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Abstract

In everyday life, our behavior varies on a continuum from either automatic
and habitual to deliberate and goal-directed. Recent evidence suggests that
habit formation and relearning of habits operate in a context-dependent manner:
Habit formation is promoted when actions are performed in a specific context,
while breaking off habits is facilitated after a context change. It is an open
question how one can computationally model the brain’s balancing between
context-specific habits and goal-directed actions. Here, we propose a hierarchical
Bayesian approach for control of a partially observable Markov decision process
that enables conjoint learning of habit and reward structure in a context-specific
manner. In this model, habit learning corresponds to a value-free updating of
priors over policies and interacts with the value-based learning of the reward
structure. Importantly, the model is solely built on probabilistic inference, which
effectively provides a simple explanation how the brain may balance contributions
of habitual and goal-directed control. We illustrated the resulting behavior using
agent-based simulated experiments, where we replicated several findings of
devaluation and extinction experiments. In addition, we show how a single
parameter, the so-called habitual tendency, can explain individual differences
in habit learning and the balancing between habitual and goal-directed control.
Finally, we discuss the relevance of the proposed model for understanding specific
phenomena in substance use disorder and the potential computational role of
activity in dorsolateral and dorsomedial striatum and infralimbic cortex, as
reported in animal experiments.
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1. Introduction

In both psychology and neuroscience, theories postulate that behavioral
control can vary along a dimension with habitual, automatic actions on one end,
and goal-directed, controlled actions on the other (Wood and Riinger| 2016). In
the context of operant conditioning, habits have been described as retrospective
and have been found to implement an automatic tendency to repeat actions
which have been rewarded in the past (Dickinson et al., |1983; |Graybiel, 2008).
Habitual action selection is typically fast but is insensitive to outcomes and only
slowly adapts to a changing environment (Seger and Spiering}, [2011). In contrast,
goal-directed action selection is prospective and implements planning based on a
representation of action-outcome contingencies (Dickinson and Balleine, |1994;
Dolan and Dayan|, 2013). Consequently, goal-directed action selection adapts
rather rapidly to a changing environment, but under a penalty of costly and
slow computations.

Habit learning can be viewed as a transition from goal-directed to habitual
behavior while a subject learns about its environment 2008): In a novel
environment or context, goal-directed actions will first allow the organism to learn
about its structure and rewards and, later, to integrate this information to reliably
reach a goal. With time, certain behaviors will be reinforced, while others will
not. Subsequently, habits are formed to enable faster and computationally less
costly selection of behavior which have been successful in the past. Given enough
training, behavior is thought to be dominated by stimulus-driven habits, see e.g.
(Dickinson), [1985} |Seger and Spiering, [2011)) for experimentally derived criteria
of habit learning. In particular, two influential criteria are the insensitivity to
contingency degradation where action-outcome associations are changed, and the
insensitivity to reinforcer devaluation, where the outcome is made undesirable
(Yin and Knowlton, 2006)). Here, an established habit seems to make it difficult
for an organism to change the previously reinforced habitual choice and adapt
behavior to the altered conditions in its environment. Additionally, the strength
of the habit and resulting insensitivity to changes has been found to critically
depend on the duration and reward schedule of the training phase
2000).

Importantly, habit learning as well as changing existing habits is strongly
associated with the consistency of the environment while actions are performed
(Wood and Riinger], 2016). When a specific behavior is executed in a stable
context, habits are learned faster, and adjustment of behavioral patterns after
changes in context is impeded (Lally et all, 2010). Conversely, learning of habits
is slower and adjustment to changes is facilitated in a changing environment or
inconsistent contexts. For example, it has been shown that learning of habits
is improved when actions are mostly performed in the same context, e.g. after
breakfast (Lally et al., 2010; Danner et al., [2008; [Neal et al.l |2012)); while the
unlearning of habits is improved after a context change, e.g. after a move to a
different city (Verplanken and Royl, [2016])).

In addition, habit learning trajectories strongly vary between individuals
(Dolan and Dayanl [2013; Lally et al., |2010). Recent substance use disorder
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(SUD) studies show differences, between patients and controls, in learning and
in the reliance on the so-called habit system, which lead to individual habitual
responding biases (Ersche et all 2016; Lim et all) [2019; Heinz et al., [2019).
Still, it is an open question whether these different habit learning trajectories in
individuals with SUD are due to individual factors or caused by the substance
use itself (Nebe et al.| 2018).

While there are findings that there are two hypothesized systems, the habitual
and goal-directed system, and how they map onto brain structures
Dayanl 2013;|Yin and Knowlton| [2006; Everitt and Robbins[2005), it is not clear if
such a dichotomy is required for the computational description of these processes
and for a mechanistic understanding of how habitual and goal-directed control
are balanced, e.g. . It has been argued that goal-directed and
habitual behavior can be equated to model-based and model-free reinforcement
learning (Dolan and Dayanl 2013). However, experimental evidence indicates that
model-free reinforcement learning does not capture all experimentally established
properties of habit formation (Friedel et al., 2014; Gillan et al.| 2015)). Rather,
an alternative proposal is centered on the idea that habits, as stimulus-response
associations, may arise from repetition alone and are learned via a value-free
mechanism (Miller et al.,|2019). Another emerging research direction, built on
both experimental and computational studies, is to consider habits as chunked
action sequences, which may be modelled in a hierarchical fashion
Graybiel| 2016} [Graybiel and Grafton|, 2015; [Dezfouli and Balleine), 2012, [2013;
Graybiel and Grafton| 2015).

Here, we propose a hierarchical Bayesian habit-learning model based on the
concept of planning as inference (Attias, 2003; Botvinick and Toussaint), 2012),
which we will treat with methods of approximate inference (Friston et al., [2015).
Critically, we regard habits as a prior over policies (sequences of actions), see also
(Friston et all |2016), which enables a novel way to understand how the brain
may balance its action control between habitual and goal-direction contributions.
In this model, the prior over actions is learned according to a Bayesian value-free
update rule based on a tendency to repeat past actions. At the same time, the
reward structure of the environment is learned in a value-based and outcome-
sensitive manner. This learned reward structure is used for goal-directed action
evaluation based on explicit forward planning which is computed in a likelihood.
Action selection is implemented as sampling from the posterior which is the
product of the prior and the likelihood, yielding an automatic balancing between
goal-directed and habitual behavior. Importantly, habits and outcome rules
are learned in a context-specific manner, and can be retrieved when revisiting
a context. We use this hierarchical model to explain the transition dynamics
from goal-directed to habitual behavior when learning habits, and adaptation of
behavior to context changes.

In concrete terms, we propose to view balancing of behavioral control in a
Bayesian way: Behavior is sampled from a posterior which, according to Bayes’
rule, is a prior times a likelihood. We interpret the prior as the habit, where
the habitual contribution for a specific action is higher the more this action, or
sequence of actions, has been selected in the past. The goal-directed value of an
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action is encoded in the likelihood, where explicit forward planning yields the
expected reward of an action. This explicit forward planning is based on learning
of outcome contingencies, which allow the agent to predict the goal-directed
value. As a result, the interpretation of how control is balanced is rather simple:
Goal-directed and habitual value are multiplied using Bayes’ rule, yielding an
natural weighting of of their contributions to control based on the respective
certainties. Importantly, the habit, i.e. the prior, and the outcome rules, and in
effect the likelihood, are learned in a context-specific manner. As a result, habits
and outcome contingencies are learned for each context and can be retrieved
when re-encountering a known context.

