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Abstract

Workflows for large-scale (MS)-based shotgun proteomics can potentially lead to costly errors in
the form of incorrect peptide spectrum matches (PSMs). To improve robustness of these
workflows, we have investigated the use of the precursor mass discrepancy (PMD) to detect and
filter potentially false PSMs that have, nonetheless, a high confidence score. We identified and
addressed three cases of unexpected bias in PMD results: time of acquisition within a LC-MS run,
decoy PSMs, and length of peptide. We created a post-analysis Bayesian confidence measure
based on score and PMD, called PMD-FDR. We tested PMD-FDR on four datasets across three
types of MS-based proteomics projects: standard (single organism; reference database),
proteogenomics (single organism; customized genomic-based database plus reference), and
metaproteomics (microorganism community; customized conglomerate database). On a ground
truth dataset and other representative data, PMD-FDR was able to detect 60-80% of likely incorrect
PSMs (false-hits) while losing only 5% of correct PSMs (true-hits). PMD-FDR can also be used
to evaluate data quality for results generated within different experimental PSM-generating
workflows, assisting in method development. Going forward, PMD-FDR should provide detection
of high-scoring but likely false-hits, aiding applications which rely heavily on accurate PSMs, such

as proteogenomics and metaproteomics.
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Introduction

Proteomics is now an important tool in many biological and medical applications. One of the
common proteomics tools is shotgun proteomics where mass spectrometry (MS) is used to identify
fractionated peptides within complex mixtures, derived from proteolysis of intact proteins from a
biological sample. After high-performance liquid chromatography (HPLC), a mass spectrometer
generates a series of digital files representing many mass spectra, including tandem mass spectra
(MS/MS), which contain information on fragmented peptide sequences. There are many protocols
for analyzing these files, but the initial goal of these protocols is to assign a single peptide sequence
to each MS/MS spectra in the dataset. Each assignment is referred to as a peptide spectrum match
(PSM). In addition, each PSM comes with a score, a measure of confidence that the assignment is
correct. The PSMs are then filtered based on score, generating a list of peptides for further analysis,
such as inferring the presence of specific proteins within the sample.

Recently, the emergence of new applications such as metaproteomics !2 and proteogenomics>*
has led to a new emphasis on the accuracy of PSMs* 7. These new applications, along with a
steady interest in post-translational modification (PTM) identifications depend heavily on peptide-
level identifications (Figure 1). For example, metaproteomics researchers might find that a PSM
identifies a peptide mapping to a specific species within a complex community of bacteria, and
proteogenomics researchers might use a PSM to identify a novel disease-associated peptide
carrying an amino acid sequence variation. For all these applications, inaccurate PSMs can support
erroneous and costly conclusions, leading researchers to waste resources and time on validating
false leads.

Given the central role of accurate PSM assignments to these shotgun proteomics applications, a

robust and reproducible statistical framework for determining the probable correctness of PSMs
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Figure 1. Three common types of MS-based proteomics workflows, all of which depend
heavily on accurate PSMs. Standard shotgun proteomics (A) matches MS/MS data against a
reference database of known protein sequences, attempting to identify peptides (with and
without PTMs), and, finally, infer proteins. In metaproteomics (B), proteins are isolated from
a community of microorganisms, analyzed by LC-MS/MS, and matched against an aggregate
MS/MS protein sequence database encompassing all probable organisms in the community.
These sequences are used to determine taxonomic composition and functional state of the
system. In proteogenomics (C), nucleic acid sequence data are obtained from the sample and
translated in silico to produce a database of hypothetical expressed peptides and proteins,

including sequence variants.

is vital to guide this filtering process to find the peptide sequences most worthy of further
investigation®. Because it is not possible to classify each putative PSM as true or false with

complete certainty, the investigator must accept a defined threshold on a confidence measure,
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presumably probabilistic in nature, that a particular discovery is likely to be correct. One such
statistic is the group-wise false discovery rate (gFDR), defined as the probability that a randomly
selected PSM within a group of PSMs is incorrect. Another statistic, the individual FDR (iFDR)
(usually called a “local FDR”), often calculated from the gFDR, is the probability that a specific
PSM is incorrect. In other words, while gFDR and iFDR ostensibly measure the same thing, iFDR
provides a different value for every PSM rather than for the whole group’. The greater the accuracy
in estimating the gFDR and iFDR statistics, the higher the likelihood of correctly filtering PSMs
to those with the highest probability of being correct.

As PSM-centric applications continue to gain momentum, a conceptually simple filter that
detects high scoring but likely incorrect PSMs while retaining those of highest confidence would
be of great value to many researchers. One metric available for all generated PSM reports,
irrespective of algorithm or workflow used, is the precursor mass discrepancy (PMD). The PMD
is relative difference between the empirically measured precursor mass and the computed mass of
the peptide sequence assigned to the corresponding MS/MS spectrum; this statistic is usually
reported in parts-per-million (ppm). A PMD value of zero represents complete concordance
between the measured and computed peptide masses; however, PMD can be positive or negative,
depending on whether the measured mass is greater or less than the computed mass, respectively.

Traditionally, PMD has been used to filter potential candidate peptide sequences for matching
to MS/MS', reducing the search space to a more manageable size. Researchers will often use
PMD to provide additional evidence (or lack thereof) for a particular PSM — including only PSMs
with PMD close to zero for further consideration (e.g. within +/- 5 ppm) after they have been
scored by the sequence database search algorithm. Surprisingly, however, PMD is rarely used

explicitly to score PSMs.
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As such, we sought to improve the accuracy of the gFDR and iFDR statistics using a scalable
computational methodology based on PMD that would provide information that is at least partially
orthogonal to the existing PSM scoring algorithms. While most algorithms do not use PMD
explicitly, there are a few that do, such as Wenger et al. with COMPASS'!, Cox et al. with
Perseus'? and Petyuk et al. with DTARefinery'® which are focused on shotgun LC-MS/MS data.
One method called ProteinProcessor was described for identifying purified proteins from tryptic
digests using MALDI-TOF/TOF MS, which included PMD of precursor peptide mass
measurements coupled with MS/MS data to increase confident peptide identification and overall
protein inference, in a hybrid peptide mass fingerprinting and MS/MS-based method'*. In addition,
some algorithms use PMD and other post-scoring analyses explicitly to change a confidence score
(c.f. PeptideProphet', and Percolator'®), or estimate both iFDR and gFDR!7!°,

