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13 Summary
11
12 Theurinary microbiomeis arelatively unexplored niche despite the fact that we now
13 know that it is not sterile. Moreover urinary microbes, especially in ageing
14  populations, are associated with morbidity even when infection is subsequently not
15  proven. We present the first large-scale study to explore factors defining urinary
16 microbiome composition in community-dwelling older adult women without
17  clinically active infection. Using 1600 twins, we estimate the contribution of genetic
18  and environmental factors to variation in microbiome using both 16S and shotgun
19  metagenomics. We found that the urinary microbiome is distinct from nearby sites
20 andisunrelated to stool microbiome. Core urinary microbiome taxawere
21  defined. Thefirst component of weighted unifrac was heritable (18%) as were key
22 taxa (e.g Escherichia-Shigella (A>0.15)). Age, menopausal status, prior UTI and host
23 genetics were top among factors defining the urobiome. Increased composition was
24 associated with older age, contrary to previous findings.
25
26  Keywords: microbiome, genetics, urogenital tract, ageing
27
28  Introduction
29  Theresident microbial community (microbiome) at different human body sites,
30 continuesto generate research interest, driven by evidence of arole in human
31 physiology. The study of the urinary microbiome (urobiome) is much less established
32  compared to the gut microbiome; perhaps due to the previous belief that the urine was
33  derilein the absence of aurinary tract infection. Recently, research has shown that
34  thisisnot the case and that the urinary tract is in fact, another site with a microbiome,
35  reflective of the microbes inhabiting the bladder and closely associated organs (Wolfe
36 etal., 2012; Siddiqui et al., 2012; Whiteside et al.; 2015). This evidence is supported
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37 by enhanced quantitative cultures, 16S marker studies and metagenomics, in different
38 populations (e.g Kramer et al., 2018; Adebayo et a., 2017;Wu et d., 2017).

39

40  Studiesto date have identified differences in the urobiome in relation to urinary tract
41  conditions (Sihraet a., 2018; Wolfe & Brubaker, 2019) including urinary infections
42  (UTI). Thereisevidence for sex differences in the urinary microbiome which may in
43  part be dueto differencesin the length of the urinary tract (Moustafa et al. 2018).

44 Women are much more likely to develop UTI, with alifetime risk of up to 50%

45  (Franco, 2005). UTI is also the commonest reason for antibiotic treatment in adult
46  women, which hasimplications for urinary and other microbiomes and antimicrobial
47  redistance. Early work hasindicated that the non-infected state microbiome may

48 influence resilienceto infection. Thus this paper isfocused on understanding the

49  magjor factors defining the urobiome in community dwelling women without active

50 infection.

51  Recent studies involving urinary/bladder microbiomes have involved relatively small
52  sample sizes (dozens or few hundreds of people) in hospital or clinic attending

53  patients. For instance, results from our literature search (Jan 2015 to September 2018)
54  included case-control studies on elderly/non-elderly patients (Liu et a., 2017; n=100);
55  urinary tract infections (Moustafa et al., 2018; n=112), cancer (Wang et al., 2017,

56  n=65), diabetes, overactive bladder (Wu et al., 2017; Fok et a., 2018,; n=55-126),
57  chronic kidney disease (Kramer et a, 2018; n=41); surgical transplant patients (Rani
58 etadl., 2018, n=20); menopause (Curtiss et a., 2018; n=78). Reinforcing this, a recent
59  review (covering studies up to 2016) carried out by Aragon et al. (2018) reported that
60 thesample sizesin urinary microbiome studies varied between 8 to 60 for healthy

61 controlsand 10-197 for cases. Their report shows that many studies are

62  commissioned on incontinence, bladder-related and gynaecologic patients. Moreover,
63  many of the urine microbiome studies, either with 16S or shotgun metagenomes,

64  exclude samples with non-detectable/ below detection microbiome. While the

65  assumption maybe that the failure is completely technical, it is unknown if host

66  factors contribute to having ‘extremely-low’ or ‘below detection’ urine microbiome.

