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Abstract 

The function of critical developmental regulators can be subverted by cancer cells to control expression of 

oncogenic transcriptional programs. These “master transcription factors” (MTFs) are often essential for cancer 

cell survival and represent vulnerabilities that can be exploited therapeutically. The current approaches to 

identify candidate MTFs examine super-enhancer associated transcription factor-encoding genes with high 

connectivity in network models. This relies on chromatin immunoprecipitation-sequencing (ChIP-seq) data, 

which is technically challenging to obtain from primary tumors, and is currently unavailable for many cancer 

types and clinically relevant subtypes. In contrast, gene expression data are more widely available, especially 

for rare tumors and subtypes where MTFs have yet to be discovered. We have developed a predictive 

algorithm called CaCTS (Cancer Core Transcription factor Specificity) to identify candidate MTFs using pan-

cancer RNA-sequencing data from The Cancer Genome Atlas. The algorithm identified 273 candidate MTFs 

across 34 tumor types and recovered known tumor MTFs. We also made novel predictions, including for 

cancer types and subtypes for which MTFs have not yet been characterized. Clustering based on MTF 

predictions reproduced anatomic groupings of tumors that share 1-2 lineage-specific candidates, but also 

dictated functional groupings, such as a squamous group that comprised five tumor subtypes sharing 3 

common MTFs. PAX8, SOX17, and MECOM were candidate factors in high-grade serous ovarian cancer 

(HGSOC), an aggressive tumor type where the core regulatory circuit is currently uncharacterized. PAX8, 

SOX17, and MECOM are required for cell viability and lie proximal to super-enhancers in HGSOC cells. ChIP-

seq revealed that these factors co-occupy HGSOC regulatory elements globally and co-bind at critical gene 

loci including MUC16 (CA-125). Addiction to these factors was confirmed in studies using THZ1 to inhibit 

transcription in HGSOC cells, suggesting early down-regulation of these genes may be responsible for 

cytotoxic effects of THZ1 on HGSOC models. Identification of MTFs across 34 tumor types and 140 subtypes, 

especially for those with limited understanding of transcriptional drivers paves the way to therapeutic targeting 

of MTFs in a broad spectrum of cancers. 
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Introduction 

Accumulating evidence indicates that tumor cells are driven by a small set of transcription factors (TFs) that 

control global gene expression programs (Durbin et al., 2018; Mansour et al., 2014; Sanda et al., 2012). While 

disused in corresponding healthy cells, some tumor-driving master transcription factors (MTFs) are often 

developmental regulators that are aberrantly expressed and functionally co-opted to regulate tumor cell states. 

For example, regulators of T cell development, TAL1, GATA3, RUNX1, and MYB, are over-expressed and co-

regulate oncogenic programs in T-cell acute lymphoblastic leukemias (Mansour et al., 2014; Sanda et al., 

2012). Additionally, developmental regulators MYCN, HAND2, ISL1, PHOX2B, GATA3, and TBX2 have been 

identified as MTFs in neuroblastoma (Durbin et al., 2018). MTFs are generally expressed in only a limited 

number of cell types, consistent with their potent role in establishing a gene expression program that drives cell 

identity (D’Alessio et al., 2015; Whyte et al., 2013). MTFs are a class of promising therapeutic targets as they 

are selective essentialities in cancer cells, due to a phenomenon termed transcriptional oncogene addiction 

(Bradner et al., 2017). 

Although TFs are notoriously difficult to directly target with small molecules, several MTFs have been shown to 

be highly sensitive to pharmaceutical inhibition of general transcriptional regulators, including those that target 

bromodomain (BRD)-containing proteins and transcriptional cyclin-dependent kinase 7 (Chapuy et al., 2013; 

Durbin et al., 2018; Kwiatkowski et al., 2014; Wang et al., 2015). The expression of tumor cell MTFs are often 

driven by large clusters of enhancers, or termed super- or stretch-enhancers (SEs) (Lovén et al., 2013; Parker 

et al., 2013). The exquisite sensitivity of these factors to chemical perturbation of BRDs and transcriptional 

CDKs is hypothesized to result from disruption of continuous, high-level transcription at super-enhancers 

(SEs), combined with the short transcript half-lives and auto-regulatory activities. Together, studies on MTFs 

and transcriptional inhibition in tumor cells demonstrate the importance of identifying these critical factors and 

investigating if they can be indirectly targeted with small molecules targeting general regulators of transcription. 

MTFs are thought to form core transcriptional regulatory circuitries by co-occupying genomic sites, particularly 

at SEs, and co-regulating the expression of MTF genes and others genes critical for cellular identity (Chen et 

al., 2019a; Durbin et al., 2018; Sanda et al., 2012). Presently, the main approaches to identifying MTFs in 

cancer cells attempts to model these features by identifying TFs predicted to exhibit evidence of 

interconnected autoregulation (Ott et al., 2018; Saint-André et al., 2016; Zhang et al., 2018). This involves 
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performing ChIP-seq experiments to map enhancers and identifying SE associated TFs whose predicted 

binding motifs are enriched at SEs, both upstream and regulating other MTFs (Federation et al., 2018). These 

approaches have been shown to recover experimentally validated MTFs in various tumor types (Chen et al., 

2019a, 2019b; Lin et al., 2016; Ott et al., 2018).  

For many tumor tissues, obtaining adequate amounts of primary tumor cells for ChIP-seq experiments can be 

technically challenging. RNA-sequencing (RNA-seq) experiments, however, require less starting material and, 

RNA-seq data from primary tumor samples are currently more widely available, especially for rare tumor types 

and subtypes. We therefore developed an approach to predict tumor MTFs in numerous cancer types and 

subtypes using RNA-seq data from The Cancer Genome Atlas (TCGA). This approach is called the Cancer 

Core Transcription factor Specificity (CaCTS) algorithm, and it attempts to determine critical TFs by identifying 

those exhibiting tumor-specific expression compared to a background data set that contains a diverse set of 

cancer types. A similar approach has been previously applied to normal tissues (D’Alessio et al., 2015). We 

find that candidate MTFs identified through the CaCTS algorithm possess many expected qualities of MTFs, 

such as SE association and high levels of essentiality, indicating our approach is an orthogonal metric to 

existing attempts to predict MTFs. This unique resource represents a collection of candidate MTFs for 34 

tumor types and 140 molecular and histologic subtypes that can be directly explored for therapeutic potential. 
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Results 

The Cancer Core Transcription factor Specificity (CaCTS) algorithm identifies factors with features 

attributed to tumor cell MTFs 

Given that many tumor cell MTFs are developmental regulators that exhibit cell-type-specific expression 

(Durbin et al., 2018; Mansour et al., 2014; Sanda et al., 2012), we hypothesized that these MTFs could be 

retrieved by identifying sets of TFs that exhibit tumor-specific RNA expression within a diverse collection of 

tumor types. We therefore mined TCGA RNA-sequencing data containing 9,691 patient samples representing 

34 tumor types. To identify candidate MTFs, we developed a method, the Cancer Core Transcription Factor 

Specificity (CaCTS) algorithm, to identify factors over-expressed in each tumor type relative to the other tumor 

types represented in the TCGA data set (Figure 1A, Table S1). This approach uses an entropy-based measure 

of Jensen-Shannon divergence similar to that used to identify candidate MTFs in normal human tissues 

(D’Alessio et al., 2015). We calculated the average expression levels of 1,578 TFs in 34 tumor types/major 

subtypes (Table S2). On average, 309 samples (range: 45-1,083) were used to calculate average TF 

expression values in each of the 34 tumor types. The specificity of expression of each TF, or ‘CaCTS score’, 

was calculated by comparing its expression level in the query tumor type to that in the remaining 33 tumor 

types. A high CaCTS score is therefore assigned to factors with high level expression in the query tumor types 

as compared to background data set (for example, TF1 depicted in Figure 1A compared to TF2, which 

represents a factor that is ubiquitously expressed across the cohort). The output of the CaCTS algorithm is a 

list of all TFs ranked by CaCTS scores in each of the 34 tumor types (Table S3). 

Lineage-specific oncogenic transcription factors often share features attributed to MTFs, including association 

with SEs (Chapuy et al., 2013; Eliades et al., 2018; Shang et al., 2019; Yuan et al., 2017). Among these 

include POU2AF1 (OCA-B) in diffuse large B-cell lymphoma (DLBC) (Chapuy et al., 2013), SOX10 in 

melanoma (SKCM) (Eliades et al., 2018), and TP63 in esophageal squamous carcinoma (ESSC) (Yuan et al., 

2017). POU2AF1 is critical for B-cell fate determination and was found proximal to especially large BRD4-

loaded SEs in DLBC cells (Chapuy et al., 2013). SOX10 is important for melanoma cell proliferation and 

survival and is associated with SEs in melanoma tissues (Eliades et al., 2018). TP63 is a known master 

regulator of keratinocyte differentiation and associated with SEs in esophageal squamous cells (Yuan et al., 

2017). By analyzing publicly available H3K27ac data, we confirmed that POU2AF1, SOX10, and TP63 are 
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associated with SEs in DLBC, primary melanoma tissues, and an esophageal squamous cell carcinoma cell 

line, respectively (Figure 1B, Figure S1A). POU2AF1, SOX10, and TP63 were scored highly with the CaCTS 

algorithm, ranking fourth, second, and first, in DLBC, SKCM, and ESSC, respectively (Figure 1C, Table S3). 

Although TP63 was the top-scoring factor in esophageal squamous tumors, it ranked poorly in esophageal 

adenocarcinoma (rank 1,392 out of 1,578 TFs), reinforcing previous observations that this factor is a 

distinguishing feature between the two histologic subtypes (Cancer Genome Atlas Research Network et al., 

2017a). These findings demonstrate that the CaCTS algorithm is able to recover factors with known MTF-

related roles in tumor cells. 