We show that the proposed model is in principle able to capture basic
properties of classical habit learning experiments: Insensitivity to changes in
action-outcome contingencies and reinforcer devaluation, and the increase of
this effect with longer training duration. We introduce a free parameter of the
model, the habitual tendency, which modulates an individual’s habit learning
speed. We also show that stochastic environments which are akin to interval
reward schedules result in an over-reliance on habitual control. Furthermore, we
illustrate that context-specific habits enable rapid adaptation after a switch to
another but already known context.

We will discuss the implications of our model and how the proposal of habits
modelled as prior over action sequences lets us reinterpret the assumed dichotomy
of the habitual and goal-directed system. In particular, we will briefly discuss
the potential relevance of the impact of misguided context inference on the
arbitration between habitual and goal-directed control in SUD and speculate on
the mapping between specific model mechanisms and recent findings in both the
dorsolateral and dorsomedial striatum and the infralimbic cortex.

2. Methods

2.1. The generative process

In this work, we propose a hierarchical Bayesian model which implements
context-dependent habit learning. We will describe the proposed modelling
approach in detail and in a didactic fashion. Before we show details of the model,
we describe the structure of the task environment. Our description rests on a
hierarchical partially observable Markov decision process (POMDP), which is
defined by the tuple (S, R, A,C, Ts, Tr, Tc), where

e S={5s1,...,8n,} is a set of states

e R={ry,...,m,, }is a set of rewards
e A={ay,...,an,} is a set of actions
o C={c1,...,0n.} is a set of contexts

Ts (st+1|st, at) is a set of action-dependent state transition rules

Tr (relse, ck) is a set of context-dependent reward generation rules
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o 7. (ck+1|ck) is a set of context transition rules.

For a tutorial on POMDPs see (Littman) 2009). We partition the time evolution
of the environment into N, episodes of length 7' Hommel et al.| (2001)); |Zacks
et al.| (2007)); Butz (2016). In the k-th episode, the environment is in context
ci € C. In this episode, the first time step is ¢ = 1. The environment starts out
in its starting state s; € S. Depending on the state and the current context, the
environment distributes a reward r; € R according to the generation rule 7.,
which essentially encodes the contingency tables for each context. Note that a
no-reward is also part of the set of rewards R. This way, the environment is set
up to have a context-dependent reward distribution rule, which may also change,
when the environment transitions to a new context. Using these transitions, we
will be able to implement the training and extinction phases of a typical habit
learning environment as latent contexts in the Markov decision process.

A participant or agent, which is interacting with this environment, observes
the reward and state of the environment, and chooses an action a;. This marks
the end of the first time step t = 1 of the k-th episode. This process for a single
time step is also shown in the left part of Figure [T}

In the second time step t = 2 of the k-th episode, the environment updates
its state to a new state ss, in accordance with the context transition rule 7y,
depending on the previous state s; and the chosen action a;. Given the new
state and the current context, a new reward rs is distributed. The agent once
again perceives the state and reward and chooses a new action as.

This process is iterated until the last time step ¢ = T of the episode is
reached. In between the last time step of the current episode k, and the first
time step of the next episode k + 1, the context is updated to a new context
Cr+1 in accordance with the transition rule 7.. Importantly, the context is an
abstract, hidden (latent) state, which determines the current outcome rules of
the environment. It cannot be directly observed by the agent but only inferred
from interactions with the environment. We chose this setup because in animal
experiments the switch to the context of an extinction phase is typically not cued.
Our assumption here is that an agent represents different environments with
different rules as different contexts. As in daily life, rule changes might not be
directly cued which makes it necessary to model uncertainty about context. This
is in line with recent experiments and modelling work which demonstrated that
humans and animals implicitly learn different outcome contingencies as different
contexts, even when they are not cued (Palminteri et al., [2015; |Gershman et al.)
2010; [Wilson et al., [2014).

Note that this implementation effectively constitutes a hierarchical model on
two different time scales: The episodes on the lower level, where states evolve
quickly, i.e. in every time step, and the contexts on the higher level, which evolve
more slowly, only every T time steps.

2.2. The generative model

To a participant or an artificial agent, this generative process is not directly
accessible. Instead, the agent has to maintain a representation of this process,
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Figure 1: The agent in interaction with its environment. The environment (left) is modeled as
a hierarchical partially observable Markov decision process (see Section. On the lower level,
the time evolution of the environment is structured into episodes of length T'. Here, the states
of the environment evolve dependent on the previous state and action chosen by the agent.
Given the state and the reward generation rules, some reward or no reward is distributed
in each time step t of an episode. On the higher level, there is a slowly evolving context
which determines the current rules of the environment, namely the reward generation rules,
i.e. outcome contingencies. The agent (right) uses its generative model (see Section and
Figure |2)) to represent the dynamics of the environment, and to plan ahead and select actions.
At the beginning of each episode (¢t = 1), the agent infers the current context (box in the top
right) based on previous rewards and states, and retrieves the learned reward generation rules
and the habits (prior over policies) for this context. In each time step ¢ in an episode, the agent
perceives a new state-reward pair and uses forward planning in a goal-directed fashion (the
likelihood) to then form a posterior over actions by combining the habit with the goal-directed
computation what actions should be chosen. To execute an action, the agent samples from
this posterior. This process repeats until the last time step t = 7', where the agent updates its
habits based on the policy it chose for this episode, and updates its knowledge about the reward
structure based on the state-reward pairs it perceived (bottom right box). This updating is
done in a context-specific manner so that the habits and rules are updated proportionally to
the inferred probability of having been in a context during the past episode.
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which is called the generative model. For the purpose of our model, we will
assume that the agent knows which quantities are involved: It knows that there
are states and that the possible states it could be in are summarized in the set
S. It also knows all possible rewards in R, and all possible contexts in C.

Furthermore, we assume that the principled structure of the environment is
known to the agent: It knows that (i) state transitions depend on the previous
state and the action chosen, (ii) reward generation depends on the current
state and context, and (iii) the environment is partitioned into episodes, where
the context is stable within but may switch between episodes. These causal
relationships in the generative model are shown in Figure 2] Within an episode,
we assume without loss of generality that the agent does not represent single
actions, but sequences of actions (policies)

ﬂ—:(ala"'vaT—l)G{ﬂ—la"'vﬂnw}' (1)

where a policy consists of len (7) = T — 1 actions because actions are executed in
between time steps and an action at time step T would therefore have no effect.
Additionally we assume that the agent has the correct representation of the
state transition rules 7,. In other words, the agent knows which consequences
its own actions will have. In contrast, we assume that an agent does not know
the reward probabilities associated with each state and how they depend on the
context. Instead, the agent represents those probabilities as random variables

¢: {¢1,1717~-~a¢r7s,ca~--;¢nr,ns7nc} (2>

which will have to be inferred.

