

1 **Response learning confounds assays of inhibitory control on detour tasks**

2
3 Jayden O. van Horik*, Christine E. Beardsworth, Philippa R. Laker, Mark A. Whiteside,
4 and Joah R. Madden

5
6 Centre for Research in Animal Behaviour, Psychology, University of Exeter, UK

7
8 *Correspondence: Jayden O. van Horik, Centre for Research in Animal Behaviour,
9 Washington Singer Laboratories, Psychology, College of Life and Environmental
10 Sciences, University of Exeter, Exeter, EX4 4QG, UK

11 E-mail address: jayden.van.horik@gmail.com

12
13
14 **ABSTRACT** The ability to inhibit prepotent actions towards rewards that are made
15 inaccessible by transparent barriers has been considered to reflect capacities for
16 inhibitory control (IC). Typically, subjects initially reach directly, and incorrectly, for the
17 reward. With experience, subjects may inhibit this action and instead detour around
18 barriers to access the reward. However, assays of IC are often measured across
19 multiple trials, with the location of the reward remaining constant. Consequently, other
20 cognitive processes, such as response learning (acquisition of a motor routine), may
21 confound accurate assays of IC. We measured baseline IC capacities in pheasant
22 chicks, *Phasianus colchicus*, using a transparent cylinder task. Birds were then divided
23 into two training treatments, where they learned to access a reward placed behind a
24 transparent barrier, but experienced differential reinforcement of a particular motor
25 response. In the Stationary-Barrier treatment, the location of the barrier remained
26 constant across trials. We therefore reinforced a fixed motor response, such as always
27 go left, which birds could learn to aid their performance. Conversely, we alternated the
28 location of the barrier across trials for birds in the Moving-Barrier treatment, and hence
29 provided less reinforcement of their response learning. All birds then experienced a
30 second presentation of the transparent cylinder task to assess whether differences in
31 the training treatments influenced their subsequent capacities for IC. Birds in the
32 Stationary-Barrier treatment showed a greater improvement in their subsequent IC
33 performance after training compared to birds in the Moving-Barrier treatment. We
34 therefore suggest that response learning aids IC performance on detour tasks.

35 Consequently, non-target cognitive processes associated with different neural
36 substrates appear to underlie performances on detour tasks, which may confound
37 accurate assays of IC. Our findings question the construct validity of a commonly used
38 paradigm that is widely considered to assess capacities for IC in humans and other
39 animals.

40

41 **Key Words:** Cylinder Task, Detour Task, Executive Functions, Motor Routine

42

43 INTRODUCTION

44 Inhibitory Control (IC) is the ability to refrain prepotent responses and delay
45 gratification (Diamond, 2013). Importantly, IC is central to the self-regulation of
46 behaviours (Miyake & Friedman, 2012), with deficits linked to numerous pathological
47 disorders in humans (Moffitt et al., 2011). Assays of IC, using transparent barriers, are
48 also frequently used in studies of animal cognition (Kabadayi, Bobrowicz, & Osvath,
49 2018; MacLean et al., 2014). Transparent barriers are considered to evoke IC as they
50 restrict prepotent responses towards a visible, goal placed behind the barrier
51 (Diamond, 1981). Many subjects show initial impairments in their ability to inhibit
52 prepotent responses, as their attempts to obtain a goal are obstructed by the barrier.
53 With subsequent experience of the task, subjects may however improve their ability to
54 inhibit these prepotent responses and instead detour around the barrier to obtain the
55 goal (van Horik et al., 2018). These findings suggest that other processes of learning
56 may mediate performances across repeated trials on these tasks, potentially
57 confounding reliable assays of IC. Accordingly, controlled studies, using animal
58 models, suggest that the cognitive constructs that underlie performances on some
59 commonly used IC tasks remain unclear (van Horik et al., 2018; Völter, Tinklenberg,
60 Call, & Seed, 2018).

61

62 A broad comparative study involving 567 individuals from 36 species found superior
63 performances on IC tasks among anthropoid apes, leading to the notion that large
64 absolute brain size was a good predictor of IC capacity (MacLean et al., 2014).
65 However, subtle differences in test procedures have recently revealed that numerous
66 species show IC performances that are comparable to those anthropoid apes reported
67 by MacLean and colleagues (2014), even despite possessing a relatively smaller
68 absolute brain size (corvids: Jelbert, Taylor, & Gray, 2016; Kabadayi, Taylor, von

69 Bayern, Auguste, & Osvath, 2017; Stow, Vernouillet, & Kelly, 2018; great tits:
70 Isaksson, Utku Urhan, & Brodin, 2018 and guppies: Lucon-Xiccato, Gatto, & Bisazza,
71 2017). An individual's performance on IC tasks may also be mediated by non-cognitive
72 processes, including differential experience with transparent barriers (van Horik et al.,
73 2018), environmental predictability (van Horik et al., 2019) food motivation (van Horik
74 et al., 2018), or body condition (Shaw, 2017). These findings suggest that capacities
75 for IC, obtained from detour tasks, may suffer from task impurity. For example,
76 individual differences in detour task performance may not be solely determined by an
77 individual's capacity for IC, but rather be determined by a combination of motivational
78 and cognitive processes that confound accurate measures of IC.

79

80 Lesion studies in rodents and monkeys, alongside behavioural and neuroimaging
81 studies in humans, reveal that orbitofrontal cortex (OFC) and lateral prefrontal cortex
82 (IPFC) play a crucial role in regulating performances on classical IC paradigms
83 (Diamond, 1990; Wallis, Dias, Robbins, & Roberts, 2001; but see Kabadayi et al., 2018
84 for review). It is likely that similar processes of IC are regulated by analogous
85 neuroanatomical regions in birds, such as the nidopallium caudolaterale (Güntürkün,
86 2005). However, numerous species have been tested on different variants of detour
87 tasks and there is little consistency in their IC performances (Brucks, Marshall-pescini,
88 Wallis, Huber, & Range, 2017; Vernouillet, Stiles, Andrew McCausland, & Kelly,
89 2018a), suggesting that the construct validity of different IC tasks remains unclear (van
90 Horik, Langley, Whiteside, Laker, Beardsworth, et al., 2018; Völter et al., 2018). It is
91 therefore likely that performances on different detour tasks are mediated by different
92 cognitive processes. For example, detour tasks require the inhibition of a prepotent
93 response towards a visible reward placed behind a transparent barrier that remains in
94 a consistent location across trials. Spatial information about the location of the reward
95 may therefore be used to facilitate performances on detour tasks involving transparent
96 barriers. As such, improvements in performances across trials on detour tasks may be
97 facilitated by cognitive processes associated with the visual location of the reward,
98 and thus involve neural substrates that are unrelated to IC *per se*. Learning the
99 location of a reward may then be facilitated by cues in the environment, such as
100 landmarks (i.e. *place* learning) or reinforcement of fixed motor responses, such as
101 "turn left to access the reward" (i.e. *response* learning) (Gibson & Shettleworth, 2005;
102 Tolman, Ritchie, & Kalish, 1946). The use of allocentric processes in spatial navigation

103 may be determined by manipulating the location of the test apparatus or the
104 surrounding landmark cues. Conversely, egocentric processes may be determined by
105 presenting subjects with “Shortcut” trials, in which fixed motor responses can be revealed
106 by the perseverance of detour behaviour in the absence of the transparent barrier
107 (Thorndike, 1911; but see Kabadayi, Bobrowicz, et al., 2018 for review). Importantly,
108 both *place* and *response* learning are subserved by different neural substrates, the
109 hippocampus and the striatum [caudate] respectively (Kesner, Bolland, & Dakis, 1993;
110 McDonald & White, 2013; McDonald & White, 1994; Packard, Hirsh, & White, 1989;
111 White & McDonald, 2002). Successful performances on detour tasks may therefore
112 rely on multiple, different, cognitive processes or neural substrates, which may further
113 confound accurate assays of IC.

