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ORIGINAL ARTICLE

GPI-anchors constitute a very important post-translational
modification, linking many proteins to the outer face of the
plasma membrane in eukaryotic cells. Since experimental
validation of GPl-anchors is slow and costly, computational
approaches for predicting them from amino acid sequences
are needed. However, the most recent GPI predictor is more
than a decade old, and considerable progress has been made
in machine learning since then. We present a new dataset
and a novel method, NetGPI, for GPI prediction. The pre-
dictor is based on recurrent neural networks, incorporating
an attention mechanism that simultaneously detects GPI-
anchors and points out the location of their w-sites. The
performance of NetGPlI is superior to existing methods with
regards to discrimination between GPI-anchors and other
proteins and approximate (+1 position) placement of the
w-site. NetGPl is available at:

https://services.healthtech.dtu.dk/service.php?NetGPI-1.0.
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1 | INTRODUCTION

Some of the proteins that follow the secretory pathway are attached to the membrane of eukaryotic cells by specific
mechanisms. One of these mechanisms is a post-translational modification where a glycosylphosphatidylinositol (GPI)
anchor is attached to the protein. The identification of proteins that undergo this modification is of high interest due
to the diversity of functions that they perform. GPIl-anchored proteins are essential in the development of fungi and
animal cells [1, 2]. They are also involved in certain diseases such as paroxysmal nocturnal haemoglobinuria, an acquired
haematopoietic stem-cell disorder [3], and in the defense mechanisms of various protozoan parasites such as Leishmania
and Trypanosoma [4] . Consequently, the development of computational tools that are able to detect proteins with this
modification is of high impact on the research of eukaryote cell biology [5].

GPl-anchored proteins have two signals in their primary sequence: an N-terminal sequence for endoplasmic
reticulum targeting (signal peptide) and a C-terminal signal sequence directing the attachment of the GPIl-anchor. This
attachment is carried out by a GPI transamidase which recognizes the C-terminal signal sequence and cleaves the
peptide bond at the GPl-anchor attachment site, known as the w-site. This cleavage creates a link between the GPI
and the C-terminus of the cleaved protein, allowing the protein to remain tethered to the membrane. C-terminal signal
sequences are generally composed by five regions, which are determined by the amino acids before the w site (w-minus)
and after (w-plus). The five regions are: a stretch of polar amino acids that form a flexible linker region (w — 10to w — 1);
the w site amino acid; the w + 2 amino acid, a restrictive position with mostly G, A or S; a spacer region of moderately
charged amino acids (w + 3 to w + 9 or more), and a stretch of hydrophobic amino acids starting approximately at w + 10
[6].

In order to detect proteins that carry this signal, experimental assays are required. Such experiments are generally
low throughput and costly, which has resulted in a low amount of experimentally annotated GPI-anchored proteins. To
overcome this limitation, fast computational methods that can approximate the experimentally validated process are
needed. For this purpose, current machine learning methods exist for predicting GPl-anchors [7, 8, 9]. Nonetheless,
these methods were developed more than a decade ago and do not utilize recent progress in machine learning methods
nor access to new data sources. Deep learning methods, such as the Recurrent Neural Network (RNN) [10], have
recently proven effective at protein prediction tasks [11]. However, Deep Learning requires large amounts of annotated
examples to generalize well [12].

In this paper we present a new tool for detecting GPI-anchored proteins and determining the position of the w-site
using recurrent neural networks. To overcome the low amounts of experimentally validated data we build a new training
set utilizing manually annotated predicted GPI anchored proteins, mostly reserving the experimentally verified data for
a held-out test set. Regardless, our method achieves state-of-the-art performance on the GPIl-anchor prediction task.

Moreover, we show that the model learns biologically meaningful characteristics.

1.1 | Related works

Initial work on predicting the presence of GPl-anchors and the w-site was published by Eisenhaber et al.[13]. This work,
known as the Big-IM Predictor, details a method that evaluates amino acid type preferences at positions near a supposed
w-site as well as the concordance with general physical properties encoded in multi-residue correlation within the motif
sequence [13]. Big-N provides kingdom-specific predictions as it was trained on metazoan, protozoan, fungi [14] and
plant [15] proteins separately.