67  Recently, studies of the gut microbiome, have shown arole of host genetics. While

68  Goodrich and colleagues first reported clearly heritable components within the gut
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microbiome (Goodrich et al.,2014), afinding which a few subsequent studies have
aso reiterated(Lucaet al., 2018), Rothchilds et al reported that environmental factors
may largely blur such host genetics factors (Rothchilds et al.,2018). It is unknown if

genetic factors are important in the urinary microbiome.

We aimed to characterize the host influence on the urinary tract microbiomein
women. Using midstream urine samples from 1600 females in the TwinsUK cohort,
this study, perhaps the largest on urinary microbiome so far, reports about the urinary
microbiome composition in an average female population of mainly postmenopausal
women with no apparent infection. We hypothesized that, in an unselected average
population, (1) the inherent core urinary bacterial community could be defined (2)
that the urobiome isinfluenced by host-specific genetic and environmental factors, (3)
that some host-specific factors may relate to undetectable microbia biomassin the

urine.

Results

Urinary microbiome across studies and were distinct from proximal body sites and

shared key taxa
Initially, we compared the overall composition of the urinary microbiome to similar

datasets from other body sites using the same bioinformatics pipeline, using similar
sized datasets of women aged >45(Supplementary Methods & Datal). Alpha diversity
in the urine was, on average, reduced relative to the stool and is comparable in two
urine and the vaginal datasets (Fig 1A). Stool samples in the majority ordinated
separately from urine samples (Fig 1B) (Supplementary Data 1). Repeating these
diversity analyses with a separate set of random 100 samples each show similar
patterns and significance (SFig1A,B). In paired-sample analysis from TwinsUK
(Supplementary Datal), urine microbial taxa separated from stool microbial taxa of
the sameindividual (S1C). There was no clear correlation in the pattern of stool and
urine microbiome dissimilarity for the paired samples (either obtained at same time
point or not) (Mantel’ s r<0.02, p>0.1) and variance was not homogeneous (Levene
paired test p=0.02) (Fig 1C-D, SDatal). Thereafter, we examined the TwinsUK

urinary microbiome dataset alone.


https://doi.org/10.1101/838367
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/838367; this version posted November 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

u
u .-a
=

100
101  Fig 1. Urinary microbiomein older women is mostly distinct from proximal body

102 sitesand unrelated to stool microbiome. (A) Alpha diversity of urine

103  microbiomesand other body sites. star symbol indicates significance compared to
104  TwinsUK urobiome. (B) Dissimilaritiesin urine micr obiomes and other body
105  sites. Plots are based on unifrac distances (C) Paired alpha diversity analysis of
106  stool and urine collected at same time point (D) Differencesin paired stool and
107  urine microbiome from the same time point.

108  General description of urobiome

109  Urine samples from 1600 mainly postmenopausal women (mean age 66.4) in the
110  TwinsUK cohort were analysed, revealing 10955 present species-level taxa from

111  filtered 16S data. Participant characteristics are shown in Table 1. There was high
112 level of variability in particular species present in an individual, with only 246 (2.2%)
113 ASVsoccurring in at least 5% of samples. The use of a compositionally-sensitive
114  analysisimproved the ranking of some abundant taxa as compared to common non-
115  compositional analysis (SFig3). To highlight intra-microbiome relationships,

116  hierarchical balances were created, resulting in mixed-genera subclusters from 61
117  species-level taxa (hereafter referred to as the core urobiome). There were more

118  Actinobacteria, Fusobacteria and Proteobacteria compared to normal gut microbiome
119 (SFig 3B).
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Having low reads (no reliably-detected microbiome (<2000 reads post-filtering))
(Supplementary Data 2) associated with younger age and lower level of hedth deficit;
specifically, a~20% increase in the chances of detectable microbiome for a unit
increase in age (p=0.0048, OR=1.21, CI=1.07 - 1.39) and ~14% increase for a unit
increase in the frailty index (OR=1.144,CI=1.01-1.30,p=0.0359). There was no
association between low read status and the number of previous Urinary Tract
Infections (UTIs), recent antibiotics usage, surgery episodes or number of childbirth
episodes (parity); amplicon concentrations associated with parity (3=1.89,p=0.0035)
alone among other demographics (Supplementary Data 2).