114

115 In this study we attempt to clarify the role of response learning in detour task
116 performance, and hence improve the accuracy of IC assays. Pheasant chicks,
117 *Phasianus colchicus*, provide an excellent opportunity to investigate the processes of
118 learning that underlie IC performance, as large numbers of birds can be hatched on
119 the same day, reared and tested under controlled experimental conditions, and they
120 readily engage with typical IC apparatuses (Meier et al., 2017; van Horik et al., 2018;
121 van Horik, Langley, Whiteside, Laker, & Madden, 2018). We measured baseline levels
122 of IC by presenting birds with a transparent cylinder task containing a food reward
123 (MacLean et al., 2014; van Horik et al., 2018). Birds were then randomly assigned to
124 one of two treatment groups, in which they were trained to access a food reward that
125 was positioned behind a transparent barrier. The location of the barrier remained fixed
126 across trials for birds in the Stationary-Barrier treatment but alternated in location
127 across trials for birds in the Moving-Barrier treatment. All birds were then retested on
128 the cylinder task. If response learning confounds accurate assays of IC, we expect
129 performances between the first (baseline) and second (retest) presentations of the
130 cylinder task to differ according to the experimental treatments each group received.
131 Specifically, we expect birds in the Stationary-Barrier treatment to show greater
132 improvements on subsequent IC tasks as we reinforced the acquisition of a
133 behavioural response (motor routine), in relation to the barrier, to facilitate their
134 performances. Conversely, we expect birds in the Moving-Barrier treatment, which
135 adopted inconsistent behavioural responses, to show no improvement in their
136 performances when retested on the cylinder task. To further investigate the

137 persistence of a motor routine, we also presented all birds with a single Shortcut trial,
138 after the Response Learning trials, in which the transparent barrier was absent. The
139 performances of birds that unnecessarily persisted in their detour responses in the
140 absence of the transparent barrier were considered to further reflect a fixed motor
141 behaviour, rather than responding appropriately to the new paradigm (Verbruggen,
142 Best, Bowditch, Stevens, & McLaren, 2014; but see Kabadayi, Bobrowicz, et al.,
143 2018). We tested whether the use of the shortcut differed between the Moving-Barrier
144 and Stationary-Barrier treatments, and whether birds that used the shortcut made
145 fewer overall pecks, and hence showed greater IC, than birds that failed to respond to
146 the shortcut. To determine whether performances on each task could be explained by
147 non-cognitive traits that may influence a subject's motivation to interact with an
148 apparatus, as has been found in other studies of IC (Shaw, 2017; van Horik et al.,
149 2018), we also assessed whether IC performances were influenced by subjects' sex
150 and/or body condition. We also measured their motivation to interact with the test
151 apparatus by recording latencies to acquire a freely available mealworm (Free-Worm)
152 that was positioned adjacent to each apparatus.

153

154 **METHODS**

155 *Subjects and Housing*

156 One hundred and twenty-six pheasant chicks were hatched in incubators on the same
157 day, randomly assigned into four replicated pens, and reared from one day old
158 between 24 May and 25 July 2018 (63 days old). All birds were identifiable from
159 individually numbered wing tags, supplied with commercial pheasant feed (Keepers'
160 Choice) and water *ad libitum*. For the first 2 weeks of life birds were housed in one of
161 four heated pens (2m x 2m) after which they had access to an adjacent covered
162 enclosure (1m x 4m) and an outdoor run (4m x 12m).

163

164 *Procedure*

165 Day-old chicks were habituated to human observation and shaped for the first five
166 days of their lives, using mealworm rewards, to individually enter an experimental
167 chamber (0.75m x 0.75m) placed adjacent to their pens. After shaping, all birds
168 willingly entered the experimental chamber. During experimental test trials, an
169 experimenter opened a sliding door that allowed the birds to individually enter the
170 experimental chamber at will. After entering, the sliding door was closed, and the

171 subject's performance was recorded by an observer. All birds were tested individually
172 while visually isolated from other test subjects. After testing, subjects were released
173 into the outdoor run. Subjects that failed to engage with the tasks within five minutes
174 from entering the experimental chamber were released and excluded from analyses.
175 Specific protocols for each task will be described in detail below (sections 1-5; see
176 also Figure 1). Subjects first participated in a Baseline IC Task, involving Opaque
177 (training) and Transparent Cylinders (test). All birds in a pen were then assigned to
178 one of two experimental treatments, in which birds were trained to acquire a reward
179 placed behind a transparent barrier. For the Stationary-Barrier treatment group, the
180 location of the barrier and reward remained in a fixed location across trials. Hence, we
181 reinforced consistent behavioural responses, which they could use to facilitate their
182 retrieval of the reward. Conversely, the location of the barriers and reward alternated
183 between the left and right of the experimental chamber for birds in the Moving-Barrier
184 treatment group. Hence, consistent behavioural responses were unavailable to these
185 birds and could not be learned to facilitate their acquisition of the reward. Birds were
186 then presented with a single Shortcut trial, to determine whether they persisted in their
187 detour responses in the absence of the transparent barrier. Finally, all birds were
188 retested on the Transparent Cylinder task (identical to the Baseline Cylinder task) to
189 determine whether the different treatments experienced during training influenced
190 their subsequent performances.

191 1) *Cylinder 1: Do transparent cylinders evoke prepotent responses?*

192 We presented birds with a Cylinder detour task that is commonly used to assess
193 capacities for inhibitory control in a variety of animals (MacLean et al., 2014). Birds
194 first participated in five trials on an opaque training apparatus and then subsequently
195 participated in two test trials on a transparent variant of the apparatus. On all trials,
196 the cylinder apparatus was presented in the centre of the experimental chamber and
197 adjacent to the subject, so the open ends were not directly in view. We positioned the
198 Cylinder task in the centre of the testing chamber to differentiate the requirements of
199 the Cylinder task and the subsequent Barrier task. Hence the reinforcement of the
200 motor routine was in relation to the barrier (task specific) rather than the reinforcement
201 of a specific route inside the testing chamber that could be adopted as a heuristic rule
202 across tasks. The opaque training apparatus was used to habituate subjects to a novel

203 apparatus and ensure that they could access a mealworm reward that was placed
204 inside the cylinder before participating in the transparent test condition. Apart from
205 transparency, and hence the visibility of the reward, the training and test apparatuses
206 were identical. As the mealworm reward was clearly visible within the cylinder during
207 the test condition, subjects had to inhibit their prepotent attempts to acquire the reward
208 directly through the transparent cylinder and instead detour around to the open end of
209 the cylinder to access the reward, as they had previously learned during the opaque
210 training condition. However, as subjects had no experience with transparent barriers
211 prior to testing, we acknowledge that birds would require at least one error (peck) to
212 determine that the transparent cylinder was impenetrable. Each cylinder was 5cm
213 diameter x 12cm long and mounted on a white 20cm x 20cm base for stability. For
214 each trial we recorded (i) Approach latency (s) from entering the experimental
215 chamber to consuming a freely available mealworm (hereafter Free-Worm) placed in
216 front of the apparatus, (ii) the number of Pecks (incorrect attempts) each individual
217 directed towards the transparent barrier before acquiring the mealworm inside the
218 cylinder as a measure of their inhibitory control. Birds participated in two opaque
219 training trials per day, one in the morning (0830-1230) and one in the afternoon (1400-
220 1800), between 19-22 June 2018 (27-30 days old). To assay improvements in IC
221 performances across trials, we presented all birds with two transparent test trials, one
222 in the afternoon on 22 June 2018 (30 days old) and one in the morning on 25 June
223 2018 (33 days old).

