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Abstract

The regulatory contribution that single-nucleotide polymorphisms (SNPs) associated with
psychiatric and cognitive phenotypes make to multimorbidity is unknown. Here, we integrate
3D genome organization and expression quantitative trait (eQTL) analyses to identify the
genes and biological pathways that are functionally impacted by 2,893 GWAS SNPs
associated with cognitive functioning and five psychiatric disorders (i.e. attention deficit
hyperactivity disorder (ADHD), anxiety, bipolar disorder (BD), unipolar depression (UD) and
schizophrenia (SCZ)). The analysis revealed 33 genes and 62 pathways that were commonly
affected by the gene regulatory interactions associated with all six phenotypes despite there
being no common SNPs and eQTLs. 38 ADHD-, 78 anxiety-, 81 BD-, 169 UD-, 225 SCZ- and
185 cognition-associated genes represent known drug targets. Four genes were affected by
eQTLs from all six phenotypes. Collectively, our results represent the foundation for a shift
from a gene-targeted towards a pathway-based approach to the treatment of multimorbid

conditions.

Introduction

Attention-deficit hyperactivity disorder (ADHD), severe anxiety, bipolar disorder (BD), unipolar
depression (UD) and schizophrenia (SCZ) are highly prevalent psychiatric disorders’.
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Typically, these disorders are accompanied by cognitive advantages or deficits? that may be
associated with increased population level mortality. Epidemiological research has reported
that ADHD?, anxiety®*, BD?, UD® SCZ® and cognitive functions are multimorbid conditions,
suggesting that common biological mechanisms may underlie these phenotypes. Despite
evidence for significant genetic heritability’, how the underlying genetic architecture of these
phenotypes contributes to the observed multimorbidity is incompletely understood.
Understanding the regulatory mechanisms underlying these observed multimorbidities will be
useful for prognosis, prediction, therapeutic approaches, and understanding drug side-effects.
Genome-wide association studies (GWAS) have identified thousands of single nucleotide
polymorphisms (SNPs) that are significantly associated with psychiatric disorders and
cognitive functions’. The majority of these SNPs fall within non-coding genomic regions,
consistent with their being expression quantitative trait loci (eQTLs) that are linked to, or
enriched within, local or distal regulatory elements®®. Identifying the functional impact of these
SNPs remains a significant hurdle'®. The three-dimensional (3D) organization of the genome
emerges from the sum of the nuclear processes and includes cell type and tissue-specific

I"". Recent

spatial interactions between regulatory regions and the genes that they contro
studies have demonstrated the potential of integrating GWAS SNPs, genome structure and
eQTLs for the identification of functional regulatory interactions in SCZ'%"*. However, how
genetic variants contribute to multimorbidities among psychiatric phenotypes and cognition
remains poorly defined.

Here, we integrated data on the 3D genome organization and eQTLs to identify tissue-specific
spatial regulatory impacts associated with the development of psychiatric disorders and
cognitive functioning (see Methods). The identified regulatory interactions include cis- (<1Mb)
and trans-acting (>1Mb) intra- and interchromosomal regulatory connections. eGenes from all
phenotypes co-occurred in 62 common biological pathways consistent with the observed
multimorbidities among psychiatric and cognitive phenotypes. Drug-eGene interaction
analysis identified potential pharmacological influences on these multimorbid phenotypes. Our

observations reveal the extent of the shared genetic influences, tissue-specific regulatory
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mechanisms, biological pathways, and drugs to multimorbidities among ADHD, anxiety, BD,
UD, SCZ and cognitive phenotypes. These results highlight novel and existing opportunities

for therapeutic drug repurposing to modify psychiatric disorders and cognitive functioning.

Results

Functional impacts of genetic variants explain the multimorbidities between psychiatric
disorders and cognition.

Genetic architecture is a major contributor to the development of psychiatric and cognitive
phenotypes™. We hypothesized that multimorbidity is driven by genetic variants (e.g. SNPs,
structural variants, indels, etc) that regulate tissue-specific expression of genes that co-occur

within specific biological pathways and thus affect the phenotype (Fig. 1).
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Fig. 1 Genetic model of multimorbidity and the SNP-phenotype relationship. Phenotype-
specific genetic variants alter tissue-specific gene expression by changing regulatory
connections within the 3D dimensional organization of the genome. The gene products, whose
expression is altered, interact within biological pathways. Multimorbidity results when affected
gene products co-occur within pathways. The co-occurrence of affected gene products within
shared pathways changes the way pathways respond to environmental signals and thus
affects cellular activities at tissue and system levels.
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SNPs associated with psychiatric disorders and cognition regulate distant genes.

SNPs represent the most common type of genetic variation and are widely associated with
phenotypes in GWAS". SNPs (n=2,893) associated (p < 1x107°) with cognitive functioning,
ADHD, anxiety, BD, UD and SCZ were obtained from the GWAS Catalog

(www.ebi.ac.uk/gwas/; Supplementary Table 1). CoDeS3D'® was used to integrate GWAS

and genome structure data to identify tissue-specific spatial eQTLs for 2,088 (~70%) of the
SNPs (Supplementary Fig. 1 and 2a; GTEx multi-tissue dataset v7, Supplementary Table 3).
The 2,088 eQTLs (>40% intronic, >35% intergenic; Supplementary Fig. 2b) were involved in
9,527 statistically significant (FDR < 0.05; Benjamini Hotchberg'’) SNP-eGene pairs and a
total of 45,269 cis- and trans-acting regulatory interactions across 48 different human tissues

(Fig. 2, Supplementary Fig. 3, Supplementary Tables 4-10).