Host genetics' influences variation of urine microbiome

First, the quantitative twin model analysis showed considerable and significant
genetic component in the first principal coordinate (PCo) of beta diversity (inter-
individual) distances which capturing 57% of the variation. Heritability of this first
PCo was 18% (A= 0.179, Cl=0.05-0.415, p=0.003351; C=0.0049, E=0.8164, n=760
pairs) (Fig2A). Significant heritability was maintained when adjusting for other
factors (Supplementary Data 3). Likewise, treating the microbiome data as Atchinson
compoasition, the first principal component (63% of variation) on inter-sample
distances showed 21% heritability (Cl1=0.10-0.32,C=0.00,E=0.79), and the first PC
was also associated with genetic relatedness (family identity) (Kruskal-Wallis
p=0.043). Some clusters showed higher heritability (Fig 2B).

In addition, the dissimilarity within relatives (twin pair) in constrained principal
coordinates analysis and the average difference in Euclidean distances to the normal
PCo median were both smaller for monozygotic pairs (p<0.027) (Fig2C and Fig 3D)
(Supplementary Data 3), providing further evidence of a genetic component. While
the study population was mgjorly of British ancestry, and therefore ethnicity findings
would need to be confirmed, the second PCo of the microbiome diversity differed
according to the 4 major ancestry or ethnic origins present (1st PC; p=0.156; 2nd PC
p=0.000143), as was the Bray-Curtis dissimilarity between the ancestry groups
(Supplementary Data 3, Fig. 2D).

Moreover, the common urobiome taxa (using balance transformations) showed
heritability of 23%(95%CI=8.77 t033.7, C=1.66E-12). Almost a quarter (59 of 245)
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of frequent species had heritability greater than 10%, and some of the most heritable
species (e.g. Lactobacillus iners AB-1 and Escher chia-Shigella sp.) clustered together
and members showed phylogenetic relatedness among themselves and with
Christenellaceae species (SFig 1D-E). Because of the potential role of some of these
heritable speciesin UTIs, we also tested the heritability of occurrence of prior urinary
tract infections, finding prior UTI to be significantly heritable (A=0.273,
95%Cl=0.178 — 0.368, p=3.073E-13, see Supplementary Data 3) possibly up to 40%.

A
Cc

Fig 2. Host genetics considerably influences variation of urine microbiome. (A)
Discordancein paired twin typesfor Euclidean distances to median microbiome
in PC. MZ-monozygotic pair; DZ:Dizygotic pair; PC: principal coordinate (B).
Heritability and interaction of coreurinary microbes. Size of circles at each
subcluster and intensity of rectangular bars at the tips represent increasing heritability
of taxa. Neighbouring speciesin a clade show co-abundance. Taxa are annotated to
indicate different species. Clusters are not phylogenetic. (D). Microbiome principal
coordinateswith ancestral origin. White British constitute>90% of individuals. P-
values are derived from permutational models due to imbalanced sizes. Ellipses
represent 95% confidence interval. (E) Bray dissimilarities with the ethnic or

ancestry divisions.
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175
176

177  Host-related/environmental factorsin urinary microbiome, especially age, have

178  important effects

179  Age, di€t, recent antibiotic usage and overall health deficit were assessed in relation to
180  theurobiome asthey are known ‘host-specific’ influencers of gut microbiome

181  variation. Parity (previous number of births) and surgical history (had previous

182  surgery or not) were assessed as host-related “environmental” factors as they could
183  potentially alter structuresin or proximal to the urinary tract. Previous history of UTI
184  was also assessed.

185  Withincreasing age, thereis overall increase in alphadiversity (Table 1), which was
186  robust to uneven sample sizes or exclusion of small number of participants aged <50
187  (0.10>$<0.22, 0.00027<p>0.0045). Age differed with beta diversity estimates

188  (p<0.001), and was amain influencer of the 3 ‘enterotypes’ (directions) visible in the
189  PCo plot (Fig 2B). The core urobiome and one-third (22) of the subclusters, attained

190  satistical significance with age (1.92E-30<FDR<0.046).