Importantly, we propose that the agent learns context-dependent habits as a
context-dependent prior over policies. It represents the parameters of this prior
as latent random variables as well

0= {611, OrcreOnn}- (3)

Formally, we write the causal structure of the agent’s generative model as

p(sur,rir,m,0,0,¢) = p (7|0, cr) p (9|ak_l) p (¢|ﬁk_l> P’ (ck) p (sur. rir|m, d,c1)
(4)

where

t
p (SliTa r11T|¢7 Ck) = Hp (Sm|Sm_1, 71—) p (I‘m|Sm, ¢, Ck)

m

T
H p (ST|S7‘—17 77) p (rT‘STa ¢; Ck) p (R = 1‘1‘7)
T=t+1

is the agent’s representation of the k-th episode, in which it is at time step .
This is an effective partition of states and rewards into past observed states
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Figure 2: A graphical model depicting conditional dependencies between variables in the
generative model. Empty circles indicate latent, unobservable variables and filled circles
indicate known, observed variables, and arrows indicate statistical dependencies, where colored
arrows indicate that these dependencies are learned by the agent. The model here is a
hierarchical model, with the contexts ci on the higher level of the hierarchy, and the episodes
(black boxes) on the lower level of the hierarchy. In the current episode k (middle box), the
agent starts at in some state s1 (blue), and receives a reward r; (green) according to the
current outcome rules (red downward arrows). The agent’s knowledge about the current rules
is represented by the parameters ¢ (red). The agent then chose some action aj in accordance
with a policy 7 (brown). For the next time step ¢ = 2, the agent transitions to a new state sz
(arrow to the right), dependent on the policy 7 it followed (downward arrow from =), and a
new reward ro is distributed. This process repeated until the agent reached the current time
step t. Viewed from here, all future states and rewards are unknown and, so far, unobserved
variables, which the agent will infer during its planning process and evaluate if they lead to
desirable outcomes. Based on this evaluation of the policies m and the prior over policies
parameterized by 6 (lilac), the agent can now choose a new action a;. On the higher level of
the hierarchy, there are the latent contexts ¢k (pink), which evolve more slowly (arrows to the
right). They also determine which outcome rules are currently in use (downward right tilted
arrow), and which prior over policies is being learned (downward left tilted arrow). The prior
over policies is parameterized with the parameters 6 (lilac), whose influence on the policy is
also subjected to learning (lilac arrow to the right). We furthermore show the previous context
ci—1 and the next context cj41, which encode the previous episode (left box) and the next
episode (right box), respectively.
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s1:¢ and rewards ry;; and unknown future states sy;1.7 and rewards ryy1.p. The
past states and rewards have been observed and are therefore known exactly
to the agent. Conversely, the future states and rewards are unknown and are
therefore latent variables which will have to be inferred. Note that this is an
exact representation of the graphical model in Figure [2]

We use the following distributions to define the generative model:

e The policies 7 are represented by a categorical distribution

p(7r=l|9,ck:n Heél”"%

where d; ; is the Dirac delta.

e The latent parameters of the prior over policies 6 are distributed according
to the respective conjugate prior, a product of Dirichlet distributions

1 af~t 1
p(0le) = ]I Pirtes™ = HB(OJH) O
n n l

e The so-called concentration parameters of~1 = {afnl} are pseudo counts

of the Dirichlet distributions. They encode how often an agent has chosen
a policy in a specific context up until the previous episode k — 1, and
therewith shape the prior over policies.

e The rewards r; are distributed according to a conditional categorical
distribution

p(re=ilsi = j,d,cr =n) = [] o7

4,J,m

e As above, the latent parameters ¢ are distributed according to the product
of conjugate Dirichlet priors

»(615) Hmr HB@kﬁHJ%L

J,n

k—1

e The concentration parameters §¢¥—1 = { i j’n} are pseudo counts of the

Dirichlet distribution. They encode how often the agent saw a specific
reward in a specific state and context up until the previous episode k —
1. Therewith they represent the agent’s knowledge about the reward
generation rules, i.e. contingencies.
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e The states are distributed according to a conditional categorical distribution
. . Y s 76",5,_ ’
p(si=4lsen=jim=10) =[] o/

3",

01,7

We will fix the parameters pj ;; to the true (deterministic) state transitions
Ts in the generative process.

e The contexts are distributed according to a categorical distribution p’ (cg).
We define this as a predictive prior p’ (cg) = p (ck|slzk,1, I‘1:k71) based on
observed past states and rewards. Note that it also includes the agent’s
expectation of temporal stability of its environment. Specifically, we assume
all contexts have the same temporal stability and change equally often.

e The agent’s preference of rewards is represented by p (R = 1|rT)7 using
a dummy variable R, see (Solway and Botvinick, 2012). High values of
the probability distribution mean high preference for a particular reward,
while low values mean low preference.

After having set up the generative model, we will now show how the agent,
based on this model, forms beliefs about its environment and selects actions. To
describe action evaluation and selection, we will follow the concept of planning
as inference (Attiasl 2003} Botvinick and Toussaint), |2012)) and active inference
(Friston et al.| 2015, 2016} [Schwobel et al.l 2018). Critically, this means that,
apart from forming beliefs about hidden variables of the environment, actions or
policies are also treated as latent variables that can be inferred.

2.3. Approximate posterior

When an agent infers hidden variables of its environment, such as the context,
or future states and rewards, it needs to calculate the posterior

p(St+1:T,rt+1:T,7r,9,¢,Ck|sl:t,r1;t) (5)

over these hidden variables using Bayesian inversion. Intuitively this means
asking the questions: What context am I most likely in, given I was in these
states and received those rewards? What states will I visit in the future, and what
rewards will I receive, given I have been in these states in the past and received
those rewards? What are the most likely outcome rules that have generated
rewards from states? To ensure analytical tractability and low computational
costs, we will use variational inference as an approximate Bayesian treatment of
the inference process.

Variational inference makes the inference process analytically tractable by
replacing the computation of the true posterior with a simpler approximate
posterior. In our case we will express the approximate posterior as

p (St+1:Ta v 1T, T, 0,0, CrlS1:, I‘1:t) ~q (St41.7, Ter1:7, T, 0, ¢, Cr)

=49 (7T|Ck) q (o‘ak) q <¢|5k) q (Ck) q (St+1:T7rt+1:T‘7rack)

10
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where we use belief propagation based on the Bethe approximation within a
behavioral episode

T

o q(ST)ST—1|7T7Ck) q(rTaST|7T7Ck)
q (St+1:T7rt+1:T\7T7Ck) = H
r=t41 q (S'r|7ra Ck) q (S'r|7ra Ck)

(6)

This is well motivated because within an episode, states and rewards critically
depend on each other so it is sensible to use an approximation which captures
these dependencies.