ADHD Anxiety BD SCz ubD Phenotype

( Sf ) ( 119 ) ( 218 ) ( 819 ) ( 717 ] 825 GWAS SNPs @ %
CoDeS3D pipeline

v v v v v
(e2 ) (13 ) (150 ] ( 593 ] [ 515 | 634 earLsnps X

i i l l i Significant

(1185 ) (4633 ) (2639 | (11845 ) 12119 | | 12848 ?g;rul_esi,r’:ltzzgsjr;es-

S

Y Y Y Y Y
225 466 395 1,317 1,094 1,173 eGenes
(225 ) (L4es ] (005 ) (L1317 ] [ 1004 ] Gen
Pathway analysis Drug-eGene interaction analysis Drug-eGenes

interactions

A | A
(92 J(117 )(135) (164 ) (160 | 148 (38 | (78 )( 81 ) (225) (169 | 185 _\__

4 Pathways — — dGenes

Fig. 2 Pipeline used to study the multimorbidities between psychiatric and cognitive
phenotypes. SNPs associated with cognition, ADHD, anxiety, BD, SCZ, and UD were obtained
from the GWAS Catalog and analysed using CoDeS3D (see Supplementary Fig.1) to identify
the genes associated with significant spatial eQTLs. Pathway analysis was used to identify
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pathways containing co-occurring eGenes for the different phenotypes. Drug-eGene
interaction analysis was performed to identify druggable genes (Supplementary Table 4 & 16).

SNPs and eQTLs are mostly unique to individual phenotypes.

We intersected the spatial eQTL sets associated with ADHD, anxiety, BD, UD, SCZ and
cognitive functioning to identify shared genetic variation between these phenotypes. There
were no SNPs common to all phenotypes (Fig. 3a). Similarly, there were no eQTLs shared by
all phenotypes and most were found to be unique to individual phenotypes (Fig. 3b). Among
the psychiatric disorders, SCZ and BD show the largest eQTL overlap (69 eQTLs). Only
pairwise eQTL overlaps were identified between psychiatric disorders and cognition. No
shared eQTLs were identified between ADHD and cognition. Previous studies have also
identified SNPs associated with combined phenotypes, i.e. SCZ+cognition?, BD+cognition?
and BD+SCZ'8, however, consistent with our findings, most of these phenotype-associated
SNPs were individualized. The lack of (or small) SNP and eQTL overlaps among psychiatric
and cognitive phenotypes suggests that multimorbidity is less likely due to shared genetic

variants, but rather may be explained by their regulatory contributions on genes and pathways.
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Fig. 3 Shared biological pathways link psychiatric disorders and cognition. Psychiatric
disorders and cognitive functions have low levels of genetic similarity at the SNPs (a), eQTLs
(b), and eGene (c) levels. d. Psychiatric disorders and cognition share a large degree of

6


https://doi.org/10.1101/837914
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/837914; this version posted November 11, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

commonality at the biological pathways level. Among the most impacted pathways, 61 were
shared between psychiatric disorders and cognition, 66 - across all five psychiatric disorders.
Only one pathway (i.e. Pancreatic secretion) was unique to ADHD, 3 pathways (i.e.
Vasopressin-regulated water reabsorption, Ovarian steroidogenesis and Dilated
cardiomyopathy (DCM)) were specific to anxiety, 3 - to BD (i.e. IL-17 signaling pathway,
Antifolate resistance and Cytosolic DNA-sensing pathway), 2 - to SCZ (i.e. p53 signaling
pathway and Prion diseases), 2 - to UD (i.e. Rheumatoid arthritis and Malaria) and 1 - to
cognition (i.e. Carbohydrate digestion and absorption). The full list of shared and unique
pathways is in Supplementary Table 15.

Psychiatric disorders and cognition share common eGenes.

Multimorbidities among psychiatric disorders and cognition could result from the regulatory
effects of shared or phenotype-specific eQTLs on common gene targets. Common eGenes
(n=33) were identified for eQTLs associated with all six phenotypes (Fig. 3c¢). Bootstrapping
simulations (n=10,000) randomly generating phenotype-associated eGenes confirmed that
the observed overlaps were significant (p value < 0.01; Supplementary Fig. 4). SCZ and UD
shared the greatest number of eGenes (n=374). ADHD and cognition have 58 common
eGenes despite having no shared eQTLs (Fig. 3b & 3c).

Expression levels of the 33 common eGenes we identified are associated with cis- and trans-
eQTLs from linked variants on chromosomes 3, 6, 10 and 19 (Supplementary Fig. 5,
Supplementary Table 11). ADHD, anxiety, BD, SCZ, UD and cognition phenotypes had 1-13
cis-acting eQTLs located within chr3:52256696-53455568 that were associated with the
transcript levels of ten eGenes (i.e. GLYCTK, GNLS3, ITIH4, MUSTN1, NEK4, NT5DC?2,
SFMBT1, TMEM110, WDR82 and PBRM1). Chr6:25177507-32914725 contained a total of
111 eQTLs from the six phenotypes that were associated with the expression of 22 eGenes
(including five transcription factors, i.e. ZFP57, ZNF165, ZSCAN23, ZSCAN31, ZSCANY).
Chr10:103816827-105039240 contained between 3-14 phenotype specific eQTLs associated
with transcriptional levels of the AS3MT eGene. The maijority of phenotype-associated SNPs
in these regions are in linkage disequilibrium (D’ > 0.5) (Supplementary Fig. 6 & 7).