We next sought to investigate if SE associated genes are highly ranked by the CaCTS algorithm in general. 

We collected publicly available and internal H3K27ac ChIP-seq data sets, collecting an average of 4.5 (range 

1-25) samples to represent 20 out of the 34 tumor types (Table S4). Fifteen of these were from primary tumors, 

while only cell line data were available for BLCA, CESC, LUAD, SARC, ESAD, and ESSC. We were unable to 

retrieve H3K27ac data sets for ACC, HNSC, KICH, KIRP, LUSC, MESO, PCPG, STAD, TGCT, THCA, THYM, 

UCS, and UVM, so these tumor types were not included in this analysis. In each data set, we performed peak 

calling, identified SEs, and performed gene set enrichment analysis to determine if factors with high CaCTS 

scores tend to be enriched for SE associated TFs. The majority (81/92, 88%) of comparisons between SE and 

CaCTS ranks showed significant enrichment (pGSEA < 0.05) (Figure 1D, Figure S1B, Table S5). This analysis 

demonstrates that TFs with high CaCTS ranks tend to be enriched for SE-associated factors in these twenty 

tumor types and suggests that bona fide MTFs are likely present among high CaCTS scoring factors in the 14 

tumor types where enhancer data was not available. We noted that most known candidate factors were among 

the top 5% of expressed factors in the relevant tumor type (Chapuy et al., 2013; Eliades et al., 2018; Yuan et 

al., 2017). Therefore, to arrive at a collection of candidate MTFs, we retrieved those factors with high CaCTS 

scores (top 5%; CaCTS rank ≤ 79) that were also highly expressed (within the top 5% of expression; 

expression rank ≤ 79) for each of the 34 tumor types (Table S6, Figure S1C). This list contained a total of 273 

candidate factors with an average of 8.0 candidate factors per tumor type (range 3-31). 

Candidate MTFs are shared among tumors of similar anatomic or functional state 

On average, an individual factor was identified as a candidate MTF for 1.9 tumor types (Figure S2A), 

consistent with our expectation that cancer MTFs will be enriched for lineage-specific developmental 
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regulators. Hierarchical clustering of tumors based on CaCTS scores of the 273 different candidate MTFs 

identified 11 clusters (Figure 1E). MTFs identified in testicular germ cell tumors (TGCTs) exhibited the highest 

average CaCTS scores (TGCT average CaCTS score = 0.91±0.73; compared to an average of 0.36±0.25 

across the whole cohort). MTF candidates for this tumor type included known TGCT markers NANOG (ranked 

number 1, CaCTS score = 2.4) and POU51B (ranked number 5, CaCTS score = 2.4) (Santagata et al., 2007). 

Most tumors clustered by organ, which was expected because expression of lineage-specific fators should be 

similar among tumors originating from related sites. Some clusters represented functional categories; tumors 

with major squamous components clustered together, and tumors arising from hormonal-responsive organs 

(breast, prostate) and gynecologic tissues formed two closely related clusters. We also identified a cluster 

consisting of ectoderm-derived adenocarcinomas from the lung, pancreas, esophagus, stomach, colon and 

rectum (Figure 1E). These functional groupings were less expected, but they suggest shared MTFs across 

diverse tissue types are responsible for specific cellular functions and differentiation states. Our clusters were 

largely consistent with those defined by TCGA unsupervised consensus clustering of RNA-seq data from 

10,165 tumor samples (Hoadley et al., 2018) (Figure 1F; Figure S2B). Our set of 273 candidates could 

successfully recapitulate clusters derived from analysis of ~15,000 genes, suggesting our predictions contain 

key drivers of global gene expression programs. There were some notable differences between TCGA pan-

cancer clusters and our own. In our clustering, urothelial bladder carcinoma (BLCA) clusters with squamous 

tumors, while lung and pancreatic adenocarcinomas now cluster with other gastrointestinal solid tumors. This 

argues that common factors or related factors may manifest in different expression programs depending on 

cellular context.  

Clusters are driven by CaCTS score and so both candidates and non-candidates will influence the clustering; 

but we identified a subset of 62 MTFs that were shared among 3 or more tumor types (Figure S2A) and sought 

to further examine commonalities across the union set of candidates (Figure 1E,G). The most striking 

functional group is squamous, where 3 factors - TP63, IRF6, KLF5 - were common candidates among 5 

tumors from diverse anatomic sites - bladder, cervix, lung, esophagus and head and neck (Figure 1E,H). Six 

factors were shared between breast and prostate cancer, and both are derived from hormonal responsive 

organs (FOXA1, XBP1, LTF, SPDEF, CREB3L4 and ZNF652) (Figure 1I). FOXA1 is a critical player in breast 

and prostate cancer risk and somatic development (Ciriello et al., 2015; Grasso et al., 2012; Pomerantz et al., 
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2015; Robinson and Carroll, 2012); XBP1 is involved in the unfolded protein response and is part of the MYC 

signaling axis in both cancer types (Zhao et al., 2018); SPDEF, also known as prostate-derived Ets factor 

(PDEF) may function as a tumor suppressor gene in prostate cancer, but as an oncogene in breast cancer, 

where it regulators expression of lineage-specific genes in mammary luminal epithelial cells (Buchwalter et al., 

2013; Cheng et al., 2014). LTF, CREB3L4 and ZNF652 have been less well studied and warrant further 

investigation as BRCA and PRAD candidate MTFs. While breast and prostate cancer closely clustered with 

gynecologic tumors arising from other hormonal-responsive organs, these tumor types shared more candidate 

factors with each other than with ovarian serous cystadenocarcinoma (OV), uterine carcinosarcoma (USC) and 

uterine corpus endometrial carcinoma (UCEC). This is consistent with germline susceptibility studies that 

report greater pleiotropy between prostate and breast cancer risk than between prostate and ovary (Jiang et 

al., 2019; Kar et al., 2016). 

Candidate MTFs represent tumor cell dependencies  

Tumor cell MTFs are expected to be required for critical cellular processes (Bradner et al., 2017), and they are 

often required for cellular viability. We next determined the extent to which loss-of-function of our candidate 

factors affects tumor cell viability by examining CRISPR/Cas9 screening data from The Cancer Dependency 

Map Consortium (depmap.org) (Meyers et al., 2017; Tsherniak et al., 2017). This resource includes CRISPR 

knockout screening in representative cell lines for 20 of the 34 tumor types in our study, with a mean of 13 cell 

lines per tumor type (range 1-31), and 434 cell lines in total. Dependency scores (CERES) were normalized 

such that -1 corresponds to the median effects of pan-essential genes (Meyers et al., 2017). Dependency 

scores for the candidate MTFs in relevant cell line models are depicted in Figure 2A-T. We calculated the 

average dependency scores for positive control MTFs - POU2AF1 in DLBC, SOX10 in SKCM, and TP63 in 

ESSC; these factors have mean dependency scores of -0.71, -1.05, and -0.36, across 4 DLBC, 30 SKCM, and 

19 ESSC cell lines, respectively. On average these 3 factors met -0.4, -0.6, -0.8, and -1.0 gene-dependency 

score cutoffs in 67%, 55%, 50%, and 28% of cell lines for the relevant tumor type (Figure 2A-C, Figure S3). 

Given these cutoffs, we calculated the proportion of cell lines for each tumor type that were dependent on 

CaCTS candidate MTFs. We found that on average 87% of tumor types show at least modest dependency 

(dependency scores of ≤ -0.4) on at least one candidate MTF in at least 50% of the corresponding cell lines, 

with 53% of tumor types showing high levels of dependency on one or more candidates in at least 50% of the 
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corresponding cell lines (dependency scores of ≤ -1.0) (Figure 2U). This included novel factors such as PREB, 

a factor that regulates prolactin expression and glucose homeostasis in the liver (Park et al., 2018) and 

FOXM1, previously implicated in ESSC (Song et al., 2018; Takata et al., 2014) although not as a master 

regulator. Lineage-specific dependency data were available for 9 tumor types (DLBC, SKCM, ESSC, BRCA, 

COAD, KIRC, LIHC, LUSC and OV); 4-53% of CaCTS candidates were also lineage-specific TF dependencies 

in the relevant tumor type. This was particularly striking for BRCA, where 9/17 candidates were dependencies 

specifically enriched in breast cancer (Figure 2E).  

Candidate MTFs are targets of somatic mutations in cancer 

We tested whether candidate MTFs were more likely to be somatically mutated in cancer than other TFs. We 

calculated the mutation rate across all coding exons and identified all significant genes (p < 0.05), using data 

for somatic single nucleotide variants from the PanCancer Analysis of Whole Genomes (PCAWG) project 

(https://icgc.org). Data were available for 21 (out of 34) cancer types represented in Figure 1E. We compared 

mutation burden across candidate MTFs to mutation burden of TFs with comparably high levels of expression 

(within the top 5% of all TFs; expression rank ≤ 79) but low CaCTS scores (CaCTS rank > 79). Candidate 

MTFs were more likely to be mutated than non-candidate MTFs that were also highly expressed in the same 

tumor type (p = 1.0 x 10-4, two-tailed Pearson's Chi-squared test), particularly in BLCA, BRCA, KICH, LUSC 

and PAAD. (Table 1, Figure 3). Significantly mutated MTFs included factors previously known to be somatically 

mutated in a tumor-specific manner - FOXA1 in BRCA and PRAD (Annala et al., 2018; Robinson et al., 2013) 

and NFE2L2 in squamous lung tumors (Frank et al., 2018; Xiong et al., 2018). TRPS1, a known essential gene 

and lineage-specific factor in breast cancer was mutated in 11 out of 195 breast cancer cases (p = 4.5 x1 0-3); 

other novel factors with significant mutation burdens included TBX3 in bladder tumors (mutated in 5 out of 23 

cases, p = 1.8 x 10-3) and PAX8 in UCEC (mutated in 4 out of 44 cases, p = 0.01). 

