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Summary 10 

 11 

The urinary microbiome is a relatively unexplored niche despite the fact that we now 12 

know that it is not sterile. Moreover urinary microbes, especially in ageing 13 

populations, are associated with morbidity even when infection is subsequently not 14 

proven. We present the first large-scale study to explore factors defining urinary 15 

microbiome composition in community-dwelling older adult women without 16 

clinically active infection. Using 1600 twins, we estimate the contribution of genetic 17 

and environmental factors to variation in microbiome using both 16S and shotgun 18 

metagenomics. We found that the urinary microbiome is distinct from nearby sites 19 

and is unrelated to stool microbiome.  Core urinary microbiome taxa were 20 

defined. The first component of weighted unifrac was heritable (18%) as were key 21 

taxa  (e.g Escherichia-Shigella (A>0.15)). Age, menopausal status, prior UTI and host 22 

genetics were top among factors defining the urobiome. Increased composition was 23 

associated with older age, contrary to previous findings. 24 

 25 
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 27 

Introduction 28 

The resident microbial community (microbiome) at different human body sites, 29 

continues to generate research interest, driven by evidence of a role in human 30 

physiology. The study of the urinary microbiome (urobiome) is much less established 31 

compared to the gut microbiome; perhaps due to the previous belief that the urine was 32 

sterile in the absence of a urinary tract infection. Recently, research has shown that 33 

this is not the case and that the urinary tract is in fact, another site with a microbiome, 34 

reflective of the microbes inhabiting the bladder and closely associated organs (Wolfe 35 

et al., 2012; Siddiqui et al., 2012; Whiteside et al.; 2015). This evidence is supported 36 
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by enhanced quantitative cultures, 16S marker studies and metagenomics, in different 37 

populations (e.g Kramer et al., 2018; Adebayo et al., 2017;Wu et al., 2017).  38 

 39 

Studies to date have identified differences in the urobiome in relation to urinary tract 40 

conditions (Sihra et al., 2018; Wolfe & Brubaker, 2019) including urinary infections 41 

(UTI).  There is evidence for sex differences in the urinary microbiome which may in 42 

part be due to differences in the length of the urinary tract (Moustafa et al. 2018).  43 

Women are much more likely to develop UTI, with a lifetime risk of up to 50% 44 

(Franco, 2005).  UTI is also the commonest reason for antibiotic treatment in adult 45 

women, which has implications for urinary and other microbiomes and antimicrobial 46 

resistance. Early work has indicated that the non-infected state microbiome may 47 

influence resilience to infection.  Thus this paper is focused on understanding the 48 

major factors defining the urobiome in community dwelling women without active 49 

infection.  50 

Recent studies involving urinary/bladder microbiomes have involved relatively small 51 

sample sizes (dozens or few hundreds of people) in hospital or clinic attending 52 

patients. For instance, results from our literature search (Jan 2015 to September 2018) 53 

included case-control studies on elderly/non-elderly patients (Liu et al., 2017; n=100); 54 

urinary tract infections (Moustafa et al., 2018; n=112), cancer (Wang et al., 2017; 55 

n=65), diabetes, overactive bladder (Wu et al., 2017; Fok et al., 2018,;  n=55-126), 56 

chronic kidney disease (Kramer et al, 2018; n=41); surgical transplant patients (Rani 57 

et al., 2018, n=20); menopause (Curtiss et al., 2018; n=78). Reinforcing this, a recent 58 

review (covering studies up to 2016) carried out by Aragon et al. (2018) reported that 59 

the sample sizes in urinary microbiome studies varied between 8 to 60 for healthy 60 

controls and 10-197 for cases.  Their report shows that many studies are 61 

commissioned on incontinence, bladder-related and gynaecologic patients. Moreover, 62 

many of the urine microbiome studies, either with 16S or shotgun metagenomes, 63 

exclude samples with non-detectable/ below detection microbiome. While the 64 

assumption maybe that the failure is completely technical, it is unknown if host 65 

factors contribute to having ‘extremely-low’ or ‘below detection’ urine microbiome. 66 

Recently, studies of the gut microbiome, have shown a role of host genetics. While 67 

