ𝑡௜ ൅ 𝛼ሺ𝑠௜ሻ𝑓௜
 

 

Groupwise FDR for arbitrary subsets (gFDR) 

The gFDR represents the overall FDR for an arbitrary group of PSMs. Starting with the iFDR 

values, the gFDR is simply the mean iFDR across the entire group.  

Illustrating effectiveness of PMD-FDR 

To show that PMD-FDR can assist in separating good hits from bad when addressing high-

scoring PSMs, we used a publicly available non-human dataset (Pyrococcus_tr) that was analyzed 

using a two-species reference database that combined Pyrococcus and human reference databases, 

where the human reference database was used as a relatively large confounder containing 

sequences known not to be present within the Pyrococcus sample analyzed. Adding this 

confounding database mimics the situation encountered in metaproteomic and proteogenomic 

applications, where the database contains a relatively small number of protein sequences actually 

present in the sample, along with many sequences which are essentially noise.  Note that a decoy 

database was also appended, in the form of a reversed sequence database created from the entire 

two-species reference.  We calculated PMD-FDR for all of the PSMs. Next, for every confidence 

score and group (human, Pyrococcus, contaminant, and decoy) we computed the rate of rejection; 

that is, given a confidence score, C, the proportion of PSMs in the subset with a score above C that 

had a PMD-FDR greater than 1 – ஼

ଵ଴଴
. We performed this calculation for all integer values C from 

1 to 100 and for all four groups.  
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Results 

PMD analysis of PSMs 

We first tested the implicit assumption that the PMD values for a group of true identifications 

will have a bell-shaped distribution (or, more strongly, a normal distribution) centered on zero, 

which can be approximated by restricting the analysis to the highest-scoring PSMs (Figure 3, black 

line). Unsurprisingly, while the distribution for this group is usually (but not always) bell-shaped, 

it is slightly off-centered – a result of systematic measurement error in the instrument. We observed 

this effect to varying degrees in every dataset we analyzed (see Supplemental Information), 

indicating that the assumption of a distribution centered on zero does not always hold.  If we are 

to use PMD to estimate FDR, we must allow for this shift in mass discrepancy, regardless of the 

direction of that shift. We call this systematic shift the PMD-Shift, regardless of cause. 
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Concerning the distribution of false-hits, there are typically two similar but distinct assumptions 

(c.f. 17): that they are either uniformly distributed or normally distributed with large variance. We 

found, however, that plotting the density of decoy hits yielded mostly, but not completely, uniform 

distribution with a rise close to zero (Figure 3, dotted red line). Once again, the assumptions did 

not hold; this also held true for each of our four datasets. Interestingly, the mode  

 

of the decoys is roughly the same as the mode of the good hits. We will refer to this effect as the 

Decoy-Mode. 

A more subtle assumption used in any mixture model, one that is so fundamental it is rarely 

mentioned, is that the probability distribution of each group (e.g. true-hits and false-hits) across 

the dependent variable (here, PMD) does not change during data acquisition; i.e., the mixture 

model assumes that PMD distribution is “invariant” across the time period of the LC-MS/MS run. 

 

Figure 3. PMD values for good and bad peptide identifications in the Oral 737 
metaproteomics (two-step) data set. Shown is a density plot where the area under the curve 
totals 1. The solid line represents PSMs from the Good-Testing group.  The dashed line 
represents PSMs from the Bad group (both short and long). This shows a systematic shift of 
accuracy for Good hits (PMD-shift) and a slight preference for accuracy among decoys (the 
Decoy-Mode). 
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We found this assumption is also false (Figure 4a) – the accuracy of the PMD can change during 

an experiment. Fortunately, we have identified a single variable, spectrum index (scan number 

concatenated with file name), that directly corresponds to the time of acquisition for any MS/MS 

spectrum, and is highly correlated with the PMD-Shift. Thus, after subtracting the local medians 

 

Figure 4. Middle 25% of PMD values A) before and B) after translation for subsets in the Oral 737 

metaproteomics data set plotted as a function of spectrum index number (a numeric assignment that combines 

spectrum number and spectrum file name). Note that each box represents 1% of the spectra in the good-testing 

group; the number of items in the group overall changes based on the density of the good-testing PSMs within 

that group. C) Oral 737 results from Figure 3 above after translation using PMD correction. 
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from the good-training group, we have a much more consistent accuracy, centered about zero, with 

similar variance throughout the dataset (Figure 4b). 

