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Abstract

The metabolism of most organisms is controlled by a diverse cast of regulatory processes, including
transcriptional regulation and post-translational modifications (PTMs). Yet how metabolic control is
distributed between these regulatory processes is unknown. Here we present Comparative Analysis of
Regulators of Metabolism (CAROM), an approach that compares regulators based on network
connectivity, flux, and essentiality of their reaction targets. Using CAROM, we analyze transcriptome,
proteome, acetylome and phospho-proteome dynamics during transition to stationary phase in E. coli
and S. cerevisiae. CAROM uncovered that the targets of each regulatory process shared unique
metabolic properties: growth-limiting reactions were regulated by acetylation, while isozymes and futile-
cycles were preferentially regulated by phosphorylation. Reversibility, essentiality, and molecular-
weight further distinguished reactions controlled through diverse mechanisms. While every enzyme can
be potentially regulated by multiple mechanisms, analysis of context-specific datasets reveals a
conserved partitioning of metabolic regulation based on reaction attributes.

Author summary

There are several ways to regulate an enzyme's activity in a cell. Yet, the design principles that
determine when an enzyme is regulated by transcription, translation or post-translational modifications
are unknown. Each control mechanism, such as transcription, comprises several regulators that control
a distinct set of targets. So far, it is unclear if similar partitioning of targets occurs at a higher level,
between different control mechanisms. Here we systematically analyze patterns of metabolic regulation
in model microbes. We find that five key parameters can distinguish the targets of each mechanism.
These key parameters provide insights on specific roles played by each mechanism in determining
overall metabolic activity. This approach may help define the basic regulatory architecture of metabolic
networks.

Introduction

A myriad control mechanisms regulate microbial metabolic adaptation to new environments [1-8].
Nevertheless, microbes deploy distinct regulatory mechanisms to regulate enzyme activity in response
to specific environmental challenges. For example, B. subtilis cells primarily utilize transcriptional
regulation when glucose is available, but post-transcriptionally regulate metabolic enzymes after malate
addition [9]. In both E. coli and yeast, some pathways, such as glycolysis, are predominantly regulated
by post-transcriptional regulation, while others, such as the TCA cycle, are regulated at the
transcriptional level [1,3,10]. This suggest that apart from differences in response time, specific
mechanisms are deployed for specialized regulatory tasks. Nevertheless, it is unclear why some
enzymes are regulated using acetylation or via other PTMs such as phosphorylation [3,4].

Numerous advantages of regulation by PTMs have been proposed over the past five decades [11-13].
These include low energy requirements, rapid response, and signal amplification. Yet these
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characteristics are not unique to PTMs, and these features also do not differentiate between PTMs
such as acetylation and phosphorylation. The staggering complexity of each regulatory process has
limited the comparative analysis of metabolic regulation at a systems level [3]. Existing studies have
focused on a small set of metabolic pathways or on a single regulatory process [4,10,14-20]. Such
studies have revealed reaction reversibility and metabolic network structure to be predictive of
regulation [8,16,21-24]. Yet these studies do not shed light on the differences between each regulatory
process. In sum, although some general network principles of regulation are known, how it is
partitioned among various regulatory mechanisms is unclear.

We hence developed a data-driven approach, called Comparative Analysis of Regulators of Metabolism
(CAROM), to identify unique features of each regulatory process. CAROM achieves this by comparing
various properties of metabolic enzymes, including essentiality, flux, molecular weight and topology. It
identifies those properties that are highly enriched among targets of each process than expected out of
random chance.

Results and Discussion

Here we focus on four well-studied control mechanisms with available omics datasets - transcription,
post-transcription, phosphorylation and acetylation. We analyzed the dynamics of metabolic regulation
during a well-characterized process in yeast, namely, transition to stationary phase. We obtained RNA
sequencing, time-course proteomics, acetylomics, and phospho-proteomics data from the literature
[25-27]. Targets for each process were determined based on differential levels between stationary and
exponential phase (Methods). We assumed that PTMs and other regulatory sites that are dynamic and
conditionally regulated are likely to be functional [28].