Subtype-specific MTF predictions reveal subtype-specific regulators 

Many tumors characterized by a shared anatomic origin can be stratified into molecular and/or histologic 

subtypes. It has become increasingly clear that different subtypes often have markedly different prognoses and 

responses to therapy. Subtypes can also reflect different cells of origin and so we sought to identify candidate 

MTFs in tumors stratified into clinically relevant subtypes. Subtype annotation was available for 7,259 of the 

9,691 tumors in our original data set; CaCTS scores were consistent when we reran CaCTS (for the 34 major 
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tumor groups) using the smaller data set of 7,259 samples, indicating that the reduced set of samples is 

representative of the original data set (Figure S4A). We stratified our collection of tumors into subtypes based 

mostly on molecular features (expression, methylation, coding mutations or copy number alterations) except in 

the following three instances where we used histologic classifications: kidney chromophobe tumors (KICH) 

were divided into classic and eosinophilic histologic groups; the heterogeneous group of sarcomas (SARC), 

were divided into dedifferentiated liposarcomas, uterine leiomyosarcomas, soft tissue leiomyosarcomas, 

myxofibrosarcomas, undifferentiated pleomorphic sarcomas, malignant peripheral nerve sheath tumors and 

synovial sarcomas. Finally, uterine carcinosarcomas (UCS) were stratified into endometrioid-like and serous-

like tumors, which was primarily based on somatic mutations but also corresponded to histologic classifications 

(Cherniack et al., 2017). To select the most clinically relevant subtype classifications for the remaining tumors 

we used TCGAbiolinks (Colaprico et al., 2016) (ACC, BCLA, BRCA, COAD, ESAD, GBM, HNSC, LGG, LIHC, 

LUAD, LUSC, OV, PRAD, READ, SKCM, STAD, THCA, UCEC) and primary publications from TCGA (CESC 

(Cancer Genome Atlas Research Network et al., 2017b), CHOL (Farshidfar et al., 2017), KICH (Davis et al., 

2014), KIRC (Cancer Genome Atlas Research Network, 2013), KIRP (Cancer Genome Atlas Research 

Network et al., 2016), LAML (Cancer Genome Atlas Research Network et al., 2013), MESO (Hmeljak et al., 

2018), PAAD (Cancer Genome Atlas Research Network, 2017), PCPG (Fishbein et al., 2017), SARC (Cancer 

Genome Atlas Research Network, 2017), TGCT (Shen et al., 2018), THYM (Lee et al., 2017), UCS (Cherniack 

et al., 2017), UVM (Robertson et al., 2017)). Subtype annotations were not available for DLBC and ESCC. 

Table S7 details how the 34 tumor groups were stratified into a total of 140 molecular and histologic subtypes. 

To implement the CaCTS algorithm, we queried the average expression of 1,578 TFs in each subtype (Table 

S8) against a background data set which contained the average TF expression in the other tumor subtypes, 

excluding all other tumors of the same major type (see Methods). The CaCTS algorithm identified a total of 439 

different candidates across the 140 tumor subtypes; this included all candidates identified in our initial analyses 

plus 166 (38%) new factors that were only identified in the subtype-stratified analyses (Table S9). Subtype 

stratification had a major impact on the candidates identified for a number of tumor subtypes, particularly 

breast adenocarcinoma (BRCA), bladder urothelial carcinoma (BLCA) and cervical squamous cell carcinoma 

and endocervical adenocarcinoma (CESC) (Figure 4A). We compared candidate MTFs for the two 

predominant subtypes of breast cancer - luminal A (lumA, 55 % of BRCA cases) and basal (30% of cases). 
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Candidate MTFs were vastly different between the two subtypes, with only two shared factors (TRPS1 and 

LTF), consistent with existing evidence suggesting these two tumor types represent different cell states and 

cells-of-origin (Polyak, 2007). When we stratified DepMap dependency data for breast cancer cell lines based 

on the BRCA subtype of the cell line models, hierarchical clustering based on dependency across a union set 

of luminal A and basal BRCA candidates divided cell lines largely by subgroup (Figure 4B). Luminal A-specific 

candidates were not dependencies in basal-type cell lines, and vice versa. We detected some known subtype-

specific factors including GATA3 in the luminal A subtype (Ciriello et al., 2015; Shaoxian et al., 2017), and 

FOXC1 and SOX9 in triple negative breast cancer (which is enriched in the basal subtype) (Wang et al., 2015). 

Luminal A candidates largely overlapped with the candidates identified in the initial CaCTS analyses, which is 

to be expected as this comprised over 50% of the BRCA cohort. We also identified four additional candidate 

MTFs for luminal A breast cancer - AEBP1, MYB, SREBF1 and TBX3. TBX3 is recurrently mutated in luminal 

A tumors (Ciriello et al., 2015) but has not been implicated as an MTF, and the other factors also represent 

novel candidate MTFs for this tumor type. Only 2 out of 11 candidate MTFs identified for basal breast tumors 

were also candidates in the initial BRCA analyses (LTF and TRPS1). Novel candidates for basal BRCA 

included NFIB (Moon et al., 2011), which has been previously implicated in epigenetic reprogramming during 

small cell lung cancer metastasis (Denny et al., 2016) and CREB3L2, which is commonly fused to FUS in low-

grade fibromyxoid sarcomas (Matsuyama et al., 2006), but has not been studied in the context of basal-type 

breast cancer. 

When we stratified molecular groups in bladder and cervical cancer we found that squamous-enriched group 

BLCA.3 and CESC “keratin” groups CESC.C1 and CESC.C2 have squamous differentiation TFs as candidates 

(TP63, IRF6 and PITX1) and now cluster together with other squamous tumor types (LUSC, ESSC and 

HNSC). In contrast, adenocarcinoma subgroups from the same organs cluster more distantly (for example 

CESC.C3 clusters with uterine and ovarian adenocarcinoma) (Figure S4B) and have distinct MTF candidates. 

For BLCA.1 “papillary like” tumors, candidates include GATA3 (Figure 4A), which is shared with BLCA.2 and 

BLCA.4, all breast cancer subtypes except basal, and the cortical admixture and pseudohypoxia subtypes of 

PCPG. FOXA1 is a candidate MTF in BLCA.1 (but not in other bladder cancer subtypes), LUAD.2, all subtypes 

of prostate and non-basal breast cancer subtypes. PAX8 and MECOM are candidates in CESC.C3, as well as 

OV and UCEC (Figure 4C). FOXJ1 is also a candidate in CESC.C3, a factor that is crucial for ciliogenesis 
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(Brody et al., 2000) and is also detected in the differentiated subgroup of OV, and the ‘copy number low’ 

subgroup of UCEC. Therefore, while squamous subgroups of bladder and cervix tumors cluster with squamous 

types from distant organs, adenocarcinomas share greater similarities with tumors derived from a similar 

developmental lineage. 

Since PAX8 and MECOM were candidates in CESC.C3 and OV, we hypothesized there may be additional 

factors shared across gynecologic tumor subtypes. We therefore compared MTF candidates in subtypes of 

cervical, uterine corpus endometrial and ovarian carcinomas, and uterine carcinosarcomas and 

leiomyosarcomas (now subdivided from the sarcoma metagroup). Overall six factors were common across two 

or more gynecologic tumor types - PAX8, MECOM, SOX17, ESR1, MEIS1 and FOXJ1. PAX8, MECOM and 

SOX17 were the top three shared candidate MTFs among this set of tumors (Figure 4C). Molecular subgroups 

of ovarian and uterine carcinoma (OV and UCEC) exhibited the greatest similarities, with CESC.C3, uterine 

leiomyosarcoma and uterine endometrioid-like sarcomas sharing 3, 2 and 2 candidate MTFs in common with 

the uterine/ovarian carcinoma metagroup, respectively. We also noted that for molecular subtypes of OV, MTF 

candidates largely mirrored those identified for OV as a whole, with a few modifications - the mesenchymal 

molecular subgroup of ovarian tumors uniquely lacked SOX17 and MECOM, present in the other OV subtypes; 

FOXJ1, BCL6, EHF and RARG were candidates for differentiated tumors, but not the other subtypes; ELF3 

was a candidate MTF for the differentiated and immunoreactive OV subtypes only; and proliferative-type 

tumors had four unique candidates - HMGA2, SOX12, TEAD2 and PLAGL2. HMGA2 is a known subtype-

specific marker for the proliferative subgroup of OV (Cancer Genome Atlas Research Network, 2011) and 

TEAD family proteins likely cooperate with PAX8 to regulate gene expression in models of ovarian cancer 

(Adler et al., 2017; Elias et al., 2016). SOX12 and PLAGL2 are novel candidates for this subtype of OV tumors.  

Using candidate MTFs to build core regulatory circuitry models in ovarian cancers 

To validate the CaCTS algorithm, we tested our success at identifying MTFs for OV. The TCGA OV study 

consists exclusively of high-grade serous ovarian cancers (HGSOCs). HGSOCs are relatively rare tumors for 

which MTFs are currently unknown, and novel therapeutic targets are urgently needed due to the frequent late-

stage diagnoses and high rates of tumor recurrence. We identified 14 candidate MTFs for OV (listed in order of 

ranked CaCTS score): WT1, EMX2, SOX17, MEIS1, BHLHE41, PAX8, ESR1, ZNF503, MECOM, TGIF2, 

NR2F6, PBX1, ZNF217 and PLSCR1 (Figure 2S). PAX8 has not previously been characterized as an MTF, but 
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is a known lineage-specific dependency in this tumor type (Cheung et al., 2011); and both PAX8 and WT1 are 

used as clinical biomarkers for serous ovarian carcinomas. We tested whether these factors show orthogonal 

characteristics of MTFs using ChIP-Seq experiments and in vitro knockdown studies.  

