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GPI-anchors constitute a very important post-translational
modification, linkingmany proteins to the outer face of the
plasma membrane in eukaryotic cells. Since experimental
validation of GPI-anchors is slow and costly, computational
approaches for predicting them from amino acid sequences
are needed. However, themost recent GPI predictor ismore
than a decade old, and considerable progress has beenmade
in machine learning since then. We present a new dataset
and a novel method, NetGPI, for GPI prediction. The pre-
dictor is based on recurrent neural networks, incorporating
an attention mechanism that simultaneously detects GPI-
anchors and points out the location of their ω-sites. The
performance of NetGPI is superior to existing methods with
regards to discrimination betweenGPI-anchors and other
proteins and approximate (±1 position) placement of the
ω-site. NetGPI is available at:
https://services.healthtech.dtu.dk/service.php?NetGPI-1.0.
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1 | INTRODUCTION

Some of the proteins that follow the secretory pathway are attached to themembrane of eukaryotic cells by specific
mechanisms. One of thesemechanisms is a post-translational modification where a glycosylphosphatidylinositol (GPI)
anchor is attached to the protein. The identification of proteins that undergo this modification is of high interest due
to the diversity of functions that they perform. GPI-anchored proteins are essential in the development of fungi and
animal cells [1, 2]. They are also involved in certain diseases such as paroxysmal nocturnal haemoglobinuria, an acquired
haematopoietic stem-cell disorder [3], and in the defensemechanisms of various protozoan parasites such as Leishmania
and Trypanosoma [4] . Consequently, the development of computational tools that are able to detect proteins with this
modification is of high impact on the research of eukaryote cell biology [5].

GPI-anchored proteins have two signals in their primary sequence: an N-terminal sequence for endoplasmic
reticulum targeting (signal peptide) and a C-terminal signal sequence directing the attachment of the GPI-anchor. This
attachment is carried out by a GPI transamidase which recognizes the C-terminal signal sequence and cleaves the
peptide bond at the GPI-anchor attachment site, known as the ω-site. This cleavage creates a link between the GPI
and the C-terminus of the cleaved protein, allowing the protein to remain tethered to themembrane. C-terminal signal
sequences are generally composed by five regions, which are determined by the amino acids before theω site (ω-minus)
and after (ω-plus). The five regions are: a stretch of polar amino acids that form a flexible linker region (ω − 10 toω − 1);
theω site amino acid; theω + 2 amino acid, a restrictive position withmostly G, A or S; a spacer region of moderately
charged amino acids (ω + 3 toω + 9 or more), and a stretch of hydrophobic amino acids starting approximately atω + 10
[6].

In order to detect proteins that carry this signal, experimental assays are required. Such experiments are generally
low throughput and costly, which has resulted in a low amount of experimentally annotated GPI-anchored proteins. To
overcome this limitation, fast computational methods that can approximate the experimentally validated process are
needed. For this purpose, current machine learning methods exist for predicting GPI-anchors [7, 8, 9]. Nonetheless,
these methods were developedmore than a decade ago and do not utilize recent progress in machine learning methods
nor access to new data sources. Deep learning methods, such as the Recurrent Neural Network (RNN) [10], have
recently proven effective at protein prediction tasks [11]. However, Deep Learning requires large amounts of annotated
examples to generalize well [12].

In this paper we present a new tool for detecting GPI-anchored proteins and determining the position of theω-site
using recurrent neural networks. To overcome the low amounts of experimentally validated datawe build a new training
set utilizing manually annotated predicted GPI anchored proteins, mostly reserving the experimentally verified data for
a held-out test set. Regardless, our method achieves state-of-the-art performance on the GPI-anchor prediction task.
Moreover, we show that themodel learns biologically meaningful characteristics.

1.1 | Relatedworks

Initial work on predicting the presence of GPI-anchors and theω-site was published by Eisenhaber et al. [13]. This work,
known as the Big-Π Predictor, details a method that evaluates amino acid type preferences at positions near a supposed
ω-site as well as the concordance with general physical properties encoded in multi-residue correlation within themotif
sequence [13]. Big-Π provides kingdom-specific predictions as it was trained onmetazoan, protozoan, fungi [14] and
plant [15] proteins separately.