Outside of an episode, statistical dependencies may be averaged out, so that a
mean-field approximation is sufficient to approximate the posterior. Specifically,
we will use forward mean-field belief propagation, to obtain an agents beliefs
based on the observed states and rewards. The posteriors of all random variables
will be distributed the same way as in the generative model: states, rewards,
policies, and context follow a categorical distribution; while their parameters 6
and ¢ follow a Dirichlet distribution. These come out naturally from calculating
the update equations (see Appendix).

2.4. Update equations

The marginal and pairwise approximate posteriors can be analytically cal-
culated at the minimum of the variational free energy, see e.g. (Bishop) |2006;
Yedidia et al,2003)). These posteriors are typically called beliefs, as they encode
the agent’s beliefs about the hidden variables in its environment. We will now
show the update equations resulting from the free energy minimization. These
equations implement the agent’s information processing: how it forms beliefs
about the hidden variables in its environment, how it learns, plans, and evaluates
actions. An illustration of this process is shown on the right side of Figure [T}

At the beginning of time step t in the k-th episode, the agent perceives the
state s; of its environment, and receives a reward r;. It uses this co-occurrence
of state and reward to infer the current context and to update its beliefs about
the reward generation rules. The posterior over context is estimated as

q(ck) =p' (cr)exp (—F(ck)); ' (cr) = > plekler—1)a(cr—1)  (7)

Ck—1

where p’ (cg) is a predictive probability for contexts given the beliefs previous
episode and the transition probabilities p(cg|cg—1), and F (cx) is the context-
specific free energy. The free energy term F (¢ ) encodes the approximate surprise
of experienced rewards, states, and the agent’s actions in different possible
contexts (see Appendix). The more expected the rewards and actions are for
a context, the lower this free energy, and the higher the posterior probability
which the agent assigns to this context. As a result, an agent will infer to be
in a stable context as long as rewards and actions are as expected, while it
will infer a context change if outcomes and actions are unexpected. Note that,
initially, before encountering any context, the prior over contexts p’ (¢1) cannot
be set to be uniform. It needs to have a bias towards one of the contexts, so
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that the agent knows to associate the experienced reward contingencies with the
respective context. Which context is assumed to come first is not important, but
we found that the agent’s (intuitive) belief that it is most likely in some context
is essential for the learning process.

The posterior beliefs about the reward probabilities are again a product of
Dirichlet distributions, whose parameters are updated as

0 (al5*) =11 B(;fn) 1 ol

Jin

t
b =B+ a(ck=n) ) bir,0js,

m=1

which corresponds to updating pseudo counts ,ijn The pseudo counts help keep
track of how often the agent has seen a specific reward ¢ in a specific state j
and context n. Each time a new reward is generated in a state, these counts are
increased by ¢ (cx). This way, the counts are high for context with high posterior
probability and corresponding observed sequence of reward-state pairs, and low
otherwise. At the beginning of a new episode, this posterior will become the
new prior, which corresponds to a learning rule in between episodes.

The agent can now use its new knowledge about the rules of its environment
to plan into the future and evaluate actions based on their expected outcomes. In
order to plan ahead, it calculates its beliefs about future states ¢ (s, ) and resulting
future rewards ¢ (r;) in the current episode. These beliefs are calculated using
belief propagation update rules (see Appendix). If a policy 7 predictably leads
to states which yield desirable rewards, as encoded by the outcome preference
P (R = 1|I‘7-), this policy has a low policy-specific free energy (low surprise)
F (7r|ck). The posterior beliefs over policies are computed as

q (mlex) o< p' (w|ck) exp (—F (W\ck)> ; Inp’ (wlex) = /d@q (0)Inp (7|0, ck)
(9)

where the free energy corresponds to the log-likelihood in a simple Bayes equation.
Importantly, the log-likelihood represents the agent’s goal-directed, value-based
evaluation of actions, as it assigns them a value based on predicted future rewards.
Additionally, the posterior beliefs contain a prior p’ (7r|ck)7 which assigns an a
priori weight to different policies or actions (Doshi-Velez et al.l 2010; [Todorovi,
2009; |Friston et al.| [2016). In our work, this prior plays an important role, as we
propose to interpret this prior as the habit of an agent. This is well motivated,
because such a context-specific prior implements a planning-independent, i.e.
value-free, tendency to choose an action (Miller et al., [2019)). The agent then
samples its next action from the posterior above, which is the product of the
prior times the likelihood. Critically, this leads to an automatic weighting, i.e.
arbitration, between goal-directed control (the likelihood) and habitual control
(the prior) of the agent’s next action.
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At the end of an episode, after having sampled a policy and executed the
respective actions, the agent updates its posterior beliefs about the prior over
policies

fla*) = SEET | P
(J( | 1;[ B(Oéﬁ) l In (10)
af"n = af{l +q (7r =llcy = n) q(cp =n)

which constitutes habit learning in our model. Here, the pseudo counts af, are
increased when a policy is chosen in a specific context. After the episode, this
posterior becomes the new prior, in order to enable learning across episodes.
Note that this implements a tendency to repeat previous actions on one hand,
but also to repeat behavior which has been successful in the past. While the
prior is independent from the goal-directed evaluation in the likelihood, it is
based on which policies were previously chosen. This in turn is influenced by the
goal-directed evaluation at the time when they were chosen. In other words, the
habit and the outcome rules are learned conjointly. This is an important point
because it means that goal-directed control and habit learning are intertwined
in a specific way, see also Discussion.

The way the policy pseudo counts o are initialized before the first interaction
with any context plays a critical role in how an agent learns a habit. Low initial
counts a?n = it = 1 (for every I[,n) mean that each time a new policy is
chosen in a context, the pseudo count increases by a value between 0 and 1 (the
posterior over contexts), which increased the count substantially. As a result,
the prior over policies becomes fairly pronounced very quickly. In contrast, a
high initial count «;n;x = 100 means that habits are learned a lot slower, as
adding one to this value will have little influence on the prior probability of the
corresponding policy. Therefore, we will define a habitual tendency as

h = € [0,1] (11)

Qinit
which we will consider a free model parameter with respect to which we will
investigate behavioral differences. A high habitual tendency close to 1 will lead
to an agent being a strong habit learner and exhibiting fast habit acquisition,
while a low habitual tendency close to 0 will lead to a a weak habit learning
with a low habit learning rate.

2.5. Simulation analyses

In this section, we will define quantities which we will use to illustrate our
results. Specifically, we will want to investigate how agents infer contexts, using
the posterior over contexts ¢ (cy), and how agents choose actions, using the
marginalized posterior over policies

q(m)=> q(mlex) q(ck) (12)
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Specifically, to replicate standard results from experimental research, we will
report simulations in an environment with two contexts C = {¢1,c2} and two
actions A = {a1,a2}. We set episodes to length T = 2, so that actions and
policies map one to one, which corresponds to a planning depth of 1. We use
such short episodes here so that an episode is equivalent to one trial in a habit
learning experiment. Nonetheless, it is possible to have longer episodes with
increased planning depth in this model, which would endow an agent with the
opportunity to learn habits as sequences of actions (see Discussion).