The targets of diverse regulatory mechanisms were used as input to CAROM. CAROM analyzes the
properties of the targets in the context of a genome-scale metabolic network model of yeast [29]. We
hypothesized that differences in target preferences between diverse regulators can be inferred from the
network topology and fluxes. Protein and gene targets of each process were mapped to corresponding
metabolic reactions in the model. There was significant overlap among reactions regulated through
changes in both the transcriptome and proteome, and transcriptome and acetylome (hypergeometric p-
value =5 x 10?° and 1 x 10-"®respectively; S. Table 1). In contrast, there was little overlap between
targets of phosphorylation with other mechanisms (p-value > 0.1; S. Table 1). While prior studies found
higher overlap between targets of PTMs [30,31], they used all possible sites that can be acetylated or
phosphorylated. However, only a fraction of PTM sites are likely to be active and functional in a single
condition. Overall, each regulatory mechanism had a distinct set of targets (Figure 1A).

What are the common features of enzymes that are regulated by each mechanism? To answer this, we
used CAROM to compare the regulation of enzymes that are essential for growth in minimal media.
Essential enzymes in the yeast metabolic model were determined using Flux Balance Analysis (FBA)
[32]. Surprisingly, this set of enzymes was highly enriched among those regulated by acetylation but
not by other processes (ANOVA p-value < 10-'6; Figure 1B; S. Table 2). Since regulation can be
optimized for fitness across multiple conditions [33], we identified enzymes that impact growth in 87
different nutrient conditions comprising various carbon and nitrogen sources using FBA. This set of
essential enzymes was once again enriched for acetylation relative to other mechanisms (ANOVA p-
value < 10-'6; S. Figure 1). This trend was observed using experimentally derived list of essential genes
as well (hypergeometric p-value = 2 x 107 for acetylation). Interestingly, in contrast to acetylation,
genes regulated at the proteomic level were significantly under-represented among the essential genes
(hypergeometric p-value of depletion = 8 x 10-'"). Thus, essential enzymes are likely to be constitutively
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expressed and their activity modulated through acetylation. This may explain why transcriptional
regulation has minimal impact on fluxes in central metabolism, which contain several growth-limiting
enzymes [3,10].

We next used CAROM to determine the impact of reaction position in the network on its regulation. We
counted the number of pathways each reaction is involved in, along with other topological metrics, such
as the closeness, degree and page rank. We found that the regulation of enzymes differed significantly
based on network topology (Figure 1C). First, reactions with low connectivity, measured through any of
the topological metrics, were highly likely to be unregulated. In contrast, highly connected enzymes
linking multiple pathways were more likely to be regulated by PTMs. Interestingly, reactions regulated
by both the PTMs had the highest connectivity (S. Figures 2, 3). Several key hubs, such as acetyl-CoA
acetyltransferase, hexokinase and phosphofructokinase are regulated by at least 2 different
mechanisms (S. Table 3).

We next assessed how regulation differs based on the magnitude and direction of flux through the
network. We inferred the full range of fluxes possible through each reaction using flux variability
analysis (FVA) [34]. Since yeast cells may not optimize their metabolism for biomass synthesis during
transition to stationary phase, we also performed FVA without assuming biomass maximization. We
found that irreversible reactions were highly likely to be regulated (S. Figure 4). A recent study found
the same trend for allosteric regulation as well [21]. However, reversibility alone did not differentiate
between regulatory mechanisms.

Interestingly, reactions that have the potential to carry high fluxes were predominantly regulated by
phosphorylation (Figure 1D; ANOVA p-value < 10-'). This set of phosphorylated reactions comprise
several kinase-phosphatase pairs, enzymes that are part of loops that consume energy (“futile cycles”),
or reactions that have isozymes in compartments such as vacuoles or nucleus (S. Table 4). Thus,
phosphorylation in this condition selectively regulates reactions to avoid futile cycling between
antagonizing reactions or those operating in different compartments. Using data from experimentally
constrained fluxes from Hackett et al study [21] revealed similar patterns of regulation (S. Figure 5).
Reactions with the highest flux, such as ATP synthase, phosphofructokinase, and nucleotide kinase,
were also regulated by multiple mechanisms.

Finally, we compared regulation based on fundamental enzyme properties: catalytic activity and
molecular weight. While catalytic activity was similar across the targets of all mechanisms, targets of
phosphorylation had the highest molecular weight (p-value < 10-6) (S. Figures 6,7). There is a weak
correlation between molecular weight and maximum flux (Pearson’s correlation R = 0.02), suggesting
that both maximum flux and molecular weight are likely to be independent predictors of regulation by
phosphorylation.