Goodrich and colleagues first reported clearly heritable components within the gut 68 
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microbiome (Goodrich et al.,2014), a finding which a few subsequent studies have 69 

also reiterated(Luca et al., 2018), Rothchilds et al reported that environmental factors 70 

may largely blur such host genetics factors (Rothchilds et al.,2018). It is unknown if 71 

genetic factors are important in the urinary microbiome. 72 

We aimed to characterize the host influence on the urinary tract microbiome in 73 

women. Using midstream urine samples from 1600 females in the TwinsUK cohort, 74 

this study, perhaps the largest on urinary microbiome so far, reports about the urinary 75 

microbiome composition in an average female population of mainly postmenopausal 76 

women with no apparent infection. We hypothesized that, in an unselected average 77 

population, (1) the inherent core urinary bacterial community could be defined (2) 78 

that the urobiome is influenced by host-specific genetic and environmental factors, (3) 79 

that some host-specific factors may relate to undetectable microbial biomass in the 80 

urine. 81 

 82 

Results 83 

Urinary microbiome across studies and were distinct from proximal body sites and 84 

shared key taxa 85 

Initially, we compared the overall composition of the urinary microbiome to similar 86 

datasets from other body sites using the same bioinformatics pipeline, using similar 87 

sized datasets of women aged >45(Supplementary Methods & Data1). Alpha diversity 88 

in the urine was, on average, reduced relative to the stool and is comparable in two 89 

urine and the vaginal datasets (Fig 1A). Stool samples in the majority ordinated 90 

separately from urine samples (Fig 1B) (Supplementary Data 1). Repeating these 91 

diversity analyses with a separate set of random 100 samples each show similar 92 

patterns and significance (SFig1A,B). In paired-sample analysis from TwinsUK 93 

(Supplementary Data1), urine microbial taxa separated from stool microbial taxa of 94 

the same individual (S1C). There was no clear correlation in the pattern of stool and 95 

urine microbiome dissimilarity for the paired samples (either obtained at same time 96 

point or not) (Mantel’s r≤0.02, p>0.1) and variance was not homogeneous (Levene 97 

paired test p=0.02) (Fig 1C-D, SData1). Thereafter, we examined the TwinsUK 98 

urinary microbiome dataset alone. 99 
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 100 

Fig 1. Urinary microbiome in older women is mostly distinct from proximal body 101 

sites and unrelated to stool microbiome. (A) Alpha diversity of urine 102 

microbiomes and other body sites. star symbol indicates significance compared to 103 

TwinsUK urobiome. (B) Dissimilarities in urine microbiomes and other body 104 

sites. Plots are based on unifrac distances (C) Paired alpha diversity analysis of 105 

stool and urine collected at same time point (D) Differences in paired stool and 106 

urine microbiome from the same time point. 107 

General description of urobiome 108 

Urine samples from 1600 mainly postmenopausal women (mean age 66.4) in the 109 

TwinsUK cohort were analysed, revealing 10955 present species-level taxa from 110 

filtered 16S data. Participant characteristics are shown in Table 1. There was high 111 

level of variability in particular species present in an individual, with only 246 (2.2%) 112 

ASVs occurring in at least 5% of samples. The use of a compositionally-sensitive 113 

analysis improved the ranking of some abundant taxa as compared to common non-114 

compositional analysis (SFig3).  To highlight intra-microbiome relationships, 115 

hierarchical balances were created, resulting in mixed-genera subclusters from 61 116 

species-level taxa (hereafter referred to as the core urobiome). There were more 117 

Actinobacteria, Fusobacteria and Proteobacteria compared to normal gut microbiome 118 

(SFig 3B). 119 
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Having low reads (no reliably-detected microbiome (<2000 reads post-filtering)) 120 

(Supplementary Data 2) associated with younger age and lower level of health deficit; 121 

specifically, a ~20% increase in the chances of detectable microbiome for a unit 122 

increase in age (p=0.0048, OR=1.21, CI=1.07 - 1.39) and ~14% increase for a unit 123 

increase in the frailty index (OR=1.144,CI=1.01-1.30,p=0.0359). There was no  124 

association between low read status and the number of previous Urinary Tract 125 

Infections (UTIs), recent antibiotics usage, surgery episodes or number of childbirth 126 

episodes (parity); amplicon concentrations associated with parity (β=1.89,p=0.0035) 127 

alone among other demographics (Supplementary Data 2). 128 

 129 

Host genetics’ influences variation of urine microbiome   130 

First, the quantitative twin model analysis showed considerable and significant 131 

genetic component in the first principal coordinate (PCo) of beta diversity (inter-132 

individual) distances which capturing 57% of the variation. Heritability of this first 133 