Fankhauser and Miaser [8] presented a neural network based prediction tool called KohGPI/GPI-SOM. GPI-SOM

utilizes a Kohonen Self Organizing Map structure which takes as input the average position of a given amino acid
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relative to its proximity to the C-terminal, the hydrophobicity of the amino acid at 22 C-terminal positions and 2 units
representing the quality of the presumed w-site and its position. Both GPI-SOM and Big-N utilize an external signal
peptide predictor known as SignalP [16] to preselect proteins. A genome-wide study by the authors indicated that the
percentage of GPl-anchored proteins in a given proteome was in the same order of magnitude as their reported error
rate, not accounting for the error rate of the version of SignalP used.

In 2008 Pierleoni, Martelli & Casadio published Pred-GPI, a GPl-anchor predictor utilizing a Hidden Markov Model
(HMM) for the prediction of the position of the w-site and a Support Vector Machine (SVM) for the presence of a
GPI-anchor [9]. The HMM has 46 states, with varying probabilities for amino acids and the potential w-site assigned the
26th state. The SVM takes as input the negative log-likelihood computed by the HMM as well as 82 features intended to
describe the overall composition of the sequence, the features of the N-terminal regions comprising the signal peptide,
and the features of the C-terminal regions containing the cleaved GPl-anchor signal. Pred-GPI supplies two different
variants: One model where the potential w-site is restricted to be one of Cysteine, Aspartic acid, Glycine, Asparagine,
and Serine, this approach they refer to as the conservative model; and another model having no such restriction. Unlike

the two other methods, Pred-GPI does not rely on an external signal peptide predictor, such as SignalP.

2 | MATERIALS AND METHODS

2.1 | Dataset

All data used in this project are extracted from the UniProt database [17]. The dataset construction follows two main
steps: data gathering and homology partitioning. First, we select all the eukaryotic proteins with experimental evidence
(EC0O:0000269) of a signal peptide. This dataset is divided into proteins with and without a GPI-anchor signal in the
subcellular location field, defining the positive and negative set respectively. The positive set is composed of proteins
with three different levels of annotation: Experimental evidence of a GPl-anchor signal, experimental evidence of the
w-site position in a “LIPID” feature table entry, and non-experimental evidence of a GPI-anchor signal. All the proteins
are truncated to the 100 last (C-terminal) positions, since this is where we expect to find the GPl-anchor signal. The
truncated sequences are then homology clustered using CD-HIT [18] with a similarity threshold of 20% resulting in
1866 clusters.

For homology partitioning we assign the clusters of proteins into either one test partition or one of five training/-
validation partitions. Clusters composed exclusively of proteins with experimental evidence are assigned to the test
partition, whereas clusters with both experimental evidence and predicted GPI-anchors are assigned to one of the
training/validation partitions. The partitions are constructed such that the distribution of positive and negative classes
and the kingdom composition (animal, fungi and plant) is the same across all partitions.

These steps result in a training/validation set containing 2823 samples, of which 658 are GPI-anchored. A total of
25 proteins with experimental evidence of the GPIl-anchor signal were placed in the training/validation partitions. The
test set contains 594 samples, of which 111 are experimentally verified GPI-anchored, but without a verified w-site, and

50 have an experimentally verified w-site for a total of 161 GPIl-anchored samples.

2.2 | Objective

The objective of GPI prediction is to decide whether a GPI signal is present and, if present, to determine the position of
the w-site in a protein sequence. We combine these two tasks by reducing them to the single task of maximizing the

probability of a position in a sequence. To achieve this, we add a placeholder to the end of the protein sequence which



4 GISLASON ET AL.

TABLE 1 Dataset composition for the training/validation set and held out test set.

Data-set Samples  Not GPl-Anchored % GPI-Anchored %
Trainining/Validation 2823 2165 76,7% 658 23,3%
Held-out test 594 433 72,9% 161 27,1%

serves to indicate that it is non GPl-anchored. Thus we formally define the objective as maximizing the probability of a

position in D, which is known as pointing [19].

max Py(C;|D) (1)

D =[D,z] (2)

Where D € 37 is an amino acid sequence and X is a dictionary of the twenty common amino acids as well as the token
X, which represents any encountered amino acid not in . We only consider the last 100 amino acids in the protein
sequence, such that the length 7 < 100. C; corresponds to a position in D.

If the sequence does not contain an w-site we maximize the probability of the protein being non GPI-anchored. In-
spired by work in natural language processing [20, 21], we represent the lack of an w-site by maximizing the placeholder
position known as the sentinel, z, at the end of the amino acid sequence. This resultsin D € 37+ where 3 = S U {z}.