224

225 2) *Habituation and Response Training: moving vs stationary transparent barriers*

226 After completing the Baseline IC Assay, but immediately prior to Response Training,
227 all birds received four habituation trials in which they encountered the Response
228 Training apparatus without a transparent barrier. During these habituation trials the
229 frame of the apparatus was placed in the centre of the experimental chamber and was
230 comprised of a wooden base (40cm long x 25cm wide), with a wooden post (30cm
231 high) at either end, between which the transparent barrier (40cm wide x 30cm high)
232 would be subsequently attached during Response Training trials. For each trial we
233 placed 5 mealworms inside a white lid (5cm diameter) with a 1cm lip so that the worms
234 could be seen but not escape. During habituation trials the lid was positioned in the
235 centre of the apparatus. Subjects therefore had to step onto the wooden base to

236 acquire the reward. The purpose of the habituation trials was to reduce any neophobic
237 responses towards the apparatus and to reinforce birds to approach the reward
238 between the two wooden posts. For each trial, we recorded each subject's latency
239 from entering the experimental chamber to consuming the first mealworm inside the
240 white lid. Birds participated in three habituation trials on 25 June 2018 (33 days old)
241 and one habituation trial in the morning on 26 June 2018 (34 days old).

242

243 After completing the habituation trials, a transparent barrier was fixed to the wooden
244 posts and prevented birds from approaching the reward directly. Birds were randomly
245 assigned to one of two Response Training treatments in which they could access
246 rewards that were placed behind the transparent barrier (Figure 1). Birds experienced
247 10 Response Training trials in which the location of the barrier either moved or was
248 stationary depending on the treatment. Birds participated in two Response Training
249 trials on 26 June 2018 (34 days old), and four trials per day on 27 and 28 June 2018
250 (35 and 36 days old). In the Stationary-Barrier treatment, the barrier was consistently
251 located either on the left or right of the experimental chamber (counterbalanced across
252 individuals). A fixed behavioural response was therefore consistently reinforced for
253 birds in the Stationary-Barrier treatment. In the Moving-Barrier treatment, the barrier
254 location alternated between the left- and right-hand side of the experimental chamber
255 across trials. Inconsistent (as opposed to consistent) behavioural responses were
256 therefore reinforced for birds in the Moving-Barrier treatment. For each treatment, the
257 lid containing the mealworms was consistently positioned at the far end of the
258 apparatus (see Figure 1). To access the reward, subjects had to inhibit directly
259 approaching the reward and instead detour around the barrier which could only be
260 accessed from one side. During Habituation and Training trials, we recorded the
261 subject's latency from entering the chamber to acquiring a Reward-Worm placed
262 behind the barrier arms. During Training trials, we recorded the number of incorrect
263 attempts (Pecks) to acquire the Reward-Worm through the transparent barrier.

264

265 3) *Shortcuts: Do birds persist in their detour behaviours in the absence of the barrier?*

266 After completing the 10 Response Training trials, all birds were presented with a single
267 "Shortcut" trial on 28 June 2018 (36 days old) that was identical to the initial habituation
268 trial, where the transparent barrier was absent. The Shortcut apparatus was positioned

269 in the same or alternating location as in the Response Training trials for each
270 respective treatment group. During Shortcut trials, we recorded the subject's latency
271 from entering the chamber to acquiring a Reward-Worm placed behind the barrier
272 arms.

273

274 *4) Cylinder 2: Do non-target cognitive processes influence IC performance?*

275 After completing the Shortcut trial, all birds were retested with the transparent Cylinder
276 task (using identical procedures as in the IC Baseline assay), to determine whether
277 Response Training influenced their subsequent capacities for IC. Birds experienced
278 one trial on this task between 09:30-12:30 hrs on 29 June 2018 (37 days old).

279

280 *5) Do non-cognitive/motivational processes influence task performances?*

281 To determine whether IC performances were influenced by non-cognitive factors, we
282 positioned a freely available mealworm (Free-Worm) adjacent to each test apparatus.
283 The purpose of the Free-Worm was (i) to standardise the approach direction of each
284 subject, (ii) to ensure subjects were motivated by food rewards and (iii) determine
285 whether approach latencies differed across trials, which may suggest performances
286 were influenced by neophobic responses towards an apparatus. On 20 July 2018,
287 after birds had participated in all tests, we recorded each individuals' mass (Slater
288 Super Samsom spring balance – precision 5 g), and tarsus length (callipers – precision
289 0.1 mm), to determine their body condition (mass/tarsus³). Birds in poor body condition
290 (low scores) were considered to be more food-motivated than birds in good body
291 condition (high scores). As male pheasants are larger than female pheasants
292 (Whiteside, van Horik, Langley, Beardsworth, & Madden, 2018), differences in growth
293 rates may lead to motivational differences, and we have previously found these to
294 differentially influence participation on cognitive tests (van Horik, Langley, Whiteside,
295 & Madden, 2017). We therefore used plumage features to visually identify the sex of
296 each individual at 10 weeks old.

297

298 *Inclusion/exclusion of subjects for analyses*

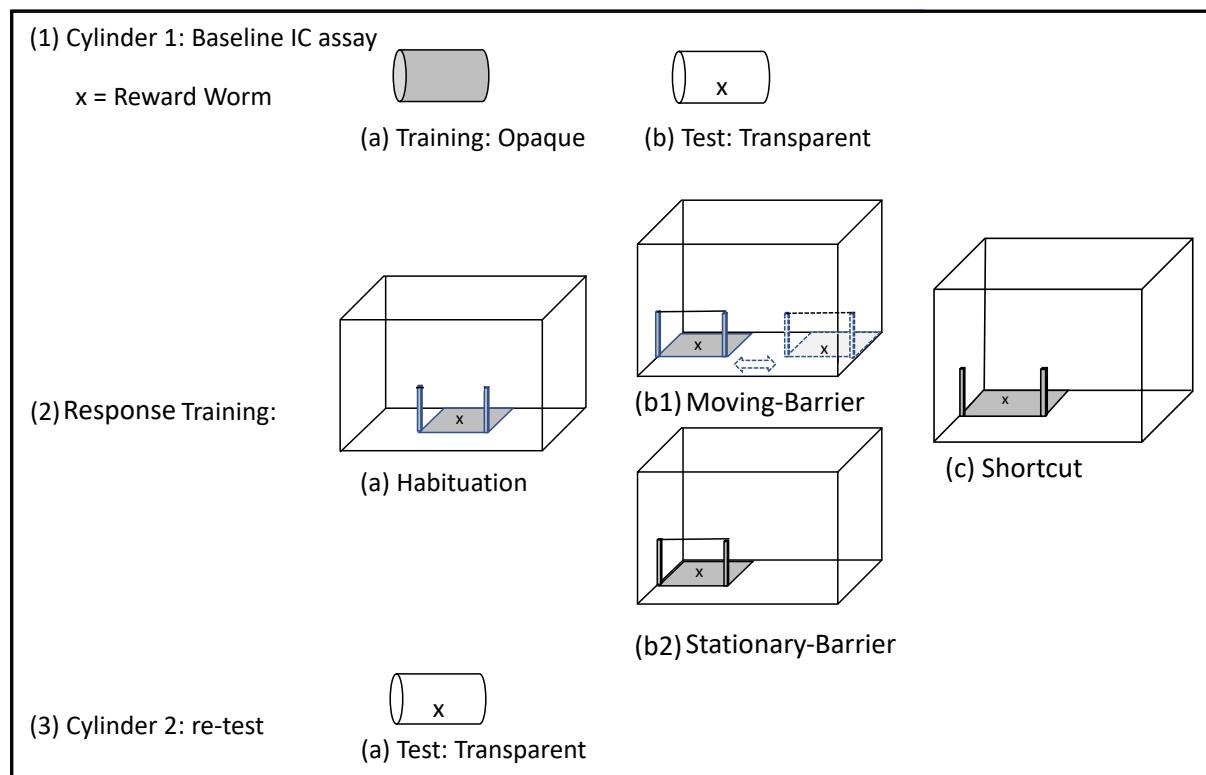
299 To ensure that experience on each task was standardised across subjects, we only
300 included birds that participated in and acquired the Reward-Worm on all trials for all

301 tasks. Hence, all birds included in this study experienced: five opaque cylinder training
302 trials; two transparent cylinder test trials; four no-barrier habituation trials; 10
303 Response Training trials; one Shortcut trial; and one transparent cylinder retest trial.
304 Sixty-two subjects met all these criteria (Moving-Barrier: 16 males; 9 females;
305 Stationary-Barrier: 20 males; 17 females). Birds that were excluded either pecked at
306 the apparatus but failed to acquire the mealworm reward, or failed to interact with the
307 apparatus. Birds in the former category were excluded because we could not ensure
308 equal competency in retrieving the reward. Hence, a failure to retrieve the reward may
309 be due to inexperience rather than poor IC. Birds in the latter category were excluded
310 because we could not obtain accurate assays of performance, which were likely due
311 to neophobic responses towards the apparatus.