Ten of these factors were associated with SEs in at least 4 (out of 12) tumor samples (Figure 5A,B; Figure S5) 

and eight factors - MEIS1, SOX17, PAX8, WT1, ZNF217, BHLHE41, MECOM and PBX1 - were all associated 

with SEs in at least 11 of the 12 tumors. We decided to focus on PAX8, SOX17 and MECOM as these are also 

pan-gynecologic factors and are marked by especially large SEs in primary ovarian tumors. We performed TF 

ChIP-seq in a HGSOC cell line (Kuramochi) and found these factors bind regulatory elements associated with 

the genes encoding these factors, consistent with their formation of a core regulatory circuit (CRC) (Figure 

5C,D). Additionally, they bind at three clinical biomarkers of the disease: WT1, MUC16 (CA125), and HE4 

(Köbel et al., 2008) (Figure 5E). CRC factors are also expected to drive expression programs by co-occupying 

enhancers across the genome, and we observed a consistent co-localization of these factors genome-wide 

(Figure 5F). Indeed the 2nd and 13th top ranked PAX8 binding peaks were at the SOX17 gene locus (Figure 

5G). Furthermore, proximity ligation assays confirmed that these proteins are part of the same complex (Figure 

5H,I). 

To study the collaboration between PAX8, SOX17, and MECOM in driving tumor cell survival, we analyzed 

tumor cell survival in their absence. Overall 5 (out of 14, 36%) OV MTF candidates showed moderate to high 

levels of essentiality in at least one HGSOC cell line (minimum CERES score of -0.4 or less) (Figure 2S, 6A), 

particularly for PAX8 and MECOM where minimum CERES scores were -1.3 and -0.7, respectively. These two 

factors are also selective dependencies for OV (Cheung et al., 2011). PAX8, SOX17 and MECOM dependency 

correlates with level of expression, especially in ovary samples; the higher these factors are expressed the 

more likely they are to be essential. This is consistent with a model in which these factors are playing 

oncogenic roles (Figure 6A). In addition, PAX8, SOX17 and MECOM gene loci are amplified in 6%, 11%, and 

36% HGSOCs, respectively (Figure 6B). Using RNAi we depleted PAX8, SOX17, and MECOM protein 

expression by 80-95% and RNA expression by 80-95% (Figure 6C,D, Figure S6A). Following PAX8, SOX17, 

and MECOM knockdown, colony formation of HGSOC cells was reduced by 76% (standard deviation (s.d.) = 

3.1%; p < 0.001) , 44% (s.d. = 30%; p = 0.013) and 51% (s.d. = 17.9%; p = 0.004) respectively in comparison 

to siNT1 (Tukey’s Multiple Comparison Test, n=4) (Figure 6E). Comparisons to siNT2 were similar to that of 
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siNT1 (Figure 6E). Together these data suggest a requirement for maintained PAX8, SOX17, and MECOM 

expression for HGSOC cell viability. 

Targeting an MTF-driven oncogenic expression program in HGSOC 

General transcription inhibitors are showing remarkable anti-cancer effects across multiple cancer types, which 

is thought to be largely due to their preferential activity towards MTFs (Delmore et al., 2011; Durbin et al., 

2018; Wang et al., 2015). High-grade serous ovarian cancer models are exquisitely sensitive to pharmacologic 

inhibition of CDK7/12/13 (Francavilla et al., 2017; Kwiatkowski et al., 2014; Zeng et al., 2018) and many cell 

lines are also sensitive to inhibition of BET family bromodomain proteins with JQ1 (Baratta et al., 2015). 

Consistent with these results, OVCAR4 HGSOC cells exhibit notably low IC50 values of 45 nM for THZ1 and 

1.3 μM for JQ1. OVCAR4 cells are also sensitive to THZ531, a covalent inhibitor of cyclin dependent kinases 

12 and 13, again with IC50 values in the nanomolar range (97 nM) (Zhang et al., 2016) (Figure 6F). The three 

candidate MTFs were exquisitely sensitive to these molecules (Figure 6G, Figure S6B). PAX8 and SOX17 

were particularly sensitive to THZ1 treatment and are among the 10%-most sensitive among highly expressed 

protein-coding transcripts in low-dose (50 nM) treatment with THZ1 (Figure 6H). The potent inhibition of these 

factors with low-dose treatment is most relevant in terms of target engagement and the concentration range 

that selectivity is observed (Kwiatkowski et al., 2014). Finally, RNA-seq revealed that PAX8 and SOX17 

knockdowns both phenocopy effects of low-dose THZ1 treatment, suggesting these factors, at least in part, 

explain the anti-cancer effect of this drug in ovarian cancer cells (Figure 6I). PAX8 and SOX17 target genes 

are largely overlapping, with some of the most downregulated genes falling into cell cycle, DNA replication, and 

DNA division pathways (Figure S6C,D), including cell-cycle regulators in the retinoblastoma pathway such as 

known ovarian cancer oncogene CCNE1 (Cancer Genome Atlas Research Network, 2011; Karst et al., 2014; 

Kuhn et al., 2016; Patch et al., 2015) (Figure 6J). 
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Discussion 

Core regulatory circuitries (CRCs) represent a potentially universal vulnerability in tumor cells, and 

consequently, they are likely to represent potent therapeutic opportunities for many cancer types. Given recent 

developments in targeting CRCs through the use of general transcription inhibitors, this approach to prioritizing 

candidate master regulators based solely on RNA-seq data is timely, particularly for tumor types where limited 

access to tumor specimens prohibits the generation of the ChIP-seq data typically required to identify 

candidate MTFs. The candidate MTFs recovered by the CaCTS algorithm include both known and novel 

MTFs, which are especially valuable for tumor types in which transcriptional circuits are poorly characterized. 

As a proof-of-concept we performed functional validation and confirmed MTF features for PAX8, SOX17 and 

MECOM in HGSOC cells; demonstrating that the CaCTS predictions recovers novel critical regulators. In the 

DepMap cell line dependency data we observed striking clustering patterns within each tumor type, with factors 

and cell lines clustering by co-dependencies for many tumor types, demonstrating the success of the CaCTS 

approach to identify transcriptional circuitries. Cell lines that show the greatest dependence on tumor-specific 

MTFs may be the superior models to use for translational studies; for example in HGSOC, Kuramochi, OAW28 

and ONCODG1 exhibited similar dependencies on candidate MTFs, and have all been prioritized as cell lines 

models that faithfully recapitulate molecular hallmarks of HGSOC (Domcke et al., 2013).    

We predicted candidate factors for major tumor groups, as well as clinically relevant molecular and histologic 

subtypes. This analysis revealed some common factors across diverse origins, a phenomenon most clearly 

illustrated by squamous tumors where tumors across five diverse anatomic sites shared three common factors 

(TP63, KLF5 and IRF6). A further three factors were shared by 3 sites - RARG (BLCA, CESC and HNSC), 

PITX1 (CESC, ESSC and HNSC) and NFE2L2 (ESSC, HNSC and LUSC). KLF5 is shared between squamous 

tumors and adenocarcinomas of the esophagus, cervix and bladder suggesting this factor may have different 

targets in the different tumor types. In some instances, squamous tumors have both squamous and organ-

specific candidate MTFs, such as ID1 and KLF5 in cervix and AHR and KLF5 in esophageal tumors; 

suggestive of dual circuitries with cooperating factors dictating lineage-specific and functional programs. 

Using CaCTS we were able to make MTF predictions for rare and common tumor types that lack publicaly 

available SE or functional dependency data. We were unable to retrieve high-quality H3K27ac data to call SEs 

for 14 out of the 34 major tumor types (ACC, CHOL, HNSC, KICH, KIRP, LUSC, MESO, STAD, TGCT, PCPG, 
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THCA, THYM, UCS, UVM) and for five additional tumor types (CESC, LUAD, SARC, ESAD and ESSC), 

primary tumor data were not available and so we used ChIP-seq data from cell line models, which may not 

closely recapitulate the epigenetic signatures of disease. In addition, 6 tumor types are not represented in 

DepMap (ACC, KICH, KIRP, TGCT, THYM, UCS) and there are limited dependency data (three cell lines or 

fewer) for four other tumor types (CESC, CHOL, THCA and UVM). Overall, around half of the tumor types 

represented in our study currently have limited publicly available data to predict MTFs, and for six tumor types 

neither H3K27ac nor dependency data are available - adrenocortical carcinomas, kidney chromophobe tumors, 

kidney renal papillary cell carcinomas, testicular germ cell tumors, thymoma and uterine carcinosarcomas, and 

so MTF prediction is not possible based on current methods. Discussion of the MTFs identified for these tumor 

types are included as a Supplementary Note. 