To parameterize the conditional probability distribution P, we use a neural network architecture known as the
Long-Short Term Memory (LSTM) Cell [22] and distributed representations of the amino acids [23] as shown in equation
3.

z; = embedding(D;)

h = LSTM(z)
gi = tanh(h; W) @)
exp(giV)

P(Ci|D)g = softmax(gV), = ————2—~—
’ " nexplgV)

Where embedding : 3 — R turns each amino acid into a distributed representation of real numbers using a linear
trainable weight of size d and /,j € N < T are indexes of the protein sequence including the sentinel position. The LSTM
is a non-linear transformation of a sequence of real values. It uses trainable recurrent units to distribute sequential
information across the protein sequence, LSTM : R7*9 — R7*? where d’ is the output size of the LSTM. As we use a
bidirectional LSTM [24] we end up with two hidden representations of size d’. To get the probability over the sequence
we project the output of every position to a logit, g;V € R, followed by a softmax : R7 — [0, 1]7 that normalizes the
logits into a probability distribution over the sequence. To create the logits we use a two layer feed forward neural
network on top of the LSTM hidden states, h € R7*2¢’ with a tanh activation function, W € R29%4” and v e R9".
This usage of softmax over a sequence length is a modification of attention where the interaction size d” of gV is the
attention hidden representation size, which is known as a pointer network [19].

The embedding, LSTM, W, and V are all trainable with stochastic gradient descent using back-propagation through

time [25]. We have visualized our model in Figure 1.



GISLASON ET AL. 5

Output

o]

|
Attention .
|

.
.
{%
|
o
}

j [ |
e EEN o
I 1] ! I
Input | Q \ Q N Z
Trundation P15693 Sentinel

FIGURE 1 Diagram of the model, illustrating how the model points to a position in a sequence, in this case, the entry
with UniProt accession number P15693. The sequence is truncated to the last 100 amino acids and the sentinel, z, is
appended. The predicted w-site is an Asparagine (N). If the position with highest likelihood had been the sentinel
position, then the protein would have been predicted as non GPI-anchored.

2.2.1 | Quantitative evaluation criteria

To evaluate the discrimination between GPl-anchored and non GPI-anchored proteins we use the Matthews Correlation
Coefficient (MCC) and for w-site prediction evaluation we use the F1 score [26]. Due to the dual nature of the problem
and as well as the lack of experimental w—site evidence in the training set, a simple heuristic is devised. The heuristic
is a composition of the two evaluation methods. The F1 score is calculated with a tolerance of two positions from
the annotated w-site. We allow for this flexibility when calculating the F1 score as the training set contains only non-
experimentally verified w-site samples, which are not as reliable as the experimentally verified. The MCC is weighed
twice as important as the F1 score. We weigh the MCC more as we want to emphasize the GPI-anchoring discrimination
over the w-site prediction performance. The model with the combination of hyperparameters that gives the best
heuristics, on the validation partition, is chosen for each fold. This heuristic also controls when the model’s parameters

are stored as an early stopping approach. The self evaluation during training is the Cross Entropy Loss.

2.3 | Model Details

We train the neural network with a batch size of 64 and up to 30 epochs. We set the embedding size d = 22. To find the
optimal values for: the size of the bidirectional LSTM cell hidden representation ¢’, the attention hidden representation
d”,the number of LSTM layers, the dropout between LSTM layers, the optimizer’s weight decay, and learning rate we use
a validation set. Dropout between LSTM layers forces each hidden unit in subsequent layers to work with a randomly
chosen set of hidden units from the previous layer [27].

To better utilize data we do a five-fold split of the training set and optimize the neural network hyperparameters
individually for each split. The best performing model from each split is used in an ensemble for the test set. Each model
of the ensemble is transformed with a logarithm before being averaged. This is done to emphasize confident model
predictions.

We evaluate 192 different hyperparameter settings on the validation set for each fold. The hyperparameters we
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TABLE 2 The combination of hyperparameters with the best validation performance for each partition.