Although these usages of PMD are valuable, here we sought to develop a new and more flexible
implementation of PMD, using applications in metaproteomics and proteogenomics as use cases
for our work. We conducted a rigorous re-examination of the underlying statistical assumptions
traditionally made when employing PMD (e.g. normal distribution of data, time-independence of
mass error measures). Our findings demonstrate that many of these assumptions do not hold. As
such we have developed a new algorithm that addresses these failed assumptions and that performs
post-analysis on previously scored PSMs. Our overarching motivation in this work was to improve
confidence in reported PSMs and provide researchers an additional means to assess their accuracy
— providing a tool especially valuable for assessing results generated from metaproteomic and

proteogenomic pipelines®®-22,
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Materials and Methods

Datasets for development and evaluation

To develop and evaluate the PMD-FDR method, we used data from three publicly-available MS-
based shotgun proteomics studies 22, the details of which are shown in Tables 1 and 2. We used
four PSM datasets derived from data generated in these three studies. The first of these
(Pyrococcus) was derived from a standard single-organism proteomics workflow?* where PSMs
were generated from a Pyrococcus furiousus sample, which has a proteome sequence orthogonal
to the human proteome (except for only a handful of tryptic peptides). Matching peptide MS/MS
spectra from a Pyrococcus sample against a protein sequence database that combines sequences
from both Pyrococcus and humans provides an ideal ground-truth database for testing methods for
PSM scoring methods?*?°. PSMs to human peptide sequences represent false matches, and can be

used to estimate actual false positive rates for algorithms being utilized.

Two additional datasets included PSMs generated using a metaproteomics analysis of previously
generated MS/MS data from human saliva (Oral 737)* using two different workflows
implemented in the Galaxy for proteomics (Galaxy-P) platform®. One workflow used our
previously published two-step method®® generating results we called the Oral 737 (two-step)
dataset. The second workflow used a more updated approach dividing the large database into
smaller sections and matching MS/MS to each section, leading to the creation of a database
combining the proteins identified from each section, which are then searched in a second step. We
called this the Oral 737 (combined) dataset. These different workflows provided slightly different
PSM results from the same input data, and provide valuable datasets for testing the PMD-FDR

approach.
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A final PSM dataset was derived from a proteogenomics workflow (Mouse Proteogenomics
dataset), where transcriptome sequences were used to generate a large database of proteins
sequences using data from a previously published study??. Collectively, these datasets provided a
diverse selection of PSMs from different workflows for testing and evaluating the basis and
effectiveness of the PMD-FDR approach. The basic algorithms for sequence database searching
and initial PSM score assignments utilized in these workflows to produce these PSM datasets have

been described> ?° and are based on the well-described SearchGUI/PeptideShaker platform?’-2%,
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Table 1. Metaproteomics Dataset Descriptions

Oral 737 (two-step) Oral 737 (combined)

Human Oral Microbiome Database (HOMD)

Databases
Contaminant Database (common repository of adventitious proteins)
Analyzed using a modified two-step
database searching method, where the
. . Analyzed using a traditional two-step database is searched in sections, and
Manipulations . . . )
database searching method potential proteins present are combined to
make a new database which is searched in
a second step
Biological .. . o\
Cultured oral sample, one participant, without sugar addition
Sample
Biological Metaproteomics study to investigate effect of sugar on taxonomic diversity of oral
Purpose biofilms

Instrument  LTQ Orbitrap Velos

https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-015-
Link to 0136-z

Publication

See reference®

Link to Public

Data http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD003151



https://doi.org/10.1101/839290
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/839290; this version posted November 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Table 2. Single-organism proteomics and proteogenomics dataset descriptions

Pyrococcus Mouse Proteogenomics

Contaminants + Uniprot

Mouse: 3-frame translation of Ensemble

cDNA
Pyrococcus furiosus (Uniprot)
Sample RNA-Seq: Observed
Databases Contaminants
Splice junction variants
Human (Uniprot)
3-frame translation of long non-coding

RNA (IncRNA)
Single amino acid variant (SAV)
Combined into one large database

Data sectioned into five parts, each matched

Manipulations Combined into one database to MS/MS sequentially

Results combined

Biological Mouse Developmental B-Cell

Sample A T (Pre-Pro-B and Prob-B stages)
Biological Sl e el da Prediction of Gene Activity in Early B-cell
Purpose Development
Instrument LTQ Orbitrap Velos LTQ Orbitrap Elite
https://pubs.acs.org/doi/full/ https://www.ncbi.nlm.nih.egov/pmc/
10.1021/pr300055¢q articles/PMC4276347/
Link to
Publication See reference® See reference®?
https://usegalaxy.org/u/thereddylab/p/predic
tion-of-gene-activity-in-early-b-cell-
Link to Public https://www.ebi.ac.uk/pride development-based-on-an-integrative-multi-
Data /archive/projects/PXD001077 omics-analysis
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Post-scoring analysis using PMD
Qualitative grouping of Peptide-Spectral Matches

In order to perform the necessary post-scoring analysis using PMD, we needed to separate the
set of all PSMs into several groups based on peptide length, due to the observed scoring
dependence on length. Table 3 describes this methodology and Figure 2 shows the resulting
structure for the first dataset (Oral 737 (two-step)). We utilized this data and methodology to test
underlying assumptions of PMD filtering and, from the results, developed our modified approach
for PSM confidence assessment.