Previous studies have identified loci linked to phenotype-related SNPs and genes that they

can disrupt''%2°_ For example, genetic variants at 3p21 region were linked to GLYCTK, GNL3
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and ITIH4 genes that were previously implicated in BD and SCZ?"%. Altered ASSMT gene
expression (associated with rs7085104 SNP in 10924.32 locus) in the context of SCZ has
recently been reported'. The ITIH3-rs2535629 and AS3MT-rs7085104 associations have
also been linked to combined ADHD+BD+UD+SCZ phenotype®. However, these assignments
are typically based on the assumption that the closest gene to the variant is responsible for
the phenotype. Analysis of SNP-eGenes spatial connections showed that only 5-7% are
explained by SNP associations with a closest eGene. For example, the intronic ITIH3-
rs2535629 eQTL SNP (associated with ADHD, BD, UD and SCZ?°) correlates with expression
of the closest (/ITIH3) gene. However, ITIH3-rs2535629 is also involved in spatial regulatory
interactions with 12 eGenes (i.e. ITIH4, PPM1M, GNL3, RAF1, MUSTN1, NEK4, NT5DC2,
PBRM1, RBMS3, SFMBT1, TMEM110, WDR82) (Supplementary Table 12). These results
suggest that incorporating data on spatial genome organization enables to identify more local
and distal eQTL-gene connections that can be missed but may contribute to multimorbid

phenotypes.

Psychiatric disorders and cognition share common biological processes.

Gene ontology (GO) analysis (g:Profiler®® toolset) of the thirty-three shared eGenes identified
significant enrichment (adjusted p < 0.05, corrected by the SCS algorithm) in gene expression,
transcription, metabolic, biosynthetic and regulatory processes (Supplementary Fig. 8).
Notably, ontological analyses of eGenes specific for each phenotype revealed common
associations with neurodevelopment (e.g. “nervous system development”), immune system
processes (e.g. “immune response”), responses to environmental stimuli and signal

transduction (Supplementary Table 13).

Psychiatric disorders and cognition share a large number of biological pathways.
The pleiotropic effects of eQTLs and co-occurrence of the affected eGenes within biological
pathways could contribute to the underlying multimorbid conditions (Fig. 1). Pathway analysis

using eGenes (shared and specific for each phenotype) identified 61 common biological
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pathways (Fig. 3d, Supplementary Table 14). These pathways contain a mixture of phenotype
shared and specific eGenes (Supplementary Fig. 9) and are associated with human diseases
(e.g. alcoholism, glioma, HTLV-I infection), signal transduction (e.g. neurotrophin signaling,
Wnt, mTOR, MAPK, cAMP, Ras, thyroid hormone signalling pathways), neurodevelopment
(e.g. axon guidance) and learning (e.g. long-term potentiation (LTP)) and immunity (e.qg.
antigen processing and presentation pathway) (Supplementary Table 15). An additional 66
pathways contain co-occurring eGenes from all of the psychiatric disorders (Fig. 3d,
Supplementary Table 15). Bootstrapping analysis (n=10,000) confirmed that these overlaps
were significant (p value < 0.01; Supplementary Fig. 10).

The neurotrophin signaling pathway, arguably one of the important pathways in developmental
neurobiology®*, contained eGenes associated with eQTLs from all phenotypes (Fig. 4). Most
of the eGenes within the neurotrophin signalling cascade were regulated by trans-acting
eQTLs (Fig. 4). Dysregulation in the neurotrophin signaling cascade can impact downstream
pathways, e.g. axon guidance and LTP, which also contain co-occurring eGenes associated

with cognition and psychiatric phenotypes (Supplementary Fig. 11 & 12).
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Fig. 4 Psychiatric and cognitive SNPs mark eQTLs that associate with gene expression within
the neurotrophin signaling pathway. The co-occurrence of the affected shared or phenotype-
specific eGenes and imbalance in gene expression within this pathway may lead to a series
of cellular functions and events associated with psychiatric and cognitive phenotypes and the
multimorbidities between them.

We also identified 12 biological pathways that were impacted by eGenes that were unique to
individual psychiatric and cognitive phenotypes. For example, eGenes specific to: 1) ADHD
impacted pancreatic secretion; 2) anxiety impacted vasopressin-regulated water reabsorption,
ovarian steroidogenesis and dilated cardiomyopathy (DCM); 3) BD impacted IL-17 signalling,
antifolate resistance and cytosolic DNA-sensing; 4) SCZ impacted p53 signalling and prion
diseases; and 5) UD impacted rheumatoid arthritis and malaria pathways. Carbohydrate

digestion and absorption was impacted by eGenes specific to cognition.

Drug-gene interactions uncover pharmaceutical influences of multimorbidity

Drugs to prevent, stabilize or slow the progress of psychiatric and cognitive conditions often

have side effects consistent with known multimorbidities. We queried the Drug Gene
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Interaction database (DGIdb) to identify eGene products that are targeted by existing drugs
(Supplementary Table 16). We identified 16% of the ADHD-risk, 16.7% of the anxiety-risk,
20.5% of the BD-risk, 15.4% of the UD-risk, 17.1% of the SCZ-risk eGenes and 15.8% of the
cognition-associated eGenes that represent potential targets for pharmaceutical intervention
(Supplementary Table 16).