191 Thedietary index (the Healthy Eating Index), and anindex of health deficit (the

192  frailty index) and antibiotics usage did not produce significant difference in alpha
193  diversity but borderline associations were found with with changes in beta diversity
194  (diet, p=0.052, n=1004; recent antibiotics usage, p=0.041,n=992; health deficit,

195 p=0.031, n=1139). Parity trended toward an association with alpha diversity reduction
196  (p=0.058,n=1047), and significantly with beta diversity (p=0.026,n=1047); surgical
197  history did not differ with beta diversity or aphadiversity (n=540). Occurrence of
198  UTI differed with aphadiversity (p=0.0027) and beta diversity (p=0.001). Similar

199 results were obtained using unifrac sample distances or controlling for other factors.

200  The contribution to variance that could be attributed to all factors, including host
201  genetics was then examined (Fig 3). For individuals with virtually all phenotypes
202  (n=545), unique contribution was obtained from R? decomposition on microbiome
203  betadiversity estimates, in permutational models (1000 permutations) controlling for
204  other factors. The average for each factor was used after randomly rearranging all
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205  factors 20 times. In other scenario of measuring host genetics (Supplementary Data
206  3), but with asmaller sample size, the contribution of host genetics ranks higher.
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208  Fig 3. Top contributorsto urinary microbiomevariation. (A) Relative

209  contributionsto urinary micr obiome. Bars represents average R? for each variable,
210 controlled for the presence of other factors. Microbial variation was measured using
211  Bray-Curtis dissimilarities. Genetic contribution shown was derived from principal
212 components of genetic kinship calculated from whole genome data. (B-E)

213  Microbiomedissimilaritieswith (B) age (C) menopause (D) prior number of
214  UTI. (E) within family of twin pairs (F) Trendsin intra-individual Shannon
215 diversity with ageand prior number of UTI.

216  Metagenomes confirm overall 16S microbiome data variation

217  Using shotgun metagenome data for a subset of 178 individuals, we also examined
218  how closely the overall patterns of the 16S data are replicated in the metagenome

219 data The classified metagenome reads were 99.64% Bacteria (Supplementary Data 5)
220  and agreater number of urine metagenomes (total and per individual) were obtained
221  than earlier reported in literature. Sample-sample variation or inter-sample distances
222 inthe microbiome data were highly correlated from metagenome and 16S data (for
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Atchinson compositions with Euclidean distance, Mantel’s r=0.859, p=0.002; and for
Bray dissimilarities, Mantel’ s r=0.799,p=0.001). Sixteen of the top 20 abundant taxa
are also within the top 20 of the metagenome data. The core microbiome found in 16S
data was largely recapitulated in the metagenomics analysis; 27 of the 31 genera
(87%) forming the core urobiome using 16S data were also replicated in the
metagenome data. From this core, the total number of species identifiable
approximately doubled (125 vs 61 in total, 94 vs 53 in the replicated genera) most
likely to due to better species assignment.

Discussion

In this study, we utilised new approaches in (urinary) microbiome analysis - using
amplicon sequence variants rather than OTUS, creating microbial balances from
highly frequent taxa, compositional analysis, and eliminating common batch
environment effect in twin-pairs - to explore host factorsin an relatively large,
unselected community-based study population of women. These approaches
strengthen deductions made from factors in urinary microbiome variation, for
instance, increased diversity with age contrary to previous studies (e.g. Curtiss et al.,
2018; Kramer et al., 2018; Liu et al., 2017;Wang et a., 2017).

Urine and other body sites

The ordination patterns of the microbiomes support current thinking that the urobiome
isadistinct site, similar to the observations that most bladder microbiome (urine
obtained directly by catheter) differ from vaginal or stool microbiome (Wolfe &
Brubaker, 2019). The more divergent of the urine studies (Urinel cohort) involved
patients with incontinence and collection was wholly catheterized. In a very small
minority of individuals where urine microbiome taxa appear closer to stool, thisis
most likely due to phylogenetic or genome similarity in species (as no such closeness
occur with non-phylogenetic measures) rather than common demographics (SFig2).