Cancer MTFs represent attractive therapeutic targets, given their essential role in governing cell state, and the 

‘transcriptional addiction’ phenomenon (Bradner et al., 2017), whereby cancer cells become highly dependent 

on maintained high level expression of a select handful of MTFs. Consistent with this, many of the candidate 

MTFs identified by CaCTS were lineage-specific essentialities in the relevant tumor type. General 

transcriptional inhibitors, which show preferential activity towards MTFs, offer an efficient approach to anti-

cancer treatment, rather than developing drugs to target each individual MTF. A number of such agents are 

now in clinical trials. Functional validation of the OV candidate MTFs, PAX8, SOX17 and MECOM, revealed 

that each were sensitive to general transcription inhibition, with PAX8 and SOX17 particularly vulnerable to 

CDK7 inhibition with THZ1. This suggests that PAX8 and SOX17 contribute to anti-proliferative effects of this 

drug, in addition to its previously studied effects on MYC and MCL1 (Zeng et al., 2018). As PAX8, SOX17 and 

MECOM are shared factors in other tumor types and subtypes, these results may be applicable to other tumor 

types dependent on these factors, including gynecologic tumor subtypes that share the greatest similarities 

with OV (UCEC and CESC C3) and some non-gynecologic tumors - thyroid and kidney carcinomas (THCA, 

KIRP, KICH and KIRC) where PAX8 is a candidate MTF, and esophageal adenocarcinomas, kidney 

chromophobe tumors and stomach adenocarcinomas where MECOM is a candidate. Early downregulated 

genes following PAX8 and SOX17 depletion included genes in the Rb pathway, indicating a mechanism of 

action for anti-cancer activity of THZ1 in ovarian cancer models. Critically, ovarian cancer oncogene CCNE1 

was downregulated -2.0 and -2.2 fold following PAX8 and SOX17 depletion, respectively, consistent with 
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CCNE1 being a target of these MTFs. Rb pathway alterations predict responses of patient derived xenograft 

models to SY-1365 (Hu et al., 2019), a covalent CDK7 inhibitor currently in clinical trials for advanced breast 

and ovarian cancer (NCT03134638). While we validated 3 factors in OV, additional MTFs may contribute to the 

transcriptional circuitry of HGSOC. One such factor is WT1, an ovarian cancer biomarker, whose SE was co-

bound by PAX8, SOX17 and MECOM. MEIS1 was another candidate, this factor was associated with SEs in 

all 12 tumors and was the highest-ranking SE-associated MTF for this tumor type. Cells dependent on PAX8 

also tended to be dependent on ZNF217, a factor implicated in breast cancer (Frietze et al., 2014; Littlepage et 

al., 2012). Other shared factors with breast cancer included ESR1 (known to interact with ZNF217) and PBX1. 

Compared to PAX8 and SOX17, MECOM was less responsive to THZ1 and THZ531 (although MECOM 

expression was highly sensitive to JQ1), and as a candidate this factor may not fully fit the canonical MTF 

model. MECOM was the lowest ranking of the three factors based on SE associations, and was least lineage-

specific of the three, as it is shared in many adenocarcinomas. We noted for OV and the majority of tumor 

types we examined, that the tumor MTF predictions were very similar to those previously predicted for normal 

tissues of the same organ (D’Alessio et al., 2015) suggesting that a major mechanism of tumorigenesis 

involves aberrant reinforcement of developmental transcriptional programs, or that normal MTF activities 

become perturbed to acquire oncogenic properties during cancer development. MTFs predicted by CaCTS are 

more likely to contain somatic mutations than TFs with comparably high levels of expression but lacking 

lineage-restricted patterns of expression. This observation supports the idea that somatic mutations that 

bestow pro-oncogenic properties on developmental MTFs are selected for during cancer development. 

We present a prioritized collection of candidate MTFs for 34 major tumor types and 140 tumor subtypes, which 

will be enriched for bone fide MTFs, but it will also likely contain false positive. For users of this resource, we 

recommend integration of complementary data, where available - such as SE landscapes, dependency data 

(Rauscher et al., 2019), and motif-based circuitry mapping (Federation et al., 2018) to inform the design of 

functional validation experiments. We note that not all cancer MTFs will fulfill all the canonical MTF criteria - for 

example ZNF217 has lower levels of expression in basal-type breast tumors (expression rank = 232), but high 

levels of dependency (minimum dependency in basal BRCA cell lines = -1.12). An additional caveat to this 

approach is that nomination of candidates is directly related to the composition of the background data set. 

Overall TF expression across several of the tumor types were quite similar (for example, in the kidney tumor 
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types). As such, it is possible that additional tumor type-specific factors exist but were lowly ranked. Despite 

this, known regulators were efficiently retrieved with this analysis, suggesting our background data set was 

sufficiently heterogenous to minimize this issue. In addition, our analyses were restricted to the pan-cancer 

data set compiled by TCGA, so some tumor types are not represented. Metastatic and treatment resistant 

tumor states, where new therapies are most urgently needed, are largely absent.  

In closing, we present a timely and valuable resource of candidate MTFs for tumor types where transcriptional 

circuitries are currently unknown, and leverage this resource to identify PAX8, SOX17 and MECOM as master 

regulators for aggressive high-grade serous ovarian cancers.  
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Online Methods 

 

Computational Methods 

The Cancer Core Transcription factor Specificity (CaCTS) algorithm. PanCancer TCGA RNA sequence 

level 3 normalized data were downloaded from the GDC Data Portal using TCGAbiolinks functions GDCquery, 

GDCdownload and GDCprepare importing into R (http://www.r-project.org) for further analysis (Colaprico et al., 

2016). Table S1 contains the tumor IDs for all the samples included in our analysis. After exclusion of 

recurrent, metastatic and non-tumor tissues, a total of 9,691 samples across 34 tumor types were available. 

Sample annotations were curated from TGCA publications (Cancer Genome Atlas Research Network. 

Electronic address: andrew_aguirre@dfci.harvard.edu and Cancer Genome Atlas Research Network, 2017; 

Cancer Genome Atlas Research Network. Electronic address: elizabeth.demicco@sinaihealthsystem.ca and 

Cancer Genome Atlas Research Network, 2017; Cancer Genome Atlas Research Network, 2013; Cancer 

Genome Atlas Research Network et al., 2013, 2016, 2017b; Cherniack et al., 2017; Davis et al., 2014; 

Farshidfar et al., 2017; Fishbein et al., 2017; Hmeljak et al., 2018; Lee et al., 2017; Robertson et al., 2017; 

Shen et al., 2018)and TCGAbiolinks (Colaprico et al., 2016; Mounir et al., 2019) 

http://bioinformaticsfmrp.github.io/TCGAbiolinks/subtypes.html. Tumor types/subtypes included were ACC - 

Adrenocortical carcinoma, BLCA - Bladder Urothelial Carcinoma, BRCA - Breast invasive carcinoma, CESC - 

Cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL - Cholangiocarcinoma, COAD - 

Colon adenocarcinoma, DLBC - Lymphoid neoplasm diffuse large B-cell lymphoma, ESCA - Esophageal 

carcinoma, GBM - Glioblastoma multiforme, HNSC - Head and neck squamous cell carcinoma, KICH - Kidney 

chromophobe, KIRC - Kidney renal clear cell carcinoma, KIRP - Kidney renal papillary cell carcinoma, LAML - 

Acute myeloid leukemia, LGG - Brain lower grade glioma, LIHC - Liver hepatocellular carcinoma, LUAD - Lung 

adenocarcinoma, LUSC - Lung squamous cell carcinoma, MESO - Mesothelioma, OV - Ovarian serous 

cystadenocarcinoma, PAAD - Pancreatic adenocarcinoma, PCPG - Pheochromocytoma and Paraganglioma, 

PRAD - Prostate adenocarcinoma, READ - Rectum adenocarcinoma, SARC - Sarcoma, SKCM - Skin 

cutaneous melanoma, STAD - Stomach adenocarcinoma, TGCT - Testicular germ cell tumors, THCA - Thyroid 

carcinoma, THYM - Thymoma, UCEC - Uterine corpus endometrial carcinoma, UCS - Uterine carcinosarcoma, 

UVM - Uveal Melanoma. For the main analyses we preserved all grouping defined by TCGA, apart from for 
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ESCA, which we divided into ESAD - Esophageal adenocarcinoma and ESSC - Esophageal squamous cell 

carcinoma.  

Published lists of transcription factors (TF) were retrieved from Saint-Andre et al., (1,253 TFs) (Saint-André et 

al., 2016) and Lambert et al., (1,639 TFs) (Lambert et al., 2018) . Merging both lists created a catalogue of 

1,671 unique TFs, of which 1,578 were expressed in the pancancer data set. To calculate a Jensen-Shannon 

Divergence (JSD) score for each TF for each tumor type, we shifted the normalized expression values such 

that the new minimum normalized expression value is equal to 0. We quantified the specificity between the TF 

expression across different tumor types by creating two same-sized vectors to represent the observed and 

ideal pattern of lineage-specific TF expression. For the ‘observed pattern’, the vector was formed by values 

from the expression mean profiles of the query tumor type and the background data set. For instances where 

TF mean expression is equal to zero, we substituted 0 with 0.1-17 (as zero values are not compatible with the 

JSD calculations). Each element in this vector was divided by the sum of all elements such that the sum of the 

vector is now equal to one. For the ‘idealized pattern’, the vector was formed by a value of 1 at the position 

equivalent to that of the query tumor type and zeroes at all other positions. Using these two vectors, the JSD 

function was performed using the R package jsd version 0.1 and a specificity score was obtained for each TF, 

for each tumor type. The CaCTS score is the negative log10 of the JSD score. The final candidate MTF list for 

a given cancer type was defined by considering the intersection of the 5% most highly expressed TFs 

(expression rank £ 79) in said tumor type and the TFs in the top 5% when ranked by the CaCTS score. 

Identification of super-enhancer associated genes. We collected publicly available H3K27ac ChIP-seq data 

from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) using search term “H3K27ac” “TCGA 

study abbreviation” or “tumor type” e.g. “BRCA” or “breast cancer”. We prioritized data generated for primary 

tumor tissues and only included data for cell lines when primary tumor data were not available. For OV, ESCA, 

PRAD, KIRC, GBM we used in-house tumor tissue H3K27ac ChIP-seq data. Data were processed using 

ENCODE pipeline version v1.2.0 and v1.1.7. ENCODE performed the alignment using bwa and peak calling 

MACS2. We only included samples that passed the following QC thresholds: total IP reads > 15 million; NSC > 

1.05; RSC > 0.8; and FRiP > 0.1. The full curated list of H3K27ac ChIP-seq data sets used in this study can be 

found in Table S4. SE (SE) calls were obtained using the Rank Ordering of SE (ROSE2) algorithm for all tumor 

types, except prostate and kidney, where ROSE was used (Whyte et al., 2013). For ROSE2, we aligned to 
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genome build hg19, with the following parameters: stitching distance -s 12500 and distance from TSS to 

exclude -t 2500. We selected SEs assigned to known transcription factors (Lambert et al., 2018; Saint-André et 

al., 2016).  