Fankhauser andMäser [8] presented a neural network based prediction tool called KohGPI/GPI-SOM. GPI-SOM
utilizes a Kohonen Self Organizing Map structure which takes as input the average position of a given amino acid
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relative to its proximity to the C-terminal, the hydrophobicity of the amino acid at 22 C-terminal positions and 2 units
representing the quality of the presumed ω-site and its position. Both GPI-SOM and Big-Π utilize an external signal
peptide predictor known as SignalP [16] to preselect proteins. A genome-wide study by the authors indicated that the
percentage of GPI-anchored proteins in a given proteomewas in the same order of magnitude as their reported error
rate, not accounting for the error rate of the version of SignalP used.

In 2008 Pierleoni, Martelli & Casadio published Pred-GPI, a GPI-anchor predictor utilizing a HiddenMarkovModel
(HMM) for the prediction of the position of the ω-site and a Support Vector Machine (SVM) for the presence of a
GPI-anchor [9]. The HMMhas 46 states, with varying probabilities for amino acids and the potentialω-site assigned the
26th state. The SVM takes as input the negative log-likelihood computed by theHMMaswell as 82 features intended to
describe the overall composition of the sequence, the features of the N-terminal regions comprising the signal peptide,
and the features of the C-terminal regions containing the cleavedGPI-anchor signal. Pred-GPI supplies two different
variants: Onemodel where the potentialω-site is restricted to be one of Cysteine, Aspartic acid, Glycine, Asparagine,
and Serine, this approach they refer to as the conservative model; and another model having no such restriction. Unlike
the two other methods, Pred-GPI does not rely on an external signal peptide predictor, such as SignalP.

2 | MATERIALS AND METHODS

2.1 | Dataset

All data used in this project are extracted from the UniProt database [17]. The dataset construction follows twomain
steps: data gathering and homology partitioning. First, we select all the eukaryotic proteins with experimental evidence
(ECO:0000269) of a signal peptide. This dataset is divided into proteins with andwithout a GPI-anchor signal in the
subcellular location field, defining the positive and negative set respectively. The positive set is composed of proteins
with three different levels of annotation: Experimental evidence of a GPI-anchor signal, experimental evidence of the
ω-site position in a “LIPID” feature table entry, and non-experimental evidence of a GPI-anchor signal. All the proteins
are truncated to the 100 last (C-terminal) positions, since this is where we expect to find the GPI-anchor signal. The
truncated sequences are then homology clustered using CD-HIT [18] with a similarity threshold of 20% resulting in
1866 clusters.

For homology partitioning we assign the clusters of proteins into either one test partition or one of five training/-
validation partitions. Clusters composed exclusively of proteins with experimental evidence are assigned to the test
partition, whereas clusters with both experimental evidence and predicted GPI-anchors are assigned to one of the
training/validation partitions. The partitions are constructed such that the distribution of positive and negative classes
and the kingdom composition (animal, fungi and plant) is the same across all partitions.

These steps result in a training/validation set containing 2823 samples, of which 658 are GPI-anchored. A total of
25 proteins with experimental evidence of the GPI-anchor signal were placed in the training/validation partitions. The
test set contains 594 samples, of which 111 are experimentally verified GPI-anchored, but without a verifiedω-site, and
50 have an experimentally verifiedω-site for a total of 161GPI-anchored samples.

2.2 | Objective

The objective of GPI prediction is to decide whether a GPI signal is present and, if present, to determine the position of
theω-site in a protein sequence. We combine these two tasks by reducing them to the single task of maximizing the
probability of a position in a sequence. To achieve this, we add a placeholder to the end of the protein sequencewhich
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TABLE 1 Dataset composition for the training/validation set and held out test set.

Data-set Samples Not GPI-Anchored % GPI-Anchored %

Trainining/Validation 2823 2165 76,7% 658 23,3%
Held-out test 594 433 72,9% 161 27,1%

serves to indicate that it is non GPI-anchored. Thus we formally define the objective as maximizing the probability of a
position in D̂ , which is known as pointing [19].

max
θ
Pθ (Ci |D̂ ) (1)
D̂ = [D , z] (2)

WhereD ∈ ΣT is an amino acid sequence and Σ is a dictionary of the twenty common amino acids as well as the token
X, which represents any encountered amino acid not in Σ. We only consider the last 100 amino acids in the protein
sequence, such that the lengthT ≤ 100. Ci corresponds to a position in D̂ .

If the sequence does not contain anω-site wemaximize the probability of the protein being non GPI-anchored. In-
spired by work in natural language processing [20, 21], we represent the lack of anω-site bymaximizing the placeholder
position known as the sentinel, z , at the end of the amino acid sequence. This results in D̂ ∈ Σ̂T +1 where Σ̂ = Σ ∪ {z }.

