
Gautreau et al.

METHOD

PPanGGOLiN: Depicting microbial diversity via a
Partitioned Pangenome Graph
Guillaume Gautreau1, Adelme Bazin1, Mathieu Gachet1, Rémi Planel1, Laura Burlot1, Mathieu Dubois1,
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Abstract

The use of comparative genomics for functional, evolutionary, and
epidemiological studies requires methods to classify gene families in terms of
occurrence in a given species. These methods usually lack multivariate statistical
models to infer the partitions and the optimal number of classes and don’t
account for genome organization. We introduce a graph structure to model
pangenomes in which nodes represent gene families and edges represent genomic
neighborhood. Our method, named PPanGGOLiN, partitions nodes using an
Expectation-Maximization algorithm based on multivariate Bernoulli Mixture
Model coupled with a Markov Random Field. This approach takes into account
the topology of the graph and the presence/absence of genes in pangenomes to
classify gene families into persistent, cloud, and one or several shell partitions. By
analyzing the partitioned pangenome graphs of isolate genomes from 439 species
and metagenome-assembled genomes from 78 species, we demonstrate that our
method is effective in estimating the persistent genome. Interestingly, it shows
that the shell genome is a key element to understand genome dynamics,
presumably because it reflects how genes present at intermediate frequencies
drive adaptation of species, and its proportion in genomes is independent of
genome size. The graph-based approach proposed by PPanGGOLiN is useful to
depict the overall genomic diversity of thousands of strains in a compact structure
and provides an effective basis for very large scale comparative genomics. The
software is freely available at https://github.com/labgem/PPanGGOLiN.

Keywords: pangenomics; pangenome graph; microbial genomics; comparative
genomics; Bernoulli mixture model; Markov Random Field;
Maximization-Expectation algorithm

Background
The analyses of the gene repertoire diversity of species - their pangenome - have

many applications in functional, evolutionary, and epidemiological studies regarding

both core and accessory genes [1, 2]. The core genome is defined as the set of

genes shared by all the genomes of a taxonomic unit (generally a species) whereas

the accessory (or variable) genome contains genes that are only present in some

genomes. The latter is crucial to understand bacterial adaptation as it contains a

large repertoire of genes that may confer distinct traits and explain many of the

phenotypic differences across species. Most of these genes are acquired by horizontal

gene transfer (HGT) [3]. This usual dichotomy between core and accessory genomes

does not consider the diverse ranges of gene frequencies in a pangenome. The main
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problem in using a strict definition of the core genome is that its size decreases as

more genomes are added to the analysis [4] due to gene loss events and technical

artifacts (i.e. sequencing, assembly or annotation issues). As a consequence, it was

proposed in the field of synthetic biology to focus on persistent genes, i.e. those

conserved in a large majority of genomes [5]. The persistent genome is also called

the soft core [6], the extended core [7, 8] or the stabilome [9]. These definitions

advocate for the use of a threshold on the frequency of observation of a gene among

the species of a clade, above which the gene is considered as de facto core gene.

Persistent gene families are usually defined as those present in a range comprised

between 90% [10] and 99% [11] of the strains in the species. This approach addresses

some problems of the original definition of core genome but requires the setting of an

appropriate threshold. The gene frequency distribution in pangenomes is extensively

documented [12, 7, 13, 14, 15, 16, 8]. Due to the variation in the rates of gene loss

and gain of genes, the gene frequencies tend to show an asymmetric U-shaped

distribution regardless of the phylogenetic level and the clade considered (with the

exception of few species having non-homogeneous distributions as described in [17]).

Thereby, as proposed by [12] and formally modeled by [14], the pangenome can be

split into 3 classes: (1) persistent genome, for the gene families present in almost

all genomes; (2) shell genome, for gene families present at intermediate frequencies

in the species; (3) cloud genome, for gene families present at low frequency in the

species.

The study of pangenomes in microbiology now relies on the comparison of hun-

dreds to thousands of genomes of a single species. The analysis of this massive

amount of data raises computational and algorithmic challenges that can be tack-

led because genomes within a species have many homologous genes and it is possible

to design new compact ways of representing and manipulating this information. As

suggested by [18], a consensus representation of multiple genomes would provide a

better analytical framework than using individual reference genomes. Among oth-

ers, this proposition has led to a paradigm shift from the usual linear representation

of reference genomes to a representation as pangenome graphs bringing together all

the different known variations as multiple alternative paths. Methods [19, 20, 21]

have been developed aiming at factorizing pangenomes at the genome sequence-level

to capture all the nucleotide variations in a graph that enables variant calling and

improves the sensitivity of the read mapping (summarized in [22]).

The method presented here, named PPanGGOLiN (Partitioned PanGenome

Graph Of Linked Neighbors), introduces a new representation of the gene reper-

toire variation as a graph, where each node is a family of homologous genes and

each edge is a relation of genetic contiguity. PPanGGOLiN fills the gap between

the standard pangenomic approach (that uses a set of independent and isolated

gene families) and sequence-level pangenome graph (as reviewed in [23]). The in-

terest of a gene-level graph compared to a sequence graph is that it provides a

much more compact structure in clades where gene gains and losses are the major

drivers of adaptation. This comes at the cost of disregarding polymorphism in genes

and ignoring variation in intergenic regions and introns. However, the genomes of

prokaryotes have very small intergenic regions and are almost devoid of introns jus-

tifying a focus on the variation of gene repertoires [12], which can be complemented
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by analysis of intergenic and intragenic polymorphism. PPanGGOLiN uses a new

statistical model to classify gene families into persistent, cloud, and one or several

shell partitions. Unlike the few statistical methods available [24, 25, 26] that parti-

tions gene families using only their frequency, our method combines the information

of occurrence of gene families and the pangenome graph to make the classification.

In the following sections we present an overview of the method, an illustration of

a pangenome graph and then the partitioning of a large set of prokaryotic species

from GenBank. We evaluate the relevance of the persistent genome computed by

PPanGGOLiN in comparison to the classical soft core genome. Next, we illustrate

the importance of the shell structure and dynamics in the study of the evolution of

microbial genomes. Finally, we compare GenBank results to the ones obtained with

Metagenome-Assembled Genomes (MAGs) to validate the use of PPanGGOLiN for

metagenomic applications.