As we have binary random variables, for both contexts and actions we can
completely capture the posterior beliefs with a single quantity, the posterior
probability of being in second context (Q. := ¢q(cx =c2) € [0,1]) and the
posterior probability of selecting the second option (Q, := ¢ (7 = a2) € [0,1]).
The posterior probability of being in first context, or selecting first option are
obtained as 1 — @, and 1 — @, respectively.

In a similar vein, we also define the likelihood L, (k) := ch q (c) exp (—F (ﬂ' = a2|ck)> /Z.
of the second option in order to illustrate the agents goal-directed system, and
the prior P, (k) := > . q(ck)p’ (7 = as|ey) to illustrate how an agent learns
habits. The environment will be set to context 1, in a training phase, and
switched to context 2 in an extinction phase. When the context switches, the
posterior probabilities Q., and @, should transit from being close to zero, to
being close to one, expressing changes in the posterior beliefs as a consequence
of the changes in the underlying latent variables. Hence, we assume that the
belief trajectory can be fitted with a sigmoid function

Qulk), Quk) ~ o (k|y™e) = i ) +A0(13)

1+ exp <f'y;’c (k — ’yg’c)

The motivation for this approximation of the trajectory is to determine the trial
or episode (k*) at which posterior beliefs @Q., and @, transit from close to 0 to
close to 1. The inflection point is specified by the parameters v§ and ~§, for
Q. and @, respectively. We have used the implementation from Python3 SciPy
1.1.0 (Virtanen et al.| [2019)) of nonlinear curve fitting for this procedure.

We also define a habit strength H to quantify the strength of habitual control
under different conditions. We define the habit strength as the delay between
the actual switch in context of the environment, and the time point at which an
agent adapts their behavior. The change in context in our experiment relates
to the switch between the training and extinction phases. The time point of
adaptation can be interpreted as the trial in which the posterior over actions
flips from close to 0 to close to 1. This equates to the inclination point of the
sigmoid fitted to the posterior over actions. We define the habit strength as

H = v5 — diraining € [1,100] (14)

as the difference between the fitted inclination point 4§ and the training duration
diraining- The extinction phase in which we will test for habitual behavior will
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have 100 trials. As a result, the habit strength can be between 1 and 100, where
H =1 indicates that an agent immediately switched its behavior in the first
trial of the extinction phase and showed no habitual control, while H = 100
means that an agent failed to adapt within the extinction phase and therewith
showed full habitual control.

We used the implementation of t-test and ANOVA provided by the Scipy 1.1.0
(Virtanen et al., [2019)) package. Similarly, we performed the linear regression
the implementation of the ordinary least squares (the OLS class) provided in
the StatsModels 0.10.1 (Seabold and Perktold, 2010) package.

3. Results

Having derived the update equations of the proposed model, we will now
use a series of simulated experiments to show how an artificial agent controls
its behavior by balancing between habitual and goal-directed control. In these
simulations, we will use environments where agents are required to adapt their
behavior to context switches. In Section we will first introduce a task which
captures key features of habit learning similar to animal experiments, specifically
contingency degradation and outcome devaluation, where we test for habitual
behavior in extinction. We will present six different results:

e We let two exemplary agents perform the task under contingency degrada-
tion, show internal properties of the model, and how agents learn habitual
behavior (Section [3.2]).

e We demonstrate how internal model parameters, like the habitual tendency
h= a«lw influence the agent’s information processing, behavior, and that
an increased habitual tendency increases habit strength after contingency

degradation (Section [3.3]).

e We show that the acquired habit strength depends on training duration
(Section [3.4)).

e We show a specific advantage of contextual habit learning, namely that
contextual habits allow optimized behavior to be retrieved quickly, when
an agent is revisiting a previously experienced context (Section [3.5)).

e We show how environmental stochasticity, e.g. highly probabilistic rewards,
leads to an over-reliance on habitual behavior and increase habit strength

(Section [3.6)).

e We introduce outcome devaluation to the task and show that agents exhibit
habitual behavior insensitive to contingency degradation and outcome
devaluation (Section [3.7).
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3.1. Habit learning task

A common way to experimentally test for habit formation in animal experi-
ments is contingency degradation (Yin and Knowlton, [2006; [Wood and Riinger,
2016)). Here, an animal is probabilistically rewarded after performing a specific
action, e.g. pressing a lever. After a training period, in which the animal
learns action-outcome associations and potentially acquires a habit, habitual
behavior is measured in an extinction period. The outcome contingencies of the
environment are changed, and the lever press does not yield a reward any longer.
Conversely, the animal is often rewarded for abstaining from pressing the lever.
After this change of contingencies, the strength of habitual control is assessed as
the continuation of lever pressing, where a higher habit strength corresponds to
more presses. For moderate training durations (~ 50 — 100 trials), the animal
will have formed a weak or no habit, and seizes to press the lever rather quickly.
For extensive training (~ 500 trials), experiments show that the animal will have
formed a strong habit and will continue to press the lever for an extended period
of time (~ 50 trials), e.g. (Colwill and Rescorlal [1988; |Adams| 1982).

Additionally, for behavior to be classified experimentally as habitual, it must
be insensitive to outcome devaluation (Yin and Knowlton) 2006). Here, animals
undergo a similar training as in contingency degradation experiments. Then,
outcomes are devalued by either satiating the animals, or by associating the
reinforcer with an aversive outcome. Afterwards, behavior is again tested in
extinction, where a continuing of the lever press is interpreted as evidence for
habitual behavior, see e.g. (Adams| [1982). Typically, the strength of habitual
behavior also greatly depends on the reinforcement schedule (Yin and Knowlton)
2006]), which may be a ratio schedule, where each action leads to a reward with
a specific probability, or an interval schedule, where rewards are only distributed
after a certain time has elapsed. Interval schedules lead to a greater habit
strength and decreased sensitivity to changes in outcome contingencies.