To check if this pattern of regulation is observed in other conditions, using CAROM, we analyzed data
from nitrogen starvation response and the cell cycle in yeast, where both phospho-proteomics and
transcriptomics data are available [35—-38]. A similar trend of regulation was observed in these
conditions with phosphorylation regulating isozymes and enzymes that can carry high fluxes (futile
cycles) (Figure 2). Since isozymes arise frequently from gene duplication, our results may explain the
observation that duplicated genes are more likely to be regulated by phosphorylation [39].

Since many mechanisms of metabolic regulation are evolutionarily conserved, we next analyzed data
from E. coli cells during stationary phase [40—42]. By analyzing transcriptomics, proteomics,
acetylomics and phosphoproteomics data using the E. coli metabolic network model, CAROM
uncovered that the pattern of regulation observed in yeast was also observed in E. coli (Figure 3).
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Reactions that were regulated in E. coli had higher topological connectivity compared to those that
were unregulated. Further, essential reactions were enriched for regulation by acetylation, and
reactions with high maximum flux or large enzyme molecular weight were enriched for regulation by
phosphorylation. However, in contrast to yeast, phosphorylation impacted very few metabolic genes in
E. coli, and may play a relatively minor role in this specific context. Phosphorylation had 20-fold fewer
targets compared to other mechanisms, and its targets overlapped significantly with other processes
(S. Tables 5-6).

In sum, our analysis reveals a unique distribution of regulation within the metabolic network (Figure 4).
Within each process, it is well known that individual regulators such as transcription factors or kinases
have their own unique set of targets. Here we find that similar specialization occurs at a higher scale,
involving diverse processes. Reaction properties identified by CAROM to be associated with distinct
regulatory mechanisms may be related to specific functions performed by each regulator. For example,
phosphorylation may represent a mechanism of feedback regulation to control futile cycles and high
flux reactions that consume ATP [6,43]. Finally, this pattern of regulation is context specific — predictive
features such as reaction flux or essentiality can change between conditions and influence regulation.
Further, while most essential reactions were regulated, a small subset (14%) were not found to be
regulated by any mechanism. These enzymes could be sites of allosteric regulation or other regulatory
mechanisms not covered here due to the lack of context specific datasets (S. Table 7). Overall, these
results are robust to the thresholds used for finding differentially regulated sites, using data from
different sources, and other modeling parameters (S. Tables 8-12).

Since microbes exhibit a wide range of metabolic behaviors, it is not possible to uncover regulation in
each condition through experiments. We need tools like CAROM to identify factors that determine the
deployment of regulatory mechanisms in a metabolic context. Although flux balance analysis of
metabolic models can accurately forecast optimal flux distribution, it does not provide insights on how
the flux rewiring is achieved. Our analysis predicts regulatory mechanisms that will likely orchestrate
flux adjustments based on reaction attributes. This can guide drug discovery and metabolic engineering
efforts by identifying regulators that are dominant in different parts of the network [44]. CAROM can be
applied to uncover target specificities of other regulators such as non-coding RNAs and PTMs, and
help understand the architecture of metabolic regulation in a wide range of organisms.
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Methods
CAROM

The CAROM approach takes as input a list of genes that are the targets of one or more regulatory
processes. It compares the properties of the targets and identifies significant differences in target
properties between mechanisms using ANOVA. Overall, CAROM compares the following 13 properties:
¢ Impact of gene knockout on biomass production, ATP synthesis, and viability across 87 different
conditions
e Flux through the network measured through Flux Variability analysis and PFBA, reaction
reversibility
e Enzyme molecular weight and catalytic activity
e The total pathways each reaction is involved in, its Degree, Closeness and PageRank

The CAROM source-code is available from the Synapse bioinformatics repository
https://www.synapse.org/CAROM