312

313 *Statistical analysis*

314 We used Generalised Linear Mixed Models (GLMMs), using the lme4 package (Bates,
315 Maechler, Bolker, & Walker, 2015) in R (R Development Core Team, 2014) to assess
316 performances on all tasks, excluding the Shortcut trial and improvements between the
317 Cylinder 1 and Cylinder 2 tasks, were we used Generalised Linear Models (GLM). To
318 determine whether the transparency of the cylinder evoked prepotent responses, we
319 compared the number of Pecks (errors) that subjects made when attempting to acquire
320 the mealworm (Reward-Worm) between the Opaque and Transparent Cylinder tasks.
321 We assessed learning on the transparent Cylinder task by comparing pecks across
322 trials. Latencies from entering the experimental chamber to acquiring a Reward-Worm
323 that was positioned inside each apparatus were used as performance measures
324 during the No-Barrier Habituation trials because there was no barrier to peck at.
325 Latencies to acquire the Reward-Worm, as well as Pecks to the transparent barriers
326 were used as performance measures during Response Training. We used a Binomial
327 Test (set at 0.5) in SPSS (IBM Corp, 2013) to determine whether birds persisted in
328 their detour behaviours by avoiding an absent barrier during Shortcut trials, or whether
329 they used the Shortcut and went through the barrier arms to access the mealworm
330 reward. To determine whether the Response Training treatments had differential
331 influences on subsequent IC performances, we subtracted the number of Pecks that
332 each individual made on their second trial of the Baseline Transparent Cylinder task
333 (Cylinder 1) from the number of Pecks they made when retested on the Transparent
334 Cylinder task after Response training (Cylinder 2). Hence, a negative score indicates


335 a reduction in Pecks (errors) when retested and we considered this to indicate
336 improvement in performance. We also assessed whether performances on the
337 Shortcut trials predicted improvements in pecks between the Cylinder 1 and Cylinder
338 2 tasks. Pecks were assessed using a poisson error distribution and Reward-Worm
339 latencies were assessed using a gaussian error distribution (lmer). Depending on the
340 task (see Table 1), we assessed whether our performance measures were influenced
341 by the following predictor variables: Free-Worm latency, Sex (female = 0; male = 1),
342 Body Condition, Treatment (Moving-Barrier = 1 vs Stationary-Barrier = 0) and Trial
343 Number, Shortcut (around barrier = 0; through barrier = 1). When using GLMMs, we
344 included bird as a random effect to control for pseudoreplication, and included an
345 observational-level random effect to control for overdispersion (Harrison, 2014).

346

347 *Ethics*

348 All work was approved and conducted under Home Office licence PPL 30/3204 and
349 approved by the University of Exeter Animal Welfare Ethical Review Board.

350

351

352 **Figure 1.** Schematic order of procedures for training and testing apparatuses.
353 Subjects began with (1) Cylinder 1, where they participated in Baseline assays of IC
354 using (a) training and (b) test apparatuses, and proceeded to (2) Response Training,
355 where all birds participated in (a) Habituation trials, after which they were assigned to
356 (b1) Moving-Barrier and (b2) Stationary-Barrier treatments and then all birds were

357 presented with a (c) Shortcut trial. Cubes represent the experimental chamber and the
358 relative position of each apparatus. Finally, all birds were retested on (3) Cylinder 2,
359 (as in 1b) to determine how Response Training treatments influenced subsequent
360 inhibitory control performance.

361

362

363 **RESULTS**

364 1) *Cylinder 1: Do transparent cylinders evoke prepotent responses?*

365 Only two of 62 birds in this study made no errors on their first trial of the transparent
366 Cylinder task, and all birds pecked at least once at the transparent cylinder on their
367 second trial. Hence, we consider that all birds had experience that the transparent
368 cylinder was impenetrable. Birds pecked more frequently, and hence made more
369 incorrect attempts to acquire the mealworm placed inside the cylinder, when the
370 apparatus was transparent rather than opaque (Table 1, model 1: Opaque Cylinder
371 trial 5 mean pecks = 0.629 ± 0.282 SEM; Transparent Cylinder Trial 1 mean pecks =
372 31.161 ± 2.586 SEM).

373

374 2) *Cylinder 1: Do baseline inhibitory control performances improve across trials?*

375 Birds improved their Baseline IC performances across trials on the transparent
376 cylinder task, making approximately 26% fewer pecks on their second trial compared
377 to their first trial (Table 1: model 2).

378 6) *Habituation and Response Training: moving vs stationary transparent barriers*

379 Birds showed an improvement in their Reward-Worm latencies across the habituation
380 trials when the transparent barrier was absent (Trial 1 mean latency 39.950 ± 6.104
381 SEM; Trial 2 mean latency 13.9661 ± 3.171 SEM; Trial 3 mean latency 5.212 ± 0.888
382 SEM; Trial 4 mean latency 2.890 ± 0.461 SEM), suggesting a reduction in neophobia
383 towards the apparatus (Table 1: model 3a). During Response Training, birds in the
384 Moving-Barrier treatment pecked at the transparent barrier more frequently, and took
385 longer to acquire the Reward-Worm, than birds in the Stationary-Barrier treatment
386 (Table 1: model 3b,c; Figure 2). Pecks and Reward-Worm latencies also decreased
387 across trials for both treatment groups (Table 1: model 3b,c; Figure 2). Reward-Worm
388 latencies and Pecks were unrelated to Body Condition (Table 1: model 3b,c).

389 7) *Shortcuts: Do birds persist in their detour behaviours in the absence of the barrier?*

390 When the barrier was absent, birds in both treatments were more likely to go through
391 the “Shortcut” (i.e. between the barrier arms) than detour around the absent barrier.
392 Barrier Stationary Treatment: 26 of 37 birds (70%) went through the barrier; Binomial
393 Test with a probability set at 0.5, $p = .010$. Barrier Movement Treatment: 23 of 25 birds
394 (92%) went through the barrier; Binomial Test with a probability set at 0.5, $p < .001$.
395 Improvement in errors (pecks) on the Cylinder task re-test were unrelated to whether
396 or not birds avoided the absent barrier on the Shortcut trial (Table 1: model 4).