Results and discussion
Overview of the PPanGGOLiN method

PPanGGOLiN builds pangenomes for large sets of prokaryotic genomes (i.e. sev-

eral thousands) through a graphical model and a statistical method to classify gene

families into three classes: persistent, cloud, and one or several shell partitions. It

uses as input a set of annotated genomes with their coding regions classified in

homologous gene families. As depicted in Figure 1, PPanGGOLiN integrates infor-

mation on protein-coding genes and their genomic neighborhood to build a graph

where each node is a gene family and each edge is a relation of genetic contiguity

(two families are linked in the graph if they contain genes that are neighbors in

the genomes). Thanks to this graphical model, the structure of the pangenome is

resilient to fragmented assemblies: an assembly gap in one genome can be offset by

information from other genomes, thus maintaining the link in the graph. To par-

tition this graph, we established a statistical model taking into consideration that

persistent genes share conserved genomic organizations along genomes [27] and that

horizontally transferred genes (i.e. shell and cloud genes) tend to insert preferentially

in a few chromosomal regions (hotspots) [28]. Thereby, PPanGGOLiN assumes that

two gene families that are consistent neighbors in the graph are more likely to belong

to the same partition. This is achieved by a hidden Markov Random Field (MRF)

whose network is given by the pangenome graph. In parallel, the pangenome is also

represented as a binary Presence/Absence (P/A) matrix where the rows correspond

to gene families and the columns to genomes. Values are 1 for the presence of at least

one member of the gene family and 0 otherwise. This P/A matrix is modeled by

a multivariate Bernoulli Mixture Model (BMM). Its parameters are estimated via

an Expectation-Maximization (EM) algorithm taking into account the constraints

imposed by the MRF. Each gene family is then associated to its closest partition

according to the BMM. This results in a partitioned pangenome graph made of

nodes that are classified as either persistent, shell or cloud. The strength of the

MRF constraints increases according to a parameter called β (if β = 0, the effect

of the MRF is disabled and the partitioning only relies on the P/A matrix) and it

depends on the weight of the edges of the pangenome graph which represents the

number of gene pairs sharing the neighborhood. Another originality of our method
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is that, even if the number of partitions (K) is estimated to be equal to 3 (persis-

tent, shell, cloud) in most cases (see ‘Analyses of the most represented species in

databanks’ section), more partitions can be used if the pangenome matrix contains

several contrasted patterns of P/A. These additional partitions are considered to

belong to the shell genome and reflect a heterogeneous structure of the shell (see

‘Shell structure and dynamics’ section).

Illustration of a Partitioned Pangenome Graph depicting the Acinetobacter baumannii

species

To illustrate the results of the PPanGGOLiN method, a pangenome graph was built

from 3 117 Acinetobacter baumannii genomes from GenBank (Figure 2). The gene

families classified as persistent (3 080 families, orange nodes) correspond to the

conserved paths. Many islands composed of shell (1 534 families, green nodes) and

cloud genomes (64 871 families, blue nodes) interrupt the persistent genome. These

islands appear to be frequently inserted in hotspots of the persistent genome thus

pinpointing regions of genomic plasticity. The average node degree, i.e. the average

number of adjacent edges between gene families of the same partition, is 2.80 for

the persistent genome while the shell genome has a higher average degree (3.95,

P=5.0e-6 with bilateral unpaired 2-sample Student’s t test) and the cloud a lower

one (1.97, P=3.3e-40 with the same test). The shell genome is the most diversified in

terms of network topology with many interconnections between families reflecting a

mosaic composition of regions from different HGT events [28]. The major part of the

cloud has a shell-like graph topology with a large connected component containing

60% of the nodes. In addition, the cloud also contains isolated components that are

nearly linear (3 606 components having on average 4.25 nodes) and singletons (10

575 nodes), presumably because it includes very recently acquired genetic material.

Finally, large families of mobile genes, mostly transposable elements, can be easily

detected because they constitute hubs (i.e. highly connected nodes) in the graph.

They vary rapidly their genetic neighborhoods and can be found in multiple loci.

As an example of the more detailed analysis that can be done using the graph,

a zoom on a region containing the genes required for the synthesis of capsular

polysaccharides is highlighted in Figure 2. A. baumannii strains are involved in

numerous nosocomial infections and their capsule plays key roles in the overall

fitness and pathogenicity. Indeed, it protects the bacteria against environmental

stresses, host immune responses and can confer resistance to some antimicrobial

compounds [29]. Over one hundred distinct capsule types and their corresponding

genomic organization have been reported in A. baumannii [30]. A zoom on this

region of the graph shows a wide variety of combinations of genes for the synthesis

of capsular polysaccharides. Based on the A. baumannii 3 117 genomes available

in GenBank, we detected 229 different paths, sharing many common portions, but

only a few are conserved in the species (only 24 paths are covered by more than

10 genomes). Among them, two alternative shell paths seem to be particularly

conserved (from the gnaA to the weeH genes in the figure 3 of [30]). Based on

the nomenclature of [30], one (colored in khaki green in the Figure 2) corresponds

to the serovar called PSgc12, contains 14 gene families of the shell genome and is

fully conserved in 581 genomes. The other (colored in fluo green in the Figure 2)
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corresponds to the serovar PSgc9 (equivalent to PSgc7), contains 11 gene families

of the shell genome and is fully conserved in 408 genomes. This analysis illustrates

how the partitioned pangenome graph of PPanGGOLiN can be useful to study the

plasticity of genomic regions. Thanks to its compact structure in which genes are

grouped into families while preserving their genomic neighborhood information, it

summarizes the diversity of thousands of genomes in a single picture and allows

effective exploration of the different paths among regions or genes of interest.

Analyses of the most represented species in databanks

We used PPanGGOLiN to analyze all prokaryotic species of GenBank for which at

least 15 genomes were available. This is the minimal number of genomes we recom-

mend to ensure a relevant partitioning. The quality of the genomes was evaluated

before their integration in the graph to avoid poor quality assemblies and taxo-

nomic assignation errors (see Methods). This resulted in a dataset of 439 species

pangenomes, whose metrics are available in Additional file 1. We focused our analy-

sis on the 88 species containing at least 100 genomes (Figure 3). This data was used

for in-depth analysis of persistent and shell genomes (see the two next sections).