PCo was 18% (A= 0.179, CI=0.05-0.415, p=0.003351; C=0.0049, E=0.8164, n=760 134 

pairs) (Fig2A). Significant heritability was maintained when adjusting for other 135 

factors (Supplementary Data 3). Likewise, treating the microbiome data as Atchinson 136 

composition, the first principal component (63% of variation) on inter-sample 137 

distances showed 21% heritability (CI=0.10-0.32,C=0.00,E=0.79), and the first PC 138 

was also associated with genetic relatedness (family identity) (Kruskal-Wallis 139 

p=0.043). Some clusters showed higher heritability (Fig 2B).  140 

 141 

In addition, the dissimilarity within relatives (twin pair) in constrained principal 142 

coordinates analysis and the average difference in Euclidean distances to the normal 143 

PCo median were both smaller for monozygotic pairs (p≤0.027) (Fig2C and Fig 3D) 144 

(Supplementary Data 3), providing further evidence of a genetic component. While 145 

the study population was majorly of British ancestry, and therefore ethnicity findings 146 

would need to be confirmed, the second PCo of the microbiome diversity differed 147 

according to the 4 major ancestry or ethnic origins present (1st PC; p=0.156; 2nd PC 148 

p=0.000143), as was the Bray-Curtis dissimilarity between the ancestry groups 149 

(Supplementary Data 3, Fig. 2D).  150 

 151 

Moreover, the common urobiome taxa (using balance transformations) showed 152 

heritability of  23%(95%CI=8.77 to33.7, C=1.66E-12). Almost a quarter (59 of 245) 153 
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of frequent species had heritability greater than 10%, and some of the most heritable 154 

species (e.g. Lactobacillus iners AB-1 and Escherchia-Shigella sp.) clustered together  155 

and members showed phylogenetic relatedness among themselves and with 156 

Christenellaceae species (SFig 1D-E). Because of the potential role of some of these 157 

heritable species in UTIs, we also tested the heritability of occurrence of prior urinary 158 

tract infections, finding prior UTI to be significantly heritable (A=0.273, 159 

95%CI=0.178 – 0.368, p=3.073E-13, see Supplementary Data 3) possibly up to 40%. 160 

 161 

 162 

Fig 2. Host genetics considerably influences variation of urine microbiome. (A) 163 

Discordance in paired twin types for Euclidean distances to median microbiome 164 

in PC. MZ-monozygotic pair; DZ:Dizygotic pair; PC: principal coordinate (B). 165 

Heritability and interaction of  core urinary microbes. Size of circles at each 166 

subcluster and intensity of rectangular bars at the tips represent increasing heritability 167 

of taxa. Neighbouring species in a clade show co-abundance. Taxa are annotated to 168 

indicate different species. Clusters are not phylogenetic. (D). Microbiome principal 169 

coordinates with ancestral origin. White British constitute>90% of individuals. P-170 

values are derived from permutational models due to imbalanced sizes. Ellipses 171 

represent 95% confidence interval. (E) Bray dissimilarities with the ethnic or 172 

ancestry divisions. 173 

 174 
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  175 

 176 

Host-related/environmental factors in urinary microbiome, especially age, have 177 

important effects  178 

Age, diet, recent antibiotic usage and overall health deficit were assessed in relation to 179 

the urobiome as they are known ‘host-specific’ influencers of gut microbiome 180 

variation.  Parity (previous number of births) and surgical history (had previous 181 

surgery or not) were assessed as host-related “environmental” factors as they could 182 

potentially alter structures in or proximal to the urinary tract. Previous history of UTI 183 

was also assessed.  184 

With increasing age, there is overall increase in alpha diversity (Table 1), which was 185 

robust to uneven sample sizes or exclusion of small number of participants aged <50 186 

(0.10≥β≤0.22, 0.00027≤p≥0.0045). Age differed with beta diversity estimates 187 

(p<0.001), and was a main influencer of the 3 ‘enterotypes’ (directions) visible in the 188 

PCo plot (Fig 2B). The core urobiome and one-third (22) of the subclusters, attained 189 

statistical significance with age (1.92E-30≤FDR≤0.046).  190 

The dietary index (the Healthy Eating Index),  and an index of health deficit (the 191 

frailty index) and antibiotics usage did not produce significant difference in alpha 192 

diversity but borderline associations were found with with changes in beta diversity 193 