Processing omics data

We used RNA-sequencing data from Treu et al 2014 that compared the expression profile of S.
cerevisiae between mid-exponential growth phase with early stationary phase [27]. A 2-fold change
threshold was used to identify differentially expressed genes. Lysine acetylation and protein
phosphorylation data were obtained from the Weinert et al 2014 study that compared PTM levels
between exponentially growing and stationary phase cells using stable isotope labeling with amino
acids in cell culture (SILAC) [26]. A 2-fold change threshold of the protein-normalized PTM data was
used to identify differentially expressed PTMs. Proteomics data was taken from Murphy et al time-
course proteomics study [25]. The hoteling T2 statistic defined by the authors was used to identify
proteins differentially expressed during diauxic shift; the top 25% of the differentially expressed proteins
were assumed to be regulated. Proteomics data from Weinert et al was also used as an additional
control and we observed the same trends using this data as well (S. Table 10). Further, we repeated
the analysis after removing genes that were not expressed during transition to stationary phase; the
transcripts for a total of 12 genes out of the 910 in the model were not detected by RNA-sequencing in
the Treu et al study [27]. Removing the 12 genes did not impact any of the results (S. Table 9).

As additional validation, we used periodic data from the yeast cell cycle. Time-course SILAC phospho-
proteomics data was obtained from Touati et al [37]. Phospho-sites whose abundance declined to less
than 50% or increased by more than 50% at least two consecutive timepoints were considered
dephosphorylated or phosphorylated respectively as defined by the authors. Transcriptomics data was
taken from Kelliher et al study that identified 1246 periodic transcripts using periodicity-ranking
algorithms [38].

The phospho-proteomics and transcriptome data during nitrogen shift was obtained from Oliveira et a/
[35,36]. The nitrogen shift studies compared the impact of adding glutamine to yeast cells growing on a
poor nitrogen source (proline alone or glutamine depletion) with cells growing on a rich nitrogen source
(glutamine plus proline). A 2-fold change threshold was used to identify differentially expressed
transcripts and phospho-sites.
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E. coli acetylation data was taken from the Weinert et al study comparing actively growing exponential
phase cells to stationary phase cells [42]. Proteomics and transcriptomics were from Houser et al study
of E. coli cells in early exponential phase and stationary phase [41]. Phospho-proteomics data for
exponential and early stationary phase E. coli cells was taken form Soares et al [40]. We used a 2-fold
change (p < 0.05) threshold for all studies.

The results are robust to the thresholds used for identifying differentially expressed genes or proteins
(S. Table 11). In all studies, genes and proteins that are either up or down regulated were considered to
be regulated. The final data set table used for all comparative analyses is provided as a supplementary
material (S. Table 13).

Genome scale metabolic modeling

We used the yeast metabolic network reconstruction (Yeast 7) by Aung et al, which contains 3,498
reactions, 910 genes and 2,220 metabolites [29]. The analysis of E. coli data was done using the
IJO1366 metabolic model [45]. All analyses were performed using COBRA toolbox for MATLAB [46].

The impact of gene knockouts on growth was determined using flux balance analysis (FBA). FBA
identifies an optimal flux through the metabolic network that maximizes an objective, usually the
production of biomass. A minimal glucose media (default condition) was used to determine the impact
of gene knockouts. Further, gene knockout analysis was repeated in a set of 87 different minimal
nutrient conditions to identify genes that impact growth across diverse conditions; these conditions
span all carbon and nitrogen sources that can support growth in the Yeast 7 model. The number of
times each gene was found to be lethal (growth < 0.01 units) across all conditions was used as a metric
of essentiality.

To infer topological properties, a reaction adjacency matrix was created by connecting reactions that
share metabolites. We used the Centrality toolbox function in MATLAB to infer all network topological
attributes including centrality, degree and PageRank.

Flux Variability Analysis (FVA) was used to infer the range of fluxes possible through every reaction in
the network. Two sets of flux ranges were obtained with FVA — the first with optimal biomass and the
latter without assuming optimality. In the second case, the fluxes are limited by the availability of
nutrients and energetics alone, thus it reflects the full range of metabolic activity possible in a cell.
Reactions with maximal flux above 900 units were assumed to be unconstrained and were excluded
from the analysis, as they are likely due to thermodynamically infeasible internal cycles [47]; the choice
of this threshold for flagging unconstrained reactions did not impact the distribution between regulators
over a wide range of values (S. Table 12).