Proteobacteria, Firmicutes and Actinobacteria are the most represented phyla in

this dataset and comprise a variety of species, genome sizes and environments. In

contrast, Spirochaetes, Bacteroidetes and Chlamydiae phyla are represented by only

one or two species (Leptospira interrogans, Bacteroides fragilis, Flavobacterium psy-

chrophilum and Chlamydia trachomatis). For each species, we computed the median

and interquartile range of persistent, shell and cloud families in the genomes. As

expected, we observed a large variation in the range of these values: from pathogens

with reduced genomes such as Bordetella pertussis or C. trachomatis which con-

tain only a small fraction of variable gene families (less than ≈5% of shell and

cloud genomes) to commensal or environmental bacteria such as Bifidobacterium

longum and Burkholderia cenocepacia whose shell represents more than ≈35% of

the genome. Furthermore, for a few species the number of estimated partitions (K)

is greater than 3 (11 out of 88 species), especially for those with a higher fraction

of shell genome. Hence, our method provides a statistical justification for the use of

three partitions as a default in pangenome analyses, while indicating that species

with large shell content might be best modeled using more partitions (see ‘Shell

structure and dynamics’ section).

Estimation of the persistent genome in comparison to the soft core approach

We compared a classical approach to identify the persistent genome to the PPanG-

GOLiN statistical method to demonstrate its added value. For each species, we

performed multiple resamplings of the genome dataset in order to measure the vari-

ability of the pangenome metrics according to an increasing number of genomes

considered in the analyses (hereafter called rarefaction curves) (see Methods and

Additional file 2: Figure S1 as an example for Lactobacillus plantarum). These rar-

efaction curves indicate whether the number of families tends to stabilize, increase

or decrease. To this end, the curves were fit with the Heaps’ law where γ represents

the growth tendency [31] (hereafter called γ-tendency). The persistent component

of a pangenome is supposed to stabilize after the inclusion of a certain number of
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genomes, which means it has a γ-tendency close to 0. In addition, interquartile range

(IQR) areas along the rarefaction curves were computed to estimate the variability

of the predictions compared to the sampling. Small IQR areas mean that the predic-

tions are stable and resilient to sampling. Using these metrics, the PPanGGOLiN

predictions of the persistent genome were evaluated for the 88 species previously

described and compared to a conventional method where persistent genes are those

present in at least 95% of the genomes (generally called the soft core approach).

This threshold is so well admitted in pangenomic studies that it is the default pa-

rameter in Roary [32] which is to date the most cited software to build bacterial

pangenomes.

We observed that the γ-tendency of the PPanGGOLiN persistent is closer to

0 than that of the soft core approach (mean of absolute γ-tendency=9.1e-3 versus

2.5e-2, P=1.5e-9 with one-sided paired 2-sample Student’s t-test) with a lower stan-

dard deviation error too (mean=5.3e-04 versus 2.1e-03, P=9.5e-11 with one-sided

paired 2-sample Student’s t-test) (see Figure 4 and Additional file 1). A major prob-

lem of the soft core approach is that the γ-tendency is high for many species (32

species have a γ-tendency above 0.025), suggesting that the size of the persistent

genome is not stabilized and tends to be underestimated. Indeed, the persistent

genome predicted by PPanGGOLiN is larger or almost equal to the soft core in all

species (Figure 3). Besides, the IQR area of the PPanGGOLiN prediction is far be-

low the one of the soft core genome (mean=4906.6 versus 11645.9, P=8.9e-07 with

unilateral paired 2-sample Student’s t test). It can be partially explained because

the threshold used in the soft core method induces a ‘stair-step effect’ along the

rarefaction curves depending on the number of genomes sampled. This is illustrated

on Figure S1 (see Additional file 2) showing a step every 20 genomes (i.e. corre-

sponding to 20 = 100
100−95 where 95% is the threshold of presence used) on the soft

core curve of L. plantarum. We found a total of 20 species having atypical values

of γ-tendency (absolute value above 0.05) and/or IQR area (above 15 000) for the

soft core and only 2 species for the persistent genome of PPanGGOLiN, which are

Bacillus anthracis and Burkholderia cenocepacia. For B. cenocepacia, it could be

explained by the high heterogeneity of its shell (see next section), which is made of

several partitions and complicates its distinction from the persistent genome dur-

ing the process of partitioning. For Bacillus anthracis, the source of variability to

define the persistent genome is a result of an incorrect taxonomic assignation in

GenBank of about 17% of the genomes that are, according to the Genome Taxon-

omy DataBase (GTDB) [33], actually B. cereus or B. thuringiensis. This issue was

not detected by our taxonomy control procedure because these species are at the

boundary of the conspecific genomic distance threshold used (see Methods). Some of

persistent gene families of bona fide B. anthracis may therefore shift between persis-

tent or shell partitions depending on the resampling. Excluding these misclassified

genomes, we predicted a larger persistent genome than the one of the initial set

of genomes (about a thousand gene families more) with a γ-tendency much closer

to 0 (-0.017 versus a γ-tendency of 0.036 for the soft core genome) and a lower

IQR area (8367.0 vs 32167.1). Altogether, these results suggest that our approach

provides a better and more robust partitioning of gene families in the persistent

genome than the use of arbitrary thresholds. Indeed, the statistical method behind
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PPanGGOLiN uses directly the information of the gene family P/A whereas the

soft core is based only on frequency values. PPanGGOLiN can then classify fami-

lies with similar frequencies in different partitions by distinguishing them according

to their pattern of P/A in the matrix and their genomic neighborhood. The main

drawback of using family frequency to partition pangenomes is that even if it was

possible to determine the best threshold for each species it would still not take into

account that some persistent gene families may have atypically low frequency. This

may be due to high gene losses in the population or technical reasons like belong-

ing to a genomic region that is difficult to assemble (i.e. genes that are missing or

fragmented in draft genome assemblies).

Shell structure and dynamics

Two types of pangenome evolution dynamics are generally distinguished: open

pangenomes and closed ones [1, 2, 31]. From rarefaction curves, the dynamics of

pangenomes can be assessed using the γ-tendency of a Heaps’ law (see Methods)

fitting. A low γ-tendency means a rather closed pangenome whereas a higher γ-

tendency means a rather open pangenome. A closed pangenome rigorously means a

stabilized pangenome and we found no species obeying this strict criterion (that is to

say γ = 0). This suggests that instead of using binary classifications for pangenomes,

it is more useful to quantify the degree of openness of pangenomes given the flux of

horizontal gene transfer and gene loss [7]. We computed rarefaction curves for the

88 studied species and determined the γ-tendency for different pangenome compo-

nents (see Additional file 1 and Additional file 2: Figure S2). The distribution of

γ values of the PPanGGOLiN shell genome shows a greater amplitude of values

than the other components of the pangenome such as the whole pangenome or the

accessory component. This indicates that the main differences in terms of genome

dynamics between species seem to reside in the shell genome.