Assessing enrichment of super-enhancer associated genes in CaCTS ranked lists. We implemented the 

gene set enrichment (GSEA) analysis using the R package FGSEA version 1.10, to evaluate the enrichment of 

SE associated genes with the list of TFs ranked by CaCTS scores for each tumor type. We applied the fgsea 

function with the parameter nperm equal to 10000. Numbers of SEs detected in each tumor are listed in Table 

S4. Some samples did not have SE-defining data sets available, so, given the biologic similarities of GBM and 

LGG, GBM SEs were used as a proxy to evaluate LGG MTFs predicted by CaCTS. Similarly, GSEA was 

performed on the READ candidates using COAD SEs.  

Hierarchical clustering using CaCTS score. Clustering was performed using the spearman method and 

complete distance parameters. We selected a height cut-off equal to 0.63 to define the clusters, which resulted 

in 11 groups (in the 34 tumor group analyses). To compare our clusters with groups defined by TCGA 

(Hoadley et al., 2018) CaCTS clusters were matched to the TCGA cluster to which 50% (or more) of the 

samples were assigned. 

Analyses of CaCTS TF dependencies. For the dependency analysis, we manually searched the Cancer 

Dependency Map Project database (Meyers et al., 2017) (DepMap Achilles 19Q1 public release - 

https://figshare.com/articles/DepMap_Achilles_19Q1_Public/7655150) for cell lines that rightfully correspond to 

the 34 tumor types. We found dependency data for 20 out of 34 (58.8%) cancer types, and retrieved 434 cell 

lines across these, with LUAD having the largest number of lines (n = 31) and CHOL having the lowest (n = 1). 

We performed hierarchical clustering of cell lines and the CaCTS TFs for the corresponding tumor type 

(method = ward.d2, distance = euclidean). We also calculated the percentage of tumor types with at least 1 

predicted candidate with a CERES score < -0.4, < -0.6, < -0.8 or < -1 in at least 50% of the cell lines for that 

tumor type. Search terms used for each tumor type (for primary disease and subtype) were:  

ACC: “Adrenal Cancer”; BLCA: “Bladder Cancer”; LGG: “Brain Cancer”, then filtered by 

"Astrocytoma”,”Astrocytoma, anaplastic”, “Glioma, Neuroglioma”, “Oligodendroglioma”, “Oligodendroglioma, 

anaplastic"; BRCA: “Breast Cancer”; CESC: “Cervical Cancer”; CHOL: “Bile Duct Cancer”; COAD: 

“Colon/Colorectal Cancer”; ESCA-Adeno: “Esophageal Cancer” then filtered by “Adenocarcinoma”; ESCA-
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Squamous: “Esophageal Cancer” then filtered by “Squamous Cell Carcinoma”; GBM: “Brain Cancer” then 

filtered by “Glioblastoma”; HNSC: “Head and Neck Cancer”; KIRC: “Kidney Cancer” then filtered by “Renal 

Carcinoma, clear cell”, “Renal Adenocarcinoma, clear cell”; LIHC: “Liver Cancer”; LUAD: “Lung Cancer” then 

filtered by “Non-Small Cell Lung Cancer (NSCLCL), Adenocarcinoma”; LUSC: “Lung Cancer” then filtered by 

“Non-Small Cell Lung Cancer (NSCLCL), Squamous Cell Carcinoma”; DLBC: “Lymphoma” then filtered by 

“Diffuse Large B-cell Lymphoma (DLBCL)”; MESO: “Lung Cancer” then filtered by “Mesothelioma”; LAML: 

“Leukemia” then filtered by “AML”; PAAD: “Pancreatic Cancer”; PRAD: “Prostate Cancer”; COAD: 

“Colon/Colorectal Cancer”; SARC: “Sarcoma” then filtered by “Liposarcoma”; SKCM: “Skin Cancer” then 

filtered by “Melanoma”, “Melanoma, amelanotic”; STAD: “Gastric Cancer”; TGCT: “Embryonal Cancer”; THCA: 

“Thyroid Cancer”; UCS: “Endometrial/Uterine Cancer” then filtered by “Endometrial Stromal Sarcoma”; UCEC: 

“Endometrial/Uterine Cancer” then filtered by “Uterine/Endometrial Adenocarcinoma”, “Endometrial 

Carcinoma”, “Endometrial Adenocarcinoma”; UVM: “Eye Cancer”; PCPG: “Neuroblastoma”. 

For OV and BRCA subtypes we manually curated cell lines for inclusion, as follows, OV: (OAW28, COV318, 

KURAMOCHI, SNU8, ONCODG, JHOS4, JHOS2, OVCAR8, COV504, COV362, OV90, X59M, OVCAR5, 

CAOV3, EFO21, A2780), BRCA (luminal A): (EFM19, HCC1428, CAMA1, HCC1419, MCF7, MDAMB415, 

SKBR3, ZR751, KPL1, HCC202, HMC18) BRCA (luminal B): (EFM19, HCC1428, CAMA1, HCC1419, MCF7, 

MDAMB415, SKBR3, ZR751, KPL1, HCC202, HMC18); BRCA (basal/TNBC): (MDAMB468, HCC1806, 

HCC1395, MDAMB436, MDAMB231, SUM159PT, BT549, HCC1937, MDAMB157, CAL51, HS578T, 

HCC1143, DU4475, HMC18); BRCA (HER2): (AU565, MDAMB453, JIMT1, HCC1954).  

Tumor subtype MTF predictions. To predict candidate MTFs specific for each of the 140 tumor subtypes 

(Table S7), we implemented the same workflow developed for the 34 TCGA cancer types, however, instead of 

adding all samples for a query cancer type we selected one subtype at once to be the query group and all 

other cancer subtypes to be the background. For example, considering the four molecular subgroups for 

ovarian cancer we select ‘proliferative’ samples as query and all other 136 cancer subtypes as background, 

leaving out other molecular subgroups for OV, i.e. mesenchymal, differentiated and immunoreactive.  

Somatic mutation analyses. We used coding single nucleotide variants (SNVs) from 2,715 tumors from the 

PCAWG project (https://icgc.org). We removed all SNVs that fall into regions of low mappability 

(wgEncodeDacMapabilityConsensusExcludable.bed). To identify frequently mutated genes, we calculated a 
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background mutation rate for each sample. Let 𝑋"(𝑋" ∈ [0, 𝑛]) be a random variable that represents the 

number of samples  with at least one mutation in the 𝑖th gene (where n is the total number of samples of a 

given tumor type), then 𝑋" follows a Poisson binomial distribution (PBD) with a vector of probabilities 𝑝 =

[1 − (1 − 𝑝/)12]/, where 𝑛" is the size of the coding sequence of the 𝑖th gene in base pairs, and 𝑝/ is the 

global background rate of sample 𝑘 (𝑘 ∈ [1, 𝑛]) empirically estimated by the ratio of the total number of SNVs 

in sample 𝑘 (𝑛/) over the total coverage of all exons (in base pairs) (𝑛456): 

𝑝/ =
𝑛/
𝑛456

 

To determine whether the observed number of mutated samples in the 𝑖th gene, we calculated the probability 

of having at least 𝑠" samples mutated, i.e., p-valuei=𝑃(𝑋" ≥ 𝑠"). P-values were adjusted used the Benjamini-

Hochberg method. 

Oncoplots of PAX8, SOX17, MECOM genetic aberrations. Data were obtained from cBioportal (Cerami et 

al., 2012; Gao et al., 2013). Data included 579 patients/samples with Ovarian Serous Cystadenocarcinoma, 

from the study TCGA Provisional. 

 

Experimental Methods 

H3K27ac chromatin immunoprecipitation of primary HGSOC tissues. All tissues used were collected with 

informed consent and the approval of the institutional review boards of the University of Southern California, 

Cedars-Sinai Medical Center (CSMC), the Whitehead Institute for Biomedical Research (WIBR) and the Dana-

Farber Cancer Institute (DFCI). All specimens profiled were primary, chemotherapy-naïve, high-grade serous 

ovarian cancers. Tumors 1-4 were profiled at CSMC and have been previously described (Corona et al., 2019). 

Briefly, 5 mm punches of OCT-embedded, pathology reviewed tumor specimens were taken from epithelial 

enriched regions. Tissues were subjected to ChIP-seq using an anti-H3K27ac antibody (DiAGenode, 

C15410196, Denville, NJ). Tumors 5-12 were profiled at WIBR. Thirty 30 μm sections of frozen tissues with a 

>90% tumor enrichment were washed with PBS and crosslinked with 1% formaldehyde for 10 minutes and 

quenched with 0.125 M glycine for 5 min at room temperature. Cross-linked material was resuspended in 1 ml 

lysis buffer (0.1%SDS, 1X TX-100, 10mM Tris-HCl pH=8, 1 mM EDTA pH=8, 0.1% Sodium Deoxycholate, 

0.25% Sarkosyl, 0.3 mM NaCl, 1X PIC and 5mM Sodium butyrate) and sonicated for 20 minutes with a Covaris 
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E220 instrument (10% duty cycle, 175 Peak Incident Power, 200 Cycles per burst, 1 mL AFA Fiber 

milliTUBEs). 8 μg soluble chromatin was immunoprecipitated with 10 μg of H3K27ac (Diagenode C15410196, 

lot# a1723-0041d) antibody. ChIP-seq libraries were constructed using Accel-NGS 2S DNA library kit from 

Swift Biosciences. Fragments of the desired size were enriched using AMPure XP beads (Beckman Coulter). 

36-bp paired-end reads were sequenced on a Nextseq instrument (Illumina). Data were processed using the 

ENCODE pipeline, as described above, with SEs identified using ROSE. 