For fitting experimentally derived flux data from Hackett et al [21], reactions were fit to the fluxes using
linear optimization and the flux through remaining reactions that do not have experimentally derived flux
data were inferred using FVA. Analysis using a related approach for inferring fluxes — PFBA, did not
reveal any significant difference as PFBA eliminates futile cycles and redundancy by minimizing total
flux through the network while maximizing for biomass [48] (S. Figure 5).

Reaction reversibility was determined directly from the model annotations. We also used additional
reversibility annotation from Martinez et al based on thermodynamics analysis of the Yeast metabolic
model [49]. Pathway annotations, enzyme molecular weight and catalytic activity values were obtained
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from Sanchez et al [50]. The comparative analysis of regulatory mechanisms was also repeated using
the updated Yeast 7.6 model and yielded similar results (S. Table 8) [50].

The comparative analysis of target properties was done using gene-reaction pairs rather than genes or
reactions alone; the gene-reaction pairs accounts for regulation involving all possible combinations of
genes and associated reaction, including isozymes that may involve different genes but the same
reaction or multi-functional enzymes involving same the gene associated with different reactions. The
910 genes and 2310 gene-associated reactions resulted in 3375 unique gene-reaction pairs in yeast.

All statistical tests were performed using MATLAB. Significance of overlap between lists was estimated
using the hypergeometric test. Significance of the differences in distribution of target properties
between mechanisms were determined using ANOVA, the non-parametric Kruskal-Wallis test, and after
multiple hypothesis correction (S. Table 8).
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Figure 1. Comparison of the properties of the targets of regulation in yeast during transition to
stationary phase. A. The Venn diagram shows the extent of overlap between targets of each process.
Only 2 genes were found to be regulated by all four mechanisms. Targets of phosphorylation did not
show any significant overlap with other mechanisms, while transcriptome and proteome showed the
highest overlap (S. Table 1). B. Enzymes that impact growth when knocked out are highly likely to be
acetylated. C. Enzymes with poor connectivity, as measured through the network connectivity metric -
closeness, are more likely to be Unregulated. D. Enzymes catalyzing reactions with high maximum flux
are likely to be either regulated through phosphorylation or to be unregulated. The Anova p-value
comparing the differences in means is shown in the title. (Abbreviation: transcription (Tr), post-
transcription (Pr), acetylation (Ac), phosphorylation (Ph) or Unregulated (Un)).
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Figure 3. Comparison of the
properties of enzymes in E.
coli regulated by transcription
(Tr), post-transcription (Pr),
acetylation (Ac),
phosphorylation (Ph) or
Unregulated (Un) during
transition to stationary phase.
Similar to yeast, reaction
essentiality (A), connectivity (B),
maximum flux (C) and molecular
weight (D) are predictive of
regulation by acetylation, all four
mechanisms, and
phosphorylation (Vmax, MW)
respectively.
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Figure 4. Reaction attributes predictive of regulation by each process in yeast. A. The heatmap
shows the statistical enrichment and depletion of the targets of each process among reactions that are -
(1) essential, (2) have high maximum flux (Vmax > 75™ percentile), (3) catalyzed by enzymes with high
molecular weight (MW > 75t percentile), (4) highly connected (Closeness > 75™ percentile), and (5)
reversible. The log-transformed p-values from hypergeometric test are shown with a positive sign for
enrichment and negative sign for depletion. B. A schematic pathway summarizing the division of labor
in metabolic regulation. Essential reactions (Enz1 and Enz4) are preferentially acetylated; reactions in
futile cycles and in different compartments (Enz6) are phosphorylated; non-essential enzymes with low
connectivity are regulated through transcriptional regulation (Enz3), and reactions with high connectivity
are regulated through multiple mechanisms (Enz2). Reversible reactions are predominantly
unregulated (Enz5).
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Supplementary Figures