As expected, we found a positive correlation (Spearman’s ρ=0.46, P=8.2e-06) be-

tween the total number of shell gene families in a species and the γ-tendency of the

shell (Additional file 2: Figure S3). This means that species with high γ-tendency

do accumulate genes that are maintained and exchanged in the population at rela-

tively low frequencies, suggesting they may be locally adaptive. More surprisingly,

although one could expect that larger genomes have a larger fraction of variable

gene repertoires, the fraction of shell and cloud genes per genome does not cor-

relate with the genome size (Spearman’s ρ=0.007, P=0.95, Figure 5). The results

remain qualitatively similar when analyzing the shell or the cloud separately (Ad-

ditional file 2: Figure S4 and S5). During this analysis, we noticed that, among

host-associated bacteria with relatively small genomes (between ≈2000 and ≈3000

genes), three species (Bifidobacterium longum, Enterococcus faecium and Strepto-

coccus suis) have a high fraction of shell genes (> 28%) but low shell γ-tendency.

Two of them (B. longum and E. faecium) are found in the gut of mammals and the

third (S. suis) in the upper respiratory tract of pigs. They differ from other host-

associated species in our dataset that are mainly human pathogens (e.g. bacteria

of the genus Corynebacterium, Neisseria, Streptococcus, Staphylococcus) and have

a low fraction of shell genes (< 20%). It is possible that these three species have

specialized in their ecological niches while maintaining a large and stable pool of
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shell genes for their adaptation to environmental stress. Further analysis would be

required to confirm this hypothesis.

We then investigated the importance of the phylogeny of the species on the pat-

terns of P/A of the shell gene families (shell structure). To this end, Spearman’s

rank correlations were computed between a Jaccard distance matrix generated on

the basis of patterns of P/A of the shell gene families and a genomic distance ob-

tained by Mash pairwise comparisons between genomes [34]. Mash distances were

shown to be a good estimate of evolutionary distances for closely related genomes

[35]. This correlation was examined in relation to the fraction of gene families that

are part of the shell genome for each species (Figure 6). We observed that species

with a high fraction of shell (> 20% of their genome) have a shell structure that

is mainly explained by the species phylogeny (i.e. shell P/A are highly correlated

with genomic distances, Spearman’s ρ > 0.75). In addition, PPanGGOLiN predicts

a number of partitions (K) for these species often greater than 3. Hence, their shell

is more heterogeneous between subclades and becomes structured in several parti-

tions whereas for species with a single shell partition the shell is less structured,

possibly indicating many gene exchanges between strains from different lineages.

Among the nine species with a large shell genome (excluding B. anthracis due tax-

onomic assignation errors), only two of them (Shigella sonnei and Lactobacillus

reuteri) showed a relatively low correlation of their shell structure with the phy-

logeny (Figure 6). For S. sonnei, this could be explained by a high number of gene

losses in the shell of this species that result from convergent gene loss mediated

by insertion sequences (preprint: [36]). For L. reuteri, these bacteria colonize the

gastrointestinal tract of a wide variety of vertebrate species and have diversified

into distinct phylogenetic clades that reflect the host where the strains were iso-

lated, but not their geographical provenance [37]. As illustrated in Figure S6 (see

Additional file 2), the shell of L. reuteri contains several patterns of P/A that are

only partially explained by the species phylogeny. Indeed, we observed clusters of

families present across strains from distinct lineages that could contain factors for

adaptation to the same host. In contrast, the shell structure of B. longum strongly

depends on phylogenetic distances showing a clear delineation of adult and infant

strains that have specialized into two subspecies (see Additional file 2: Figure S7).

We would like to stress the importance of the shell in the study of the evolutionary

dynamics of bacteria. The shell content reflects the adaptive capacities of species

through the acquisition of new genes that are maintained in the population. We

found that the proportion of shell genes does not increase with the genome size.

Instead, the shell accounts for a large fraction of the genomes of species when it

is structured in several partitions. We can assume that those species are made of

non-homogeneous subclades harboring specific shell genes which contribute to the

specialization of the latter. Finally, it could be of interest to associate phenotypes

to patterns of shell families that co-occur in different lineages independently of the

phylogeny.

Analysis of Metagenome-Assembled Genomes in comparison with isolate genomes

The graph approach should make our tool robust to gaps in genome data, making it

a useful tool to analyze pangenomes obtained from MAGs. To test this hypothesis,
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we built the pangenomes of the Species-level Genome Bins (SGBs, clusters of MAGs

that span a 5% genetic diversity and are assumed to belong to the same species)

from the recent paper of Pasolli et al. [38]. This study agglomerated and consistently

built 4 930 SGBs (154 723 MAGs) from 13 studies focussed on the composition of

the human microbiome. We skipped the quality control step (already performed by

the authors), and computed the pangenomes following the procedure we used for the

GenBank species. The only parameter which differs is the K value which is set to 3

as the detection of several shell partitions is inappropriate for MAGs because of their

incompleteness. To make the comparison with GenBank species, SGBs were grouped

according to their estimated species taxonomy (provided by the supplementary table

S4 of [38]). In this table, we noticed potential errors in the taxonomic assignation of

two species (Blautia obeum and Chlamydia trachomatis corresponding to SGBs 4844

and 6877, respectively) and thus excluded them from the analysis. Keeping the same

constraint as previously, only species with at least 15 genomes in both MAGs and

GenBank were used for the comparison. A total of just 78 species (corresponding

to 151 SGBs) could be analyzed as a lot of microbiome species are laborious to

cultivate and thus less represented in databanks (see Additional file 3). Then, we

compared the MAG pangenome partitions predicted by PPanGGOLiN with those

obtained with GenBank genomes. To perform this, we aligned MAG and GenBank

families for each species and computed the percentage of common families for each

partition (see Methods and Additional file 3).

We observed that the size of the estimated persistent genome of MAGs is similar to

the one of GenBank genomes for most species (Figure 7). In 55 out of the 78 species,

the absolute fold change of persistent size is less than 1.2 and ≈90% (SD=5%) of

its content is common between MAGs and GenBank genomes. The 23 other species

with more important differences showed smaller persistent genomes with only 60%

(SD=15%) of the persistent genome of GenBank being found in MAGs. For these

species, the PPanGGOLiN method missed a fraction of the persistent genome due

to the incompleteness of MAGs. Indeed in such cases, the missing gene families are

mostly classified in the shell of the MAGs which contains 32% (SD=11%) of the

GenBank persistent families. Nevertheless, 89% (SD=9%) of the MAG persistent

families match the GenBank ones, meaning that PPanGGOLiN correctly assigned

persistent families for MAGs even if the persistent genome of these 23 species is

incomplete.