Cell Culture. OVCAR4 and Kuramochi cells were cultured in RPMI-1640 supplemented with 10% FBS, 1x 

NEAA, 11.4 μg/ml of insulin, and 1x penicillin/streptomycin and maintained at 37°C with 5% CO2. Cells were 

passaged with 0.05% trypsin using standard cell culture procedures. Cells were confirmed to be negative for 

Mycoplasma, and were authenticated by profiling of short tandem repeats using the Promega Powerplex 16HS 

assay, performed at the University of Arizona Genomics Core (Table S10).  

RNA interference and colony formation assays. OVCAR4 cells were reverse transfected with non-targeting 

(Dharmacon ON-TARGETplus Non-targeting Control Pool [NT1] and a second custom control pool containing: 

D-0012-03, D-001210-04, D-001210-05 [NT2]) or pooled PAX8, SOX17, and MECOM oligonucleotides 

(Dharmacon L-003778-00-0005, L-013028-01-0010 and L-006530-02-0005) by incubating 120 nM of each 

siRNA pool in Opti-MEM I (Thermo Fisher Scientific) for 5 minutes, which was then combined with a mix of 

Opti-MEM I and lipofectamine RNAiMAX (Thermo Fisher Scientific) and incubated for 20 minutes at room 

temperature. The transfection reagent mix was then combined with 300,000 cells and seeded in a 60mm dish. 

Media was replenished after 24 hours, and transfected cells used for analysis or assays 48 hours later. For 

colony formation assays, transfected cells were trypsinized, counted and 1,000 cells per condition were 

seeded in 6-well plates, in triplicate. Media were replenished once per week, and after 14 days, the cells were 

washed with 1x PBS (Thermo Fisher Scientific) three times and fixed with 10% formalin (Mckesson) for 20 

minutes. Plates were then washed with water and stained with 0.1% crystal violet for 30 minutes. Excess 

crystal violet was washed with water and colonies counted manually. 

Western Blotting. Cells were lysed with 100 μl of cell lysis buffer per 1 million cells (10mM HEPES, pH7.5 by 

KOH, 300mM NaCl, 0.1% NP-40, 5mM EGTA, with 10 μg/mL aprotinin, 10 μg/mL leupeptin, 1X protease 

inhibitor cocktail (Roche), 1x PhosSTOP Protease Inhibitor Cocktail (Roche), 1x PMSF (Sigma-Aldrich) and 

Supraise-in (Ambion) at 4°C for one hour. Lysed samples were then centrifuged at 4°C, 12,000 g for 10 
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minutes and supernatants collected. 30 μg of whole cell extracts were treated with sample buffer and boiled at 

95°C for 5 minutes. Samples were separated via SDS-PAGE gel electrophoresis (Biorad) and transferred to a 

nitrocellulose membrane with the Trans-Blot Turbo system (Biorad) per manufacturer instructions. Membranes 

were blocked with StartingBlock (Thermo Fisher) blocking buffer for 60 minutes at room temperature, followed 

by incubation with primary antibodies to detect PAX8 (Novus 32440, 1:1000 dilution), SOX17 (Abcam 

ab224637, 1:2,000), MECOM (Cell Signal C50E12, 1:1,000) or β-tubulin (Cell signaling D3U1W, 1:2,000). 

Primary antibody incubations were performed in blocking buffer overnight at 4°C. Samples were then washed 

with TBS-T three times for 10 minutes each and incubated in secondary antibody (1:10,000, Abcam ab6721 or 

ab6789) for 1 hour followed by three 10-minute TBS-T washes. Membranes were developed using Piece ECL 

Western Substrate (Thermo Scientific) following the manufacturer’s protocol.  

RNA-sequencing and data analysis. OVCAR4 cells were transfected in triplicate. RNA and protein were 

harvested 72 hours-post transfection. Protein lysates were used to verify knockdown using western blotting, as 

described above. Cells were washed with cold PBS, collected by scraping and RNA extraction performed using 

the Nucleospin RNA Plus kit (Macherey-Nagel) per manufacturer's protocol. Extracted RNA samples were 

used for poly-A non-stranded library preparation and 150 bp paired-end sequencing at 40million reads using 

the DNB-seq next generation sequencing platform (RNA-seq performed by BGI). Reads were filtered and 

aligned using STAR-2.5.1b (ref_genome_hg38_gencodev26) and a gene-level read count matrix generated 

using featureCounts (subread-1.6.3-source). Differential gene expression analyses were then performed using 

the R package DESeq2 (version 1.24.0). Differentially expressed genes were selected using an absolute log2 

fold change ≥ 1 and adjusted p-value ≤ 0.01. Pathway analyses were performed using Metascape 

(metascape.org) (Zhou et al., 2019). 

Proximity Ligation Assay. To perform the proximity ligation assay (PLA) we employed the Duolink 

Technology (DUO92101, Sigma-Aldrich). Kuramochi cells were grown for 24 hours on a 96-well imaging plate 

(0030741030, Eppendorf). Cells were fixed in 4% paraformaldehyde for 15 min, permeabilized with 0.25% 

Triton X-100 for 15 min, and blocked with 1% BSA in PBS containing 0.1% Tween-20 for 30 min. Primary 

antibodies against PAX8 (Novus, NBP2-29903, dilution 1:250), SOX17 (Cell Signaling, 81778S, dilution 1:250) 

and MECOM (Proteintech, 23201-1-AP, dilution 1:250) were incubated overnight at 4 ºC. After three 5 min 

washes with TBST, PLA probes were incubated overnight at 4ºC. Detection was performed using Duolink RED 
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detection reagents as recommended by manufacturer. Samples were air dried and covered with Duolink 

mounting medium with DAPI and them imaged using a Nikon Eclipse Ti inverted microscope under ×40 

magnification. 

ChIP-seq of PAX8, SOX17, MECOM, and CTCF in Kuramochi cells. Kuramochi cells were grown to 80% 

confluence, cross-linked with 1% formaldehyde in PBS for 15 minutes, pelleted, and flash frozen. 100 million 

cells were used per ChIP with 10 μg of each antibody - PAX8 (Cell Signaling, catalogue number 59019, lot 1), 

SOX17 (R&D systems, catalogue number AF1924, lot KG0818071), MECOM (Cell Signaling, catalogue 

number 2593, lot 4). Sonications were performed with a qSonica microtip sonicator with 4 minutes total (30 sec 

ON, 1 min OFF), 18-21 watts. The supernatant of the sonicated lysates was incubated overnight at 4°C with 

the antibody and Invitrogen DynaI magnetic bead mix. After extensive washing, enriched chromatin was 

purified as follows - for PAX8, using a phenol:chloroform:isoamyl alcohol extraction (Boija et al., 2018), for 

SOX17 and MECOM, bead:antibody:chromatin complexes were resuspended in elution buffer, placed at 65°C 

for 45 minutes with intermittent vortexing and spun down. RNase A was added to the supernatant, and 

samples incubated at 65°C for 3.5 hours before a proteinase K digest at 42°C for 1 hour. DNA was then 

purified using PCR column purification. CTCF ChIP-Seq was performed as previously described (Schmidt et 

al., 2009) using 25 μg chromatin and 5 μg anti-CTCF antibody (Active Motif, catalogue number 61311) and 

chromatin sheared to 100-300 bp fragments using a Covaris E220 evolution Focused Ultrasonicator. ChIP 

libraries were constructed using the Kapa Hyper Library Preparation kit, quantified and sequenced on an 

Illumina NextSeq 500 sequencer. Reads were aligned to the hg19 version of the human reference genome 

using bowtie (Langmead et al., 2009) v1.2 with parameters -k 2 -m 2 –best and -l set to the read length. WIG 

files for display were made using MACS (Zhang et al., 2008) v1.4 with parameters -w -S –space=50 –nomodel 

–shiftsize=200. Regions statistically enriched in reads were identified using MACS v1.4 with corresponding 

input control and parameters -p 1e-9 –keep-dup=auto. Regions for the colocalization heatmap were 

constructed by collapsing regions enriched in PAX8, SOX17, and MECOM using bedtools merge (Quinlan and 

Hall, 2010) and creating 4kb regions centered on the center of the collapsed regions. Read coverage was 

quantified for heatmap analysis using bamToGFF (https://github.com/BradnerLab/pipeline) with parameters -m 

100 -r using a mapped read bam with non-PCR duplicate reads created with samtools rmdup (Li et al., 2009). 
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Heatmaps were ranked using read coverage quantified in 1 kb windows centered on the middle of each 

collapsed region using bamToGFF with parameters -m 1 -r. 

THZ531, THZ1 and JQ1 Dose Response Curves: OVCAR4 cells were plated 96 well plates at 5,000 cells per 

well. After 24 hours, THZ531 (ApexBio), THZ1(Selleck Chemicals) and JQ1 (Tocris) or vehicle (DMSO) were 

added in 1:3 dilutions starting from 10000nM to 1.5nM in triplicate and incubated for 72 hours at 37°C. Cell 

numbers were quantified using the Promega Cell Titer Glo reagent. Signals were then normalized to the lowest 

dose, and IC50s were calculated with GraphPad Prism.  

THZ531, THZ1 and JQ1 Drug Treatment for RNA: 400,000 OVCAR4 cells were seeded in 60mm dishes 24 

hours prior to experiment. Cells were treated with either low-dose THZ1 (50nM), high-dose THZ1 (250nM), 

low-dose THZ531 (100nM), high-dose THZ531 (500nM), JQ1 (500nM), or DMSO (500nM) for 6 hours. Plates 

were then washed with ice-cold PBS once followed by RNA extraction with Nucleospin RNA Mini Kit 

(Macherey-Nagel), followed by qPCR. Relative expression was measured normalized against DMSO control.  