In al, the current study show clear dissimilaritiesin stool and urine for the average
population.

Host-related factors and host genetics' contribution in urinary microbiome
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Parity (childbirth episodes), previous UTI occurrence, recent antibiotics usage and
diet showed changes with urine microbiome diversity. Using heritability analysis, the
current study showed a considerable genetic influence in the microbiome of ageing
women, reaching 15% in 57% of urine taxa variation. The remainder of contribution
was largely dueto variance unique to individuals. Some clinically important,
“uropathogenic” generasuch as Escherichia had variants with high heritability
estimates, In addition, Lactobacillus. iners, acommonly found vaginal microbe which
is phylogenetically close to the heritable gut microbe Christenellaceae was found to
be heritablein urine.

Previously, Rothschild and colleagues (2018) reported that environmental factors
such as sharing household may blur genetic influence in gut microbiome composition,
while Goodrich and colleagues (2014) showed host genetics played rolesin gut
microbiome patterns of twin-pairs. The current study, indicates significant
contributions of geneticsto the pattern of urine microbial composition; and
controlling for cohabitation (participants asked if they live together or close with their
sibling) and other known factors in urine microbial variation, did not ater the
estimated the significant contributions to the pattern. Other parameters from this study
bolster the observation on genetic influence: (1) samples of a member in atwin-pair
were not extracted or sequenced in the same batch as the other member,(2) adding
genetic relatedness statistically explained much morein the pattern of constrained
ordination, (3) there was lower intra-twin difference distance to centroid among
monozygotic pairs, and (4) there were differences along the lines of ethnic ancestry
though the proportion of white British was dominant. Thus we conclude that host
genetics influenced variation in urinary microbiome composition in this population of
women.

Relative to other factors, only age, menopause status and prior history of current UTI
were greater than the influence of genetics. Incidental to our main purpose, we also
report here for the first time in humans that history urinary tract infection itself has a
significant heritability as suggested in other species (Norris et al., 2000).

Heritable urinary pathogens

While Corynebacterium species were frequent among top core urobiome taxa with
high heritability, the patterns detected for Lactobacillus iners/jensenii and

Escherichia variants deserve mention. The Escherichia-Shigella taxon, renamed as

10
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such to reflect the extreme sequence smilarity of Escherichia coli and Shigella, is
apparently ubiquitous in the normal urine microbiota from this data. The current study
shows that presence of this taxon is influenced by (1) host genetic make up (its
proportions had one of the highest heritability estimates (A=0.17,CI=0.11-0.29) of all
frequent urine microbial species); and (2) age (its coefficient in age, 0.43, is more
than double that of UTI history, 0.20). The relatively high heritability of these taxa
were also replicated in the subset with metagenomics data and in all, the findings may

have implications in the mixed success of E. coli vaccine trials (Huttner et al., 2017).

The current study has limitations. Questionnaire data, which is subject to accurate
recall and self-report by participants, was part of measures used in deriving variables
such as UTI, diet and frailty. Another limitation may be the use of a single midstream
urine sample set from an individual, and as such, prior microbiome stability
information is unknown. Clearly, further research is needed to confirm if the findings

also relate to the male urinary microbiome.

To conclude, thisisthe first ‘large-scale’ human study to identify the factors
influencing composition of the female urinary microbiome. The urinary microbiome
was distinct and apparently unrelated to stool microbiome. It shows a significant
contribution of host genetics. Key species known to have pathogenic potential were
among the most heritable microbes. Age and menopausal status were the factors with

greatest influence on the urinary microbiome in women.
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Figure Legends

Fig 1. Urinary microbiomein older women ismostly distinct from proximal body
sitesand unrelated to stool microbiome. (A) Alpha diversity of urine
microbiomes and other body sites. star symbol indicates significance compared to
TwinsUK urobiome. (B) Dissimilaritiesin urine micr obiomes and other body
sites. Plots are based on unifrac distances (C) Paired alpha diversity analysis of
stool and urine collected at same time point (D) Differencesin paired stool and

urine microbiome from the same time point.