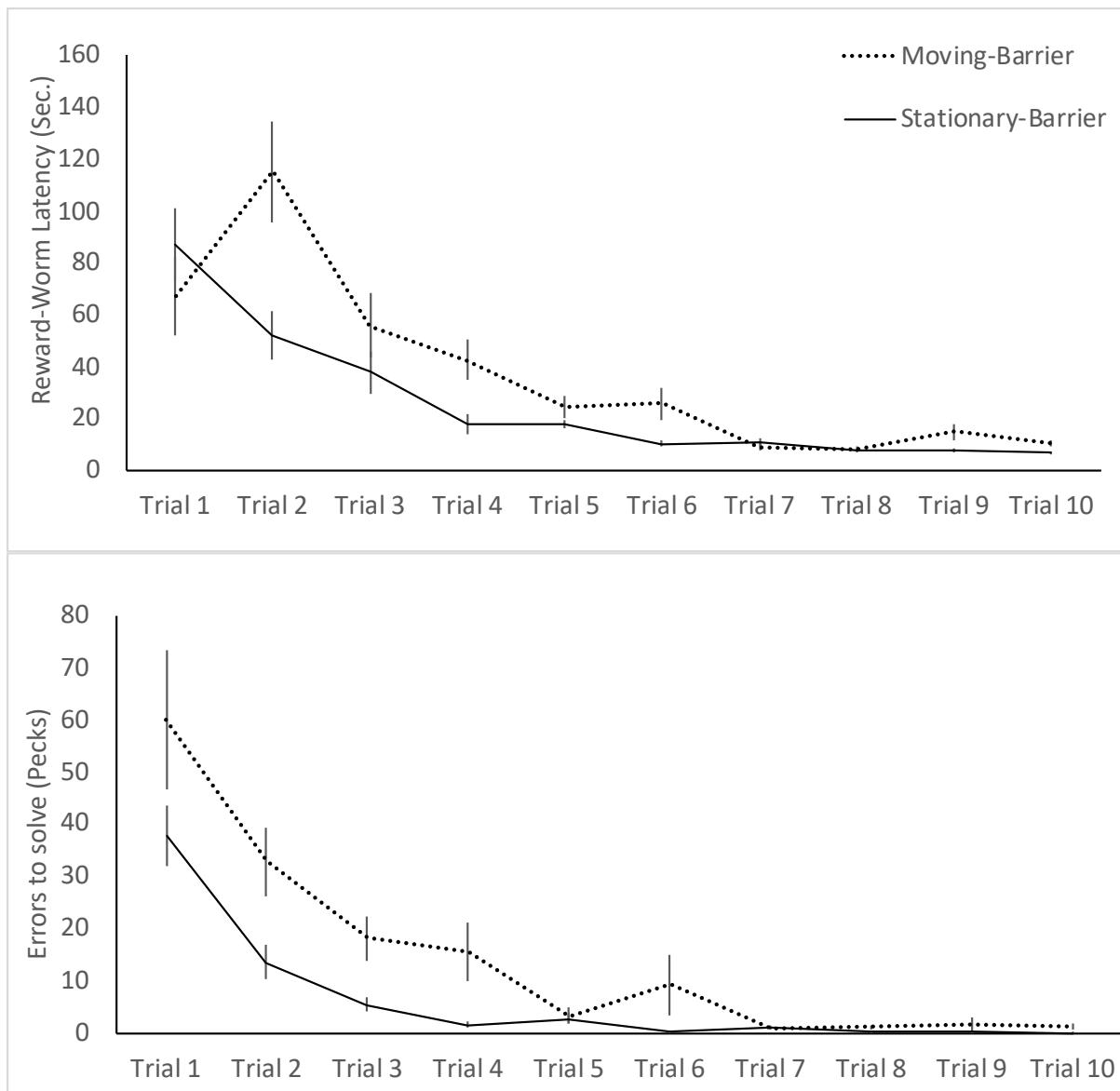
397

398 8) *Cylinder 2: Do non-target cognitive processes influence IC performance?*

399 Birds from the Stationary-Barrier treatment made approximately 58% fewer pecks
400 when retested on the Transparent Cylinder task (after Response Training), whereas
401 birds Moving-Barrier treatment made approximately 4% more pecks. Hence, birds
402 from the Stationary-Barrier treatment showed a greater improvement in their IC
403 performances (reduction in pecks relative to their baseline performance) compared to
404 birds from the Moving-Barrier treatment (Table 1: model 5).

405

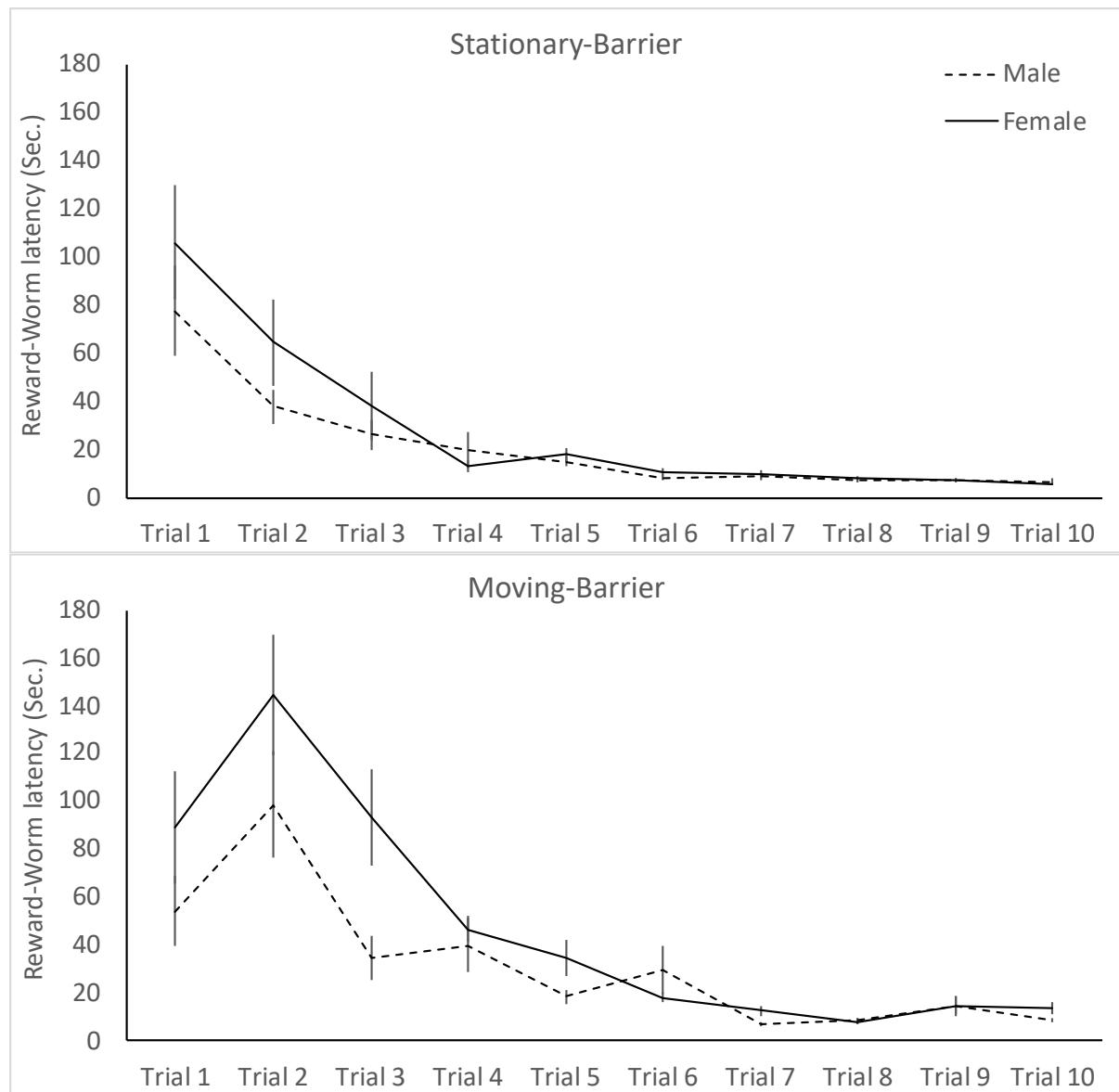
406 9) *Do non-cognitive/motivational processes influence task performances?*


407 Differences in performances on all tasks were generally unrelated to Free-Worm
408 latencies, Sex or Body Condition (Table 1). However, Sex predicted Reward-Worm
409 latencies during Response Training, with females initially taking longer to acquire the
410 Reward-Worm than males, but with both sexes showing comparable performances
411 after 10 Response Training trials (Table 1: model 3c; Figure 3).