In order to identify the probable cause of the Decoy-Mode (shown in Figure 3), we plotted the 

distribution of the decoys, conditioning on a variety of quality metrics.  Figure 5 shows results 

when plotting the PMD distributions by length of predicted peptide.  Of particular interest and 

relevance is that peptides of length 6-8 amino acids had a strong Decoy-Mode, whereas the groups 

whose peptides were all longer than 12 amino acids were completely free of the Decoy-Mode. 

 

 

Figure 5. Decoy-Mode: A) Distribution of PMD for decoy (bad) PSMs, conditioned on the number of amino 

acids in the identified peptide. B) PMD distribution for decoy (bad) PSMs condition on the amino acid length 

after translation for the PMD shift as described above in Figure 4.  
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    Finally, we observed the decoy distribution also appears to decrease near the edges of the PMD 

range (Figure 3). Since this could potentially be an edge-effect artifact of using the R package29 

density function, we decided to compare the proportion of decoys in PMD values in each ppm 

range (-10 ppm to -9 ppm, -9 ppm to -8 ppm, etc.) to see if the shape of the decoys changes 

significantly (Figure 6). In fact, the probability of extreme values is significantly less than for non-

extreme values; in particular, the most extreme 4 ppm each have a proportion that is significantly 

less than the overall proportion. This suggests that using a uniform distribution to estimate the 

distribution of false-hits may be misleading for extreme values. The normal distribution 

assumption can likewise be discounted because of the relative uniformity of the plot. Here we will 

refer to this effect as Decoy-Tail.  
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These three issues, the Decoy-Mode, PMD-Shift, and the Decoy-Tail, can cause a mixture model 

using PMD to fail; that is, produce an inaccurate FDR. However, if we address these issues then 

the simple requirements of the mixture model can be upheld. 

PMD translation to generate invariant distributions of PSMs 

In order to use a mixture model of PMD to model the combination of true and false PSMs, we 

need to provide a transformation of PMD that produces distributions that are invariant across the 

experiment. In the previous section we showed that the raw PMD is not up to the task: the true-hit 

distribution of PMD can vary significantly, even within a single run, while the false-hit distribution 

changes depending on the amino acid length of the identified peptide and is neither uniformly- nor 

 

Figure 6. Proportion of decoy (bad) PSMs by PMD. We split the range of PMD values into 

twenty equal parts and computed the proportion of decoy PSMs within that range. The width 

of the boxes reflects the range of PMD values considered for a group.  The height represents 

a 95% credible interval for the proportion of PMD values in this region; this interval is the 

highest posterior density interval (see Supplementary Information for more details). If the 

distribution of PMDs for decoy PSMs was uniform we would expect that roughly 95% of all 

of these intervals include the blue line (i.e. approximately two exceptions) and, in addition, 

that the exceptions would not have a strong spatial pattern. 
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normally-distributed. This is the reason for translating the PMD and removing short peptides from 

consideration, at least when estimating the distributions of true- and false-hits. 

Once we have estimated the true- and false-PSM distributions of the translated data, we need to 

show that these distributions are invariant across the time coordinate of the LC-MS/MS run. 

Ideally, we would be able to consider every possible confounder.  However, for practical reasons, 

we restricted ourselves here to the two variables that were confounded with PMD: time of 

acquisition (i.e. “scan index”) and peptide length. 