Four eGenes (i.e. AS3MT, FLOT1, HLA-A and PBRM1) that are affected by eQTLs from all
tested phenotypes are targets for current drugs (Supplementary Fig. 13). The AS3MT product
is a target for arsenic compounds, which have neurotoxic effects associated with cognitive
dysfunction and mood disorders®. Carbamazepine targets HLA-A and FLOT1 products and
is used to treat BD, depression and SCZ. Similarly, everolimus targets the PBRM1 product,
which is currently being explored as a therapeutic option for neurological diseases
characterized by cognitive impairments®. Everolimus improves cognitive function while
aggravating depression and anxiety?®.

Notably, the products of these shared druggable eGenes are involved in the same overlapping
biological pathways. For example, FLOT1 products are enriched in insulin signaling while
PBRM1 products are involved in hepatocellular carcinoma pathway. The products of HLA-A
are enriched in pathways related to antigen processing and presentation, natural killer cell
mediated cytotoxicity, HTLV-l and human papillomavirus infections, cellular senescence.
Collectively, these results provide insights into potential drug side-effects associated with

multimorbidities among psychiatric disorders and cognition.

Spatial regulatory eQTL effects are tissue-specific.

Brain structural changes are commonly considered as relevant factors in the development of
psychiatric and cognitive phenotypes. However, these phenotypes are associated with
physiological changes at the level of the whole body, e.g. with impaired functioning of

2829 and cardiometabolic®® systems. Therefore, tissue-specific spatial

endocrine?’, immune
regulatory interactions of eQTL SNPs with their target genes may be important in

understanding the multimorbidities among psychiatric and cognitive phenotypes. There was
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widespread distribution of cis- and trans-acting eQTL regulatory interactions we identified
across 48 GTEx tissues (Supplementary Fig. 14). The number of eQTL SNP-eGene
interactions acting over distances of <1Mb and =1Mb correlated with tissue sample size
(Supplementary Fig. 15). By contrast, the numbers of interchromosomal interacting eQTLs in
each tissue did not correlate with tissue sample size (Supplementary Fig. 15). Notably, we
detected more <1Mb and =1Mb-acting eQTL-eGene interactions in thyroid and brain
cerebellum, than predicted (Supplementary Fig. 15) for the phenotypes we tested
(Supplementary Table 18). This finding is consistent with the previously reported role of the

thyroid in the development of cognitive functions and psychiatric disorders?’=".

Discussion

Psychiatric and cognitive phenotypes were found to share relatively little common genetic risk
at the level of SNPs and eQTLs. However, our observations are consistent with the known
multimorbidities being explained by the combinatorial action of eGenes within shared
biological pathways. We identified 57 distinct patterns of multimorbidity between psychiatric
disorders and cognition at the pathways level with 61 biological pathways being shared across
all six phenotypes. Only 12 biological pathways that were impacted by eGenes were unique
to specific phenotypes. Collectively, our results suggest that emerging interactions between
eQTLs, genes and pathways at the tissue and system levels may be potential drivers of
multimorbidity among psychiatric disorders and cognition.

Increasing evidence indicates that infections during pregnancy, at birth and in early childhood
increase the risk of ADHD?*?, BD*® and SCZ*®. We identified shared pathways associated with
infectious diseases (e.g. HTLV-I infection, hepatitis B) as containing eGenes regulated by
shared and condition specific eQTLs. Notably, we identified the immune candidate genes
IRAK1 and IRAK3* as being associated with SCZ eQTLs. Collectively, our observations are
consistent with psychiatric phenotypes having inflammatory components®>* to their

development albeit the exact mechanisms remain unknown.
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Studies on psychiatric disorders suggest that they are multisystem conditions*=*°. This can
be rationalized by dysfunctions in other organs signalling for changes in the brain. This is
epitomized by hypo and hyperthyroidism, where altered thyroid hormone supplies cause
changes in brain functioning, leading to psychiatric disorders (e.g. SCZ, BD, anxiety and
depression)?”“°. Interestingly, we found common pathways associated with thyroid hormone
functioning (e.g. thyroid hormone signalling pathway) across all six phenotypes. Dysregulation
and imbalanced gene expression within this pathway may be associated with impaired
neurodevelopment*.

It remains unclear when the observed multimorbidities arise during development. Are they
cause or consequence of the psychiatric and cognitive conditions with which they associate?
The genes and pathways that we identified are consistent with a strong developmental
component to these phenotypes. For example, axon guidance, Wnt, GhnRH, Hippo, TGF-beta,
thyroid hormone and neurotrophin signaling pathways were affected by eQTLs specific for
each phenotype and these pathways are central to neurodevelopment. Similarly,
neurotrophins have been implicated in neuroplasticity, learning and memory through receptor
signalling. Therefore, the identification of a cascade of eQTLs associated with the expression
of genes affected in psychiatric (i.e. CRK, RAPGEF1, PIK3R1, PRKCD, SHC4, MAPK3) and
cognitive (i.e SORT1, SH2B1 and ATF4) phenotypes within the neurotrophin signalling
pathway is consistent with a central role in the development of these multimorbid conditions.
Further analysis of the shared pathways and tissue-specific drug interactions with potential
targetable gene products will provide insights into potential opportunities for therapeutic
intervention. Additionally, here we focused on gene products that could be pharmacologically
modulated, but the use of technologies such as gene therapy will expand the list of potential
interventions.