412

Models	Free-Worm	Sex	Body Condition	Treatment	Trial
1) Cylinder 1: Opaque vs Transparent	0.018 ± 0.038 $\chi^2 = 0.222, p = 0.638$	0.030 ± 0.262 $\chi^2 = 0.013, p = 0.301$	0.206 ± 5.780 $\chi^2 = 0.305, p = 0.581$	n/a	-0.231 ± 1.366 $\chi^2 = 172.798, p < 0.001$
2) Cylinder 1: Transparent [Improvement across trials]	0.022 ± 0.028 $\chi^2 = 0.605, p = 0.437$	0.304 ± 0.163 $\chi^2 = 3.43, p = 0.064$	2.376 ± 3.638 $\chi^2 = 0.424, p = 0.515$	n/a	-0.560 ± 0.156 $\chi^2 = 12.167, p < 0.001$
3a) No-Barrier Habituation	n/a	-2.638 ± 4.531 $\chi^2 = 0.355, p = 0.551$	-53.045 ± 101.676 $\chi^2 = 0.285, p = 0.593$	-0.961 ± 4.491 $\chi^2 = 0.049, p = 0.825$	-11.993 ± 1.459 $\chi^2 = 57.935, p < 0.001$
3b) Response Training: Pecks	n/a	-0.144 ± 0.207 $\chi^2 = 0.48, p = 0.487$	-8.209 ± 4.678 $\chi^2 = 2.98, p = 0.084$	1.146 ± 0.200 $\chi^2 = 363.73, p < 0.001$	-0.600 ± 0.029 $\chi^2 = 363.73, p < 0.001$
3c) Response Training: Reward-Worm	n/a	-9.426 ± 4.890 $\chi^2 = 3.85, p = 0.050$	-21.760 ± 109.206 $\chi^2 = 0.042, p = 0.837$	12.746 ± 4.784 $\chi^2 = 7.159, p = 0.007$	-8.183 ± 0.588 $\chi^2 = 166.764, p < 0.001$
4) Shortcut [Treatment = through vs around barrier]	n/a	-2.660 ± 5.098 $\chi^2 = -0.522, p = 0.604$	-48.186 ± 116.806 $\chi^2 = -0.413, p = 0.681$	7.094 ± 6.140 $\chi^2 = 1.155, p = 0.253$	n/a
5) Cylinder 2: Retest [Post training improvement]	0.067 ± 0.569 $\chi^2 = 0.015, p = 0.902$	-4.368 ± 4.647 $\chi^2 = 0.954, p = 0.329$	-24.668 ± 103.093 $\chi^2 = 0.062, p = 0.803$	18.496 ± 4.533 $\chi^2 = 15.886, p < 0.001$	n/a

413


414 **Table 1.** Predictor variables and model outputs for GLMMs (Pecks: models 1, 2, 3b
 415 and Reward-Worm latencies: model 3a,c), and GLM (Reward-Worm latencies: model
 416 4; Pecks: model 5). Estimates \pm SEM are presented with their corresponding Chi
 417 Squared (χ^2) and significance values (p). n/a = variable not included in analysis.

418

419 **Figure 2.** Response Training. Latencies to acquire the Reward-Worm (top) positioned
 420 behind a transparent barrier and pecks, indicating prepotent errors (bottom) across 10
 421 trials, for birds in the Moving-Barrier (dashed line) and Barrier-Stationary (solid line)
 422 treatment groups (means \pm SEM).

423

424
425 **Figure 3.** Response Training latencies (mean \pm SEM) to acquire a Reward-Worm
426 positioned behind a transparent barrier across 10 trials, for males (dashed line) and
427 females (solid line).

428

429

430 **DISCUSSION**

431 We altered inhibitory control (IC) performances of young pheasants on a transparent
432 cylinder task, by experimentally manipulating the reinforcement of a fixed behavioural
433 response during training on a transparent barrier task. We found that the reinforcement
434 of a fixed behavioural response (acquisition of a motor routine) improved subsequent
435 IC performance. These findings suggest that response learning plays an important
436 role in facilitating successful performances on detour tasks involving transparent

437 obstacles. Consequently, accurate assays of IC obtained from detour tasks using
438 transparent barriers may be confounded by multiple cognitive processes that are
439 unrelated to IC.

440

441 Capacities for IC have been considered to underlie performances on detour tasks
442 (Diamond, 1981; Kabadayi, Bobrowicz, et al., 2017). To some extent our findings
443 support these claims. Pheasant chicks successfully learned to extract a mealworm
444 reward from inside an opaque cylinder, but pecked more frequently, making more
445 incorrect attempts to acquire the mealworm, when presented with a transparent
446 version of the apparatus. Consequently, the visibility of the mealworm inside the
447 transparent cylinder evoked prepotent responses, which must be inhibited to acquire
448 the reward (see Vernouillet, Stiles, Andrew McCausland, & Kelly, 2018). However,
449 baseline IC performances on the transparent cylinder task also improved across trials,
450 with birds making fewer erroneous pecks to acquire the mealworm reward on their
451 second trial than compared to their first trial, as has been found in numerous other
452 studies (Lucon-Xiccato et al., 2017; van Horik, Langley, Whiteside, Laker,
453 Beardsworth, et al., 2018; Vernouillet et al., 2018). Moreover, latencies to acquire the
454 mealworm reward, and pecks, also decreased across trials during response training
455 when the reward was placed behind a transparent barrier. Although we observed an
456 initial neophobic response towards the response training apparatus during habituation
457 (i.e. latencies to acquire the reward decreased across trials), we consider it unlikely
458 that improvements in IC performance across trials were due to a reduction in
459 neophobia, as latencies to approach the apparatus did not influence IC performances.
460 However, as birds had no prior experience with transparent barriers, an alternate
461 explanation that could account for a decrease in errors and latencies across trials is
462 that the number of pecks on Trial 1 was confounded by a lack of experience.
463 Consequently, birds may have pecked more frequently on Trial 1 to explore the
464 properties of the impenetrable transparent barrier. While this explanation is difficult to
465 refute, all but two birds pecked at least once at the transparent apparatus during their
466 first trial on the baseline IC task. It therefore remains possible that the physical
467 properties of the barrier were experienced by most birds after their first peck, and that
468 any subsequent pecks were mediated by other processes of learning and inhibitory
469 control. Importantly, when retested on the transparent cylinder task after response
470 training, we found a greater improvement in baseline IC performances for birds that

471 received stronger reinforcement of a fixed behavioural response during response
472 training (Stationary-Barrier treatment) than compared to birds that received no
473 consistent reinforcement for behavioural responses during training (Moving-Barrier
474 treatment). We therefore consider that improvements in performance across trials
475 were mediated by processes of learning. Specifically, we suggest that these
476 processes of learning were facilitated by the acquisition of a fixed motor routine, i.e.
477 response learning (Tolman et al., 1946). However, we found that birds were more
478 likely to use the Shortcut when the transparent barrier was absent than persist in their
479 redundant detour behaviours. Moreover, improvements in performances on the
480 cylinder re-test did not differ between birds that either used the shortcut or failed to
481 respond to the shortcut.

482

483 Pecks at the transparent barrier were always directed towards the mealworm, and
484 birds from both treatments pecked more frequently on the first trial of the barrier task
485 than compared their preceding trials on the cylinder task. We have previously reported
486 similar findings, in the same system, suggesting that barrier tasks may be more difficult
487 to solve than the cylinder task (van Horik, Langley, Whiteside, Laker, Beardsworth, et
488 al., 2018). However, van Horik and colleagues (2018) also show improvements in
489 subsequent task performances when presented with both tasks in a counterbalanced
490 order. These findings suggest that birds show some functional generalisation of
491 learned affordances between barrier and cylinder tasks. Performances on the
492 response training trials did however differ between the two treatment groups. Birds in
493 the Stationary-Barrier treatment made fewer pecks and acquired the reward faster
494 than birds in the Moving-Barrier treatment. While the consistent location of the barrier
495 and reward appeared to facilitate improvements in performances of birds in the
496 Stationary-Barrier treatment, it is possible that a violation of expectancy of the reward
497 location contributed to increased latencies to solve the task. Interestingly, birds in the
498 Moving-Barrier treatment also pecked more frequently at the apparatus compared to
499 those in the Stationary-Barrier treatment. This difference in pecks between the two
500 treatment groups was particularly evident on the first trial of the response training task,
501 in which we might expect performances not to differ between the two treatment groups.
502 It therefore remains possible that, by chance, birds we had randomly assigned to the
503 Moving-Barrier treatment simply pecked more frequently than birds in the Stationary-
504 Barrier treatment even before they had an opportunity to learn the task affordances.