For evaluating PMD for post-scoring analysis, it was necessary to define populations of PSMs
as either “good” or “bad”, to determine whether a PMD analysis could distinguish between these
extreme cases. As such, we defined good PSMs as those assigned a perfect confidence score of
100 by the PeptideShaker algorithm, while bad PSMs were matches to decoy peptide sequences
which by definition are false. As shown in Table 3, it was then necessary to sub-divide these
defined peptides into populations for training the algorithm and then testing out its effectiveness.
Ultimately PMD operates on the assumption that any given dataset being analyzes is composed of
these two populations — good hits and hits that are false but have still qualified based on set scoring
thresholds.

Evaluation of common PMD assumptions

We estimated the PMD distribution of true-hits by applying a modified density to the good-
testing group, restricting the results to the range of PMD values allowed in the original database
search (-10 ppm to +10 ppm). The modified density function assumes that the distribution is
unimodal (i.e. a single local maximum in the density plot) and that variation from that assumption
is noise. It applies the density function from R and rearranges the values on the left of the mode

(the maximum point within the unimodal plot) so that they are non-decreasing and rearranged the

11


https://doi.org/10.1101/839290
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/839290; this version posted November 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

values on the right of the mode so that they are non-increasing. Further, we applied the same
function to the bad group (long peptides only) to estimate the PMD distribution of the false-hits,
with false-hits being estimated by PSMs to the reverse-decoy sequences selected by

PeptideShaker.
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Table 3. Levels of data quality and definitions for PSMs used in this work

Term General principle Our implementation
True-hit PSM correctly matches peptide to | Not implemented. (True-hits are
spectrum theoretical constructs of which we
can never be certain.)
False-hit PSM that incorrectly matches peptide | Not implemented. (False-hits are
to spectrum theoretical constructs of which we
can rarely be certain.)

Good Hit PSM that is almost certainly a True-hit. | PSMs whose PeptideShaker
Confidence score is exactly 100 and
the peptide is not a decoy peptide.

Bad Hit A PSM that we are certain is a False- | A PSM reporting a match to a decoy

hit peptide

Good- The PSM is in the training group (from | Every other PSM found in the Good

Training which we derive local medians), which | group (i.e. half of the Good PSMs).

is a sub-population of the Good PSMs.

Good-Testing

The PSM is in the testing group, the
one used to report results. Good-
Training and Good-Testing must be
disjoint.

Every Good PSM that is not a
Good-Training PSM.

Bad-Training

A PSM that is used for identifying the
PMD distribution of a Bad Hit, one that
is unlikely to have a correct precursor
mass

Bad Hit PSMs used to define
statistics for identifying PSMs most
likely false based on PMD

Other Everything that is not Good or Bad. Everything that is not Good or Bad.
Bad-Short A Bad hit identifying a short peptide. | A bad PSM that is less than 11
These are more likely to have correct | amino acids long.
mass than Bad-Testing peptides greater
than 11 amino acids
Bad-Long A Bad hit that is unlikely to have the | A bad PSM that is at least 11 amino

correct precursor mass

acids long. These are the PSMs that
make up the Bad-Training dataset.

13
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Figure 2. PSM data categories and the numbers within each category for the metaproteomics
Oral 737 (two-step) data used for evaluation of our PMD analysis approach. See Table 3 for
a definition of the groups. L is the average peptide length of the group (number of amino
acids). n is the size of the group. The green box highlights the group that we used to estimate
the density of the correct PSM group (true-hits), while the yellow box highlights the group
that we used to estimate the density of the incorrect PSM group (false-hits). Color of the box

is a qualitative estimate of the proportion of true-hits in the group.

To assess possible PMD effects within false-hits, we evaluated the distribution of PMD for all
decoy-matching PSMs. We investigated several potential confounders to using PMD of decoy
hits as a proxy for the false-hit distribution: peptide length (number of amino acids), mass,
charge state, and isotope state. Of these, we observed that PMD only showed a dependence on
peptide length, and none of the other factors. To investigate peptide length, we split the range of

lengths (6 — 50) into contiguous groups of approximately equal size, from which we analyzed the

14
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bad PSMs (i.e. decoy hits). Once again, we applied the density function from R (unmodified this

time) to visualize the PMD distributions for each subset of bad PSMs.

To check if there was an edge effect on the distribution of bad PSMs, we needed a statistical test
that compared the edge of the density distribution with that of the center. We separated the ppm
range (-10 to +10 ppm) into pieces of size 1 ppm and computed the proportion of PSMs falling in
that range. Next, we computed a credible interval of the proportion (effectively a Bayesian
estimate of the confidence interval), using in-house code to compute the highest posterior density
interval to a specified precision (0.001) (method described in Supplemental Information). The
primary purpose of this experiment was to show that the depletion of the edges of the PMD
distribution was statistically significant.

Identifying invariants

An important part of creating a successful mixture model is to identify features that can
distinguish between multiple groups (here: true- and false-hits). These features must remain
constant (invariant) for all members of the specific group; otherwise, one cannot calculate the
relative proportion between the two groups. Here, we are estimating the distributions of true-hits
and false-hits; if we are to use these distributions in a mixture model, they must be invariant
throughout the experiment. We can then cross-reference these invariants against the distribution
of a mixed population to estimate the proportion of true- and false-hits within that population.

Because our experiments showed that PMD drifts during the acquisition process of LC-MS/MS
data (see Results section below and Figure 4), the PMD distribution is not invariant for true-hits
throughout an MS/MS dataset and needed correction. Using spectrum index (also known as scan
number), which is directly related to the time of MS/MS data acquisition within an LC-MS/MS

experiment, we sorted the good-training PSMs, and split them into contiguous subsets of

15
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approximately 100 good-training elements, being careful not to cross scan number boundaries.
Next, we used these temporally ordered subsets to compute a local median, by which we translated
all PSMs within the same spectrum index range. In other words, we shifted every PSM within a
temporal subset by the local median PMD of the training PSMs. Finally, we used good-festing
PSMs, split into 100 different subsets based on spectrum index of roughly the same size (in terms
of good-testing PSMs, not in terms of total PSMs). We were careful to not use the same data
(testing vs. training) nor the same data divisions (100 subsets vs. 100 good-training PSMs per
subset), to avoid introducing analytical artifacts.