Fig 2. Host genetics consider ably influences variation of urine microbiome. (A)
Discordancein paired twin typesfor Euclidean distances to median micr obiome
in PC. MZ-monozygotic pair; DZ:Dizygotic pair; PC: principal coordinate (B).
Heritability estimatesin species and clusters of highly frequent urinary microbes
in paired twins. Cb represents cluster names, Size of circles at each subcluster and
intensity of rectangular bars at the tips represent increasing heritability of taxa. Taxa
are annotated to indicate different species. Only speciesin at least 20% of population
form clusters. Clusters are hierarchica but not phylogenetic. (D). Microbiome
principal coordinateswith ancestral origin. White British constitute>90% of
individuals. P-values are derived from permutational models due to imbalanced sizes.
Ellipses represent 95% confidence interval. (E) Bray dissimilaritieswith the ethnic

or ancestry divisions.

Fig 3. Top contributorsto urinary microbiomevariation. (A) Relative
contributions to urinary microbiome. Bars represents average R? for each variable,

controlled for the presence of other factors. Microbial variation was measured using
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Bray-Curtis dissimilarities. Genetic contribution shown was derived from principal

components of genetic kinship calculated from whole genome data. (B-E)

Microbiome dissimilaritieswith (B) age (C) menopause (D) prior number of

UTI. (E) within family of twin pairs (F) Trendsin intra-individual Shannon

diversity with age and prior number of UTI.

Tables

Table 1. Summary of participantsin TwinsUK urinary microbiome study

Phenotype Subcategory a-D index Ave. noof unique  No. of Age
category (meanxSD) taxa(mean+SD) samples  (meantSD)
Participants 2.01+1.05 65.7+48.8 1600 66.7+8.3
Previous UTI 0 times 2.14+10 66.1+43.1 393 67.6+8.2°
occurrence® 1-4times 2.02+1.04 67.5+51.0 719 65.9+7.8

5-9 times 1.98+1.03 65.4+45.2 208 66.3+8.3

10times > 1.79+1.17 60.0+53.9 201 65.748.3
Age® <50-54 1.56+0.76 459+32.2 117 -

55-59 1.86+1.13 61.7+49.7 210 -

60-64 2.00+0.98 63.5+44.8 327 -

65-69 2.04+1.03 66.0+49.8 409 -

70-74 2.16+0.97 71.5+50.6 276 -

75-79 2.26+1.12 74.5+50.1 170 -

80-84 2.02+1.12 63.7+41.9 68 -

85- 1.73+1.42 71.7+62.3 23 -
RecentAntibiotic ~ Yes 1.97+1.20™ 70.0+53.0™ 47 68.3+8.0™
usage:3mths No 2.03+1.06 66.0+49.0 945 66.6+8.3
Frailty <0.15 2.05£1.01™ 67.0+49.0™ 511 65.9+7.5°

0.15-0.29 1.99+1.05 64.8+49.0 834 66.1+8.0

0.3-0.44 2.04+1.15 67.5+48.0 227 68.4+8.9

>0.45 1.75+1.17 62.0+47.0 28 68.5+8.2

Legend. a-D: Shannon H index of aphadiversity; No. of taxa refers to number of unique sequence variant per
samplei.e. no of potential species. Diversity measures were calculated after subsampling to 2000. S/NS indicates
statistical significance or not for tests of a phenotype as a continuous variable. Post-hoc pairwise comparisons
showed no difference in alpha diversity after 75years.

STAR Methods
2.1 Cohort and Phenotypes
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The TwinsUK cohort has been described elsewhere (Verdi et a. 2019). Participantsin
the cohort are community dwelling twin pairs, recruited without any specific clinical
phenotype. V arious demographics were examined. Medical history questionnaires
were used to define age (from birth date), history of urinary tract infections (UTIs),
cohabitation, antibiotic usage, previous hysterectomy, previous cophorectomy,
caesarian section and menopause status. The frailty index, calculated from clinical,
physiological and mental domains (Livshitset al., 2017) was used as a measure of
health deficit, and the Healthy Eating Index (Bowyer et al. 2018) based on food
frequency questionnaires used to assess diet.