To demonstrate that the proposed model can replicate these basic features
of habit learning, we approximate the experimental setup of a habit learning
experiment in a simplified way, by using a so-called two-armed bandit task, see
Figure[Bp. This way of modelling the task follows previous modelling studies such
as (Daw et al., [2005; Lee et al.,|2014) and emulates probabilistically rewarded
lever presses of the animal. In the proposed habit learning task, an artificial
agent can choose to perform either action ai, i.e. press a left lever 1, or action
as to press a right lever 2. Each lever pays out a reward according to the
reward generation rules 7., and these probabilities will switch after certain
number of trials, emulating a contingency change, similar to habit learning
experiments (Figure ) In many habit learning experiments, the animals do
not choose between two levers, but rather between pressing a lever or abstaining
from pressing, where abstaining is a viable option due to opportunity costs.
We approximated opportunity costs of not pressing the lever by introducing a
minimally rewarded second choice (lever 2) instead, see also similar approaches
taken in previous modelling studies (Daw et al.} 2005} [Lee et al., |2014; Keramati
et al., 2011} |Pezzulo et al.l 2013; |Gershman et al.; [2014]).
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Figure 3: Habit learning task. (a) In each trial k, the agent can choose between pressing two
levers (light and dark blue boxes, lever in black next to the box) and is awarded probabilistically.
We model this task as a two-armed bandit task. (b) Reward schedule over 200 trials for the
two levers. In the training phase, lever 1 yields a reward with v = 0.9 probability, while lever
2 only yields a reward with 1 — v = 0.1 probability. After 100 trials, the reward probabilities
switch. The new contingencies are stable for another 100 trials. This second stable period
emulates an extinction phase, where we will test the agent’s habit strength by how quickly it is
able to adapt its choices. (c) An agent solving the task. For the agent, each trial constitutes
one behavioral episode. In episode or trial k, the agent starts out in the state (position) in
front of the two levers in the first time step ¢ = 1 of this episode. It observes its state and that
there is no reward. The agent can now infer the context Q. based on its experience in the
previous trials. It retrieves the learned outcome contingencies and habit P, for this context
from memory. It uses its knowledge about the reward structure to plan forward and evaluate
actions based on the likelihood L, where actions which lead more likely to a reward will have
a higher likelihood encoding the goal-directed value. The agent combines the likelihood and
the prior to evaluate the posterior over actions @@, and samples a new action a; from this
posterior, for example action a;. In between episodes, this action is executed and the agent
transitions to the new state, pressing lever 1. At the beginning of the next time step ¢t = 2, a
reward may be distributed, depending on the action and lever the agent chose. It then updates
its context inference Q. based on the perceived state-reward pair, learns the outcome rules,
and updates its habit P,. This process repeats until the last trial £ = 200. (d) Illustration of
the sigmoid function used to analyse the time evolution of the posterior over actions Qg (see
Section for details). The a as a superscript on the parameters signifies that these are the
parameters for the posterior over actions. We define the habit strength H as the difference
between the inflection point of the posterior beliefs (v§) and the trial number at which the
context changed dtraining-
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The habit learning task has two phases (Figure ): The first phase is the
training phase which lasts di;aining = 100 trials. We will also vary this duration
in Section [3.4] Here, lever 1 pays out a reward with v = 0.9 probability, and lever
2 with 1 —v = 0.1. These reward probabilities are kept stable during the training
period and the agent learns about outcome contingencies and might form a
habit. The second phase is the extinction phase which lasts another 100 trials.
Here, outcome probabilities are switched relative to the training phase, and are
kept stable for the remainder of the experiment. After the switch of outcome
contingencies, we quantify an agent’s habit strength as the number of trials
before an agent adapts its behavior and primarily presses lever 2 instead of lever
1, see section ’Simulation analyses’ in Methods. Note that in our simulations,
due to our agent setup, a trial is equivalent to a behavioral episode for an agent,
see Figure [3c for an exemplary episode in which the agent interacts with the
habit learning task.

This experimental setup emulates the training and extinction phases of a
contingency degradation habit learning experiment. It can be transformed
into a outcome devaluation experiment by modulating the agent’s preference
for outcomes (p (R = 1|r;), see Section and Appendix) after the training
phase. In order to disentangle these two effects, we will restrict our simulated
experiments to contingency degradation in most of the following sections. In the
last section, we will show habitual behavior under outcome devaluation.

Note that the two phases of the experiment (Figure ) can be viewed as a
sequence of two contexts, where in each context one of the two choices returns
higher expected reward. Importantly, the agent is initially not explicitly aware
how any context is associated with a specific set of outcome rules. Instead, the
agent learns to associate the outcome rules it first experiences with the first
context. When the contingencies change, it will infer the change and learn to
associate the new rules with a second context. By design in our experiment,
this corresponds to associating contexts with preferable levers. In some habit
learning experiments, contexts are cued and habitual behavior is used in response
as form of stimulus response association, e.g. (Sage and Knowlton, [2000). In
our habit learning task, we do not use a cue to indicate the context to the agent.
This is in line with typical animal experiments where the extinction phase is not
cued. Instead, the state, i.e. the position of the agent in front of the levers is
observable and takes the role of a stimulus.

3.2. Habit learning under contingency degradation

In this section, we illustrate, in detail, how agents based on the proposed
model learn about their environment, form beliefs, acquire habits, select actions,
and balance goal-directed and habitual control, see Methods and Figure [I] As
the habitual tendency parameter h has a strong influence on habit learning and
action selection, we will show two exemplary simulations of a an agent with
strong (h = 1.0) and another agent with a weak (2 = 0.01) habitual tendency
performing the task (Figure . In the following, we refer to these two agents as
the strong habit learner (h = 1.0) and the weak habit learner (h = 0.01). Note
that, in this section, for didactic purposes, we will describe model behavior on just
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single instances of two representative agents. This is followed by more thorough
simulations, where we also quantify the uncertainty over model variables using
multiple experiments for each agent.

When an agent is first put into the task environment, it has no prior knowledge
about the outcome contingencies associated with any context, and no prior

preference for any actions p’ (a1|c1 = 61/62) = (%, %)T, i.e. there is no habit
yet. What the agent does know, is that action 1 means pressing lever 1, and
action 2 means pressing lever 2, so that it has an accurate representation of the
state transition matrices p (st+1|st, at). Furthermore, the agent has a prior over
contexts with a bias towards context 1 (see Methods).

In the first trial, the agent has not sampled any reward yet, so it chooses
an action a; randomly as it does not have any knowledge available to predict
the outcome of actions. According to the action chosen, the agent goes to and
presses the respective lever, and receives a reward or no reward. At the end of
the trial, as this also marks the end of a behavioral episode, the agent updates
its prior P, to increase the a priori probability to repeat this chosen action, and
updates its knowledge about the reward structure (see Figure [l| and Figure )
As the agent started with a biased prior over contexts, it associates this reward
structure with context 1. Hence, the prior bias for context 1 simply reflects
agent knowledge that it can be in only one context initially.

At the start of the second trial, the agent infers that it is most likely in
context 1 (Q.), based on its previous experience and its knowledge about the
stability of the environment. It retrieves the reward structure and the prior
P, over actions it just learned. The agent can now use this new knowledge
about outcome contingencies in the current context to evaluate the likelihood
L. In order to select an action, it calculates the posterior beliefs over actions
Q. as the product of the prior P,, which represents habits as an automatic and
value-free tendency to repeat actions, and the likelihood L, which represents
the goal-directed and value-based evaluation of anticipated future rewards (see
Eq. E[) The agent then samples an action as from these posterior beliefs about
actions, dynamically adjusting the balance between goal-directed and habitual
choices. The agent visits and presses the lever it just chose and samples a
reward. At the end of this trial and behavioral episode, the agent reevaluates
its beliefs about the context @Q)., based on if the new observations still fit to its
knowledge about this context. The agent also updates its prior over actions P,
(the representation of a habit), hence increasing the prior probability of that
action being repeated. Similarly, the agent updates its knowledge about the
reward structure, based on its beliefs about the context. This update cycle is
repeated over all future trials, see Figure B and Section [2.4]