Psychiatric disorders and cognitive functions are complex multifactorial phenotypes whose
development depends on complex, often non-linear, dynamic interplay between genetic,
epigenetic and environmental factors. Given this, our study has several limitations. Firstly,
we’re focusing on the GWAS tag-SNPs only, without capturing the underlying causal SNPs
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within a ‘tagged’ LD block, which can limit the functional inferences from GWAS'*'. Secondly,
increasing the number of GWAS studies on certain phenotypes (e.g. ADHD, anxiety, etc.) will
result in the identification of additional novel SNP loci. Thirdly, SNPs do not explain all of the
estimated heritability in psychiatric and cognitive phenotypes, suggesting that other factors
(e.g. rare variants, indels, structural variation, methylation, etc.) also contribute'. Fourthly, the
GTEx eQTL data used in this study was largely from European individuals aged 40 years and
older*?. Thus, robust predictions of the regulatory mechanisms of psychopathology and
cognitive functioning in different populations and developmental stages requires additional
data sets. Also, the cognitive functions we investigated here were diverse (with 791 out of 825
SNPs being associated with intelligence, see Supplementary Table 1) and further research is
needed to look more precisely at specific aspects of cognitive functioning. Finally, the GTEX
tissue and Hi-C datasets were not paired. This confounds the study of tissue-specific
regulatory interactions particularly when combined with potential cellular senescence effects
during the GTEx resampling procedure. Despite this, our analysis provides a starting point for
further mechanistic and functional investigation. Replication analyses will increase the
robustness of the results and provide a clearer indication of cross-phenotype overlap and

phenotype-specific genetic architecture.

In conclusion, we have described new pathways for multimorbidity and identified drug
interactions that may be clinically relevant for the treatment and prevention of psychiatric and
cognitive phenotypes as well as enhancing and facilitating health outcomes. Collectively, our
analyses inform the extent of shared genetic influences, tissue-specific regulatory
mechanisms, and pathways between complex multi-genic phenotypes. Our results provide the
basis for a change away from a gene centric approach to therapy, instead identifying pathways
for the treatment multimorbid psychiatric and cognitive conditions. Future applications of the
spatial genetic approach we used will cross the molecular, cellular, tissue and system levels
to define personalized multimorbid disease risk profiles, therapeutic targets and drug side-

effects. This approach can be extended systematically to other multimorbid conditions.
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Online Methods

GWAS SNPs.

Single-nucleotide polymorphisms (SNPs) associated with five psychiatric disorders (i.e.
ADHD, anxiety, BD, UD and SCZ) were downloaded from the NHGRI-EBI GWAS Catalog

(www.ebi.ac.uk/gwas/; 07/12/2018) with p values <1x10° (see Data and code availability).

SNPs associated with nine cognitive functions (i.e. intelligence, information processing speed,
cognition, reading ability, reasoning, mathematical ability, infant expressive language ability,
language performance and speech perception) were downloaded from the NHGRI-EBI GWAS

Catalog (www.ebi.ac.uk/gwas/; 14/07/2018) with p values <1x10® (see Data and code

availability). Phenotypes for SNPs were defined as the traits associated with SNPs in the
NHGRI-EBI GWAS Catalog. Functional annotation of SNPs was performed using
wANNOVAR tool**#4. Genomic positions and annotations of SNPs were obtained for the

human genome build hg19 release 75 (GRCh37) (see Data and code availability).

Hi-C data and data processing pipeline.

In total, 28 Hi-C chromatin interaction libraries were used in this study (see Supplementary
Table 4). We used high-resolution Hi-C chromatin interaction libraries from seven cell lines
(GM12878, HMEC, HUVEC, IMR90, K562, KBM7 and NHEK)*. Hi-C interaction data were
downloaded from GEO (see Supplementary Table 4) using the download_default_data
module of the CoDeS3D pipeline. Additionally, we requested and downloaded Hi-C raw data
for neurons, other tissues and cell lines from GEO and dbGaP databases (see Supplementary
Table 4). We received the access approval for HeLa (project #18446: "Finessing predictors of
cognitive development (part 2)") and cortical plate and germinal zone neurons (project
#16489: "Finessing predictors of cognitive development") Hi-C data from the dbGaP database.
We analysed the raw data as outlined in Rao et al. (Juicer*®, version 1.5) to generate Hi-C

libraries. The pipeline included BWA alignment of paired-end reads onto the hg19 reference
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genome, merging paired-end read alignments and removing duplicates. The resulting and
previously prepared files containing cleaned Hi-C contacts locations (i.e.
* merged_nodups.txt files) were further processed to get Hi-C chromatin interactions libraries
in the following format: read name, str1, chr1, pos1, frag1 mapq1, str2, chr2, pos2, frag2,
mapq2 (str = strand, chr = chromosome, pos = position, frag = restriction site fragment, mapq
= mapping quality score, 1 and 2 correspond to read ends in a pair). Reads where both ends

had a mapq = 30 were included in the final library.

CoDeS3D pipeline.