growth across conditions p =7.16 x 10"
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S. Figure 1. Distribution of regulation based on gene essentiality across 87 different conditions. These
conditions comprise 56 different carbon sources including glucose, and 31 different nitrogen sources
including ammonium ions. The total number of conditions in which each gene deletion was viable was
calculated. This total number was then compared between targets of each regulatory mechanism. The
box plots show that acetylation preferentially regulates the genes that impact growth across the 87
conditions. The box plot whiskers extend to the 99.3 percentile of each distribution. The ANOVA p-
value comparing the means is 7.1 x 104",
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S. Figure 2. Distribution of regulation based on topological properties of each reaction. Four different
topological properties are shown in the box plots - the total number of annotated pathways each
reaction participates (Tot. pathways), the number of times each reaction is traversed during a random
walk between reactions in the network (Pagerank), the total number of connected reactions (Degree)
and the number of times each reaction appears on a shortest path between two reactions
(Betweenness). These show that reactions that are regulated by any mechanism have a higher
connectivity compared to those that are unregulated. Furthermore, reactions regulated by both
acetylation and phosphorylation had the highest connectivity across all metrics. The ANOVA p-value
comparing the means is provided in the title. (Abbreviations: regulation by both transcription and post-
transcription (Tr + Pr), both acetylation and phosphorylation (Ac + Ph), at least 3 regulators (3 Reg),
and Unregulated (Un)).
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S. Figure 3. Properties of reactions regulated by multiple mechanisms. The box plots compare the
properties of enzymes regulated by transcription, post-transcription, acetylation, phosphorylation with
those regulated by both transcription and post-transcription (Tr + Pr), both acetylation and
phosphorylation (Ac + Ph), or at least 3 regulators (3 Reg). This set of combinations among regulators
was chosen as both acetylation and phosphorylation are PTMs, and the transcriptome and proteome of
yeast cells show significant correlation. Reactions regulated by both acetylation and phosphorylation
had the highest connectivity as measured by the inverse sum of the distance from a reaction to all other
reactions in the network (Closeness). Apart from connectivity, reactions regulated by two different
mechanisms did not share properties of reactions regulated by each individual mechanism. For
example, reactions regulated by acetylation and phosphorylation were not likely to be essential or have
high maximum flux. The ANOVA p-value comparing the means is provided in the title.
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S. Figure 4. The box plots show the distribution of regulation based on reaction reversibility. Reversible
reactions were highly likely to be not regulated by any of the four mechanisms. The left panel compares

the distribution of regulation of reversible reactions based on the annotation from the Yeast 7 model

(reversible reactions are set to 1 and irreversible reactions are set to 0). The panel on the right uses an

updated list based on thermodynamic analysis of the Yeast metabolic model by Martinez et al [49].

19


https://doi.org/10.1101/838243
http://creativecommons.org/licenses/by/4.0/

488

489
490

491

492
493
494
495
496
497
498
499
500

bioRxiv preprint doi: https://doi.org/10.1101/838243; this version posted November 11, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

A. FVA Vmax p =5.53 x 10%° B. FVA Yeast7.6 Vmax p = 6.97 x 10°%®

400 1 40 1
300 1 T 30 A -:-
1 -
1 1 T |
1 1 1 1
- | |
200 1 : : ! 201 - I 1
T | 1
| : ! | ]
1 | : T
N |:| I:IT I:IT H H "Ir | :
0 p
Tr Pr Ac Ph Un Tr Pr Ac Ph Un
1 5 . C- Hacket FVA Vmax p=6.21x 10" 0.07 - D. PFBA p=6.57 x 107
0.06 1
11 0.05 1 T
T I
: 0.04 1 :
| 1
0.5 ! 0.03 1 :
0.02 1
0q =—e—— S = —_— 0.01 1
Tr Pr Ac Ph Un Tr Pr Ac Ph Un
E.
TRANS |
eroT < [MEEH AR HII H
ACET [ | |||IH|\ ||\ | \ I \ |
ewos 1 {1 INCHRLEAL I| O
vmax