THZ531, THZ1 and JQ1 Global Transcriptome Data: RNA-seq data from THZ1-treated Kuramochi cells 

were obtained from GSE116282 (Zeng et al., 2018). Data were filtered to remove lowly transcripts (RPKM >1), 

to select protein coding genes and expression of the top 10% of genes, at 50 and 250 nM was plotted.  

Quantitative PCR. 

Total RNA was converted to cDNA using random primers (Promega) and M-MLV Reverse Transcriptase 

RNase H (Promega) as per manufacturer’s instructions. cDNA was then amplified by QuantStudio 12K Flex 

Real-Time PCR system (Thermo Fisher) with Taqman Universal Master Mix with UNG (Applied Biosystems) 

along with the following probes: GAPDH, TUBB, and/or ACTB as housekeeping genes (Hs02786624_g1, 

Hs00742828_s1, and/or Hs01060665_g1) PAX8, SOX17, and MECOM (Hs00247586_m1,Hs00751752_s1, 

and Hs00602795_m1). 
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Figure Legends 
 
Figure 1. A multi-cancer compendium of candidate master transcription factors. (A) Schematic of the 

Cancer Core Transcription factor Specificity (CaCTS) approach. (B) Positive control factors - POU2AF1 in 

DLBC, SOX10 in SKCM and TP63 in ESSC - coincide with large super-enhancers in the relevant tumor 

tissues. (C) These factors are highly expressed and have large CaCTS scores. (D) Across 20 tumor types, 

candidate MTFs with high CaCTS scores are significantly enriched at super-enhancers in the corresponding 

tumor types. Gene-set enrichment p-values are shown, analyses were performed with 10,000 permutations of 

randomly selected factors. (E) Unsupervised hierarchical clustering based on candidate MTF CaCTS scores 

across 34 tumor types, using the spearman method and complete distance parameters. A height cut-off equal 

to 0.63 defines 11 CaCTS clusters. (F) Sankey plot showing pan-cancer clusters (Hoadley et al., 2018) that 

correspond to the 11 CaCTS clusters. We identified the TCGA cluster assigned in 50% or more of the tumors 

in each of our 11 clusters. (G) Factors are often shared across tumor derived from organ systems with a 

shared development lineage. (H) Squamous tumors from diverse organ sites share keratinocyte differentiation 

TFs as candidates. (I) Breast and prostate adenocarcinomas share six candidate MTFs. 
 
Figure 2. Candidate MTFs are essential genes. Dependency scores for MTF knockouts. Darker red color 

denotes higher levels of essentiality. Unsupervised hierarchical clustering was used to arrange cell lines 

(columns) and MTFs (rows). (A)-(C) Tumor types with positive control MTFs indicated: (A) POU2AF1 in DLBC, 

(B) SOX10 in SKCM, and (C) TP63 in ESSC. (D)-(T) Dependencies for MTF candidates across 17 tumor 

types. For nine tumor types (DLBC, SKCM, ESSC, BRCA, COAD, KIRC, LIHC, LUSC and OV), lineage-

specific dependency data were available. Factors that are lineage-specific dependencies in the relevant tumor 

type are indicated by bold font and an asterisk. Data curated from DepMap.org. (U) Percentage of tumor types 

with dependency (CERES) scores ≤ -0.4, -0.6, -0.8 or -1.0, on at least one candidate MTF in at least 50% of 

the corresponding cell lines. 

 
Figure 3. Candidate MTFs are frequently somatically mutated in relevant tumors. Proportions of 

candidate MTFs mutated in 21 tumor types. Highly expressed TFs (within the top 5% of all TFs) with low 

CaCTS scores were used as a comparison group. P-values indicate results from two-tailed Chi-squared tests. 

 
Figure 4. Diversity of candidate MTFs define tumor subtypes. (A) Distinct sets of candidate MTFs were 

identified for tumor subtypes in BRCA, BLCA and CESC. Stacked bar plots show frequency of molecular 

subgroups in each of the 3 tumor types. (B) Unsupervised clustering of luminal and basal breast cancer cell 

lines based on dependencies on a union set of Luminal A and Basal candidate MTFs. Cell lines cluster by 

molecular subtype. Green boxes correspond to Luminal A cell lines and Luminal A candidate MTFs; fuchsia 

denotes Basal/TNBC cell lines and candidate MTFs. (C) Candidate MTFs across pan-gynecologic tumor 

subtypes. 
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Figure 5. PAX8, SOX17 and MECOM are candidate MTFs in high-grade serous ovarian cancer (HGSOC). 
(A) PAX8, SOX17 and MECOM coincide with super-enhancers in primary ovarian tumors. H3K27ac ChIP-seq 

data were generated in 12 primary tumors, and data were normalized to counts per million (CPM) mapped 

reads. (B) SEs associated with PAX8, SOX17 and MECOM tend to be highly ranked. Stitched enhancers were 

ranked by H3K27ac ChIP-seq signal. (C) PAX8, SOX17 and MECOM occupy their own and each other's SEs. 

Enhancers are indicated as black bars. (D) Proposed core regulatory circuit for HGSOC. (E) PAX8, SOX17 

and MECOM bind to enhancers of HGSOC clinical biomarkers. (F) Global co-binding of PAX8, SOX17 and 

MECOM. Each row is a PAX8 ChIP-seq peak. CPM normalized ChIP-seq reads were plotted for a 4 kb window 

centered on each binding site. Rows are ordered by decreasing PAX8 signal. (G) PAX8, SOX17 and MECOM 

ChIP-seq peaks were ranked by CPM-normalized signal. Strong binding sites for each factor are detected 

proximal to their own and each other’s gene loci. (H) Proximity ligation assay performed in Kuramochi cells. 

Each red dot represents a single interaction. Nuclei were counter-stained blue with DAPI (blue). Scale bar: 100 

μm. Image magnification × 40. (I) Quantified PLA signal per cell. In C, E, F and G, ChIP-seq data were 

generated in Kuramochi cells and normalized to counts per million (CPM) mapped reads. 

 
Figure 6. PAX8, SOX17 and MECOM are functional dependencies in high-grade serous ovarian cancer 
(HGSOC). (A) PAX8, SOX17 and MECOM are selective dependencies in HGSOC cell lines. (B) PAX8, SOX17 

and MECOM are commonly amplified in HGSOC tumors. (C-E) Successful siRNA-mediated knockdown of 

PAX8, SOX17 and MECOM in OVCAR4 HGSOC cells. Knockdown was confirmed using (C) Western blot, 

plus (D) qRT-PCR. (E) Knockdown of PAX8, SOX17 and MECOM results in significantly reduced colony 

formation in anchorage independent growth assays. * p < 0.05, ** p < 0.01, *** p < 0.001; Students paired T-

test; ns, not significant. Error bars indicate standard deviation of mean values from three independent 

experiments (performed with technical triplicates). (F) Dose response curves for OVCAR4 cells treated with a 

range of doses of THZ1, THZ531 and JQ1 for 72 hours. Control cells received vehicle (DMSO). Non-linear fit 

curves shown. Data are representative of three independent experiments. (G) Quantification of PAX8, SOX17 

and MECOM expression by qRT-PCR, following a 6 hour treatment with THZ1, THZ531 and JQ1. Gene 

expression for each factor was normalized to the average expression ACTB and GAPDH, and expression fold 

change for drug treatments calculated relative to vehicle-treated control cells. * p < 0.05, ** p < 0.01, *** p < 

0.001; Students paired T-test; ns, not significant. Error bars indicate standard deviation of mean values from 

three independent experiments (performed with technical triplicates). (H) PAX8 and SOX17 are among the 

most sensitive genes in THZ1-treated Kuramochi cells. (I) Gene set enrichment analysis of the top 500 

downregulated genes following PAX8 and SOX17 knockdown, compared to a ranked list of THZ1 responsive 

genes. (J) Global analyses of PAX8 and SOX17 target genes, identified by performing RNA-seq 72h after 

knockdown. Rb pathway genes are among the most significantly downregulated transcripts. 
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Predicting master transcription factors from pan-cancer expression data 
 
Reddy*, Fonseca*, Corona* et al. 

 
Table 1. Somatic mutations of candidate MTFs. MTFs with a significant burden of single nucleotide variants 

(SNVs) across coding exons, compared to all coding exons in the genome (listed in order of significance). 

 

Tumor Type TF 
Sample 
Size (n) 

Mutated 
Samples (n) SNVs (n) P-value 

Adjusted P-
value 

LUSC NFE2L2 47 22 25 3.33 x10-16 2.00 x10-15 

PRAD FOXA1 275 11 11 5.13 x10-9 9.74 x10-8 

KIRC MAF 143 8 8 8.25 x10-4 0.01 

KICH FOXI1 43 2 2 1.46 x10-3 0.02 

BLCA TBX3 23 5 5 1.82 x10-3 0.03 

BRCA TRPS1 195 11 13 4.48 x10-3 0.04 

BRCA FOXA1 195 6 6 5.08 x10-3 0.04 

READ SOX9 52 9 11 6.15 x10-3 0.11 

COAD SOX9 52 9 11 6.15 x10-3 0.14 

UCEC MSX1 44 3 3 8.61x10-3 0.09 

PAAD CREB3L1 234 5 5 0.01 0.07 

PAAD BHLHE40 234 5 5 0.01 0.07 

KICH MECOM 43 2 2 0.01 0.11 

UCEC PAX8 44 4 5 0.01 0.09 

BLCA ELF3 23 4 5 0.01 0.09 

BLCA ID1 23 2 2 0.01 0.09 

READ MYC 52 7 10 0.01 0.19 

COAD MYC 52 7 10 0.01 0.23 

ESAD AHR 97 7 7 0.01 0.32 

BRCA XBP1 195 4 7 0.01 0.18 

LIHC XBP1 324 6 6 0.01 0.47 

LIHC RORC 324 7 8 0.01 0.47 

BRCA GATA3 195 4 4 0.01 0.20 
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