Ensemble model LSTMlayers LSTM hidden units(d’) Weight decay

0 3 110 0.0010
1 2 44 0.0006
2 3 110 0.0006
3 2 44 0.0006
4 2 88 0.0006

Dimensions shared by all models: Attention hidden units(d”) = 110, LSTM dropout
= 0.4, embedding size(d) = 22, learning rate = 0.006

found optimal are shown in table 2.
The neural network is trained with stochastic gradient descent using the Adam optimizer [28]. Our models are
implemented with the PyTorch deep learning framework [29].

2.3.1 | AQualitative evaluation methods

To better understand the decisions the model makes we performed a feature importance analysis using the Local
Interpretable Model-agnostic Explanations (LIME) package [30]. This analysis is performed on the held-out test set. In
the LIME analysis, amino acids contributing to a GPl-anchored prediction will have a positive importance, while amino
acids contributing to the non GPl-anchored prediction will have a negative importance. The larger the weight the larger
the contribution to the prediction.

Furthermore, we investigate the sequence composition around the w-site to uncover possible model biases.

3 | RESULTS AND DISCUSSION

3.1 | Quantitative results

To benchmark the performance of the current tools the held-out test set was submitted to the three tools currently
available; Big-M, GPI-SOM, and PredGPI. In the case of Big-N we separated the held-out test set according to kingdom
and submitted to the corresponding versions of the tool. Big-M annotates its predictions according to likelihood.
Predictions with high likelihood are labeled as P, twilight zone predictions are labeled as S, and non-potentially GPI-
anchored proteins are labeled as N. We regarded any protein predicted as potentially GPl-anchored (P or S) as a
GPI-anchored prediction.

PredGPI ranks and classifies predictions according to specificity. Predictions are regarded as highly probable, prob-
able, weakly probable, and not GPl-anchored. We measure the performance for two settings of PredGPI; designating
weakly probable either as GPI-anchored or non GPl-anchored. Assuming weakly probable as negative predictions gives
the best performance according to MCC.

For predicting the presence of GPI-anchors, NetGPI achieves the highest MCC of 0.962. If we regard PredGPI’s
weakly probable as negative, the second highest MCC is PredGPI, otherwise the second highest is Big-N. NetGPI also
attains the highest true positive rate (TPR), 0.975, the second highest being GPI-SOM. NetGPI achieves the second
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TABLE 3 Comparison of the GPl-anchor presence prediction performance of NetGPI and benchmarked methods.

All (594) TP FP FN TN  TPR Prec. FPR MCC

NetGPI 157 5 4 428 0975 0.969 0.012 0.962
PredGPI* 148 13 13 420 0919 0919 0.030 0.889
PredGPI** 151 25 10 408 0.938 0.858 0058 0.857
GPI-SOM 153 45 8 388 0950 0773 0.104 0.798
Big-N 132 2 29 431 0820 0.985 0.005 0.867
Filtered***(295) TP FP  FN TN TPR Prec. FPR MCC

NetGPI 98 1 4 192 0961 0.990 0.005 0.970
Big-I 73 1 29 192 0716 0.986 0.005 0.754

Abbreviation: TP = True positive, FP = False Positive, FN = False Negative, TN = True
Negative, TPR = True Positive Rate, Prec. = Precision, FPR = False Positive Rate, MCC =
Matthews Correlation Coefficient.

*No difference in the conservative or non-conservative options for PredGPI was ob-
served, this is the results when weakly probable predictions are regarded as negative.
** This is the result for PredGPIl when weakly probable predictions are regarded as
positive.

*** Here we have limited the test set to samples not in Big-’s reported training set and
made available on UniProt after 2004-03-19

highest precision, 0.969, and false positive rate (FPR), 0.012, the highest being Big-M with a precision of 0.985 and FPR
of 0.005. For a detailed comparison see table 3. Noticeably, Big-M uses kingdom information in its predictor. We tried
a similar approach, but found no improvement in our performance using kingdom features during hyperparameter

optimization, which is why we did not include it in our predictor.

We find that Big-IM has at least 59 overlapping samples with our positive test set and an unknown overlap with our
negative test set. This might cause the performance of Big-I to be overestimated. We filter the dataset of test samples
to GPI-positive samples not found in Big-M’s reported training set and non GPl-anchored samples made available
on UniProt after 2004-03-19 (the publishing date of Eisenhaber et al. [14]). In the filtered comparison NetGPI has
comparable performance (+0.008 MCC), while Big-’s performance decreases (-0.113 MCC).