(diet, p=0.052, n=1004; recent antibiotics usage, p=0.041,n=992; health deficit, 194 

p=0.031, n=1139). Parity trended toward an association with alpha diversity reduction 195 

(p=0.058,n=1047), and significantly with beta diversity (p=0.026,n=1047);  surgical 196 

history did not differ with beta diversity or alpha diversity (n=540). Occurrence of 197 

UTI differed with alpha diversity (p=0.0027) and beta diversity (p=0.001). Similar 198 

results were obtained using unifrac sample distances or controlling for other factors. 199 

The contribution to variance that could be attributed to all factors, including host 200 

genetics was then examined (Fig 3). For individuals with virtually all phenotypes 201 

(n=545), unique contribution was obtained from R2 decomposition on microbiome 202 

beta diversity estimates, in permutational models (1000 permutations) controlling for 203 

other factors. The average for each factor was used after randomly rearranging all 204 
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factors 20 times. In other scenario of measuring host genetics (Supplementary Data 205 

3), but with a smaller sample size, the contribution of host genetics ranks higher.  206 

 207 

Fig 3. Top contributors to urinary microbiome variation. (A) Relative 208 

contributions to urinary microbiome. Bars represents average R2 for each variable, 209 

controlled for the presence of other factors. Microbial variation was measured using 210 

Bray-Curtis dissimilarities. Genetic contribution shown was derived from principal 211 

components of genetic kinship calculated from whole genome data.  (B-E) 212 

Microbiome dissimilarities with (B) age (C) menopause (D) prior number of 213 

UTI. (E) within family of twin pairs  (F) Trends in intra-individual Shannon 214 

diversity with age and prior number of UTI.   215 

Metagenomes confirm overall 16S microbiome data variation 216 

Using shotgun metagenome data for a subset of 178 individuals, we also examined 217 

how closely the overall patterns of the 16S data are replicated in the metagenome 218 

data. The classified metagenome reads were 99.64% Bacteria (Supplementary Data 5) 219 

and a greater number of urine metagenomes (total and per individual) were obtained 220 

than earlier reported in literature. Sample-sample variation or inter-sample distances 221 

in the microbiome data were highly correlated from metagenome and 16S data (for 222 
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Atchinson compositions with Euclidean distance, Mantel’s r=0.859, p=0.002; and for 223 

Bray dissimilarities, Mantel’s r=0.799,p=0.001). Sixteen of the top 20 abundant taxa 224 

are also within the top 20 of the metagenome data. The core microbiome found in 16S 225 

data was largely recapitulated in the metagenomics analysis; 27 of the 31 genera 226 

(87%) forming the core urobiome using 16S data were also replicated in the 227 

metagenome data. From this core, the total number of  species identifiable 228 

approximately doubled (125 vs 61 in total, 94 vs 53 in the replicated genera) most 229 

likely to due to better species assignment. 230 

 231 

 232 

Discussion 233 

In this study, we utilised new approaches in (urinary) microbiome analysis - using 234 

amplicon sequence variants rather than OTUs, creating microbial balances from 235 

highly frequent taxa, compositional analysis, and eliminating common batch 236 

environment effect in twin-pairs - to explore host factors in an relatively large, 237 

unselected community-based study population of women. These approaches 238 

strengthen deductions made from factors in urinary microbiome variation, for 239 

instance, increased diversity with age contrary to previous studies (e.g. Curtiss et al., 240 

2018; Kramer et al., 2018; Liu et al., 2017;Wang et al., 2017).   241 

Urine and other body sites 242 

The ordination patterns of the microbiomes support current thinking that the urobiome 243 

is a distinct site, similar to the observations that most bladder microbiome (urine 244 

obtained directly by catheter) differ from vaginal or stool microbiome (Wolfe & 245 

Brubaker, 2019). The more divergent of the urine studies (Urine1 cohort) involved 246 

patients with incontinence and collection was wholly catheterized. In a very small 247 

minority of individuals where urine microbiome taxa appear closer to stool, this is 248 

most likely due to phylogenetic or genome similarity in species (as no such closeness 249 

occur with non-phylogenetic measures) rather than common demographics (SFig2). 250 

In all, the current study show clear dissimilarities in stool and urine for the average 251 

population.  252 

 253 

Host-related factors and host genetics’ contribution in urinary microbiome 254 
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Parity (childbirth episodes), previous UTI occurrence, recent antibiotics usage and 255 

diet showed changes with urine microbiome diversity. Using heritability analysis, the 256 

current study showed a considerable genetic influence in the microbiome of ageing 257 

women, reaching 15% in 57% of urine taxa variation.  The remainder of contribution 258 

was largely due to variance unique to individuals. Some clinically important, 259 