To parameterize the conditional probability distribution Pθ we use a neural network architecture known as the
Long-Short TermMemory (LSTM) Cell [22] and distributed representations of the amino acids [23] as shown in equation
3.

zi = embedding(D̂i )

h = LSTM(z )

gi = tanh(hiW )

P (Ci |D̂ )θ = softmax(gV )i =
exp(giV )∑T
j=0 exp(gjV )

(3)

Where embedding : Σ̂ → Òd turns each amino acid into a distributed representation of real numbers using a linear
trainable weight of size d and i , j ∈ Î ≤ T are indexes of the protein sequence including the sentinel position. The LSTM
is a non-linear transformation of a sequence of real values. It uses trainable recurrent units to distribute sequential
information across the protein sequence, LSTM : ÒT ×d → ÒT ×d

′ , where d ′ is the output size of the LSTM. As we use a
bidirectional LSTM [24] we end upwith two hidden representations of size d ′. To get the probability over the sequence
we project the output of every position to a logit, giV ∈ Ò, followed by a softmax : ÒT → [0, 1]T that normalizes the
logits into a probability distribution over the sequence. To create the logits we use a two layer feed forward neural
network on top of the LSTM hidden states, h ∈ ÒT ×2d ′ , with a tanh activation function,W ∈ Ò2d ′×d ′′ , andV ∈ Òd ′′ .
This usage of softmax over a sequence length is amodification of attention where the interaction size d ′′ of gV is the
attention hidden representation size, which is known as a pointer network [19].

The embedding, LSTM,W , andV are all trainable with stochastic gradient descent using back-propagation through
time [25]. We have visualized ourmodel in Figure 1.
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F IGURE 1 Diagram of themodel, illustrating how themodel points to a position in a sequence, in this case, the entry
with UniProt accession number P15693. The sequence is truncated to the last 100 amino acids and the sentinel, z , is
appended. The predictedω-site is an Asparagine (N). If the position with highest likelihood had been the sentinel
position, then the protein would have been predicted as non GPI-anchored.

2.2.1 | Quantitative evaluation criteria

To evaluate the discrimination betweenGPI-anchored and nonGPI-anchored proteinswe use theMatthewsCorrelation
Coefficient (MCC) and forω-site prediction evaluation we use the F1 score [26]. Due to the dual nature of the problem
and as well as the lack of experimentalω−site evidence in the training set, a simple heuristic is devised. The heuristic
is a composition of the two evaluation methods. The F1 score is calculated with a tolerance of two positions from
the annotatedω-site. We allow for this flexibility when calculating the F1 score as the training set contains only non-
experimentally verifiedω-site samples, which are not as reliable as the experimentally verified. TheMCC is weighed
twice as important as the F1 score. Weweigh theMCCmore aswewant to emphasize theGPI-anchoring discrimination
over the ω-site prediction performance. The model with the combination of hyperparameters that gives the best
heuristics, on the validation partition, is chosen for each fold. This heuristic also controls when themodel’s parameters
are stored as an early stopping approach. The self evaluation during training is the Cross Entropy Loss.

2.3 | Model Details

We train the neural network with a batch size of 64 and up to 30 epochs. We set the embedding size d = 22. To find the
optimal values for: the size of the bidirectional LSTM cell hidden representation d ′, the attention hidden representation
d ′′, the number of LSTM layers, the dropout between LSTM layers, the optimizer’s weight decay, and learning rate we use
a validation set. Dropout between LSTM layers forces each hidden unit in subsequent layers to workwith a randomly
chosen set of hidden units from the previous layer [27].

To better utilize data we do a five-fold split of the training set and optimize the neural network hyperparameters
individually for each split. The best performingmodel from each split is used in an ensemble for the test set. Eachmodel
of the ensemble is transformed with a logarithm before being averaged. This is done to emphasize confident model
predictions.

We evaluate 192 different hyperparameter settings on the validation set for each fold. The hyperparameters we
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TABLE 2 The combination of hyperparameters with the best validation performance for each partition.

Ensemblemodel LSTM layers LSTMhidden units (d ′) Weight decay

0 3 110 0.0010
1 2 44 0.0006
2 3 110 0.0006
3 2 44 0.0006
4 2 88 0.0006
Dimensions shared by all models: Attention hidden units(d ′′) = 110, LSTMdropout
= 0.4, embedding size(d ) = 22, learning rate = 0.006

found optimal are shown in table 2.
The neural network is trained with stochastic gradient descent using the Adam optimizer [28]. Our models are

implementedwith the PyTorch deep learning framework [29].