The CoDeS3D' pipeline was used to identify genes that spatially interact with phenotype-
associated eQTL SNPs (Supplementary Fig. 1). To identify DNA fragments, the hg19
reference genome was digested with the same restriction enzyme as used in Hi-C library
preparation (i.e. Mbol or Hindlll) using the digest genome module of CoDeS3D. The
process_inputs module was used to identify SNPs location within the DNA fragments. The
find_interactions module identified restriction fragments that interact with SNP-containing
fragments in each of 28 Hi-C chromatin interaction libraries. The find_genes module identified
spatial SNP-gene pairs where SNP-containing fragments interact with fragments overlapping
with a gene region. GENCODE transcript model version 19 was used as the reference for

gene annotations. The find_eqtls module queried the GTEx database (https://gtexportal.org/,

GTEx multi-tissue dataset v7, Supplementary Table 4), with the SNP-gene pairs, to identify
cis- and trans-acting eQTL SNP-eGees interactions (i.e. genes, whose tissue-specific
expression changes are associated with a SNP). Lastly, in the produce_summary module, the
Benjamini-Hochberg FDR control algorithm'” was applied to adjust the p values of eQTL

associations and identify significant eQTL SNP-eGene-tissue interactions (FDR < 0.05).

Bootstrapping analysis.
To estimate that the observed spatial eGenes associations and overlaps are not random we

performed bootstrap test with N=10000 iterations. On each iteration step, bootstrap samples
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containing random eGenes were generated for each phenotype (based on the number of
eGenes associated with each phenotype). For each bootstrapped overlap the number of
shared eGenes was calculated. We defined an overlap as the number of shared eGenes we
observe between two or more specific phenotypes (e.g. eGene overlap between ADHD and
Anxiety, or eGene overlap among ADHD, Anxiety, BD, UD, SCZ and Cognition). After 10,000
iterations we counted those iterations where the number of shared eGenes in the bootstrapped
overlap (eGenes_bootstrapped) is greater than or equal to the number of shared eGenes in
the observed overlap (eGenes_observed). The p value was calculated as the sum of these

iterations divided by the total number of iterations N,

eGenes_bootstrapped = eGenes_observed
p value = X ppN ) (1)

Statistical significance level was determined as 0.01. In other words, if for eGene overlap we
estimate p value < 0.01, we reject the null hypothesis (our assumption that the observed
eGene overlap is due to chance) and accept the alternative hypothesis that the observed
relationship is true and not random.

The bootstrap test with N=10000 iterations was also performed to estimate that the observed
pathway overlaps are non-random. The same procedure was used as for eGenes

bootstrapping. Total number of KEGG pathways is 536 (iPathwaysGuide, 09/13/2019).

LD analysis.

LD analysis between the psychiatric disorders and cognition-associated eQTL SNPs from
three putative regulatory regions was performed using LDlink 3.7*’. The LDmatrix module of
the tool was used to calculate linkage disequilibrium statistics for eQTL SNPs in all population
groups (GRCh37/hg19 genome assembly; SNP RS numbers based on dbSNP151;
genotyping data from phase 3 (version 5) of the 1000 Genome Project; African, Ad Mixed

American, East Asian, European and South Asian populations.)

Functional enrichment analysis.
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Functional gene enrichment analysis was performed using g:GOSt core tool of the g:Profiler?®
tool set. Three Gene Ontology terms (i.e. biological process, molecular function and cellular
component) were used to test if specific categories or biological functions were enriched
among the identified eGenes of the regulatory eQTL SNPs. All known human genes were
chosen as a statistical domain scope. The significance of the overrepresented GO terms was

corrected by the SCS algorithm?® (adjusted p < 0.05).

Pathway analysis.

Lists of eGenes regulated by phenotype-associated eQTL SNPs were analyzed using Advaita

Bio’s iPathwayGuide (https://www.advaitabio.com/ipathwayguide, 09/13/2019) to identify the

most impacted biological pathways enriched in psychiatric disorders and cognition. The
iPathwaysGuide considers the role, position and relationships of each gene within a pathway
that significantly reduces the number of false positives and results in identification of the truly
impacted pathways. The FDR algorithm'” was applied to correct p values for multiple testing

and determine significance at the pathway level (FDR < 0.05).

Correlation analysis.

To measure the statistical association between GTEXx tissue sample size and the number of
cis- and trans-acting eQTL-eGenes interactions we performed Pearson’s correlation analysis

(Data and code availability).

Drug-eGene interaction analysis.

We queried the Drug Gene Interaction database*® (DGldb) via the DGIdb APl to get

information on drugs, their effects and mechanisms of action on the target eGene products.

URLs.

Juicer 1.5: https://github.com/aidenlab/juicer

NHGRI-EBI GWAS Catalog: https://www.ebi.ac.uk/gwas/

WANNOVAR: http://wannovar.wglab.org/
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GEO database: https://www.ncbi.nim.nih.gov/geo/

dbGaP database: https://www.ncbi.nlm.nih.gov/gap/

CoDeS3D pipeline: https://github.com/Genome3d/codes3d-v1

GTEXx Portal: https://gtexportal.org/home/

LDlink 3.725: https://Idlink.nci.nih.gov/

g:Profiler (version €95 _eg42 p13_f6e58b9): https://biit.cs.ut.ee/gprofiler/

Advaita Bio’s iPathwayGuide (09/13/2019): https://www.advaitabio.com/ipathwayguide

DGIdb (v3.0.2 - sha1 ec916b2): http://www.dgidb.org/

Data availability

The GWAS Catalog associations (version 1.0.1) were downloaded from

https://www.ebi.ac.uk/gwas/ and are available in Supplementary Table 1. The Hi-C datasets

that support the findings are available from GEO and dbGaP databases. Accession numbers
of these datasets are given in Supplementary Table 2. The GTEx dataset v7 (dbGaP
accession phs000424.v7.p2) was used in this study (see Supplementary Table 3). Human
genome build hg19 release 75 (GRCh37) was downloaded from

ftp://ftp.ensembl.org/pub/release-

75/fasta/lhomo sapiens/dna/Homo sapiens.GRCh37.75.dna.primary assembly.fa.gz.