For the prediction of the position of the w-site we only consider the 50 proteins with an experimentally verified
w-site. NetGPI predicts 36 out of 50 correctly, achieving an F1-score of 0.692, while Big- correctly predicts 39 out of
50, resulting in an F1 score of 0.812. However, when we allow for one-off errors NetGPI positions 45 out of 50 and
attains an F1 score of 0.865, while Big-M positions 41 out of 50 with an F1 score of 0.854. For a detailed overview see
table 4.

As pointed out there is an overlap with the Big- training set and our test set. This is overly prevalent for GPI
anchors with experimentally verified w-sites. Out of the 50 w-sites, 33 are used for training the Big-IN model. Both
NetGPI and Big-N correctly position 9 of the 17 which are not in the Big-I training set. Allowing for one-off errors,
NetGPI correctly locates 14 out of 17 whereas Big- locates 10 out of 17.
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TABLE 4 Comparison of the w-site position prediction performance of NetGPI and the benchmarked methods.

Known***(50) +0 F1 Sens. Prec. +1 F1 Sens. Prec. +2 F1 Sens. Prec.
NetGPI 36 0692 0720 0667 45 0865 0900 0.833 46 0.885 0920 0852
PredGPI* 29 0580 0509 0542 35 0.700 0.614 0654 36 0720 0632 0.673
PredGPI 28 0560 0491 0523 36 0.720 0.632 0673 37 0740 0.649 0.692

PredGPI*, ** 29 0487 0580 0507 35 0588 0700 0507 36 0605 0720 0.522

PredGPI** 28 0471 0506 0406 36 0605 0720 0522 37 0622 0536 0.536
GPI-SOM 30 0423 0600 0326 33 0465 0660 0359 33 0465 0660 0.359
Big-1 39 0812 0780 0848 41 0854 0820 0.891 41 0854 0820 0.891

Abbreviation: +0 = The number of correctly predicted w-sites, +1 = The number of w-site predictions within one position away
from the correct position, +2 = The number of w-site predictions within two positions away from the correct position, F1 =
f1-score, Sens. = Sensitivity, Prec. = Precision.

* PredGPI provides two options, this is their conservative option.

**This is the result for PredGPIl when weakly probable predictions are regarded as positive.

*** For the position prediction we use the experimentally tested sequences with known w-sites. The precision is calculated w.r.t.

the experimentally tested sequences with known w-sites as well as all negative samples in the test set.

3.2 | Qualitative results

In the qualitative analysis we investigate the importance of biological features when NetGPI predicts GPI-anchor pres-
ence and the w-site. In addition, we do a statistical analysis of the w-site composition to understand the neighborhood
of true and predicted w-site positions. Lastly, we investigate model likelihood of the predictions, and how it relates to

model correctness, on the held-out test set.

3.2.1 | FeatureIlmportance Analysis

Figure 2 illustrates the results of the LIME analysis for both positive (see Figure 2a) and negative (see Figure 2b) samples.
We observe that the presence of a hydrophobic tail contributes the most towards a positive prediction. This is consistent
with the literature [6], which defines the presence of a hydrophobic region from the position w + 10. From that position
the feature importance is much higher than for the rest of the sequence, which means that the main feature driving
the positive prediction of NetGPl is the presence of the hydrophobic region. Regarding the negative predictions, we
observe that the amino acids contributing the most towards a negative prediction are charged and polar amino acids.
This indicates that the model is attributing higher importance to non-hydrophobic amino acids, indicating a lack of

hydrophobic tail, when making a negative prediction.

3.2.2 | w-site composition

Of the 50 experimentally verified w-sites 54% are Serine, while the other amino acids observed are Asparagine, Glycine,
Aspartic acid, Cysteine and Alanine, in decreasing order of frequency. All Glycine and Cysteine w-sites are correctly
predicted, one of the Asparagine w-sites is off by 2 positions and both of the Alanine sites are off by one, where the
preceding Serine is predicted instead, see table 5. Positioning errors made by NetGPI are mostly specific to Aspartic

acid. Of the experimentally verified w-sites, 8% are Aspartic acid, however we predict it in 14% of the 50 experimentally
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TABLE 5 NetGPI's and Big-M’'s w-site position prediction performance for the 50 true w-site amino acid in the test
set. We see that both models only predict 1 out of 4 Aspartic acid w-sites correctly. NetGPI has 9 one-off errors, 7 of
which are actually Serine w-sites.