However, two species, Bifidobacterium longum and Faecalibacterium prausnitzii,

have less than 75% of their MAG persistent families in common with GenBank

ones. For B. longum, this could be explained by the fact that the MAGs were

obtained mostly from human adult samples while this species in databanks are

from a broader host range (infants and pigs). It means that the MAG persistent

might contain additional genes related to host-specificity. As a matter of fact, 412

gene families from the MAG persistent (25% of the total MAG persistent) are

found in the GenBank shell which supports our hypothesis. For F. prausnitzii,

the differences might be explained by a poor estimation of the persistent using

GenBank data due to the low number of considered genomes (17 genomes versus

4232 MAGs). As expected, the soft core (based on the usual threshold of 95%

presence) is unrealistically low in the MAG species with only ≈98 gene families
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on average and only 4 species out of 78 having more than 500 families classified

in the soft core (see Additional file 3). Hence, the soft core approach is not well

adapted to the analysis of MAGs. Furthermore, using lower thresholds of presence

is not adequate because defining a unique threshold for all the families misses the

heterogeneity of gene family presence in MAGs.

To explore the diversity within pangenomes, we compared the shell of GenBank

genomes and MAGs for the 55 species with similar persistent genomes. Interestingly,

we observed for all the 55 species only a partial overlap between the MAGs and

GenBank shells (see Additional file 2: Figure S8). Indeed, as the MAGs are obtained

only from a specific environment (i.e. the human microbiome), the diversity of

GenBank is not fully captured by MAGs. It is especially the case for most of the

Firmicutes and Proteobacteria. Conversely, most of the MAGs of Bacteroidetes

phylum cover more than half of GenBank diversity while containing a large fraction

of shell genes that are lacking in the shell of isolate genomes (i.e. less than 45% of

the families are represented in the shell of GenBank). As already reported by Pasolli

et al. [38], this confirms that the MAGs considerably improve the estimate of the

genetic diversity of Bacteroidetes which are key players in the gut microbiome.

In summary, we have shown that PPanGGOLiN is able to provide an estimation of

the persistent genome even using MAGs that may miss significant numbers of genes.

Indeed, the incompleteness of MAGs and potential contaminations by fragments

from other genomes complicates the analysis of their pangenome. This is especially

the case for the accessory genome because its assembly coverage and nucleotide

composition generally differ from those of the persistent genome making the binning

of these regions more difficult. Nevertheless, PPanGGOLiN is able to find shell gene

families in MAGs bringing new genes that may be important for species adaptation

in the microbiome. Hence, it enables further analyses, even for uncultured species

lacking reference genomes, such as the reconstruction of the core metabolism from

the persistent genome to predict culture media or the study of the landscape of

horizontally transferred genes within species.

Conclusion
We have presented here the PPanGGOLiN method that enables the partitioning

of pangenomes in persistent, shell and cloud genomes using a gene family graph

approach. This compact structure is useful to depict the overall genomic diversity

of thousands of strains highlighting variable paths made of shell and cloud genes

within the persistent backbone. The statistical model behind PPanGGOLiN makes

a better estimate of the persistent genome than classical approaches based on gene

family frequencies in isolate genomes and also in MAGs. The definition of shell

partitions based on statistical criteria allowed us to understand genome dynamics

within species. We observed different patterns of shell with regard to phylogeny

that may suggest different adaptive paths for the diversification of the species.

Future applications of PPanGGOLiN could include the prediction of genomics

islands within the shell and cloud genomes. A first version of this application (Bazin

et al., in preparation) is already integrated in the MicroScope genome analysis

platform [39]. Next, it would be interesting to determine the architecture of these

variable regions by predicting conserved gene modules using information on the
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occurrence of families and their genomic neighborhood in the pangenome graph.

Regarding metagenomics, pangenome graphs of PPanGGOLiN could be used as a

reference (i.e. instead of individual genomes) for species quantification by mapping

short or long reads on the graph to compute the coverage of the persistent genome.

Indeed, each gene families node of the partitioned pangenome graph could embed a

variation graph as an alignment template. Moreover, coverage variation in the shell

or cloud genomes could allow the detection of strain-specific paths in the graph that

are signatures of distinctive traits within microbiotes.

To conclude, the graph-based approach proposed by PPanGGOLiN provides an

effective basis for very large scale comparative genomics and we hope that drawing

genomes on rails like a subway map may help biologists navigate the great diversity

of microbial life.

Methods
To explain the partitioning of pangenomes, we first need to describe the method

based on the P/A matrix only (BinEM) and then the method built upon it that

uses the pangenome graph to improve the partitioning (NEM).

Modeling the P/A matrix via a Multivariate Bernoulli Mixture Model

PPanGGOLiN aims to classify patterns of P/A of gene families into K partitions

(K ∈ N;K > 3). Input data consists of a binary matrix X in which a Xi,j entry is 1

if family i is present in genome j and 0 otherwise (Figure 1) where 1 6 i 6 F in each

of the F gene families and 1 6 j 6 N in each of the N genomes. A first approach

for partitioning the data relies on a multivariate Bernoulli Mixture Model (BMM)

estimated through the Expectation-Maximization (EM) algorithm [40] (named the

BinEM method). The number of partitions K may be larger than 3 (persistent,

shell and cloud) due to the possible presence of antagonist P/A patterns in the

different strains of a species. Therefore, two of the partitions will correspond to the

persistent and cloud genome and a number of K − 2 partitions will correspond to

the shell genome. The value of K can be either provided by the user or determined

automatically (see next section).