SNP genomic positions (CoDeS3D SNP database) were obtained from

ftp://ftp.ncbi.nih.gov/snp/organisms/human 9606 b151 GRCh37p13/.

Gene annotations were downloaded from

https://storage.googleapis.com/gtex _analysis v7/reference/gencode.v19.transcripts.patched

contigs.gtf. The datasets generated by the CoDeS3D pipeline that support the findings of
this study are available in Supplementary Tables 5-10 and at

https://github.com/Genome3d/psychiatric_and cognitive multimorbidities/results/codes3d o

utput. Source data underlying Figs. 2, 3a-d and Supplementary Figs. 2a-b, 3-10, 13-15 are
also available at

https://qgithub.com/Genome3d/psychiatric_and cognitive multimorbidities/data.

19


https://doi.org/10.1101/837914
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/837914; this version posted November 11, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Tables 1-18 are available in figshare with the identifier

https://doi.org/10.17608/k6.auckland.10282580.v1.

Code availability

CoDeS3D pipeline is available at https://github.com/Genome3d/codes3d-v1. All python and

R scripts used for data analysis and visualisation are available at

https://qgithub.com/Genome3d/psychiatric and cognitive multimorbidities. R version 3.5.2

and RStudio version 1.1.463 were used for all R scripts. All python scripts are based on

Python 2.7.15
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Supplementary Table 10: Detailed information on spatial eQTL SNP-eGene-tissue
interactions associated with cognitive functions

Supplementary Table 11: eGenes shared across all psychiatric disorders and cognition
Supplementary Table 12: rs2535629 SNP-gene associations linked to psychiatric disorders
and cognitive functions

Supplementary Table 13: Gene Ontology enrichment analysis

Supplementary Table 14: Pathways associated with psychiatric disorders and cognitive
functions

Supplementary Table 15: Unique and shared pathways between psychiatric disorders and
cognitive functions (57 multimorbidity patterns (i.e. phenotypic combinations) and 6 unique
patterns).

Supplementary Table 16: DGldb drug-eGene interactions associated with psychiatric
disorders and cognitive functions.

Supplementary Table 17: dGenes in pathways associated with psychiatric disorders and
cognitive functions

Supplementary Table 18: Number of cis- (< 1Mb) and trans-acting (= 1Mb and

interchromosomal) eQTL SNP-eGene interactions per GTEXx tissue.

Supplementary Figures
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Supplementary Fig. 1 The CoDeS3D pipeline used in this study. Restriction fragments
containing SNPs associated with psychiatric disorders and cognition were identified. Hi-C
libraries were interrogated to identify genes in fragments that spatially interact (in cis- and
trans-) with SNP fragments. The resulting spatial SNP-gene pairs were used to query GTEx
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database to determine functional tissue eQTL interactions between SNP and eGene (i.e.
gene, whose expression is in eQTL with a SNP). Only statistically significant (FDR < 0.05)
eQTL SNP-eGene-tissue interactions were further used in the downstream analysis (i.e.
functional gene enrichment, pathway analysis, and drug-eGene interactions).
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Supplementary Fig. 2 The percentage contribution of GWAS SNPs that are correlated with
MRNA expression of genes (i.e. eQTL SNPs) and their distribution in the genome. a The
majority of the GWAS SNPs associated with psychiatric disorders and cognition impact on
gene expression as eQTLs. b Most of these eQTL SNPs fall within non-coding regions (i.e.
introns and intergenic regions).
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SNPs. b Most of eQTL SNPs were enriched in intronic and intergenic regions and mark regions
that regulate expression of genes in close proximity (i.e. in cis- manner). Functional annotation
of trans-acting interactions showed that trans-eQTLs involve more coding SNPs (8.9%) in
ADHD compared to other phenotypes. Trans-acting regulation in SCZ and UD is associated
more with intergenic eQTLs than with intronic regulatory variants. The majority of
interchromosomal eQTL effects are intronic and intergenic across all phenotypes
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Supplementary Fig. 4 Box plots of the bootstrapped (10,000 iterations) eGene overlaps
among psychiatric disorders and cognition. Blue dots indicate the number of shared eGenes
in the observed overlaps. The bootstrap test shows that the observed eGenes overlaps are
statistically significant (p < 0.01) and didn’t occur due to chance.
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Supplementary Fig. 5 Common eGenes are affected by different eQTLs. We identified thirty-
three shared eGenes between psychiatric disorders and cognition. These are located on
chromosomes 3, 6 and 10 and regulated in cis- and trans- by multiple eQTL SNPs from four
putative regions on chromosomes 3, 6, 9 and 10. Most of the shared eGenes are protein-
coding (colored in black). Six of them encode transcription factors (colored in red). eGenes
colored in green indicate pseudogenes. One eGene (colored in blue) encodes ncRNA.
eGenes marked with asterisks are associated with up- or downregulation in the brain.
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Supplementary Fig. 6 LD plots (R? and D’) of eQTLs associated with psychiatric disorders
and cognition and located in putative regulatory regions on chromosome 3 (a) and
chromosome 10 (b). The colors represent the strength of pairwise LD according to R? (red)
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and D’ (grey) metrics. The colored asterisks mark the SNPs associated with the corresponding
phenotypes.
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Supplementary Fig. 7 LD plot (R? and D’) of eQTLs associated with psychiatric disorders and
cognition and located in putative regulatory regions on chromosome 6. The colors represent
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the strength of pairwise LD according to R? (red) and D’ (grey) metrics. The colored asterisks
mark the SNPs associated with the corresponding phenotypes.
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Supplementary Fig. 8 Functional enrichment analysis for 29 shared eGenes (4 eGenes are
not present in the g:GOSt database) showed that most of them are enriched in “binding” with
DNA and other heterocyclic and organic cyclic compounds. Protein products of the shared
eGenes are also involved in gene expression, transcription, interferon-gamma secretion and
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Supplementary Fig. 9 Phenotype-specific eGenes and eGenes shared by at least two
phenotypes are co-occurring within 61 shared biological pathways.
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Supplementary Fig. 10 Box plots of the bootstrapped (10,000 iterations) pathway overlaps
among psychiatric disorders and cognition. Blue dots indicate the number of shared pathways
in the observed overlaps. The bootstrap test shows that the pathways overlaps are statistically
significant (p < 0.01) and didn’t occur due to chance.