“uropathogenic” genera such as Escherichia had variants with high heritability 260 

estimates, In addition, Lactobacillus. iners, a commonly found vaginal microbe which 261 

is phylogenetically close to the heritable gut microbe Christenellaceae was found to 262 

be heritable in urine.  263 

Previously, Rothschild and colleagues (2018) reported that environmental factors 264 

such as sharing household may blur genetic influence in gut microbiome composition, 265 

while Goodrich and colleagues (2014) showed host genetics played roles in gut 266 

microbiome patterns of twin-pairs. The current study, indicates significant 267 

contributions of genetics to the pattern of urine microbial composition; and 268 

controlling for cohabitation (participants asked if they live together or close with their 269 

sibling) and other known factors in urine microbial variation, did not alter the 270 

estimated the significant contributions to the pattern. Other parameters from this study 271 

bolster the observation on genetic influence: (1) samples of a member in a twin-pair 272 

were not extracted or sequenced in the same batch as the other member,(2) adding 273 

genetic relatedness statistically explained much more in the pattern of constrained 274 

ordination, (3) there was lower intra-twin difference distance to centroid among 275 

monozygotic pairs, and (4) there were differences along the lines of ethnic ancestry 276 

though the proportion of white British was dominant. Thus we conclude that host 277 

genetics influenced variation in urinary microbiome composition in this population of 278 

women.  279 

Relative to other factors, only age, menopause status and prior history of current UTI 280 

were greater than the influence of genetics.  Incidental to our main purpose, we also 281 

report here for the first time in humans that history urinary tract infection itself has a 282 

significant heritability as suggested in other species (Norris et al., 2000). 283 

 284 

Heritable urinary pathogens  285 

While Corynebacterium species were frequent among top core urobiome taxa with 286 

high heritability, the patterns detected for Lactobacillus iners/jensenii and 287 

Escherichia variants deserve mention. The Escherichia-Shigella taxon, renamed as 288 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/838367doi: bioRxiv preprint 

https://doi.org/10.1101/838367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

such to reflect the extreme sequence similarity of Escherichia coli and Shigella, is 289 

apparently ubiquitous in the normal urine microbiota from this data. The current study 290 

shows that presence of this taxon is influenced by (1) host genetic make up (its 291 

proportions had one of the highest heritability estimates (A=0.17,CI=0.11-0.29) of all 292 

frequent urine microbial species); and (2) age (its coefficient in age, 0.43, is more 293 

than double that of UTI history, 0.20). The relatively high heritability of these taxa 294 

were also replicated in the subset with metagenomics data and in all, the findings may 295 

have implications in the mixed success of E. coli vaccine trials (Huttner et al., 2017).  296 

 297 

The current study has limitations. Questionnaire data, which is subject to accurate 298 

recall and self-report by participants, was part of measures used in deriving variables 299 

such as UTI, diet and frailty. Another limitation may be the use of a single midstream 300 

urine sample set from an individual, and as such, prior microbiome stability 301 

information is unknown. Clearly, further research is needed to confirm if the findings 302 

also relate to the male urinary microbiome. 303 

 304 

To conclude, this is the first ‘large-scale’ human study to identify the factors 305 

influencing composition of the female urinary microbiome.  The urinary microbiome 306 

was distinct and apparently unrelated to stool microbiome.  It shows a significant 307 

contribution of host genetics. Key species known to have pathogenic potential were 308 

among the most heritable microbes.  Age and menopausal status were the factors with 309 

greatest influence on the urinary microbiome in women. 310 

 311 
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Figure Legends 331 

Fig 1. Urinary microbiome in older women is mostly distinct from proximal body 332 

sites and unrelated to stool microbiome. (A) Alpha diversity of urine 333 

microbiomes and other body sites. star symbol indicates significance compared to 334 

TwinsUK urobiome. (B) Dissimilarities in urine microbiomes and other body 335 

sites. Plots are based on unifrac distances (C) Paired alpha diversity analysis of 336 

stool and urine collected at same time point (D) Differences in paired stool and 337 

urine microbiome from the same time point. 338 

 339 

Fig 2. Host genetics considerably influences variation of urine microbiome. (A) 340 