Score-based FDR (sFDR)
We used the following procedure to assign a PMD-FDR for a particular PSM. We refer to the

PMD-FDR of the ith PSM as FDR;. We also need to require that every PSM belongs to some
subset of all PSMs; we use j to designate the index of that group. PSMs were assembled into
groups based on assigned scores, using score ranges to ensure PSMs were divided up into 10
groups of approximately the same size. Analyzing groups of approximately equal size was import
to keep similar variance in measured variables between the groups. In order to use Bayes’ Rule to
compute an individual FDR from a mixture we need to know three things:
e The likelihood that a true-hit could produce the ith PMD, given that it was a true-hit.
Designate this t; .
e The likelihood that a false-hit could produce the ith PMD, given that it was a false-hit.
Designate this f; .
e The probability that the PSM is a false-hit, given that the PSM is a member group j.
Designate this a; .

Given these requirements and notation, we have the following formula:

16
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FDR; = — /i

o (1—aj)ti+ajfi

(1)

Equation 1 presents the challenge of requiring some form of a group-wise FDR (a;) to compute
the individual FDR. We bootstrap that process by 1) estimating a group-wise FDR for a collection
of PSMs with similar scores; 2) we estimate the mean score for each group of scores; and 3)

interpolating those scores and corresponding FDR estimates.

The first part: ; is an estimated FDR for all PSMs with a score in the j" range, calculated using

mT—mj
a =—-—
mr —Mmg

where my is the maximum density for the true-hits, m; is the maximum density for the group j,
mp is the maximum density for the false-hits.
Second, we create a function calculating

sj = mean (score(x))
x in group j

Third, we interpolate the estimated FDR between all pairs («;, s;), creating a new, interpolation
function mapping all possible score values (S) to the interval [0,1]
a():S - [0,1]
This new value is effectively a groupwise FDR that is specific to any particular PSM based only
on its score. It is conceptually similar to grouping all PSMs by score and computing the groupwise-
FDR for that subset. However, by using larger groupings of scores, we improve our precision and,
hopefully, reduce noise of the measurement. The interpolation creates a more continuous function.

Individual FDR (iFDR)

Now we have the tools to estimate iFDR (more commonly known as the local FDR). One of the
issues that arises when using the formula above to estimate FDR; is that we must have a large

enough population in group j to be able to estimate «;. However, by creating a score-based
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interpolation, we can use the entire dataset to estimate the group-wise FDR for a given score. In

other words, by replacing a; by a(s;) in the formula for FDR;(above) we get the following

estimate of the i FDR, without explicit reference to the subsets of the data.

a(s)fi

PR = A =2t + aGor,

Groupwise FDR for arbitrary subsets (gFDR)

The gFDR represents the overall FDR for an arbitrary group of PSMs. Starting with the iFDR
values, the gFDR is simply the mean iFDR across the entire group.

lllustrating effectiveness of PMD-FDR

To show that PMD-FDR can assist in separating good hits from bad when addressing high-
scoring PSMs, we used a publicly available non-human dataset (Pyrococcus_tr) that was analyzed
using a two-species reference database that combined Pyrococcus and human reference databases,
where the human reference database was used as a relatively large confounder containing
sequences known not to be present within the Pyrococcus sample analyzed. Adding this
confounding database mimics the situation encountered in metaproteomic and proteogenomic
applications, where the database contains a relatively small number of protein sequences actually
present in the sample, along with many sequences which are essentially noise. Note that a decoy
database was also appended, in the form of a reversed sequence database created from the entire
two-species reference. We calculated PMD-FDR for all of the PSMs. Next, for every confidence
score and group (human, Pyrococcus, contaminant, and decoy) we computed the rate of rejection;

that is, given a confidence score, C, the proportion of PSMs in the subset with a score above C that
had a PMD-FDR greater than 1 - %. We performed this calculation for all integer values C from

1 to 100 and for all four groups.
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Results

PMD analysis of PSMs

We first tested the implicit assumption that the PMD values for a group of true identifications
will have a bell-shaped distribution (or, more strongly, a normal distribution) centered on zero,
which can be approximated by restricting the analysis to the highest-scoring PSMs (Figure 3, black
line). Unsurprisingly, while the distribution for this group is usually (but not always) bell-shaped,
it is slightly off-centered — a result of systematic measurement error in the instrument. We observed
this effect to varying degrees in every dataset we analyzed (see Supplemental Information),
indicating that the assumption of a distribution centered on zero does not always hold. If we are
to use PMD to estimate FDR, we must allow for this shift in mass discrepancy, regardless of the

direction of that shift. We call this systematic shift the PMD-Shift, regardless of cause.
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Concerning the distribution of false-hits, there are typically two similar but distinct assumptions
(c.f. 17): that they are either uniformly distributed or normally distributed with large variance. We
found, however, that plotting the density of decoy hits yielded mostly, but not completely, uniform
distribution with a rise close to zero (Figure 3, dotted red line). Once again, the assumptions did

not hold; this also held true for each of our four datasets. Interestingly, the mode
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Figure 3. PMD values for good and bad peptide identifications in the Oral 737
metaproteomics (two-step) data set. Shown is a density plot where the area under the curve
totals 1. The solid line represents PSMs from the Good-Testing group. The dashed line
represents PSMs from the Bad group (both short and long). This shows a systematic shift of
accuracy for Good hits (PMD-shift) and a slight preference for accuracy among decoys (the
Decoy-Mode).

of the decoys is roughly the same as the mode of the good hits. We will refer to this effect as the
Decoy-Mode.