2.3.1 | Qualitative evaluationmethods

To better understand the decisions the model makes we performed a feature importance analysis using the Local
InterpretableModel-agnostic Explanations (LIME) package [30]. This analysis is performed on the held-out test set. In
the LIME analysis, amino acids contributing to a GPI-anchored prediction will have a positive importance, while amino
acids contributing to the non GPI-anchored prediction will have a negative importance. The larger the weight the larger
the contribution to the prediction.

Furthermore, we investigate the sequence composition around theω-site to uncover possible model biases.

3 | RESULTS AND DISCUSSION

3.1 | Quantitative results

To benchmark the performance of the current tools the held-out test set was submitted to the three tools currently
available; Big-Π, GPI-SOM, and PredGPI. In the case of Big-Πwe separated the held-out test set according to kingdom
and submitted to the corresponding versions of the tool. Big-Π annotates its predictions according to likelihood.
Predictions with high likelihood are labeled as P , twilight zone predictions are labeled as S , and non-potentially GPI-
anchored proteins are labeled as N . We regarded any protein predicted as potentially GPI-anchored (P or S ) as a
GPI-anchored prediction.

PredGPI ranks and classifies predictions according to specificity. Predictions are regarded as highly probable, prob-
able, weakly probable, and not GPI-anchored. Wemeasure the performance for two settings of PredGPI; designating
weakly probable either as GPI-anchored or non GPI-anchored. Assuming weakly probable as negative predictions gives
the best performance according toMCC.

For predicting the presence of GPI-anchors, NetGPI achieves the highestMCC of 0.962. If we regard PredGPI’s
weakly probable as negative, the second highestMCC is PredGPI, otherwise the second highest is Big-Π. NetGPI also
attains the highest true positive rate (TPR), 0.975, the second highest being GPI-SOM. NetGPI achieves the second
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TABLE 3 Comparison of the GPI-anchor presence prediction performance of NetGPI and benchmarkedmethods.

All (594) TP FP FN TN TPR Prec. FPR MCC

NetGPI 157 5 4 428 0.975 0.969 0.012 0.962

PredGPI* 148 13 13 420 0.919 0.919 0.030 0.889
PredGPI** 151 25 10 408 0.938 0.858 0.058 0.857
GPI-SOM 153 45 8 388 0.950 0.773 0.104 0.798
Big-Π 132 2 29 431 0.820 0.985 0.005 0.867
Filtered*** (295) TP FP FN TN TPR Prec. FPR MCC

NetGPI 98 1 4 192 0.961 0.990 0.005 0.970

Big-Π 73 1 29 192 0.716 0.986 0.005 0.754
Abbreviation: TP = True positive, FP = False Positive, FN = False Negative, TN = True
Negative, TPR = True Positive Rate, Prec. = Precision, FPR = False Positive Rate, MCC =
Matthews Correlation Coefficient.
* No difference in the conservative or non-conservative options for PredGPI was ob-
served, this is the results whenweakly probable predictions are regarded as negative.
** This is the result for PredGPI when weakly probable predictions are regarded as
positive.
*** Here we have limited the test set to samples not in Big-Π’s reported training set and
made available on UniProt after 2004-03-19

highest precision, 0.969, and false positive rate (FPR), 0.012, the highest being Big-Πwith a precision of 0.985 and FPR
of 0.005. For a detailed comparison see table 3. Noticeably, Big-Π uses kingdom information in its predictor. We tried
a similar approach, but found no improvement in our performance using kingdom features during hyperparameter
optimization, which is whywe did not include it in our predictor.

We find that Big-Π has at least 59 overlapping samples with our positive test set and an unknown overlap with our
negative test set. This might cause the performance of Big-Π to be overestimated. We filter the dataset of test samples
to GPI-positive samples not found in Big-Π’s reported training set and non GPI-anchored samples made available
on UniProt after 2004-03-19 (the publishing date of Eisenhaber et al. [14]). In the filtered comparison NetGPI has
comparable performance (+0.008MCC), while Big-Π’s performance decreases (-0.113MCC).

For the prediction of the position of theω-site we only consider the 50 proteins with an experimentally verified
ω-site. NetGPI predicts 36 out of 50 correctly, achieving an F1-score of 0.692, while Big-Π correctly predicts 39 out of
50, resulting in an F1 score of 0.812. However, when we allow for one-off errors NetGPI positions 45 out of 50 and
attains an F1 score of 0.865, while Big-Π positions 41 out of 50with an F1 score of 0.854. For a detailed overview see
table 4.