Figure 4b shows the effect of PMD-translation on good hits: as expected, it shifts the mean to 

(approximately) zero but, more importantly, the spread of good hits (i.e. precision) is also 

consistent across the range of spectrum indices – the time-dependent PMD-shift has been 

addressed with no ill effects.  Additionally, when using PMD-translation and accounting for 

peptide length, the distribution of PSMs for decoy peptides longer than 10 amino acids no longer 

shows a length dependence (Figure 5) -- in other words, by removing peptides < 10 amino acids 

we now have an estimate of the false-hit distribution that is independent of the peptide length. 
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Comparison of false discovery rate (FDR) methodologies 

With a working method for measuring PMD and associated statistics, we next sought to compare 

confidence using traditional PSM scoring (in this case PeptideShaker Confidence scores) to that 

offered by post-scoring PMD False Discovery Rate analysis (PMD-FDR).  Such a comparison is 

warranted as a step towards understanding how PMD-FDR might be useful as a post-scoring 

analysis method.  PSM confidence derived from PeptideShaker’s Confidence score and PMD-

FDR are estimating complementary statistics (see 28,  and Supplemental Information, Section 4.0 

for a description of how Confidence is calculated).  Additionally, Table 4 compares these two 

metrics for two different datasets and for four levels of certainty.  

By far the most common confidence measure of a PSM is the local FDR calculated from a target-

decoy (TD-FDR) methodology; standard practice reports PSMs that have 1% TD-FDR 30.  Figure  

shows the relationship between PMD-FDR, PeptideShaker’s Confidence score, and 1% TD-FDR. 

First, there is a perfect agreement when the Confidence score is 100. This is by definition: we used 

this score to define Good Hits and no decoys can have a perfect score of 100. Furthermore, a large 

proportion of high confidence PSMs in this group also have a low PMD-FDR (i.e. the two scores 

are concordant for the highest of the high-scoring PSMs). 

However, as the confidence score approaches the lowest in this group (Confidence = 80), PMD-

FDR soars to an average of 80%. In other words, this group has a low probability of a decoy (1% 

TD-FDR), PeptideShaker declares it to be 80% likely to be a true-hit (Confidence ≈ 80), but PMD-

FDR reports that a member of this group is 80% likely to be a false-hit.  Indeed, by counting 

squares in the figure, we can observe that there are approximately 2000 PSMs with Confidence 

between 80 and 90 with 1% TD-FDR, whose overall PMD-FDR is well over 50%; these three 

PSM confidence measures are related but do not agree on the specifics.  
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Figure 7. Comparison of PMD-FDR, Target-decoy-FDR (TD-FDR), and Confidence 

(PeptideShaker). All (and only) PSMs reporting 1% TD-FDR are included in this chart.  Each 

box represents 100 PSMs, grouped by Confidence score; the width covers the range of 

Confidence scores while the height is 95% confidence interval of the mean PMD-FDR. The 

circle represents the mean Confidence and PMD-FDR. The gray line is a reference for perfect 

agreement between PMD-FDR and Confidence (i.e. here they only agree where they must, by 

definition). 
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Table 4. Comparison of PMD-FDR with PeptideShaker's Confidence score 

Dataset PeptideShaker 
Confidence 
Score Range 

Number 
of PSMs 

PeptideShaker  
gFDR 

(100 – mean 
Confidence) 

(%) 

PMD 
gFDR 

(%) 

Oral 737 
(two-step) 

 

100 45,864 * 0.0 * 0.0 

99-100 5,116 0.4 4.8 

90-99 9,180 4.4 29.2 

All 122,589 18.7 50.6 

Pyrococcus 
(using 
combined 
Pyrococcus-
human 
sequence 
database) 

100 9,243 * 0.0 * 0.0 

99-100 128 0.7 22.7 

90-99 746 3.4 26.5 

All 15,111 29.9 32.5 

* By definition.   

Detection of False‐hits using PMD‐FDR 

To show that PMD-FDR helps detect, and if desired, remove high-scoring, but false-hits, we 

applied our methodology to the Pyrococcus dataset. To review, this dataset involved the analysis 

of a Pyrococcus data sample using both Pyrococcus and human reference databases, and has been 

suggested as an ideal dataset for testing peptide spectral matching algorithms 24-25.  PSMs in this 

dataset are derived from a Pyrococcus sample, which has a proteome sequence orthogonal to the 

human proteome (except for only a handful of tryptic peptides), such that hits to human sequences 

can easily be assigned as false.  As such Pyrococcus combined with human protein sequences has 

been proposed as ideal ground-truth database for testing methods for PSM scoring methods24-25.   
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Our goal here was to show that PMD-FDR selectively reduced our confidence in human peptide 

identifications, which should not be present in the sample (we treated potential contaminants, such 

as human keratin, as a separate type of identification, to which we assigned the label 

“contaminant”). 