505 To test the role of motor-learning on IC performance further, subsequent studies could
506 test whether fixed motor reinforcement facilitated particular side preferences on the
507 cylinder task. Subsequent studies could also introduce an additional control group,
508 where subjects receive no response training trials (of either a Moving or Stationary-
509 Barrier). If performances were not facilitated by motor rule learning, then we might
510 expect birds in the control group, that receive no response training, to show equivalent
511 improvements in performances on the cylinder task re-test to those in the Stationary-
512 Barrier treatment.

513

514 Previous studies have shown that a variety of additional factors, such as body
515 condition (Shaw, 2017), motivation (van Horik et al., 2018), temperament (Bray,
516 MacLean, & Hare, 2015), age (Bray, MacLean, & Hare, 2014), experience (Barrera,
517 Alterisio, Scandurra, Bentosela, & D'Aniello, 2018; van Horik et al., 2019; van Horik,
518 Langley, Whiteside, Laker, Beardsworth, et al., 2018; but see Fagnani, Barrera,
519 Carballo, & Bentosela, 2016), but not neophobia (Stow, Vernouillet, & Kelly, 2018b),
520 can influence IC performance on cylinder tasks. Age and experience could not explain
521 the performances of pheasant chicks in the current study, as all birds were hatched
522 on the same day and experienced the identical rearing conditions (with the exception
523 of the response training treatments). Moreover, we found that performances on the
524 cylinder and response training tasks were generally unrelated to our motivational (non-
525 cognitive) measures, including latencies to acquire a freely available mealworm placed
526 adjacent to each apparatus, body condition or sex. Relationships between body
527 condition and performance measures should however be treated cautiously, as body
528 condition was measured immediately prior to release and not during testing. Hence, it
529 remains unclear whether these measures were representative during testing. We also
530 found that females took longer than males to acquire the mealworm reward during the
531 initial response training trials. While these differences were more pronounced among
532 females in the Moving-Barrier treatment, differences between sexes rapidly
533 diminished across trials. We consider it unlikely that males were less neophobic
534 towards the response training apparatus than females, as we found no effect of sex
535 during habituation trials, or indeed for latencies to approach any other task. Hence,
536 these sex differences remain difficult to interpret.

537

538 Our findings align with recent studies that question the construct validity of assays of
539 IC obtained from detour tasks (Brucks, Marshall-pescini, Wallis, Huber, & Range,
540 2017; van Horik et al., 2018; Vernouillet, Stiles, Andrew McCausland, & Kelly, 2018;
541 Völter et al., 2018). Importantly, we show that performances on detour tasks
542 administered over multiple trials may be influenced by cognitive processes unrelated
543 to IC (Kabadayi et al., 2018; van Horik, Langley, Whiteside, Laker, Beardsworth, et al.,
544 2018). Consequently, performances on detour tasks that are administered across
545 multiple trials may provide inaccurate assays of IC. While it remains difficult to
546 determine whether our experimental treatments evoked response learning, rather than
547 some other cognitive or behavioural processes that may result from the movement of
548 barriers, we highlight the importance of considering the influence of multiple cognitive
549 processes when inferring capacities for IC from performances on detour tasks. To
550 overcome these issues, we suggest future studies first establish which IC tasks reveal
551 repeatable individual differences in performances (i.e. Cauchoux et al., 2018). We also
552 suggest that assays of IC performance on detour tasks are obtained from a minimal
553 number of trials to avoid multiple processes of learning. However, we acknowledge
554 that some prior experience of transparency is necessary to provide information about
555 the impenetrability of the barrier. We also highlight the importance of assaying
556 personality traits (i.e. exploration) that may confound assays of performance. Future
557 studies could further test response learning by comparing the direction that birds
558 access the transparent cylinder before and after response training and adopt different
559 spatial manipulations, such as altering landmark cues and the position of the test
560 apparatus, while maintaining similar treatments as in the current study. We argue that
561 further clarity about the neural mechanisms that underlie performances on different
562 detour tasks is needed. Understanding these neural mechanisms will help reveal
563 whether transparent detour tasks, that are now commonly used when testing non-
564 human animals, can provide accurate assays of inhibitory control.

565

566 **Author Contributions**

567 JOvH conceived and designed the experiment in discussion with JRM; JOvH, CEB,
568 PRL, MAW collected the data; JOvH analysed data and wrote the manuscript; CEB,
569 PRL, MAW, JRM provided comments on the manuscript.

570 **Data Accessibility**

571 All data are available on Dryad

572

573 **Competing Interest**

574 The authors declare no conflict of interest.

575

576 **Acknowledgements**

577 Rothamsted Research, North Wyke hosted the rearing and release of the pheasants.

578 Kandace Griffin and Anna Morris helped with data collection and animal husbandry.

579

580 **Funding**

581 JRM, MAW and JOvH were funded by an ERC consolidator grant (616474)

582

583 **REFERENCES**

584 Barrera, G., Alterisio, A., Scandurra, A., Bentosela, M., & D'Aniello, B. (2018). Training
585 improves inhibitory control in water rescue dogs. *Animal Cognition*.

586 <https://doi.org/10.1007/s10071-018-1224-9>

587 Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models
588 Using lme4. *Journal of Statistical Software*, 67(1), 1–48.

589 Bray, E. E., MacLean, E. L., & Hare, B. A. (2014). Context specificity of inhibitory control in
590 dogs. *Animal Cognition*, 17(1), 15–31. <https://doi.org/10.1007/s10071-013-0633-z>

591 Bray, E. E., MacLean, E. L., & Hare, B. A. (2015). Increasing arousal enhances inhibitory
592 control in calm but not excitable dogs. *Animal Cognition*, 18(6), 1317–1329.

593 <https://doi.org/10.1007/s10071-015-0901-1>

594 Brucks, D., Marshall-pescini, S., Wallis, L. J., Huber, L., & Range, F. (2017). Measures of Dogs ' Inhibitory Control Abilities Do Not Correlate across Tasks, 8(May), 1–17.

596 <https://doi.org/10.3389/fpsyg.2017.00849>

597 Cauchoix, M., Chow, P. K. Y., Horik, J. O. van, Atance, C. M., Barbeau, E. J., Barragan-Jason,
598 G., ... Morand-Ferron, J. (2018). The repeatability of cognitive performance: a meta-

599 analysis. *Philosophical Transactions of the Royal Society B: Biological Sciences*,
600 373(1756), 20170281. <https://doi.org/10.1098/rstb.2017.0281>

601 Diamond, A. (1981). Retrieval of an object from an open box: the development of visual-
602 tactile control of reaching in the first year of life. *Society for Research in Child
603 Development Abstracts*, 3(78).

604 Diamond, A. (1990). Developmental time course in human infants and infant monkeys, and
605 the neural bases of inhibitory control in reaching. *Annals of the New York Academy of
606 Sciences*, 608, 637–676.

607 Diamond, Adele. (2013). Executive Functions. *Annual Review of Psychology*, 64(1), 135–168.
608 <https://doi.org/10.1146/annurev-psych-113011-143750>

609 Fagnani, J., Barrera, G., Carballo, F., & Bentosela, M. (2016). Is previous experience
610 important for inhibitory control? A comparison between shelter and pet dogs in A-not-
611 B and cylinder tasks. *Animal Cognition*, 19(6), 1165–1172.
612 <https://doi.org/10.1007/s10071-016-1024-z>

613 Güntürkün, O. (2005). The avian “prefrontal cortex” and cognition. *Current Opinion in
614 Neurobiology*, 15(6), 686–693. <https://doi.org/10.1016/j.conb.2005.10.003>

615 Harrison, X. A. (2014). Using observation-level random effects to model overdispersion in
616 count data in ecology and evolution. *PeerJ*, 2, e616. <https://doi.org/10.7717/peerj.616>

617 IBM Corp. (2013). IBM SPSS Statistics for Windows, Version 22.0. NY: Armonk.

618 Isaksson, E., Utku Urhan, A., & Brodin, A. (2018). High level of self-control ability in a small
619 passerine bird. *Behavioral Ecology and Sociobiology*, 72(7), 1–7.
620 <https://doi.org/10.1007/s00265-018-2529-z>