A more subtle assumption used in any mixture model, one that is so fundamental it is rarely
mentioned, is that the probability distribution of each group (e.g. true-hits and false-hits) across
the dependent variable (here, PMD) does not change during data acquisition; i.e., the mixture

model assumes that PMD distribution is “invariant” across the time period of the LC-MS/MS run.
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We found this assumption is also false (Figure 4a) — the accuracy of the PMD can change during
an experiment. Fortunately, we have identified a single variable, spectrum index (scan number
concatenated with file name), that directly corresponds to the time of acquisition for any MS/MS

spectrum, and is highly correlated with the PMD-Shift. Thus, after subtracting the local medians
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Figure 4. Middle 25% of PMD values A) before and B) after translation for subsets in the Oral 737
metaproteomics data set plotted as a function of spectrum index number (a numeric assignment that combines
spectrum number and spectrum file name). Note that each box represents 1% of the spectra in the good-testing

group; the number of items in the group overall changes based on the density of the good-testing PSMs within

that group. C) Oral 737 results from Figure 3 above after translation using PMD correction.
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from the good-training group, we have a much more consistent accuracy, centered about zero, with

similar variance throughout the dataset (Figure 4b).
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Figure 5. Decoy-Mode: A) Distribution of PMD for decoy (bad) PSMs, conditioned on the number of amino
acids in the identified peptide. B) PMD distribution for decoy (bad) PSMs condition on the amino acid length

after translation for the PMD shift as described above in Figure 4.

In order to identify the probable cause of the Decoy-Mode (shown in Figure 3), we plotted the
distribution of the decoys, conditioning on a variety of quality metrics. Figure 5 shows results
when plotting the PMD distributions by length of predicted peptide. Of particular interest and
relevance is that peptides of length 6-8 amino acids had a strong Decoy-Mode, whereas the groups

whose peptides were all longer than 12 amino acids were completely free of the Decoy-Mode.
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Finally, we observed the decoy distribution also appears to decrease near the edges of the PMD
range (Figure 3). Since this could potentially be an edge-effect artifact of using the R package?®
density function, we decided to compare the proportion of decoys in PMD values in each ppm
range (-10 ppm to -9 ppm, -9 ppm to -8 ppm, etc.) to see if the shape of the decoys changes
significantly (Figure 6). In fact, the probability of extreme values is significantly less than for non-
extreme values; in particular, the most extreme 4 ppm each have a proportion that is significantly
less than the overall proportion. This suggests that using a uniform distribution to estimate the
distribution of false-hits may be misleading for extreme values. The normal distribution
assumption can likewise be discounted because of the relative uniformity of the plot. Here we will

refer to this effect as Decoy-Tail.
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Figure 6. Proportion of decoy (bad) PSMs by PMD. We split the range of PMD values into
twenty equal parts and computed the proportion of decoy PSMs within that range. The width
of the boxes reflects the range of PMD values considered for a group. The height represents
a 95% credible interval for the proportion of PMD values in this region; this interval is the
highest posterior density interval (see Supplementary Information for more details). If the
distribution of PMDs for decoy PSMs was uniform we would expect that roughly 95% of all
of these intervals include the blue line (i.e. approximately two exceptions) and, in addition,

that the exceptions would not have a strong spatial pattern.

These three issues, the Decoy-Mode, PMD-Shift, and the Decoy-Tail, can cause a mixture model
using PMD to fail; that is, produce an inaccurate FDR. However, if we address these issues then
the simple requirements of the mixture model can be upheld.

PMD translation to generate invariant distributions of PSMs

In order to use a mixture model of PMD to model the combination of true and false PSMs, we
need to provide a transformation of PMD that produces distributions that are invariant across the
experiment. In the previous section we showed that the raw PMD is not up to the task: the true-hit
distribution of PMD can vary significantly, even within a single run, while the false-hit distribution

changes depending on the amino acid length of the identified peptide and is neither uniformly- nor
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normally-distributed. This is the reason for translating the PMD and removing short peptides from
consideration, at least when estimating the distributions of true- and false-hits.

Once we have estimated the true- and false-PSM distributions of the translated data, we need to
show that these distributions are invariant across the time coordinate of the LC-MS/MS run.
Ideally, we would be able to consider every possible confounder. However, for practical reasons,
we restricted ourselves here to the two variables that were confounded with PMD: time of
acquisition (i.e. “scan index’’) and peptide length.

Figure 4b shows the effect of PMD-translation on good hits: as expected, it shifts the mean to
(approximately) zero but, more importantly, the spread of good hits (i.e. precision) is also
consistent across the range of spectrum indices — the time-dependent PMD-shift has been
addressed with no ill effects. Additionally, when using PMD-translation and accounting for
peptide length, the distribution of PSMs for decoy peptides longer than 10 amino acids no longer
shows a length dependence (Figure 5) -- in other words, by removing peptides < 10 amino acids

we now have an estimate of the false-hit distribution that is independent of the peptide length.
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Comparison of false discovery rate (FDR) methodologies

With a working method for measuring PMD and associated statistics, we next sought to compare
confidence using traditional PSM scoring (in this case PeptideShaker Confidence scores) to that
offered by post-scoring PMD False Discovery Rate analysis (PMD-FDR). Such a comparison is
warranted as a step towards understanding how PMD-FDR might be useful as a post-scoring
analysis method. PSM confidence derived from PeptideShaker’s Confidence score and PMD-
FDR are estimating complementary statistics (see 2%, and Supplemental Information, Section 4.0
for a description of how Confidence is calculated). Additionally, Table 4 compares these two
metrics for two different datasets and for four levels of certainty.

By far the most common confidence measure of a PSM is the local FDR calculated from a target-
decoy (TD-FDR) methodology; standard practice reports PSMs that have 1% TD-FDR *. Figure
shows the relationship between PMD-FDR, PeptideShaker’s Confidence score, and 1% TD-FDR.
First, there is a perfect agreement when the Confidence score is 100. This is by definition: we used
this score to define Good Hits and no decoys can have a perfect score of 100. Furthermore, a large
proportion of high confidence PSMs in this group also have a low PMD-FDR (i.e. the two scores
are concordant for the highest of the high-scoring PSMs).