Figure 8 plots the rejection rate of PSMs using any Confidence score (from 1 to 100) as the 

threshold. This plot is based on results from PSM analysis of Pyrococcus MS/MS data against the 

combined Pyrococcus-Human protein sequence database, which can be considered a “ground 

truth” dataset – hits to Pyrococcus can be considered as good matches while those matching human 

sequences are false.  Inspection of the plot provides interesting insights.  For example, the 

proportion of human PSMs with Confidence over 40 that have a PMD-FDR greater than 60% (i.e. 

a PMD-based confidence less than 40%) is approximately 70%. Note that the rejection rate for 

human and decoy datasets are approximately constant and equal across the entire range of 

confidence scores (70-80%) while the rate for “contaminant” and Pyrococcus is always less than 

10%. The reduction in rejection rates for Human at Confidence = 100 is an artifact caused by our 

assumption that we consider all PSMs with a Confidence score of 100 to be correct; there were 3 

such human PSMs (implying that the actual FDR for this group is greater than 0, though not large). 
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Application to datasets 

In Supporting Information we include analyses of all of the example analytical datasets (See 

Figure 1 and Methods section for descriptions), derived from three different proteomic studies.  

We have not shown results from these in the main text due to space constraints, but instead we 

provide a brief summary: 

 

 

Figure 8. PMD-FDR detects and provides a means to remove likely false-hits when it is used 

as the threshold. Data was obtained by matching MS/MS data to the combined Pyrococcus-

Human protein sequence database.  Human proteins represent false-hits.  “Contaminant” 

matches to known contaminant proteins, often introduced by sample processing – this includes 

several human proteins and the “contaminant” designation takes precedence over the “human” 

designation.  Each line represents the PMD rejection (disqualification) rate for a class of 

peptide: for every Confidence value C, we compute the ratio of PSMs rejected because the 

PMD-FDR is greater than (100-C)/100, given that the PSM had a Confidence greater than C. 
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 We included several different types of representative analyses: metaproteomics data 

analyzed using two different workflows (Figure S-1 and S-2), single-organisms 

proteomics (Figure S-3) and a proteogenomics dataset (Figure S-4). These types of 

projects represent the types of experimental datasets where the PMD-FDR method 

should have value. 

 Two different metaproteomics workflows applied to the same raw data (Figures S-1 and 

S-2) resulted in very similar true- and false-hit distributions.  This means that the PMD-

FDR of individual PSMs would be approximately the same between the different 

analyses. This result is reassuring – the measurement is consistent with the assumption 

that the PMD distribution for true-hits does not depend on how we generate the PSMs.  

 The Decoy-Mode, PMD-Shift, and Decoy-Tail were all present, to a greater or lesser 

extent, in all four analyses (Figures S-1, S-2, S-3 and S-4). 

 The PMD-Shift varied greatly between different datasets – for some it was no more than 

2-ppm while for others the data shifted by more than 10-PPM. Note that if someone were 

to analyze this last case using a small window, say +/- 5 ppm, they would have lost a 

significant number of good PSMs.   Accounting for this shift allows application of the 

PMD-FDR method to data acquired using different instrumental conditions. 

Discussion 

Our PMD analysis of a number of datasets revealed a number of findings, some supporting 

previous findings, while others provided novel results challenging inherent assumptions used in 

scoring PSMs.  For example, our results confirmed findings of others11-13, that the PMD of good 

hits are dependent on time of acquisition during an LC-MS/MS run, which we called the PMD-

Shift.  This shift must be accounted for in an assessment of confidence of PSMs.  We also identified 
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two structural elements to the PMD distribution of decoys: the Decoy-Mode (a prevalence for 

small peptides to have more accurate precursor masses) and the Decoy-Tail (a bias for decoy PSMs 

away from the edges of the precursor range).  In particular, these imply that both uniform and 

normal distributions are poor approximations of the decoy PMD distribution and, presumably, of 

the false-hit distribution. 