In the BMM, the matrix comprises data vectors Xi = (Xij)16j6N describing P/A

of families, which are assumed to be independent and identically distributed with

a mixture distribution given by:

P (Xi = (xij)16j6N ) =
K∑
k=1

πk

N∏
j=1

ε
|xij−µkj |
kj (1− εkj)1−|xij−µkj |

where π = (π1, . . . , πk, . . . , πK) denotes the mixing proportions satisfying πk ∈]0, 1[;

(
∑Q
k=1 πk) = 1 and where πk is the unknown proportion of gene families belonging

to the kth partition. Moreover, µk = (µkj)16j6N ∈ {0; 1}N are the centroid vec-

tors of P/A of the kth partition representing the most probable binary state and

εk = (εkj)16j6N ∈ [0, 12 ]N are the unknown vectors of dispersion around µk. The pa-

rameters of this model, as well as corresponding partitions are estimated by the EM

algorithm. To speed up the computation of the EM algorithm, a heuristic is used to

initialize the BMM parameters in order to converge to a relevant partitioning using
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fewer EM-steps. This heuristics consists in setting πk with equiprobable proportions

equal to 1/K while the εkj and µkj parameters are triangularly initialized.

Given s = 1/ dK/2e, the triangular initialization consists of:

{µkj}16k6K/2,16j6N = 1

{µkj}K/2<k6K,16j6N = 0

{εkj}16k6K/2,16j6N = s · k
{εkj}K/2<k6K,16j6N = s · (K − k + 1)

An interesting consequence of this initialization is that the persistent genome will

be the first partition (k = 1) while the cloud genome will correspond to the last

partition (k = K). This particular initialization solves the classical label switching

problem in our context.

Partitioning of the P/A matrix

To perform the partitioning, each gene family i must be allocated in one partition

only and the variables {Zi}16i6F with state space {1, . . . ,K} indicate the partition

to which each gene family i belongs. Therefore, once the parameters are optimized,

the method automatically assigns the gene families to their most probable partition

zi according to the model if its estimated posterior probability is above 0.5 and

to the shell otherwise. The default values of the dispersion vector εk associated to

each centroid vector µk are constrained to be identical for all the εkj of a specific k

partition (for all the genomes of a specific partition) in order to avoid over-fitting

but it is possible to release this constraint.

Selection of the optimal number of partitions (K)

To determine the optimal K, named K̂, the algorithm runs multiple partitionings

increasing K. After the first initial steps of the EM algorithm (10 steps by de-

fault), the Integrated Completed Likelihood (ICL) [41] associated with each K

is computed. The ICL corresponds to Bayesian Information Criterion (BIC) [42]

penalized by the estimated mean entropy and is calculated as:

ICL(K) = BIC(K)−
K∑
k=1

F∑
i=1

p(zi | X, θ̂, k) log(p(zi | X, θ̂, k));∀p(zi | X, θ̂, k) > 0

and

BIC(K) = logPK(X | θ̂)− 1/2dim(K) logF

where logPK(X | θ) is the data log-likelihood under a multivariate BMM with K

partitions and θ = ({πk}16k6K , {µkj}16k6K,16j6N , {εkj}16k6K,16j6N ). This log-

likelihood can be calculated as follows:

logPK(X | θ) =
F∑
i=1

log

( K∑
k=1

πq

N∏
j=1

ε
|xij−µkj |
kj (1− εkj)1−|xij−µkj |

)

Moreover, θ̂ is the maximum likelihood estimator (approximated through the

BinEM algorithm) and dim(K) is the dimension of the parameter space for this
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model. Here, dim(K) = K − 1 + 2NK if the dispersion vector εk associated

to each centroid vector µk is constrained to be identical for all the εkj of a

specific k partition and dim(K) = K − 1 + NK if the dispersion vector εk
is free. Relying on this criterion, one selects the best number of partitions as

K̂ = arg min
K

((1 − δICL)ICL(K)) where δICL is a small enough margin to avoid

obtaining a too high K value which would provide no significant gain regarding a

lower K (by default δICL = 0.05× (max(ICL)−min(ICL))).

Generation of the pangenome graph

Pangenome graphs consist in a graph-based representation to store and visualize

pangenomes. In the PPanGGOLiN representation, the nodes correspond to gene

families and the edges to genomic neighborhood information. In this respect, two

nodes are connected if two gene families contain at least one pair of genes that are

adjacent in a genome. Edges are labeled with corresponding genome identifiers and

weighted by the proportion of genomes sharing this link. This process results in a

pangenome graph (see Figure 2 as an example).

Formally, a pangenome graph G = (V,E) is a graph having a set of vertices V =

{(vi)(16i6F )} where F is the number of gene families in the pangenome associated

with a set of edges E = {ei∼i′} = {(vi, vi′)}, vi ∈ V , vi′ ∈ V where the couple

of vertices (vi, vi′) are gene families having their genes (vi,j , vi′,j) adjacent on the

genome j and where the function countNeighboringGenes(vi,j , vi′,j) count these

occurrences of adjacencies in the N genomes. Each edge {ei∼i′} has a weight wi∼i′

where wi∼i′ = 1
N

∑N
j=1 countNeighboringGenes(vi,j , vi′,j) .

Partitioning via Neighboring Expectation-Maximization

From the graph previously described, neighborhood information on the gene families

is used to improve the partitioning results. Indeed, the BinEM approach described

above is extended by combining the P/A matrix X with the pangenome graph G.

This relies on a hidden Markov Random Field (MRF) model whose graph struc-

ture is given by G. In this model, each node belongs to some unobserved (hidden)

partitions which are distributed among gene families according to a MRF which

assumes that two neighbors are more likely to belong to the same partition. Con-

ditional on this hidden structure, the binary vectors of P/A are independent and

follow a multivariate Bernoulli distribution, with proportion vectors depending on

the associated partition. This approach is called NEM, as it relies on the Neigh-

boring Expectation-Maximization algorithm [43, 44, 45]. As such, NEM will tend

to smooth the partitioning by grouping gene families having a weighted majority

of neighbors belonging to the same partition. The previously introduced variable

{Zi}16i6F is still a latent variable indicating the partition to which each gene fam-

ily belongs. These random variables are now distributed according to a MRF. More

precisely they have the following Gibbs distribution:

P({Zi}16i6F ) = W−1β exp(
F∑
i=1

K∑
k=1

πk1Zi=k + β
F∑

i∼i′ wi∼i′

∑
i∼i′

wi∼i′1Zi=Zi′ )

where 1A is the indicator function of event A, the second sum concerns every pair

(i ∼ i′) of neighbor gene families. The parameter β ≥ 0 corresponds to the coefficient
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of spatial regularity. The F∑E
i∼i′ wi∼i′

is a corrector term ensuring that the spatial

smoothing is balanced by whatever the number of gene families. Indeed when the

number of genomes (N) increases, the number of gene families (F ) tends to be

higher than the sum of the edge weights. Finally,

Wβ =
∑

{z̃i}∈{1...K}F
exp(

F∑
i=1

K∑
k=1

πk1z̃i=k + β
F∑

i∼i′ wi∼i′

∑
i∼i′

wi∼i′1z̃i=z̃i′ )

is a normalizing constant. Note that Wβ may not be computed, due to a large

number of possible configurations. The degree of dependence between elements is

controlled by the parameter β. Neighboring elements will be more inclined to belong

to the same group with a higher value of this parameter. Here, the data vectors

(Xi)16i6F are not independent anymore. However, conditional on the latent groups

(Zi)16i6F , they are independent and follow the multivariate Bernoulli distribution:

P({Xi}16i6F |{Zi}16i6F ) =
F∏
i=1

N∏
j=1

ε
|xij−µZi,j

|
Zi,j

(1− εZi,j)
1−|xij−µZi,j

|.