Figure |4 shows the resulting dynamics of the relevant agent variables (Qc, Lq,
P,, Qq, a;) for the strong (left) and weak (right column) habit learner during
all 200 trials in the habit learning task. In the training phase, the beliefs over
context ). converge rather quickly and after about 10 trials, the two agents are
certain of being in context 1 (see Figure [h)). Figure [4p) shows the likelihood
over actions L, reflecting the expected choice value, that is, the estimated
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Figure 4: The dynamics of key internal variables of contextual habit learning agents during
the habit learning task. The left column shows the dynamics for a strong (h = 1.0) habit
learner and the right column for a weak (h = 0.01) habit learner. (a) The first row shows the
agent’s inference, the posterior beliefs over contexts Qq, i.e. the estimated probability of being
in context 2. The pink dots are the agents’ posterior beliefs in each trial of the task. The
pink solid line is a fitted sigmoid, where its inclination point v§ indicates when the posterior
changes from representing context 1 to context 2. The light and dark blue lines are the reward
probabilities of levers 1 and 2, respectively (see Figure . (b) The brown dots in the second
row show the (normalized) likelihood L, over actions. The likelihood encodes the goal-directed,
anticipated value of actions, given the learned outcome contingencies. (¢) The brown dots in
the third row show the prior over actions P, which encodes how likely the agent is a priori
to select lever 2 and is a representation of the agent’s habit. (d) The fourth row shows the
posterior over actions @4, which is the product of the prior and the likelihood. The brown dots
show the posterior in each trial of the task, and the brown solid line shows a fitted sigmoid,
whose inclination point can be interpreted as the trial at which an agent adapts its actions
(see Figure[3{). (e) The brown dots in the bottom row show the chosen actions, which were
sampled from the posterior over actions.
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surprise in reaching a goal (observing a rewarding outcome). As the likelihood
depends on the learned knowledge about the environment, it takes both weak
and strong habit learners around 30 trials to observe enough outcomes before the
likelihood converges to a stable value. Figure ) shows the prior over actions
P,, i.e. the representation of a habit. Here, the difference between the strong
and weak habit learner is obvious: The strong habit learner (left) forms a strong
habit quickly (P, < 0.1) after only 40 trials. This means, the strong habit learner
has a very high a priori probability 1 — P, of choosing action 1 independent
of the expected rewards. Conversely, the weak habit learner updates its prior
over actions rather slowly (P, € [0.4,0.6]). The second to last row (Figure [i{))
shows the posterior over actions ), which is the product of the prior and the
likelihood. For the weak habit learner, the prior has little to no influence, as it is
close to 0.5, so that the posterior over actions looks similar to the likelihood. For
the strong habit learner, the strong prior lets the posterior over actions converge
to values close to 1.0 within 40 trials. The agents sample their actions from
this posterior probability, which are shown in the bottom row (Figure [4¢)). The
strong habit learner chooses the action with the higher expected reward more
consistently (94% of choices), while the weak habit learner continues to choose
action 2 even late into the training period. As a result, the weak habit learner
has a significantly lower success rate (80%, p = 0.003, two sample t-test on the
chosen actions in the training phase of two agents shown here).

In the extinction phase, after the switch in trial 100, the reward contingencies
become reversed. When continuing to press lever 1, the agents are only rewarded
with a probability of 1 — v = 0.1. The lack of expected reward payout produces a
prediction error which increases the context-specific free energy (see Section .
This drives the agents to quickly infer that the previously inferred context 1
is no longer an appropriate representation of the environment (see Figure )
Instead, the agents switch to believing to be in a new (second) context, and
learn reward contingencies and habits for this context. The weak habit learner
infers the context switch slightly earlier than the strong habit learner, at trials
103 and 107, respectively. According to the proposed model, the agents’ context
inference not only depends on surprising outcomes but also on the agents’ own
actions (see Section . The strong habit learner behaves highly consistently,
even after the switch, and therefore is delayed in its context inference, relative
to the weak habit learner. Note that the time point of this switch in beliefs was
measured as the inflection point of a sigmoid fitted to the beliefs over time (a;
solid line), see and Figure [3d for a detailed explanation of how we used the
parameters of the sigmoid.

Following context inference, the agents learn the new reward contingencies
(see Figure [db) and new habits (see Figure [dk) for context 2. Since this learning
takes place after the context inference step, the posterior over policies is updated
with a delay with respect to the context inference. As the agents sample their
actions from the posterior, we can measure the trial at which they adapt their
actions to press mostly lever 2 as the inflection point of the posterior. As with
the posterior over contexts, we fitted a sigmoid (solid lines in Figure ) to
calculate the time point of action adaptation, see Section and Figure [3{.
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In the following, we will call the time point (in trials) of action adaptation
after the contingency change the habit strength, see A value of 1 corresponds
to the lowest possible habit strength, while a value of 100 means that an agent
completely failed to adapt its behavior. This quantification is in line with the
animal literature, where the amount of habitual behavioral control is measured
by how often animals continue to choose the previously reinforced action after
contingency degradation. As expected, the strong habit learner adapts its
behavior later than the weak habit learner, at trials 116 and 107, respectively.
This means the strong habit learner has a habit strength of 16 and the weak
habit learner of 7.

The actions after the contingency switch in Figure e reflect this quantification
of habit strength. The strong habit learner continues to choose lever 1 for around
10 trials, before it adapts and mostly consistently chooses lever 2 after 20 trials.
The weak habit learner adapts earlier, but behaves less consistently and requires
a longer transition period where both actions are chosen. However, due to the
faster adaptation, in the first 15 trials after the switch, the weak habit learner
exhibits a higher performance (chooses lever 2 in 47% of trials) than the strong
habit learner (7% of trials, p = 0.012, two sample t-test on the actions in the
first 15 trials after the switch).

The strong habit learner is able to recover its performance in the remainder
of the extinction phase, where the task context is once again stable. Here, it
not only learns the new reward contingencies, but a strong prior for action 2
(Figure ), so that it is again able to choose lever 2 more consistently, relative to
the weak habit learner (92% vs 78%, p = 0.01, two sample t-test on the actions
in trials 116 — 200).

In summary, we found that a more pronounced prior causes as a stronger
habit, as measured by the number of trial in the extinction phase before behavior
is adapted. Critically, the mechanism is that a strong prior (Figure ) increases
the certainty in the agent’s posterior over actions (Figure ) and thereby its
selection of the action (Figure [4e) with the higher expected reward. We found
that as long as the environment is stable, the strong habit learner chooses the
more rewarding option more reliably. This is the case in the training phase
until the switch, and — after a brief adaptation period — after the switch. The
strong habit learner exhibits less optimal behavior, in terms of obtained reward
and relative to the weak habit learner, only immediately after the switch. This
indicates that being a strong habit learner is useful for an agent, as long as
contexts do not switch too often.

In addition, note that the effect of an increased certainty in action selection
caused by the prior over actions is similar to a dynamic adjustment in decision
temperature. Here, we did not use a decision temperature in our decision rule, as
would be usually done in modeling noisy behavior (of participants), see Methods.
Rather, we let the influence of the prior take this role. In the proposed context-
specific model, this seems well motivated as the prior is learned conjointly with
the reward contingencies, and indirectly reflects which behaviors have been
successful in the past. This means that, in the proposed model, learned habits
express themselves not only as an a priori preference for an action, but also as a
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Figure 5: Habit strength as a function of the habitual tendency. For values of habitual tendency
between 0.01 and 1.0, we plot the time points (in trials) of an inferred switch in context (pink
solid line) and the habit strength (brown solid line). We measure habit strength as the time
point of action adaptation after the switch, see Methods. For each habitual tendency value, we
plot the median of 200 simulated runs, where the shaded areas represent the confidence interval
of 95% around the median. We found a significant correlation between habitual tendency and
habit strength (p < 0.001) and between habitual tendency and context inference (p = 0.01).
The x-axis is logarithmically scaled.

dynamic adjustment of a decision temperature.