As pointed out there is an overlap with the Big-Π training set and our test set. This is overly prevalent for GPI
anchors with experimentally verified ω-sites. Out of the 50 ω-sites, 33 are used for training the Big-Πmodel. Both
NetGPI and Big-Π correctly position 9 of the 17 which are not in the Big-Π training set. Allowing for one-off errors,
NetGPI correctly locates 14 out of 17whereas Big-Π locates 10 out of 17.
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TABLE 4 Comparison of theω-site position prediction performance of NetGPI and the benchmarkedmethods.

Known*** (50) ±0 F1 Sens. Prec. ±1 F1 Sens. Prec. ±2 F1 Sens. Prec.

NetGPI 36 0.692 0.720 0.667 45 0.865 0.900 0.833 46 0.885 0.920 0.852
PredGPI* 29 0.580 0.509 0.542 35 0.700 0.614 0.654 36 0.720 0.632 0.673
PredGPI 28 0.560 0.491 0.523 36 0.720 0.632 0.673 37 0.740 0.649 0.692
PredGPI*, ** 29 0.487 0.580 0.507 35 0.588 0.700 0.507 36 0.605 0.720 0.522
PredGPI** 28 0.471 0.506 0.406 36 0.605 0.720 0.522 37 0.622 0.536 0.536
GPI-SOM 30 0.423 0.600 0.326 33 0.465 0.660 0.359 33 0.465 0.660 0.359
Big-Π 39 0.812 0.780 0.848 41 0.854 0.820 0.891 41 0.854 0.820 0.891

Abbreviation: ±0 = The number of correctly predictedω-sites, ±1 = The number ofω-site predictions within one position away
from the correct position, ±2 = The number of ω-site predictions within two positions away from the correct position, F1 =
f1-score, Sens. = Sensitivity, Prec. = Precision.
* PredGPI provides two options, this is their conservative option.
** This is the result for PredGPI whenweakly probable predictions are regarded as positive.
*** For the position predictionweuse the experimentally tested sequenceswith knownω-sites. The precision is calculatedw.r.t.
the experimentally tested sequences with knownω-sites as well as all negative samples in the test set.

3.2 | Qualitative results

In the qualitative analysis we investigate the importance of biological features whenNetGPI predicts GPI-anchor pres-
ence and theω-site. In addition, we do a statistical analysis of theω-site composition to understand the neighborhood
of true and predictedω-site positions. Lastly, we investigatemodel likelihood of the predictions, and how it relates to
model correctness, on the held-out test set.

3.2.1 | Feature Importance Analysis

Figure 2 illustrates the results of the LIME analysis for both positive (see Figure 2a) and negative (see Figure 2b) samples.
Weobserve that the presence of a hydrophobic tail contributes themost towards a positive prediction. This is consistent
with the literature [6], which defines the presence of a hydrophobic region from the positionω + 10. From that position
the feature importance is much higher than for the rest of the sequence, which means that themain feature driving
the positive prediction of NetGPI is the presence of the hydrophobic region. Regarding the negative predictions, we
observe that the amino acids contributing themost towards a negative prediction are charged and polar amino acids.
This indicates that the model is attributing higher importance to non-hydrophobic amino acids, indicating a lack of
hydrophobic tail, whenmaking a negative prediction.

3.2.2 | ω-site composition

Of the 50 experimentally verifiedω-sites 54% are Serine, while the other amino acids observed are Asparagine, Glycine,
Aspartic acid, Cysteine and Alanine, in decreasing order of frequency. All Glycine and Cysteineω-sites are correctly
predicted, one of the Asparagine ω-sites is off by 2 positions and both of the Alanine sites are off by one, where the
preceding Serine is predicted instead, see table 5. Positioning errors made byNetGPI aremostly specific to Aspartic
acid. Of the experimentally verifiedω-sites, 8% are Aspartic acid, however we predict it in 14% of the 50 experimentally
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TABLE 5 NetGPI’s and Big-Π’sω-site position prediction performance for the 50 trueω-site amino acid in the test
set. We see that bothmodels only predict 1 out of 4 Aspartic acidω-sites correctly. NetGPI has 9 one-off errors, 7 of
which are actually Serineω-sites.