36


https://doi.org/10.1101/837914
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/837914; this version posted November 11, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

AXON GU |DANCE Guidance cues Receptors Neuron (developing growth cone)
t

Cal* C ct
O—Dm—ﬂbmfff# Transcription __l — »
* _ o Reguiationof [
CW_.‘ actin cytoskeleton T |
,—L\t [ ] s ' \
o | Fyn .| Rac o | : |
Src Sded2 |
o] ] R
8 ]
| \
L
e
[
e
t ) |
Attraction #—————— | | |
EfpA c MAPK [
o t | c . [(Res |-—»IETH signaing pttway Lo
Repuision 4~ FAK |#— Gibd Ephin e ———— " o — oy
t t c i I
Cytokine-cytokine CDC42 | | I |
receptor interaction m_. | ! | |
c t | { |l
" |
Attraction #—————— -{ 6 |J#—]cxcre j¢——]cxcLig—m{cxcre }—»{ 6 |————— —_— +——|lﬂ
U | | | I
| [ I
Lo
| I I
_LW | | |
| i
| | | |
| | | I
Lo
|
B ADHD I I I } |
B Anxiety } : |L kH__+
H BD Microtube __| [y S
—» Microtube _ ! . [l __ g )
reorganization | h L1y Axonrepulsion
W scz | L o i 4
H uD } I I I ‘—H———I‘
| I I I
—————————————— - Fibn
H Two or more phenotypes I I I
. - | [
t trans-interactions | : I | } |
¢ cis-interactions L }
drug target I I I } |
Regulation of ___ I I
_____ actin cytoskeleton | : | I
i
bt I
Ft I
i
|
[l
[ ==
|
— » Axon
| r———™
|| ——"
o
WNT I'l |
signaling pathway t } } |
par3 Il }
S BT — 4l
t ot [ Par6 t } |
o=l s P w Coflin J-——————— - }
|
+p Regulation of J
77777 B actin cytoskeleton |~ T T T T T

(c) Advaita Corporation 2019

Supplementary Fig. 11 SNPs mark eQTLs that act to regulate genes within the axon
guidance pathway. Axon guidance represents a key stage in the development of neuronal
network. Axons are guided by netrins, ephrins, Slits, semaphorins and other guidance factors
to reach their correct targets and form precise functional circuits. Co-occurrence of shared and
phenotype-specific affected eGenes in this pathway may lead to a series of cellular events
associated with dysregulation and disintegration of these circuits in psychiatric and cognitive
phenotypes.
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Supplementary Fig. 12 Co-occurrence of genes regulated by phenotype-associated eQTLs
within the long-term potentiation (LTP) pathway - the molecular basis for learning and memory.
Impaired LTP may have a role in psychiatric disorders and cognitive functioning.
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Supplementary Fig. 13 Psychiatric disorders and cognition share draggable eGenes
(dGenes) whose products represent potential drug targets. Four dGenes (AS3MT, FLOTT,
HLA-A and PBRM1) are shared across all six phenotypes.
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sampled and have a longer ischemic time (the time from death until the time of the sample

fixation) compared to other tissues.
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Supplementary Fig. 15 Correlation analysis between GTEXx tissue sample size and the
number of cis- and trans-acting eQTL SNP-eGenes interactions identified for psychiatric
disorders and cognition. Shaded regions represent 95% confidence intervals containing the
true correlation. The larger is GTEx sample size, the more <1Mb and =21Mb eQTL SNP-
eGenes interactions are observed. However, the number of interchromosomal interactions
tends to be not dependent on the GTEx sample size. For more information on cis- (<1Mb) and
trans-acting (21Mb and interchromosomal) eQTL SNP-eGene interactions per GTEXx tissue,
see Supplementary Table 18.
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