Many different techniques may be used to approximate the maximum likelihood

estimator in hidden MRF. NEM relies on a mean-field approximation for the distri-

bution of the latent random variables Zi16i6F conditional on the observations. It

should be noted that the optimal number of partitions (K) is not determined au-

tomatically using NEM and is therefore first estimated using the BinEM approach.

Issues resulting from high-dimensional statistics

As plenty of statistical approaches, NEM is not adapted to high dimensional settings

(i.e. whenever the condition F >> N is not satisfied anymore). Actually, it can be

the case in pangenomics as the number of new families added to the pangenome

slightly decreases when new genomes are added (see figure 3 in [1]). Mathematical

solutions to this issue seem to exist [46, 47, 48] for example via the weighting

of features, corresponding to the weighting of genomes in our case. An improved

version of NEM should include this improvement and could be perspective of this

work. Another drawback of the method is to quadratically scale with the number of

genomes leading to heavy computations when thousands of genomes are included

in the analysis. Moreover, the method is hard to parallelize as it stands. To date,

outside of our analysis the pangenomics field relies on up to 4893 genomes [49]

in a single study so the approach must be designed to scale up to thousands of

genomes. Our solution to the mentioned issues is to sample the genomes in chunks

and to perform multiple partitioning simultaneously. Each family must be involved

in at least Ntotal/Nsamples samplings and will be partitioned only if it is classified

in the same partition in at least 50% of all sampling where it is present (absolute

majority). If some families do not respect this condition, more samplings are done

until all gene families have been partitioned. Chunks have to be large enough to be

representative this is why a size of at least 500 genomes is advised.
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Analysis of isolate genomes and Metagenome-Assembled Genomes

To obtain the set of isolate genomes to be analyzed, we downloaded all archaeal

and bacterial genomes (220 561 genomes) of the GenBank database at the date of

the 17th of April 2019. Genomes having more than 1000 contigs and a L90 > 100, a

content of the “assembly status.txt” file different from “status=latest” (as another

flag indicates poor quality genomes) were discarded. For each species (identified by

its NCBI species taxid), a pairwise genomic distance matrix was computed using

Mash (version 2.0) [34]. To avoid redundancy, if several genomes share together a

Mash distance < 0.0001, only one was kept (the one having the minimum number

of contigs). A single linkage clustering using SiLiX [50] was then performed on the

adjacency graph of the Mash distance matrix considering only distances below or

equal to 0.06, which corresponds to a 94% Average Nucleotide Identity (ANI) cutoff

which is a usual value to define species [51]. Genomes that were not in the largest

connected component were discarded to remove potential taxonomic assignation

errors. Only species having at least 15 remaining genomes were then considered for

the analysis. This dataset consists of 439 species encompassing 136 287 genomes (see

Additional file 4). MAGs from the Pasolli et al. study [38] were downloaded from

http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html. In this dataset,

the genomes are already grouped in Species Genome Bins. These SGBs do not ex-

actly match the GenBank taxonomy. Thus, SGBs assigned with the same species

name (column “estimated taxonomy” in the supplementary table S4 of [38]) were

merged to allow comparison with GenBank. SGBs that do not have a taxonomy

assigned at the species level were not considered. A total of 583 species encompass-

ing 698 SGBs and 71 766 MAGs were analyzed but only 78 species were finally

compared to GenBank species. To avoid introducing a bias in our analysis due to

the gene calling, GenBank annotation were not considered as there are obtained

using a variety of annotation workflows. Genomes from GenBank and MAGs were

consistently annotated using the procedure implemented in PPanGGOLiN. Prodi-

gal (version 2.6.2) [52] is used to detect the coding genes (CDS). tRNA and tmRNA

genes are predicted using Aragorn (version 1.2.38) [53] whereas the rRNA are de-

tected using Infernal (version 1.1.2) [54] with HMM models from Rfam [55]. In the

case of overlaps between a RNA and a CDS, the overlapping CDS are discarded.

Homologous gene families are determined using MMseqs2 (version 8-fac81) [56] with

the following parameters: coverage=80% with cov-mode=0, minimal amino acid se-

quence identity=80% and cluster-mode=0 corresponding to the Greedy Set Cover

clustering mode. PPanGGOLiN partitioning was executed on each species using

the NEM approach with a parameter β = 2.5. The nodes having a degree above 10

were not considered to smooth the partitioning in the MRF (parameter “-ms 10”).

The number of partitions (K) was determined automatically for each NCBI species

using a δICL = 0.05. It was fixed at 3 for the MAG analysis. The partitioning was

done using chunks of size 500 when there were more than 500 genomes in a species.

To compare PPanGGOLiN results between MAGs and GenBank genomes for each

species, the representative sequences of each MAG gene family (extracted using the

mmseqs2 subcommand: “result2repseq”) are aligned (using mmseqs2 “search”) on

those of GenBank genomes. If the best hit of the query has a sequence identity

> 80% and a coverage > 80% of the target, the 2 corresponding gene families of

each dataset are associated.
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Rarefaction curves

To represent the pangenome evolution according to the number of sequenced

genomes, a multiple resampling approach was used. For each species with at least

100 genomes, 8 rarefaction curves showing the evolution of the persistent, shell,

cloud, soft core, soft accessory, exact core and exact accessory components were

computed for sizes of 1 to 100 genomes and with 30 samples for each subset size.