Collectively these are novel and significant findings, in that they invalidate the primary 

assumption of a statistical mixture model: that the probability distributions of the components 

(here, true- and false-hits) are constant throughout the acquisition of the dataset.  Unless one allows 

for the time-dependence of the PMD of true-hits, the distribution of true-hits is ill-defined.  

Similarly, unless one allows for the size of the peptide, the PMD of false-hits is ill-defined. To 

allow for these issues, we removed small peptides when approximating the false-hit distribution 

and shifted all PMD calculations by a local median of “good” hits. 

After performing these transformations, we verified that the resulting statistics were invariant 

and we created a function that translates scores into an estimated FDR for PSMs with that score. 

Combining this score with the revised mixture model gives us a local PMD-FDR for each PSM (a 

posterior error probability (PEP) for a specific type of error: an incorrect precursor mass).  Now 

we can calculate the PMD-FDR for any group of PSMs by simply averaging all the probabilities 

for elements of that group together. This provides for a practical and useful tool for researchers 

seeking to further assess confidence in high scoring PSMs. We can use this new score as a filter 

on previously accepted PSMs to improve our confidence in those that are most reliable.  This is 

valuable for researchers seeking to distinguish high-scoring PSMs of highest confidence from 

those which should be approached with skepticism – particularly useful for PSM-centric 

applications such as proteogenomics and metaproteomics.  The addition of the PMD-FDR scoring 
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provides added-value to these applications, empowering the individual researcher with additional 

information on the confidence of PSMs such that they can make decisions on which of these to 

further validate and which to potentially ignore. 

In general, we found PMD-FDR to be more restrictive than either the standard target-decoy FDR 

or the Confidence score derived by PeptideShaker28, which is a score compiled from multiple 

scoring algorithms employed by SearchGUI27. While we used this score to evaluate our 

methodology because of its apparent high quality, it may still be overly optimistic.  Notably, our 

PMD-FDR method is applied after scoring of PSMs by the database search program, and could be 

used on results from any upstream program that generates and scores PSMs. 

Furthermore, and highly relevant to workflows producing large datasets of PSMs, PMD-FDR 

can be used to detect biases in methods which may be introducing high scoring false-hits.  This 

can be useful in developing and optimizing new workflows for generating PSMs. Specifically, if 

we find that two workflows employing different algorithms or parameters produce different 

numbers of PSMs with 1% target-decoy FDR, then we can use PMD-FDR to determine if we have, 

in fact, added valuable PSMs rather than adding false-hits with inflated scores. 

Requirements for PMD functionality 

In developing the PMD-FDR method, we originally hypothesized that we could provide a largely 

independent FDR measurement by applying a Bayesian mixture model, assuming that the PMD 

of true-hits was normally distributed about zero and that the PMD of false-hits were uniformly 

distributed within the mass measurement error window. In order to use the mixture model, we 

needed to be able to estimate the distributions of true- and false-hits and show that these 

distributions are fixed throughout a given experiment.  These assumptions did not hold, as PMD 
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distribution for true hits had a complex relationship with time of acquisition (Figure 4a), and the 

false-hit distribution was dependent on peptide length (Figure 5) 

The good news, however, was that both of these difficulties can be overcome by 1) subtracting 

the local median of the good hits from every PMD ; and 2) restricting our estimation of false-hits 

to long peptides, say, longer than 10 amino acids. This allows us to identify the distribution of 

true- and false-hits on a modified PMD score, distributions that are invariant throughout the 

experiment. 

It is also important to note that we found that the false-hit distribution is not well approximated 

by either a normal distribution (with large variance) nor with a uniform distribution.  We suggest 

that an empirical distribution should be used to estimate both the true- and the false-hit 

distributions, although it may be reasonable to smooth the resulting distributions, as we have.  