NetGPI S (27) N (9) G (6) D (4) C (2) A (2)

±0 19 8 6 1 2 0
±1 26 8 6 1 2 2
±2 26 9 6 1 2 2
Big-Π S (27) N (9) G (6) D (4) C (2) A (2)

±0 22 9 4 1 2 1
±1 23 9 5 1 2 1
±2 23 9 5 1 2 1
Abbreviation: ±0 = The number of correctly predicted ω-sites,
±1 = The number of ω-site predictions within one position away
from the correct position, ±2 = The number of ω-site predictions
within two positions away from the correct position.

verifiedω-sites. NetGPI has 9 off by one errors, 7 of which are actually Serineω-sites, all of whom belong to the species
Arabidopsis thaliana. Of those, 6 are predicted as an Aspartic acid where the actualω-site is the preceding Serine, and
together they belong to the 4-mer PTSD – anω-sitemotif that does not occur in our training set. Both Big-Π andNetGPI
are unable to position 3 out of 4 Aspartic acidω-sites, see table 5. This may be related to theω + 2 position, as these 3
samples have a non-standard amino acid (i.e. something other than G, A, or S).

It is worthmentioning that out of the 50 experimentally verified, 13 belong to the species Arabidopsis thaliana and
14 toHomo sapiens. Only one of the 50 proteins with an experimentally verifiedω-site is predicted non GPI-anchored by
NetGPI. This example has a very unusualω + 2 amino acid, namely Lysine (K).

3.2.3 | Likelihood and correctness

In addition to the classification of the sequence and themost likely position of theω-site, NetGPI reports the likelihood
of the chosen position. For positive predictions this is the predicted ω-site, while for negative predictions it is the
sentinel.

As ourmodel is trainedwith cross entropy, it is penalized with a logarithm of the correct prediction. If we predict
incorrectly, with a very low likelihood for the correct position, the loss can be immense. We should thus expect that
answers with a high likelihood aremore credible.

In Figure 3we display the likelihood distribution of the predictions on the held-out test set. We observe differences
in the likelihood of correct and incorrect predictions implying a correlation between likelihood and correctness. Fur-
thermore, we observe higher likelihood in negative predictions than positive. This is expected as this is the probability
distribution over the last 100 amino acids as well as the added sentinel, where only the sentinel position denotes a
negative prediction, while a positive prediction is spread across the 100 amino acid positions. This means that positive
prediction likelihood has to cover all potentialω-site positions, while the negative prediction likelihood is limited to one
position. Therefore, using the likelihood as ranking should be done separately for negative and positive results.
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(a) (b)

F IGURE 2 This Figure shows the logo plots of the LIME analysis for both positive (2a) and negative (2b) samples
from the test set. The logo plots are colored according to amino acid properties, where bluemeans positively charged,
greenmeans polar, redmeans negatively charged and graymeans hydrophobic amino acids. The positive set (2a) is
aligned to the predictedω-site, while the negative set (2b) is aligned to the C-terminus. Positive feature importance
contributes to a positive prediction whereas a negative feature importance contributes to a negative one. We see that
the presence of a hydrophobic tail contributes themost towards a positive prediction, whereas charged and polar
amino acids contribute themost towards a negative prediction.

F IGURE 3 The likelihood
distribution for true positive,
false positive, false negative and
true negative predictions of the
held-out test set. True positive
are split into correctly positioned
ω-sites and incorrectly
positioned. The number of
samples behind each are
displayed in brackets.

4 | CONCLUSION

Wehave shown that GPI-anchor prediction can be improved using recurrent neural networks and up-to-date datasets,
achieving state-of-the-art performance. Comparison with previousmethods is challenging as there exists no standard
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dataset for training and testing predictivemethods. Given progress in protein annotation, we publish a new homology
partitioned training and test set, using experimentally verified proteins for testing andmanually annotated predicted
proteins for training. However, due to the new dataset definition, the performance of current methods could be
overestimated as their training sets overlap with our test set.

Our results show that proteins manually annotated by predictionmethods or sequence similarity are useful for
training a GPI-anchor predictor to performwell when evaluated on experimentally verified ω-sites. However, using
these data comes with a caveat;ω-site predictions are sometimes off by one position. We believe that this limitation is
necessary in order to obtain a larger training set and create a completely independent test set of experimentally verified
GPI-anchors. If wewere to use only the experimentally verified GPI-anchors to train and test the predictor, wewould
not have enough training samples to teach a deep neural network classifier, and the resulting test set would be too small
to be representative.

A web server implementing NetGPI is available at https://services.healthtech.dtu.dk/service.php?NetGPI-1.0, and
our training and testing data set can be downloaded from the same site.

ENDNOTES
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