500 1000 1500 2000 2500 3000

S. Figure 5. Distribution of regulation based on magnitude of maximum possible flux (mmol/gDW/hr)
through each reaction. The plots compare the distribution of regulation using flux calculated using
various methods and models. The ANOVA p-value comparing the means is provided in the panel title of
each plot. These results show that phosphorylated reactions are highly enriched among those reactions
with high maximum flux. A. Maximum flux through each reaction was calculated using FVA using the
Yeast 7 model without assuming that cells maximize their biomass (the default objective in FVA and
FBA). The box plots compare the maximum flux value of reactions regulated by each mechanism. B.
Maximum flux through each reaction was calculated using FVA without assuming that cells maximize
their biomass using the Yeast 7.6 model (Yeast 7 model was used for all analyses). C. The flux through
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the model was first fit to the experimentally inferred flux data from Hackett ef al[21]. The maximum flux
through all reactions was then determined using FVA. D. The flux through each reaction was inferred
from Parsimonious FBA (PFBA). Note that PFBA does not provide the maximum flux but the flux value
that minimizes the sum of flux through all reactions while maximizing the biomass objective. Hence it
does not reveal any futile cycles or redundancy in the network. E. The heatmap shows the distribution
of regulation based on magnitude of maximum possible flux (Vmax) through of each reaction.
Reactions are sorted based on Vmax inferred from FVA. The columns correspond to each reaction-
gene pair. Those that are regulated by each mechanism are shown in yellow, while those that are not
regulated by a specific mechanism are in blue.
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S. Figure 6. The box plots show the distribution of regulation in Yeast based on enzyme molecular
weight. Enzymes regulated by phosphorylation on average tended to have high molecular weight. Data
for targets of phosphorylation and transcriptional regulation in Nitrogen starvation (denoted by ‘Ni_’
prefix) and Cell cycle (denoted by ‘CC_’ prefix) conditions are also shown for comparison.
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S. Figure 7. The box plots show the distribution of regulation based on enzyme catalytic activity (kcat)

in Yeast (data from Sanchez et al [50]). No consistent difference across datasets was observed in
regulation based on the catalytic activity of the target enzyme.
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Supplementary Tables

A
Regulatory mechanisms | Reaction Overlap | p-value
TRANS PROT 421 4.12 x 103%°
TRANS ACET 285 2.36 x 10-"°
TRANS PHOS 266 0.241723
PROT ACET 133 8.53 x 10%
PROT PHOS 117 0.925481
ACET PHOS 89 0.420549

B
Regulatory mechanisms | Gene Overlap | p-value
TRANS PROT 153 0.010941
TRANS ACET 157 0.001552
TRANS PHOS 61 0.931005
PROT ACET 69 0.925509
PROT PHOS 42 0.291789
ACET PHOS 34 0.860463

C
Total regulators | Percentage among those regulated
2 or more 47.8%
3 or more 8.7%
All 4 0.08%

S. Table 1. Overlap between targets of various mechanisms - transcription (TRANS), post-transcription
(PROT), acetylation (ACET), phosphorylation (PHOS). This reveals low overlap between targets of
regulation by phosphorylation and other mechanisms. A. Overlap between target reactions B. Overlap
between target genes. C. Percentage of reactions regulated by multiple mechanisms. Overall, 69% of
the gene-associated reactions in the model were regulated; among those regulated, 47.8% were
regulated by more than one mechanism.

S. Table 2. Essential reactions regulated by acetylation (Spreadsheet file)

S. Table 3. Top 50 reactions sorted based on topological connectivity (Spreadsheet file)

S. Table 4. Top 50 reactions with maximum reaction flux regulated by phosphorylation (Spreadsheet
file)
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Regulation E. coli S. cerevisiae
Transcription 469 468
Post-transcription/Proteomic 372 266
Acetylation 460 265
Phosphorylation 17 133

S. Table 5. Comparison of total genes regulated by each process in E. coli with S. cerevisiae shows

that phosphorylation plays a relatively minor role in E. coli metabolic regulation during stationary phase.

Regulatory mechanisms | p-value Reaction Overlap
TRANS PROT 3.77 x 102 | 590

ACET TRANS 0.042022 | 442

ACET PROT 0.192068 | 379

ACET PHOS 5.60 x 10" | 28

PHOS TRANS 0.004853 | 22

PHOS PROT 0.95148 9

S. Table 6. Overlap between targets of various mechanisms in E. coli - transcription (TRANS), post-

transcription (PROT), acetylation (ACET), phosphorylation (PHOS).