Concordance/Discordance with other confidence measures 

When evaluating the degree of concordance between PMD-FDR and the other two confidence 

measures (TD-FDR and the Confidence score from PeptideShaker) we found concordance with 

the very high scores – which, in this case is by definition.  However, PMD-FDR was much more 

critical of lower quality spectra than the other two confidence measures – a large number of PSMs 

reported to be in the 1% TD-FDR group had PMD-FDR of 50% - 100%. Similarly, we reported a 

10-fold disparity between PeptideShaker and PMD-FDR for Confidence scores in the 90’s 

(PeptideShaker effectively reported a 1%-10% FDR where PMD-FDR reported 30%). In other 

words, we have created a score that agrees with other scores when things are good but encourages 

greater skepticism when quality drops. As inferred above, we conclude that this implies an 

independence between PMD-FDR and both the algorithm-specific confidence score (e.g. 

PeptideShaker’s Confidence score used in this work) and the traditional TD-FDR. We believe that 
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this independence will hold against other algorithms, especially for the many which do not 

explicitly use PMD in their scoring. Thus, PMD-FDR should make a good, independent filter; in 

our experiments we observed a reduction in false-hits by 60-80% while only decreasing the 

number of good hits by 0-7% (Figure 8). Interestingly, this observation is largely independent of 

score threshold. 

Limitations 

There are several potential limitations to this work, which we describe and address more 

thoroughly in Supplemental Information. Here we provide a brief description of some of the limits 

of our results: 

Choice of PSM scoring algorithm 

PMD-FDR may have more limited value when used on results from algorithms (e.g. MaxQuant) 

that explicitly use PMD in their scoring of PSMs.  To investigate this question, we applied 

MaxQuant to the Pyrococcus dataset and found that although PMD-FDR has a less pronounced 

effect in distinguishing high scoring but most likely false PSMs from true hits, we were still able 

to distinguish these populations based on PMD.  Because of the heavy weighting by MaxQuant to 

results with low PMD, rejecting the false matches came at the cost of also discarding a high 

proportion of true matches.  Supporting Information provides a detailed description of these 

results. 

A related possible limitation from the scoring algorithm is insufficient identification of Good 

hits, which could lead to over-confidence in results. This algorithm requires a large list of highly 

confident, correct hits to sufficiently describe the distribution of true-hits. The number of Good 

PSMs should be in the thousands. This problem can arise either from the choice of PSM scoring 

algorithm or from an implicit bias in the experiment itself.  Similarly, insufficient identification of 
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Bad hits could lead to under-confidence in results.  If there are a large number of bad hits with 

correct PMD, the distribution of bad hits will be skewed towards increased FDR scores for items 

with the correct PMD. 

Experimental and data acquisition issues 

If we have no good data (for example, there is no protein in the sample), the definition of “Good” 

becomes impossible to define.  However, viewing the distribution of PMDs makes this quite 

apparent – instead of a combination of a flat and peaked distribution, you simply see a flat 

distribution or a peak that is similar to that of the decoy data. 

Other inherent characteristics of detected peptides and MS/MS acquisition may also be limiting.  

Deamidation can be incorrectly assigned to an isotopic peptide, leading to an approximately 5-

ppm discrepancy. These PSMs have the correct sequence but are incorrectly classified as an 

isotopic peak.  PMD-FDR will classify them as probably incorrect if the instrument has better than 

5-ppm resolution. Similar problems could arise for other small mass discrepancies.  Additionally, 

chimeric spectra will be problematic for PMD-FDR to the extent that multiple peptides have 

different precursor masses. Co-eluted peptides with identical chemical compositions (identical 

numbers of each element) will have the same properties as a singly-eluted peptide with regards to 

PMD-FDR but that will not be the case for co-eluted peptides with different chemical compositions 

– the measured precursor mass will be altered by the co-elution, making the PMD an untrustworthy 

measure for that PSM. 

PMD Algorithm 

Correctness, according to the PMD-FDR calculation, is entirely determined by precursor mass.  