NetGPI S(27) N(9) G(6) D(4) C(2) A(2

+0 19 8 6 1 2 0
+1 26 8 6 1 2 2
+2 26 9 6 1 2 2
Big-M S(27) N(9) G(6) D(4) C(2) A(2
+0 22 9 4 1 2 1
+1 23 9 5| 1 2 1
+2 23 9 5 1 2 1

Abbreviation: +0 = The number of correctly predicted w-sites,
+1 = The number of w-site predictions within one position away
from the correct position, +£2 = The number of w-site predictions
within two positions away from the correct position.

verified w-sites. NetGPI has 9 off by one errors, 7 of which are actually Serine w-sites, all of whom belong to the species
Arabidopsis thaliana. Of those, 6 are predicted as an Aspartic acid where the actual w-site is the preceding Serine, and
together they belong to the 4-mer PTSD - an w-site motif that does not occur in our training set. Both Big-In and NetGPI
are unable to position 3 out of 4 Aspartic acid w-sites, see table 5. This may be related to the w + 2 position, as these 3
samples have a non-standard amino acid (i.e. something other than G, A, or S).

It is worth mentioning that out of the 50 experimentally verified, 13 belong to the species Arabidopsis thaliana and
14 to Homo sapiens. Only one of the 50 proteins with an experimentally verified w-site is predicted non GPI-anchored by

NetGPI. This example has a very unusual w + 2 amino acid, namely Lysine (K).

3.2.3 | Likelihood and correctness

In addition to the classification of the sequence and the most likely position of the w-site, NetGPI reports the likelihood
of the chosen position. For positive predictions this is the predicted w-site, while for negative predictions it is the
sentinel.

As our model is trained with cross entropy, it is penalized with a logarithm of the correct prediction. If we predict
incorrectly, with a very low likelihood for the correct position, the loss can be immense. We should thus expect that
answers with a high likelihood are more credible.

In Figure 3 we display the likelihood distribution of the predictions on the held-out test set. We observe differences
in the likelihood of correct and incorrect predictions implying a correlation between likelihood and correctness. Fur-
thermore, we observe higher likelihood in negative predictions than positive. This is expected as this is the probability
distribution over the last 100 amino acids as well as the added sentinel, where only the sentinel position denotes a
negative prediction, while a positive prediction is spread across the 100 amino acid positions. This means that positive
prediction likelihood has to cover all potential w-site positions, while the negative prediction likelihood is limited to one
position. Therefore, using the likelihood as ranking should be done separately for negative and positive results.
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FIGURE 2 This Figure shows the logo plots of the LIME analysis for both positive (2a) and negative (2b) samples
from the test set. The logo plots are colored according to amino acid properties, where blue means positively charged,
green means polar, red means negatively charged and gray means hydrophobic amino acids. The positive set (2a) is
aligned to the predicted w-site, while the negative set (2b) is aligned to the C-terminus. Positive feature importance
contributes to a positive prediction whereas a negative feature importance contributes to a negative one. We see that
the presence of a hydrophobic tail contributes the most towards a positive prediction, whereas charged and polar
amino acids contribute the most towards a negative prediction.
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We have shown that GPl-anchor prediction can be improved using recurrent neural networks and up-to-date datasets,

achieving state-of-the-art performance. Comparison with previous methods is challenging as there exists no standard
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dataset for training and testing predictive methods. Given progress in protein annotation, we publish a new homology
partitioned training and test set, using experimentally verified proteins for testing and manually annotated predicted
proteins for training. However, due to the new dataset definition, the performance of current methods could be
overestimated as their training sets overlap with our test set.

Our results show that proteins manually annotated by prediction methods or sequence similarity are useful for
training a GPIl-anchor predictor to perform well when evaluated on experimentally verified w-sites. However, using
these data comes with a caveat; w-site predictions are sometimes off by one position. We believe that this limitation is
necessary in order to obtain a larger training set and create a completely independent test set of experimentally verified
GPI-anchors. If we were to use only the experimentally verified GPI-anchors to train and test the predictor, we would
not have enough training samples to teach a deep neural network classifier, and the resulting test set would be too small
to be representative.

A web server implementing NetGPl is available at https://services.healthtech.dtu.dk/service.php?NetGPI-1.0, and

our training and testing data set can be downloaded from the same site.

ENDNOTES
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