S. Table 7. Gaps in regulation — Essential genes that are unregulated. One representative reaction is
shown for each gene in case there are multiple reactions associated with it (Spreadsheet file)

Model Yeast 7 (default) Yeast 7.6

p-value ANOVA Kruskal-Wallis | ANOVA Kruskal-Wallis
Growth rate 2.07 X104 | 1.24 X 10 7.82 X 1043 | 1.37 X 1047
Closeness 3.33 X 1048 | 1.74 X 10% 1.66 X 10-%° | 3.61 X 10
Vmax (without max. biomass) | 5.53 X 106 | 9.25 X 10-"3 6.97 X 10® | 1.30 X 10"

S. Table 8. Robustness of the results comparing the difference in distribution of properties between
targets of various regulatory mechanisms using the Yeast 7.6 model. Significance of results using the
non-parametric Kruskal-Wallis test is also shown. The p-values for the key reaction features shown in

Figure 1 using the Yeast 7 model is provided as comparison. All p-values are significant at FDR < 0.01
using both Bonferroni adjustment and Benjamin-Hochberg multiple hypothesis correction.
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Model All genes (default) All expressed genes
p-value ANOVA Kruskal-Wallis | ANOVA Kruskal-Wallis
Growth rate | 2.07 X 104! | 1.24 X 10-° 3.3 X104 |21 X10%°
Closeness | 3.33 X 1048 | 1.74 X 10%° 2.2X10%°| 3.5 X 10
Vmax 1.59 X 1026 | 2.51 X 10-% 8.1 X10?%" | 1.3 X 10-?

S. Table 9. Robustness of the results after removing genes that are not-expressed (i.e. not detected in
RNA-seq data) in both exponential and stationary phase cultures. The p-values reported in Figure 1
using all the metabolic genes in the Yeast 7 model is provided as comparison.

Model Murphy et al (default) Weinert et al
p-value ANOVA Kruskal-Wallis | ANOVA Kruskal-Wallis
Growth rate | 2.07 X 1041 | 1.24 X 10-° 1.59 X 1037 | 2.63 X 1033
Closeness | 3.33 X 1048 | 1.74 X 10%° 3.10 X 1044 | 1.62 X 1048
Vmax 1.59 X 1026 | 2.51 X 10-% 1.71 X102 | 1.94 X 10'°

S. Table 10. Comparison of results using proteomics data from Weinert et al instead of Murphy et al.
The ANOVA p-value comparing the means are provided. The p-values reported in Figure 1 using

Murphy et al data is provided as comparison.

Fold change 2 (default) | 1.5 3 4

Growth rate 2.07 X 1041 | 3.72 X 10% | 1.12 X 103 | 5.82 X 1026
Closeness 3.33 X 1048 | 2.09 X 1047 | 1.13 X 10-%2 | 6.95 X 10-20
Vmax (with max. biomass) | 1.59 X 1026 | 6.97 X 1024 | 1.26 X 1023 | 1.01 X 10-1°
Top Percentile 25 (default) | 50 15 5

Growth rate 2.07 X104 | 1.42 X 1042 | 2.49 X 1030 | 2.71 X 1040
Closeness 3.33 X108 | 1.86 X 104" | 7.15 X 105 | 9.66 X 1048
Vmax (with max. biomass) | 1.59 X 1026 | 6.07 X 10-'8 | 5.66 X 103" | 8.98 X 10-%6

S. Table 11. Comparison of thresholds used for identifying differentially expressed genes and proteins.
These show that our results are robust to the thresholds for identifying the targets of various regulatory
mechanisms. The ANOVA p-value comparing the means are provided. Note that the first table uses
fold change thresholds for transcriptomics, acetylation and phospho-proteomics data alone. Since the
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proteomics data uses a percentile cut off, the robustness analysis for this data was performed
separately.

Threshold for unconstrained reactions | ANOVA p-value for Vmax
100 5.07 x 103
200 1.08 x 1057
300 5.27 x 1050
400 3.53 x 107
500 2.24 x 1025
600 2.24 x 1025
700 2.24 x 1025
800 1.59 x 10-26
900 1.59 x 10-26
1000 4.68 x 10-150

S. Table 12. Comparison of thresholds used for identifying unconstrained reactions from FVA.
Reactions with maximal flux above the threshold listed in the table were assumed to be unconstrained
and were excluded from the analysis, as they are likely due to thermodynamically infeasible internal
cycles. The ANOVA p-value comparing the means of the maximum flux through the target reactions of
different regulatory mechanisms is provided. The default value (900 mmol/gDW/hr) for eliminating
unconstrained reactions is highlighted and was used for all analyses. These show that our results are
robust to the thresholds for identifying unconstrained reactions.

S. Table 13. Raw dataset containing all yeast genes and associated reactions, the corresponding
regulators, and the reaction properties (Spreadsheet file).
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