However, as the confidence score approaches the lowest in this group (Confidence = 80), PMD-
FDR soars to an average of 80%. In other words, this group has a low probability of a decoy (1%
TD-FDR), PeptideShaker declares it to be 80% likely to be a frue-hit (Confidence = 80), but PMD-
FDR reports that a member of this group is 80% likely to be a false-hit. Indeed, by counting
squares in the figure, we can observe that there are approximately 2000 PSMs with Confidence
between 80 and 90 with 1% TD-FDR, whose overall PMD-FDR is well over 50%; these three

PSM confidence measures are related but do not agree on the specifics.
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Figure 7. Comparison of PMD-FDR, Target-decoy-FDR (TD-FDR), and Confidence
(PeptideShaker). All (and only) PSMs reporting 1% TD-FDR are included in this chart. Each
box represents 100 PSMs, grouped by Confidence score; the width covers the range of
Confidence scores while the height is 95% confidence interval of the mean PMD-FDR. The
circle represents the mean Confidence and PMD-FDR. The gray line is a reference for perfect
agreement between PMD-FDR and Confidence (i.e. here they only agree where they must, by

definition).
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Table 4. Comparison of PMD-FDR with PeptideShaker's Confidence score

Dataset PeptideShaker ~ Number PeptideShaker PMD
Confidence of PSMs gFDR gFDR
Score Range (100 — mean .
Confidence) (%)
(%)
Oral 737 100 45,864 70.0 70.0
(two-step)
99-100 5,116 0.4 4.8
90-99 9,180 4.4 29.2
All 122,589 18.7 50.6
Pyrococcus 100 9,243 *0.0 7 0.0
(using
combined 99-100 128 0.7 22.7
Pyrococcus-
human 90-99 746 3.4 26.5
sequence
database)
All 15,111 29.9 32.5
* By definition.

Detection of False-hits using PMD-FDR

To show that PMD-FDR helps detect, and if desired, remove high-scoring, but false-hits, we
applied our methodology to the Pyrococcus dataset. To review, this dataset involved the analysis
of'a Pyrococcus data sample using both Pyrococcus and human reference databases, and has been
suggested as an ideal dataset for testing peptide spectral matching algorithms 2+2°. PSMs in this
dataset are derived from a Pyrococcus sample, which has a proteome sequence orthogonal to the
human proteome (except for only a handful of tryptic peptides), such that hits to human sequences
can easily be assigned as false. As such Pyrococcus combined with human protein sequences has

been proposed as ideal ground-truth database for testing methods for PSM scoring methods?*2°.
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Our goal here was to show that PMD-FDR selectively reduced our confidence in human peptide
identifications, which should not be present in the sample (we treated potential contaminants, such
as human keratin, as a separate type of identification, to which we assigned the label
“contaminant”).

Figure 8 plots the rejection rate of PSMs using any Confidence score (from 1 to 100) as the
threshold. This plot is based on results from PSM analysis of Pyrococcus MS/MS data against the
combined Pyrococcus-Human protein sequence database, which can be considered a “ground
truth” dataset — hits to Pyrococcus can be considered as good matches while those matching human
sequences are false. Inspection of the plot provides interesting insights. For example, the
proportion of human PSMs with Confidence over 40 that have a PMD-FDR greater than 60% (i.e.
a PMD-based confidence less than 40%) is approximately 70%. Note that the rejection rate for
human and decoy datasets are approximately constant and equal across the entire range of
confidence scores (70-80%) while the rate for “contaminant” and Pyrococcus is always less than
10%. The reduction in rejection rates for Human at Confidence = 100 is an artifact caused by our
assumption that we consider all PSMs with a Confidence score of 100 to be correct; there were 3

such human PSMs (implying that the actual FDR for this group is greater than 0, though not large).
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Figure 8. PMD-FDR detects and provides a means to remove likely false-hits when it is used
as the threshold. Data was obtained by matching MS/MS data to the combined Pyrococcus-
Human protein sequence database. Human proteins represent false-hits. “Contaminant”
matches to known contaminant proteins, often introduced by sample processing — this includes
several human proteins and the “contaminant” designation takes precedence over the “human”
designation. Each line represents the PMD rejection (disqualification) rate for a class of
peptide: for every Confidence value C, we compute the ratio of PSMs rejected because the

PMD-FDR is greater than (100-C)/100, given that the PSM had a Confidence greater than C.

Application to datasets

In Supporting Information we include analyses of all of the example analytical datasets (See
Figure 1 and Methods section for descriptions), derived from three different proteomic studies.
We have not shown results from these in the main text due to space constraints, but instead we

provide a brief summary:
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e We included several different types of representative analyses: metaproteomics data
analyzed using two different workflows (Figure S-1 and S-2), single-organisms
proteomics (Figure S-3) and a proteogenomics dataset (Figure S-4). These types of
projects represent the types of experimental datasets where the PMD-FDR method
should have value.

e Two different metaproteomics workflows applied to the same raw data (Figures S-1 and
S-2) resulted in very similar true- and false-hit distributions. This means that the PMD-
FDR of individual PSMs would be approximately the same between the different
analyses. This result is reassuring — the measurement is consistent with the assumption
that the PMD distribution for true-hits does not depend on how we generate the PSMs.

e The Decoy-Mode, PMD-Shift, and Decoy-Tail were all present, to a greater or lesser
extent, in all four analyses (Figures S-1, S-2, S-3 and S-4).

e The PMD-Shift varied greatly between different datasets — for some it was no more than
2-ppm while for others the data shifted by more than 10-PPM. Note that if someone were
to analyze this last case using a small window, say +/- 5 ppm, they would have lost a
significant number of good PSMs. Accounting for this shift allows application of the
PMD-FDR method to data acquired using different instrumental conditions.