For each sample, the number of partitions K is automatically determined between

3 and the K obtained on all the genomes of the species. A non-linear Least Squares

Regression was performed to fit the rarefaction curves with Heaps’ law F = κNγ

where F is the number of gene families, N the number of genomes, γ the tendency

of the evolution and κ a proportional factor [31]. Subset sizes ≤ 15 were not used for

the fitting as they are sometimes too variable to ensure a good fitting. The function

“scipy.optimize.curve fit” of the Python scipy package (version 1.0.0), based on the

Levenberg-Marquardt algorithm, was used. For each subset size, the median and

quartiles were calculated to obtain a ribbon of interquartile ranges (IQR) along the

rarefaction curves. We call the area of this ribbon the IQR area (see Additional file

2: Figure S1 as an example).

PPanGGOLiN software implementation

PPanGGOLiN is designed to be a software suite performing the annotation of the

genomic sequences, building the gene families and the pangenome graph before

partitioning it. Users can also provide their own annotations (GFF format) and

gene families. The application stores its data in a compressed HDF5 file but can

also return the graph in GEXF or JSON formats and the P/A matrix with the

partitioning in CSV or Rtab files (similarly to the ones provided by Roary [32]).

It also generates several illustrative figures, some of which are presented in the

article. It was developed in the Python 3 and C languages and is intended to be

easily installable on Linux and Mac OS systems via a BioConda package [57] (see

https://bioconda.github.io/recipes/ppanggolin/README.html). The code is

also freely available on the GitHub website at the following address: https://

github.com/labgem/PPanGGOLiN.
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Figures

Figure 1 Flowchart of PPanGGOLiN on a toy example of 4 genomes. The method requires
annotated genomes of the same species with their genes clustered into homologous gene families.
Annotations and gene families can be predicted by PPanGGOLiN or directly provided by the user.
Based on this input, a pangenome graph is built by merging homologous genes and their genomic
links. Nodes represent gene families and edges represent genomic neighborhood. The edges are
labeled by the identifiers of genomes sharing the same gene neighborhood. In parallel, gene families
are encoded as a presence/absence matrix indicating in each genome whether or not at least one
member is present. The pangenome is then divided into K partitions (K = 3 in this example) by
estimating the best partitioning parameters through an Expectation-Maximization algorithm. The
method involves the maximization of the likelihood of a multivariate Bernoulli Mixture Model
smoothed by spreading the resulting partitions along the graph using a hidden Markov Random
Field that can penalize inadequately classified families according to the graph. This process is
repeated until a trade-off maximizing the overall likelihood is reached. This approach returns a
partitioned pangenome graph where persistent, shell and cloud classes are overlaid on the
neighborhood graph. In addition, many tables, charts and statistics are provided by the software.
The number of partitions (K) can either be provided by the user or determined by the algorithm.

Figure 2 Partitioned pangenome graph of 3 117 Acinetobacter baumannii genomes. This
partitioned pangenome graph of PPanGGOLiN displays the overall genomic diversity of 3 117
Acinetobacter baumannii strains from GenBank. Edges correspond to genomic colocalization and
nodes correspond to gene families. The thickness of edges is proportional to the number of
genomes covering each edge. The size of nodes is proportional to the total number of genes in
each gene family. The edges between persistent, shell and cloud nodes are colored in orange, green
and blue, respectively. Nodes are colored in the same way. The edges between gene families
belonging to different partitions are shown in mixed colors. For visualization purposes, gene
families having less than 20 genes are not shown on this figure although they constitute 84.68% of
the nodes (mostly unique genes).The frame on the top shows a zoom on a branching region where
multiple alternative shell and cloud paths are present in the species. This region is involved in the
synthesis of the major polysaccharide antigen of A. baumannii. The two most frequent paths
(Sv12/PSgc12 and Sv9/PSgc9) are highlighted in khaki and fluo green. The Gephi software
(https://gephi.org) [58] with the ForceAtlas2 algorithm [59] was used to compute the graph
layout with the following parameters: ”Scaling=8000, Stronger Gravity=True, Gravity=4.0, Edge
Weight influence=1.3”.
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Figure 3 Distribution of PPanGGOLiN partitions in the genomes of the most represented
species in GenBank. Each horizontal bar shows the median number of gene families per genome
among the different PPanGGOLiN partitions (persistent, shell and cloud) in the 88 most
represented species in GenBank (having at least 100 genomes). As the partition projection on the
genomes of each species provides variable metrics, the error bars represent the interquartile range
around the medians of the number of gene families for each partition. The number of gene
families of the persistent genome also in the soft core genome (>95% of presence) is represented
by hatched lines on each persistent genome bar. The species names are colored according to their
phylum and sorted by taxonomic order and then by decreasing cumulative bar size. Next to the
species names, the number of genomes is indicated in brackets and the number of partitions
automatically determined by PPanGGOLiN (K) is also shown.

Figure 4 γ-tendencies and IQR areas of the persistent and the soft core rarefaction curves.
Each of the 88 most abundant species in GenBank are represented by two points: orange points
correspond to the PPanGGOLiN persistent values and yellow points to the ones of the soft core
(>95% of presence). A dashed line connects the 2 points if either the soft core or the persistent
values are not in the range of the grey area. The colored horizontal bars show the standard errors
of the fitting of rarefaction curves via the Heaps’ law.

Additional Files
Additional file 1: Table compiling all the metrics obtained from the pangenomes of the 439 GenBank species

This is a CSV file.

Additional file 2: Supplementary figures

This is a PDF file.

Additional file 3: Table compiling all the metrics obtained from the comparison of PPanGGOLiN results between

MAGs and GenBank genomes in 78 species.

This is a CSV file.

Additional file 4: List of GenBank assembly accessions for the 439 studied species.

This is a TSV file where each line correspond to all the GenBank assembly accession used in this study for each

‘species id’ in the NCBI taxonomy.
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Figure 5 Fraction of cloud and shell families per genome compared to the number of gene
families. Results for the 88 most abundant species in GenBank are represented.The error bars
show the interquartile ranges of the two variables. The size of the point corresponds to the
number of partitions (K) used and the points are colored by phylum.

Figure 6 Correlation coefficients of shell and genomic distances compared to the fraction of
shell per genome. Results for the 88 most abundant species in GenBank are represented. The
error bars show the interquartile ranges of the shell fraction. The size of the point corresponds to
the number of partitions (K) used and the points are colored by phylum.

Figure 7 Comparison of the persistent between GenBank genomes and MAGs. Results for 78
species are represented. The colors of the hemispheres provide the percentage of common
persistent gene families among the total persistent of MAGs (left hemisphere) or GenBank
genomes (right hemisphere). The solid, dashed and dotted lines indicate the identity, a fold
change of 1.1 and a fold change of 1.2.
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