621 Jelbert, S. A., Taylor, A. H., & Gray, R. D. (2016). Does absolute brain size really predict self-
622 control? Hand-tracking training improves performance on the A-not-B task. *Biology
623 Letters*, 12(2), 20150871-. <https://doi.org/10.1098/rsbl.2015.0871>

624 Kabadai, C., Bobrowicz, K., & Osvath, M. (2018). The detour paradigm in animal cognition.
625 *Animal Cognition*, 21(1), 21–35. <https://doi.org/10.1007/s10071-017-1152-0>

626 Kabadai, C., Taylor, L. A., von Bayern, Auguste, M. P., & Osvath, M. (2017). Ravens, New
627 Caledonian Crows and jackdaws parallel great apes in motor self-regulation despite
628 smaller brains. *Royal Society Open Science*. <https://doi.org/10.1098/rsos.160104>

629 Kesner, R. P., Bolland, B. L., & Dakis, M. (1993). Memory for spatial locations, motor
630 responses, and objects: triple dissociation among the hippocampus, caudate nucleus,

631 and extrastriate visual cortex. *Experimental Brain Research*, 93(3), 462–470.
632 <https://doi.org/10.1007/BF00229361>

633 Lucon-Xiccato, T., Gatto, E., & Bisazza, A. (2017). Fish perform like mammals and birds in
634 inhibitory motor control tasks. *Scientific Reports*, 7(1), 13144.
635 <https://doi.org/10.1038/s41598-017-13447-4>

636 MacLean, E. L., Hare, B., Nunn, C. L., Addessi, E., Amici, F., Anderson, R. C., ... Zhao, Y. (2014).
637 The evolution of self-control. *Proceedings of the National Academy of Sciences*,
638 111(20), E2140–E2148. <https://doi.org/10.1073/pnas.1323533111>

639 Mcdonald, R. J., & White, N. M. (2013). A triple dissociation of memory systems:
640 Hippocampus, amygdala, and dorsal striatum. *Behavioral Neuroscience*, 127(6), 835–
641 853. <https://doi.org/10.1037/a0034883>

642 McDonald, R. J., & White, N. M. (1994). Parallel information processing in the water maze:
643 Evidence for independent memory systems involving dorsal striatum and
644 hippocampus. *Behavioral and Neural Biology*, 61(3), 260–270.
645 [https://doi.org/10.1016/S0163-1047\(05\)80009-3](https://doi.org/10.1016/S0163-1047(05)80009-3)

646 Meier, C., Pant, S. R., van Horik, J. O., Laker, P. R., Langley, E. J. G., Whiteside, M. A., ...
647 Madden, J. R. (2017). A novel continuous inhibitory-control task: variation in individual
648 performance by young pheasants (*Phasianus colchicus*). *Animal Cognition*, 20(6), 1035–
649 1047. <https://doi.org/10.1007/s10071-017-1120-8>

650 Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences
651 in executive functions: Four general conclusions. *Current Directions in Psychological
652 Science*, 21(1), 8–14. <https://doi.org/10.1177/0963721411429458>

653 Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., ... Caspi, A.
654 (2011). A gradient of childhood self-control predicts health, wealth, and public safety.
655 *Proceedings of the National Academy of Sciences*, 108(7), 2693–2698.
656 <https://doi.org/10.1073/pnas.1010076108>

657 Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate
658 nucleus lesions on two radial maze tasks: evidence for multiple memory systems. *J
659 Neurosci*, 9(5), 1465–1472. <https://doi.org/0270-6474/89/051465-08>

660 R Development Core Team. (2014). R: a language and environment for stastical computing.
661 Vienna Austria: R Foundation for Statistical Computing.

662 Shaw, R. C. (2017). Testing cognition in the wild: factors affecting performance and

663 individual consistency in two measures of avian cognition. *Behavioural Processes*, 134,
664 31–36. <https://doi.org/10.1016/j.beproc.2016.06.004>

665 Stow, M. K., Vernouillet, A., & Kelly, D. M. (2018a). Neophobia does not account for motoric
666 self-regulation performance as measured during the detour-reaching cylinder task.
667 *Animal Cognition*, 21(4), 565–574. <https://doi.org/10.1007/s10071-018-1189-8>

668 Stow, M. K., Vernouillet, A., & Kelly, D. M. (2018b). Neophobia does not account for motoric
669 self-regulation performance as measured during the detour-reaching cylinder task.
670 *Animal Cognition*, 21(4), 565–574. <https://doi.org/10.1007/s10071-018-1189-8>

671 Tolman, E. C., Ritchie, B. F., & Kalish, D. (1946). Studies in spatial learning. II. Place learning
672 versus response learning. *Journal of Experimental Psychology*, 36(3), 221–229.

673 van Horik, J., Beardsworth, C., Laker, P., Langley, E., Whiteside, M., & Madden, J. (2019).
674 Unpredictable environments enhance inhibitory control in pheasants. *Animal*
675 *Cognition*, 1–10. <https://doi.org/10.1007/s10071-019-01302-0>

676 van Horik, J. O., Langley, E. J. G., Whiteside, M. A., Laker, P. R., Beardsworth, C. E., &
677 Madden, J. R. (2018). Do detour tasks provide accurate assays of inhibitory control?
678 *Proceedings of the Royal Society B: Biological Sciences*, 285(1875). Retrieved from
679 <http://rspb.royalsocietypublishing.org/content/285/1875/20180150.abstract>

680 van Horik, J. O., Langley, E. J. G., Whiteside, M. A., Laker, P. R., & Madden, J. R. (2018). Intra-
681 individual variation in performance on novel variants of similar tasks influences single
682 factor explanations of general cognitive processes. *Royal Society Open Science*, 5(7).
683 <https://doi.org/10.1098/rsos.171919>

684 van Horik, Jayden O., Langley, E. J. G., Whiteside, M. A., & Madden, J. R. (2017). Differential
685 participation in cognitive tests is driven by personality, sex, body condition and
686 experience. *Behavioural Processes*, 134, 22–30.
687 <https://doi.org/10.1016/j.beproc.2016.07.001>

688 Verbruggen, F., Best, M., Bowditch, W. A., Stevens, T., & McLaren, I. P. L. (2014). The
689 inhibitory control reflex. *Neuropsychologia*, 65(312445), 263–278.
690 <https://doi.org/10.1016/j.neuropsychologia.2014.08.014>

691 Vernouillet, A. A. A., Stiles, L. R., Andrew McCausland, J., & Kelly, D. M. (2018a). Individual
692 performance across motoric self-regulation tasks are not correlated for pet dogs.
693 *Learning & Behavior*. <https://doi.org/10.3758/s13420-018-0354-x>

694 Vernouillet, A. A. A., Stiles, L. R., Andrew McCausland, J., & Kelly, D. M. (2018b). Individual

695 performance across motoric self-regulation tasks are not correlated for pet dogs.
696 *Learning & Behavior*. <https://doi.org/10.3758/s13420-018-0354-x>
697 Völter, C. J., Tinklenberg, B., Call, J., & Seed, A. M. (2018). Comparative psychometrics:
698 establishing what differs is central to understanding what evolves. *Philosophical
Transactions of the Royal Society B: Biological Sciences*, 373(1756).
700 <https://doi.org/10.13140/RG.2.2.15283.73764>
701 Wallis, J. D., Dias, R., Robbins, T. W., & Roberts, A. C. (2001). Dissociable contributions of the
702 orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour
703 reaching task. *European Journal of Neuroscience*, 13(9), 1797–1808.
704 <https://doi.org/10.1046/j.0953-816x.2001.01546.x>
705 White, N. M., & McDonald, R. J. (2002). Multiple parallel memory systems in the brain of the
706 rat. *Neurobiology of Learning and Memory*, 77, 125–184.
707 <https://doi.org/10.1006/nlme.2001.4008>
708 Whiteside, M. A., van Horik, J. O., Langley, E. J. G., Beardsworth, C. E., & Madden, J. R.
709 (2018). Size dimorphism and sexual segregation in pheasants: tests of three competing
710 hypotheses. *PeerJ*, 6, e5674. <https://doi.org/10.7717/peerj.5674>
711