Discussion

Our PMD analysis of a number of datasets revealed a number of findings, some supporting
previous findings, while others provided novel results challenging inherent assumptions used in
scoring PSMs. For example, our results confirmed findings of others'!"!3, that the PMD of good
hits are dependent on time of acquisition during an LC-MS/MS run, which we called the PMD-

Shift. This shift must be accounted for in an assessment of confidence of PSMs. We also identified
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two structural elements to the PMD distribution of decoys: the Decoy-Mode (a prevalence for
small peptides to have more accurate precursor masses) and the Decoy-Tail (a bias for decoy PSMs
away from the edges of the precursor range). In particular, these imply that both uniform and
normal distributions are poor approximations of the decoy PMD distribution and, presumably, of
the false-hit distribution.

Collectively these are novel and significant findings, in that they invalidate the primary
assumption of a statistical mixture model: that the probability distributions of the components
(here, true- and false-hits) are constant throughout the acquisition of the dataset. Unless one allows
for the time-dependence of the PMD of true-hits, the distribution of true-hits is ill-defined.
Similarly, unless one allows for the size of the peptide, the PMD of false-hits is ill-defined. To
allow for these issues, we removed small peptides when approximating the false-hit distribution
and shifted all PMD calculations by a local median of “good” hits.

After performing these transformations, we verified that the resulting statistics were invariant
and we created a function that translates scores into an estimated FDR for PSMs with that score.
Combining this score with the revised mixture model gives us a local PMD-FDR for each PSM (a
posterior error probability (PEP) for a specific type of error: an incorrect precursor mass). Now
we can calculate the PMD-FDR for any group of PSMs by simply averaging all the probabilities
for elements of that group together. This provides for a practical and useful tool for researchers
seeking to further assess confidence in high scoring PSMs. We can use this new score as a filter
on previously accepted PSMs to improve our confidence in those that are most reliable. This is
valuable for researchers seeking to distinguish high-scoring PSMs of highest confidence from
those which should be approached with skepticism — particularly useful for PSM-centric

applications such as proteogenomics and metaproteomics. The addition of the PMD-FDR scoring
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provides added-value to these applications, empowering the individual researcher with additional
information on the confidence of PSMs such that they can make decisions on which of these to
further validate and which to potentially ignore.

In general, we found PMD-FDR to be more restrictive than either the standard target-decoy FDR
or the Confidence score derived by PeptideShaker?®, which is a score compiled from multiple
scoring algorithms employed by SearchGUI?’. While we used this score to evaluate our
methodology because of its apparent high quality, it may still be overly optimistic. Notably, our
PMD-FDR method is applied after scoring of PSMs by the database search program, and could be
used on results from any upstream program that generates and scores PSMs.

Furthermore, and highly relevant to workflows producing large datasets of PSMs, PMD-FDR
can be used to detect biases in methods which may be introducing high scoring false-hits. This
can be useful in developing and optimizing new workflows for generating PSMs. Specifically, if
we find that two workflows employing different algorithms or parameters produce different
numbers of PSMs with 1% target-decoy FDR, then we can use PMD-FDR to determine if we have,
in fact, added valuable PSMs rather than adding false-hits with inflated scores.

Requirements for PMD functionality

In developing the PMD-FDR method, we originally hypothesized that we could provide a largely
independent FDR measurement by applying a Bayesian mixture model, assuming that the PMD
of true-hits was normally distributed about zero and that the PMD of false-hits were uniformly
distributed within the mass measurement error window. In order to use the mixture model, we
needed to be able to estimate the distributions of true- and false-hits and show that these

distributions are fixed throughout a given experiment. These assumptions did not hold, as PMD
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distribution for true hits had a complex relationship with time of acquisition (Figure 4a), and the
false-hit distribution was dependent on peptide length (Figure 5)

The good news, however, was that both of these difficulties can be overcome by 1) subtracting
the local median of the good hits from every PMD ; and 2) restricting our estimation of false-hits
to long peptides, say, longer than 10 amino acids. This allows us to identify the distribution of
true- and false-hits on a modified PMD score, distributions that are invariant throughout the
experiment.

It is also important to note that we found that the false-hit distribution is not well approximated
by either a normal distribution (with large variance) nor with a uniform distribution. We suggest
that an empirical distribution should be used to estimate both the true- and the false-hit
distributions, although it may be reasonable to smooth the resulting distributions, as we have.
Concordance/Discordance with other confidence measures

When evaluating the degree of concordance between PMD-FDR and the other two confidence
measures (TD-FDR and the Confidence score from PeptideShaker) we found concordance with
the very high scores — which, in this case is by definition. However, PMD-FDR was much more
critical of lower quality spectra than the other two confidence measures — a large number of PSMs
reported to be in the 1% TD-FDR group had PMD-FDR of 50% - 100%. Similarly, we reported a
10-fold disparity between PeptideShaker and PMD-FDR for Confidence scores in the 90’s
(PeptideShaker effectively reported a 1%-10% FDR where PMD-FDR reported 30%). In other
words, we have created a score that agrees with other scores when things are good but encourages
greater skepticism when quality drops. As inferred above, we conclude that this implies an
independence between PMD-FDR and both the algorithm-specific confidence score (e.g.

PeptideShaker’s Confidence score used in this work) and the traditional TD-FDR. We believe that
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this independence will hold against other algorithms, especially for the many which do not
explicitly use PMD in their scoring. Thus, PMD-FDR should make a good, independent filter; in
our experiments we observed a reduction in false-hits by 60-80% while only decreasing the
number of good hits by 0-7% (Figure 8). Interestingly, this observation is largely independent of
score threshold.

Limitations

There are several potential limitations to this work, which we describe and address more
thoroughly in Supplemental Information. Here we provide a brief description of some of the limits
of our results:

Choice of PSM scoring algorithm

PMD-FDR may have more limited value when used on results from algorithms (e.g. MaxQuant)
that explicitly use PMD in their scoring of PSMs. To investigate this question, we applied
MaxQuant to the Pyrococcus dataset and found that although PMD-FDR has a less pronounced
effect in distinguishing high scoring but most likely false PSMs from true hits, we were still able
to distinguish these populations based on PMD. Because of the heavy weighting by MaxQuant to
results with low PMD, rejecting the false matches came at the cost of also discarding a high
proportion of true matches. Supporting Information provides a detailed description of these
results.