Discordance in paired twin types for Euclidean distances to median microbiome 341 

in PC. MZ-monozygotic pair; DZ:Dizygotic pair; PC: principal coordinate (B). 342 

Heritability estimates in species and clusters of highly frequent urinary microbes 343 

in paired twins. Cb represents cluster names, Size of circles at each subcluster and 344 

intensity of rectangular bars at the tips represent increasing heritability of taxa. Taxa 345 

are annotated to indicate different species. Only species in at least 20% of population 346 

form clusters. Clusters are hierarchical but not phylogenetic. (D). Microbiome 347 

principal coordinates with ancestral origin. White British constitute>90% of 348 

individuals. P-values are derived from permutational models due to imbalanced sizes. 349 

Ellipses represent 95% confidence interval. (E) Bray dissimilarities with the ethnic 350 

or ancestry divisions. 351 

 352 

Fig 3. Top contributors to urinary microbiome variation. (A) Relative 353 

contributions to urinary microbiome. Bars represents average R2 for each variable, 354 

controlled for the presence of other factors. Microbial variation was measured using 355 
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Bray-Curtis dissimilarities. Genetic contribution shown was derived from principal 356 

components of genetic kinship calculated from whole genome data.  (B-E) 357 

Microbiome dissimilarities with (B) age (C) menopause (D) prior number of 358 

UTI. (E) within family of twin pairs  (F) Trends in intra-individual Shannon 359 

diversity with age and prior number of UTI.   360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

Tables  368 

Table 1. Summary of participants in TwinsUK urinary microbiome study 369 

Phenotype 
category 

Subcategory α-D index 
(mean±SD) 

Ave. no of unique 
taxa(mean±SD) 

No. of 
samples 

Age 
(mean±SD) 

Participants  2.01±1.05 65.7±48.8 1600 66.7±8.3 
Previous UTI 
occurrences 

0 times 2.14±1.0 66.1±43.1 393 67.6±8.2s 
1-4 times 2.02±1.04 67.5±51.0 719 65.9±7.8 
5-9 times 1.98±1.03 65.4±45.2 208 66.3±8.3 
10times > 1.79±1.17 60.0±53.9 201 65.7±8.3 

Ages <50-54 1.56±0.76 45.9±32.2 117 - 
55-59 1.86±1.13 61.7±49.7 210 - 
60-64 2.00±0.98 63.5±44.8 327 - 
65-69 2.04±1.03 66.0±49.8 409 - 
70-74 2.16±0.97 71.5±50.6 276 - 
75-79 2.26±1.12 74.5±50.1 170 - 
80-84 2.02±1.12 63.7±41.9 68 - 
85- 1.73±1.42 71.7±62.3 23 - 

RecentAntibiotic 
usage:3mths 

Yes 1.97±1.20ns 70.0±53.0ns 47 68.3±8.0ns 
No 2.03±1.06 66.0±49.0 945 66.6±8.3 

Frailty <0.15 2.05±1.01ns 67.0+49.0ns 511 65.9±7.5s 
0.15-0.29 1.99±1.05 64.8±49.0 834 66.1±8.0 
0.3-0.44 2.04±1.15 67.5±48.0 227 68.4±8.9 
>0.45 1.75±1.17 62.0±47.0 28 68.5±8.2 

      

Legend. α-D:  Shannon H index of alpha diversity; No. of taxa refers to number of unique sequence variant per 370 
sample i.e. no of potential species. Diversity measures were calculated after subsampling to 2000. S/NS indicates 371 

statistical significance or not for tests of a phenotype as a continuous variable. Post-hoc pairwise comparisons 372 

showed no difference in alpha diversity after 75years. 373 

 374 

STAR Methods  375 

2.1 Cohort and Phenotypes 376 
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The TwinsUK cohort has been described elsewhere (Verdi et al. 2019). Participants in 377 

the cohort are community dwelling twin pairs, recruited without any specific clinical 378 

phenotype. Various demographics were examined. Medical history questionnaires 379 

were used to define age (from birth date), history of urinary tract infections (UTIs), 380 

cohabitation, antibiotic usage, previous hysterectomy, previous oophorectomy, 381 

caesarian section and menopause status. The frailty index, calculated from clinical, 382 

physiological and mental domains (Livshits et al., 2017) was used as a measure of 383 

health deficit, and the Healthy Eating Index (Bowyer et al. 2018) based on food 384 

frequency questionnaires used to assess diet. 385 

2.2 16S Microbiome Sequencing and Analysis 386 

Twin-pair samples were separated for processing.  Extraction and Sequencing was 387 

performed at the Knight Lab, University of California San Diego.  A low biomass 388 

pipeline designed to extract optimal yields of DNA was used with 16S V4 marker-389 

based paired-end sequencing on IlluminaMiSeq platform. Multilevel quality filtering 390 

procedures and data analysis were applied to remove potential contaminants (Suppl 391 