It can suggest exclusion but not inclusion – a high-scoring peptide with a large PMD-FDR should 

be treated with skepticism, but a peptide with a small PMD-FDR should not be included on the 
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basis of the PMD-FDR score alone. A good example of this latter case is a PSM with small PMD 

from a MS/MS spectrum for which we have no other good evidence, such as some level of 

annotated fragmentation peaks consistent with the putative peptide sequence and a reasonably high 

PSM score assignment from this initial algorithm. 

Applications and Potential extensions 

Our PMD framework for identifying high-scoring PSMs that are likely to be false-hits should 

have immediate application in contemporary shotgun proteomics.  One of our motivations in 

developing this framework was to provide a post-analysis tool for rigorously assessing accuracy 

of PSMs/peptides of interest to researchers conducting proteogenomic or metaproteomic studies. 

For example, proteogenomics studies match MS/MS to sequence databases containing both novel 

variant sequences and reference sequences4-5 . Researchers rely heavily on scores assigned to 

single PSMs matching variant sequences to determine whether these are worth further empirical 

examination.   Our PMD-based framework provides an additional assessment of the accuracy of 

any given PSM, providing researchers an automated means to prioritize those matches to variant 

sequences most likely to be correct, and therefore of highest priority for further validation (e.g. 

confirmation with synthetic peptides, development of targeted MS-based methods etc.).  Those 

PSMs flagged as potentially false by PMD-FDR scoring can be dealt with at the discretion of the 

researcher – potentially rejected or subjected to further scrutiny to validate their veracity.  In 

addition to its immediate value, a number of future avenues can be pursued to extend its 

functionality and increase its utility, including implementation within existing workflows (e.g. 

see5, 20).  We outline several of these in the Supplemental Information. 
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Conclusions 

Our goal was to create a post-analysis tool that would allow us to automate the identification of 

high-scoring PSMs which are more likely false-hits, focusing on PSM-centric applications such as 

proteogenomics and metaproteomics.  We selected PMD as our primary input because it was 

universally available and because, intuitively, true- and false-hit distributions for PMD should be 

quite distinctive.  Along the way we found that all of our assumptions about PMD distributions 

were incorrect; in particular, these distributions were not fixed within an LC-MS/MS acquisition, 

let alone across separate LC-MS/MS runs.  

By addressing these issues and finding data features that are invariant across an experiment, we 

have created the PMD-FDR measure. By rigorously testing assumptions underlying other PMD-

based methods, we have implemented a method to filter PSMs that complements the upstream 

scoring of PSMs by conventional sequence database searching programs. As such, our PMD-FDR 

method is agnostic to the sequence database-searching program used and provides a means to 

assess accuracy of PSMs and the confidence assigned to them by these programs. This 

methodology should find wide applicability in contemporary shotgun proteomics workflows, 

especially in applications that depend heavily on PSM accuracy, such as the identification of 

PTMs, variant sequences in proteogenomics, or species- or isoform-specific peptides detected 

using metaproteomics.   

Software Availability 

The software used to generate the figures in this paper has been released on GitHub: 

https://github.com/slhubler/PMD-FDR-for-paper 

The PMD-FDR algorithm has been implemented as a Galaxy tool, and is available in the Galaxy 

Tool Shed (https://toolshed.g2.bx.psu.edu/view/galaxyp/pmd_fdr/5cc0c32d05a2) for public use.  

The link to the Galaxy tool development repository is here: 
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https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/pmd_fdr.  Documentation 

on deploying tools from the Tool Shed in any Galaxy instance can be found here: 

https://galaxyproject.org/admin/tools/add-tool-from-toolshed-tutorial/. 

A monolithic version of the software, designed for use as a simple Galaxy-P5, 20 module is also 

on GitHub: https://github.com/slhubler/PMD-FDR-for-Galaxy-P 

Supporting Information 

The following supporting information is available free of charge at ACS website 

http://pubs.acs.org 

Supporting Data S1: A detailed description of results from application of PMD-FDR on 

representative datasets is provided, along with additional details on limits and conditions for 

applying the algorithm, including analysis of results from MaxQuant. 
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