A related possible limitation from the scoring algorithm is insufficient identification of Good
hits, which could lead to over-confidence in results. This algorithm requires a large list of highly
confident, correct hits to sufficiently describe the distribution of true-hits. The number of Good
PSMs should be in the thousands. This problem can arise either from the choice of PSM scoring

algorithm or from an implicit bias in the experiment itself. Similarly, insufficient identification of
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Bad hits could lead to under-confidence in results. If there are a large number of bad hits with
correct PMD, the distribution of bad hits will be skewed towards increased FDR scores for items
with the correct PMD.

Experimental and data acquisition issues

If we have no good data (for example, there is no protein in the sample), the definition of “Good”
becomes impossible to define. However, viewing the distribution of PMDs makes this quite
apparent — instead of a combination of a flat and peaked distribution, you simply see a flat
distribution or a peak that is similar to that of the decoy data.

Other inherent characteristics of detected peptides and MS/MS acquisition may also be limiting.
Deamidation can be incorrectly assigned to an isotopic peptide, leading to an approximately 5-
ppm discrepancy. These PSMs have the correct sequence but are incorrectly classified as an
isotopic peak. PMD-FDR will classify them as probably incorrect if the instrument has better than
5-ppm resolution. Similar problems could arise for other small mass discrepancies. Additionally,
chimeric spectra will be problematic for PMD-FDR to the extent that multiple peptides have
different precursor masses. Co-eluted peptides with identical chemical compositions (identical
numbers of each element) will have the same properties as a singly-eluted peptide with regards to
PMD-FDR but that will not be the case for co-eluted peptides with different chemical compositions
—the measured precursor mass will be altered by the co-elution, making the PMD an untrustworthy
measure for that PSM.

PMD Algorithm

Correctness, according to the PMD-FDR calculation, is entirely determined by precursor mass.

It can suggest exclusion but not inclusion — a high-scoring peptide with a large PMD-FDR should

be treated with skepticism, but a peptide with a small PMD-FDR should not be included on the

36


https://doi.org/10.1101/839290
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/839290; this version posted November 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

basis of the PMD-FDR score alone. A good example of this latter case is a PSM with small PMD
from a MS/MS spectrum for which we have no other good evidence, such as some level of
annotated fragmentation peaks consistent with the putative peptide sequence and a reasonably high
PSM score assignment from this initial algorithm.
Applications and Potential extensions

Our PMD framework for identifying high-scoring PSMs that are likely to be false-hits should
have immediate application in contemporary shotgun proteomics. One of our motivations in
developing this framework was to provide a post-analysis tool for rigorously assessing accuracy
of PSMs/peptides of interest to researchers conducting proteogenomic or metaproteomic studies.
For example, proteogenomics studies match MS/MS to sequence databases containing both novel
variant sequences and reference sequences*” . Researchers rely heavily on scores assigned to
single PSMs matching variant sequences to determine whether these are worth further empirical
examination. Our PMD-based framework provides an additional assessment of the accuracy of
any given PSM, providing researchers an automated means to prioritize those matches to variant
sequences most likely to be correct, and therefore of highest priority for further validation (e.g.
confirmation with synthetic peptides, development of targeted MS-based methods etc.). Those
PSMs flagged as potentially false by PMD-FDR scoring can be dealt with at the discretion of the
researcher — potentially rejected or subjected to further scrutiny to validate their veracity. In
addition to its immediate value, a number of future avenues can be pursued to extend its
functionality and increase its utility, including implementation within existing workflows (e.g.

see>?%). We outline several of these in the Supplemental Information.
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Conclusions

Our goal was to create a post-analysis tool that would allow us to automate the identification of
high-scoring PSMs which are more likely false-hits, focusing on PSM-centric applications such as
proteogenomics and metaproteomics. We selected PMD as our primary input because it was
universally available and because, intuitively, true- and false-hit distributions for PMD should be
quite distinctive. Along the way we found that all of our assumptions about PMD distributions
were incorrect; in particular, these distributions were not fixed within an LC-MS/MS acquisition,
let alone across separate LC-MS/MS runs.

By addressing these issues and finding data features that are invariant across an experiment, we
have created the PMD-FDR measure. By rigorously testing assumptions underlying other PMD-
based methods, we have implemented a method to filter PSMs that complements the upstream
scoring of PSMs by conventional sequence database searching programs. As such, our PMD-FDR
method is agnostic to the sequence database-searching program used and provides a means to
assess accuracy of PSMs and the confidence assigned to them by these programs. This
methodology should find wide applicability in contemporary shotgun proteomics workflows,
especially in applications that depend heavily on PSM accuracy, such as the identification of
PTMs, variant sequences in proteogenomics, or species- or isoform-specific peptides detected
using metaproteomics.

Software Availability
The software used to generate the figures in this paper has been released on GitHub:

https://github.com/slhubler/PMD-FDR-for-paper

The PMD-FDR algorithm has been implemented as a Galaxy tool, and is available in the Galaxy

Tool Shed (https://toolshed.g2.bx.psu.edu/view/galaxyp/pmd_fdr/5cc0c32d05a2) for public use.

The link to the Galaxy tool development repository is here:
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https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/pmd_fdr. = Documentation

on deploying tools from the Tool Shed in any Galaxy instance can be found here:

https://galaxyproject.org/admin/tools/add-tool-from-toolshed-tutorial/.

P5, 20

A monolithic version of the software, designed for use as a simple Galaxy- module is also

on GitHub: https://github.com/slhubler/PMD-FDR-for-Galaxy-P

Supporting Information

The following supporting information is available free of charge at ACS website
http://pubs.acs.org

Supporting Data S1: A detailed description of results from application of PMD-FDR on
representative datasets is provided, along with additional details on limits and conditions for

applying the algorithm, including analysis of results from MaxQuant.
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