Methods). In summary, amplicon sequence variants (ASVs), were filtered, and 392 

analysed as individual taxa and as clusters based on highly frequent variants, with 393 

subsequent compositional balance transformations (Morton et al.,2017) 394 

(Supplementary Methods). The current data was also compared to those of previous 395 

microbiome studies with similar age-range of participants after re-analysis of such 396 

data to produce ASVs (Supplementary Methods). Diversity analysis was carried out 397 

with Shannon index, Unifrac, Bray and Atchinson distances, and permutational 398 

analysis of variance was used to test inter-sample differences. Taxa counts were 399 

centred-log ratio transformed after adding a pseudocount of 1, and independent taxa 400 

associations were pruned for presence in at least 5% of samples. 401 

 402 

2.3 Metagenome Analysis 403 

Shotgun metagenomic sequencing was carried out for 178 of the participants using 404 

newer approaches (Hillman et al., 2018), with additional 14 blanks for quality control. 405 

This subset of participants were chosen to include equal numbers of dizygotic pairs 406 

and monozygotic twin pairs, as well as equal numbers of twin pairs showing 407 

discordance and concordance in 16S microbial diversity. After quality control 408 

filtering, and mapped human reads removal (based on hg19) one sample was 409 
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excluded, and the final analysis included 177 samples, comprising 43 pairs of 410 

dizygotic twins and 45 pairs of monozygotic twins (n=176). Potential contaminant 411 

species were also removed (Supplementary Methods). 412 

 413 

2.4 Host genetics analyses 414 

Heritability was calculated using an ACE model in which the component of 415 

phenotypes explained by genetics in twin pairs was estimated. Samples from co-twin 416 

were separated into different batches for sample preparation and sequencing to 417 

remove the shared technical environment related to batching. This further solidified 418 

the deductions made from the analysis of the genetic effects. Where constrained 419 

principal coordinates analysis was used, microbiome data was ordinated with the 420 

family ID tested as a predictor, then the dissimilarity within a family was then 421 

extracted to compare twin types. Discordance analysis was based on quantitative 422 

difference in pairs of monozygotic and dizygotic twins.  Analysis on ethnic origin of 423 

participants based on information obtained from questionnaires. To represent host 424 

genetic variation, first principal component from SNP-based kinship data, raw whole 425 

genomic sequence data (available for a separate subset of unrelated participants) 426 

which were part of a previous study (Long et al. 2017), and zygosity:family nested 427 

model variance (only for twin-pairs) were obtained. Each of these were analysed 428 

separately as a measure of genetic relatedness.  429 

 430 

Throughout analysis, technical covariates, including extraction kit lots, mastermix kit 431 

lot, batch, extraction and sequencing processors, and depth/library sizes (sequence 432 

reads post-QC filtering) were controlled for. Raw sequence data is available from 433 

qiita, phenotype data is available on request TwinsUK data access committee at 434 

http://twinsuk.ac.uk/resources-for-re- searchers/access-our-data.html. Scripts and 435 

codes used are available at github.com/urobiome-host-genetics 436 

 437 

Supplemental Information 438 

 439 

SFig1A-B. Replicate diversity analysis to compare urinary microbiome from 440 

various body sites. (C). Plots showing the ordination of paired stool and urine 441 
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samples (D) Top heritable species. Species displayed in line bars have more than 442 

15% heritability and star symbol indicate species detected in at least 20%. 443 

 (E). Phylogenetic tree of frequent species in urinary microbiome of older women 444 

and their heritability. Tree edges and branch length are coloured by increasing 445 

heritability estimates (from green to red). Species displayed in tree were detected at 446 

least 5% of study population.  447 

 448 

SFig2. Comparison of demographics for individuals with closer urine and gut 449 

microbiome 450 

SFig3. Comparison of top abundant urinary microbiome taxa using various 451 

approaches 452 

SFig4 Additional variation explained from relatedness in twin pairs. A without 453 

relatedness B. with relatedness 454 

 455 
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