2.2 16S Microbiome Sequencing and Analysis

Twin-pair samples were separated for processing. Extraction and Sequencing was

performed at the Knight Lab, University of California San Diego. A low biomass
pipeline designed to extract optimal yields of DNA was used with 16S V4 marker-
based paired-end sequencing on IlluminaMiSeq platform. Multilevel quality filtering
procedures and data analysis were applied to remove potential contaminants (Suppl
Methods). In summary, amplicon sequence variants (ASVs), were filtered, and
analysed as individual taxa and as clusters based on highly frequent variants, with
subsequent compositional balance transformations (Morton et al.,2017)
(Supplementary Methods). The current data was also compared to those of previous
microbiome studies with similar age-range of participants after re-analysis of such
datato produce ASV's (Supplementary Methods). Diversity analysis was carried out
with Shannon index, Unifrac, Bray and Atchinson distances, and permutational
analysis of variance was used to test inter-sample differences. Taxa counts were
centred-log ratio transformed after adding a pseudocount of 1, and independent taxa

associations were pruned for presencein at least 5% of samples.

2.3 Metagenome Analysis

Shotgun metagenomic sequencing was carried out for 178 of the participants using
newer approaches (Hillman et al., 2018), with additional 14 blanks for quality control.
This subset of participants were chosen to include equal numbers of dizygotic pairs
and monozygotic twin pairs, as well as equal numbers of twin pairs showing
discordance and concordance in 16S microbial diversity. After quality control

filtering, and mapped human reads removal (based on hgl9) one sample was
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excluded, and the final analysis included 177 samples, comprising 43 pairs of
dizygotic twins and 45 pairs of monozygotic twins (n=176). Potential contaminant

Species were also removed (Supplementary Methods).

2.4 Host genetics analyses

Heritability was calculated using an ACE model in which the component of
phenotypes explained by geneticsin twin pairs was estimated. Samples from co-twin
were separated into different batches for sample preparation and sequencing to
remove the shared technical environment related to batching. This further solidified
the deductions made from the analysis of the genetic effects. Where constrained
principal coordinates analysis was used, microbiome data was ordinated with the
family 1D tested as a predictor, then the dissimilarity within a family was then
extracted to compare twin types. Discordance analysis was based on quantitative
difference in pairs of monozygotic and dizygotic twins. Analysis on ethnic origin of
participants based on information obtained from questionnaires. To represent host
genetic variation, first principal component from SNP-based kinship data, raw whole
genomic sequence data (available for a separate subset of unrelated participants)
which were part of a previous study (Long et al. 2017), and zygosity:family nested
model variance (only for twin-pairs) were obtained. Each of these were analysed

separately as a measure of genetic relatedness.

Throughout analysis, technical covariates, including extraction kit lots, mastermix kit
lot, batch, extraction and sequencing processors, and depth/library sizes (sequence
reads post-QC filtering) were controlled for. Raw sequence datais available from
giita, phenotype data is available on request TwinsUK data access committee at
http://twinsuk.ac.uk/resources-for-re- searchers/access-our-data.html. Scripts and

codes used are available at github.com/urobiome-host-genetics

Supplemental I nfor mation

SFiglA-B. Replicate diversity analysis to compare urinary microbiomefrom

various body sites. (C). Plots showing the ordination of paired stool and urine
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samples (D) Top heritable species. Species displayed in line bars have more than

15% heritability and star symbol indicate species detected in at least 20%.

(E). Phylogenetic tree of frequent speciesin urinary microbiome of older women
and their heritability. Tree edges and branch length are coloured by increasing
heritability estimates (from green to red). Species displayed in tree were detected at
least 5% of study population.

SFig2. Comparison of demographicsfor individuals with closer urine and gut
micr obiome

SFig3. Comparison of top abundant urinary micr obiome taxa using various
approaches

SFig4 Additional variation explained from relatednessin twin pairs. A without
relatedness B. with relatedness
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