3.3. Habitual tendency increases habit strength

To generalize the effect of the habitual tendency on an agent’s beliefs and
behavior, we analysed agents with different values of the habitual tendency h,
where we repeated simulations for each value 200 times, see Figure The
results confirm the conclusions drawn in the previous section: (i) All agents,
independent of habitual tendency infer the context change quickly (within the
first 5 trials after the switch), where strong habit learners infer the switch
slightly later (p = 0.01, linear regression on the median values). (ii) Behavioral
adaptation is at least 5 trials delayed compared to context switch inference. We
find that acquired habit strength increases with the habitual tendency of an
agent (p < 0.001, linear regression on the median values).

8.4. Training duration increases habit strength

Here, we show that our proposed model is able to capture experimental
findings that acquired habit strength depends on the amount of training a
participant received. To test this, we simulated agents in the same habit learning
task as above (see Figure but now vary the length of the training phase
diraining before the extinction phase.

In Figure |§| we plot the habit strength (see Methods) for three representative
agents with different habitual tendencies (strong (h = 1.0), medium (h = 0.1),
weak (h = 0.01)) as a function of training duration. For moderate training
period durations (deraining < 100 trials), agents develop a relatively low habit
strength and adapt their behavior rather quickly, within 20 trials. Although the
differences are small for moderate training lengths, we find, as in the previous
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Figure 6: Habit strength as a function of training duration di;aining. The x-axis is scaled
logarithmically. The solid line represents a strong habit learner with a habitual tendency of
h = 1.0, the dashed line a medium habit learner with A = 0.1, and the dotted line a weak habit
learner with A = 0.01. The lines show the medians estimated over n = 200 repeated simulations
for each level of the habitual tendency h. The shaded area shows the 95% confidence interval.
A habit strength of 100 means that the posterior choice probability @), remains smaller than
.5 during the entire 100 trials of the extinction phase.

section, a significant correlation between habit strength and habitual tendency
(p < 0.001, linear regression on the median values).

For longer training durations, habit strength is generally increasing. For very
long training durations, both the strong and medium habit learner fail to adapt
their behavior within the extinction period of 100 trials. The strong habit learner
cannot adapt for a training duration diaining = 1000, and the medium habit
learner for a training duration greater 5000. The weak habit learner exhibits
only a slight increase in habit strength as a function of training duration.

In summary, these results stress the role of learning a prior over actions, where
we interpret a strong prior as the representation of a habit, see e.g. Figure [Ad.
The longer the training period, the more pronounced the prior of a specific
action will be, while the likelihood stabilizes after contingencies have been learnt
properly (around 40 trials). Therefore the prior’s influence on context inference
and action adaptation increases with longer training periods, so that agents
choose the previously reinforced action longer and longer in the extinction phase.
The exact training duration at which adaptation starts to be delayed and fail
depends on an agent’s individual habitual tendency, where a higher tendency
leads to a fail in adaptation for shorter training periods. This is in line with the
literature on moderate and extensive training, where extensive training leads to
increased habit strength (Seger and Spiering), [2011]).

8.5. Retrieval of previously learned context-specific habits

So far, we have assessed how habits can be represented as a prior over
policies, where this prior is learned in a context-specific fashion. Here, we
show a specific advantage of this context-specificity: The agent can recognize
a previously experienced context by the associated contingencies and retrieve
its habit (i.e., prior over actions) and learned reward generation rules for this
context (Bouton and Bolles|,[1979). As the prior implements a tendency to repeat
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Figure 7: The habit retrieval experiment. A 300 trial experiment consisting of a learning phase
(equivalent to the whole habit task, see Figure |3)) with 200 trials, and a new, additional habit
retrieval phase with 100 trials. The light blue line shows the probability of lever 1 paying
out a reward, and the dark blue line shows the probability of lever 2 paying out a reward.
The vertical dashed line indicates the switch from the learning to the retrieval phase. In the
retrieval phase, the agent revisits context 1, where outcome contingencies are exactly the same
as in the first 100 trials of the experiment.

actions, and actions were chosen according to their usefulness (i.e., likelihood of
being chosen, see Fig. , habits in the proposed model represent which behavior
is advantageous in a specific context. Therefore, recognizing the context and
reusing previously established priors corresponds to a retrieval of previously
learned optimal behavior, i.e., habits.

In Figure [7] we show the design of the "habit retrieval experiment’, which is
an extension habit learning task. As before, we first let agents experience the two
contexts for 100 trials each, and call this the learning phase of the experiment.
Critically, there is an, additional phase, the retrieval phase, where we place
agents again into context 1 for 100 trials. In the first trial of this retrieval phase,
we induce maximal uncertainty about the context by setting the agents’ prior
over contexts to p (ca01) = (0.5, 0.5)T. Here, we wanted to emulate a situation
where an agent knows there is a context change, but not to which context, akin
to a mouse being taken out of its home cage into the experimental setup. If we
had kept the prior over contexts as the old posterior from the last trial of the
learning phase, we would induce habit effects where agents delay adaptation
for the reasons discussed in the previous sections. The setup is similar to the
experimental setup used in (Bouton and Bolles|, [1979; |Gershman et al., |2010)).
To compare ’experienced’ agents with agents that have not learned yet context
1, we implement 'naive’ agents, as in Section [3.2]

To quantify the advantage of the retrieval of previously learned context-
specific behavior, we first measured how long it takes a naive agent to converge
to a stable beliefs level about context 1 in the learning phase (Figure ) To
evaluate the convergence times to a stable knowledge for naive agents, we fit
again a sigmoid to the posterior over contexts and actions in the learning phase
(as in Figure 4] see also Methods). We interpret the left asymptote v, of the
sigmoid as the stable level of knowledge the agents eventually reach. We calculate
the convergence time as the trial in which the posterior crosses the left asymptote
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Figure 8: Convergence times of the posterior over contexts (pink) and posterior over actions
(brown) in naive (a) and experienced (b) agents as a function of habitual tendency. The shaded
areas indicate a confidence interval of 95%. a) Convergence times of the posterior beliefs in
naive agents who visit context 1 for the first time, see main text how convergence times were
quantified. A naive agent takes around 7 trials to converge to stable beliefs about its context.
It takes around 40 trials to converge to a stable posterior over actions, indicating the time it
takes to learn a stable representation of the action-outcome contingencies for this context. b)
Convergence times of the posterior beliefs in naive agents who visit context 1 for the second
time. An experienced agent takes 1 to 2 trials to recognize it is in the known context 1. It
almost instantly retrieves its knowledge about outcome contingencies and its habit for this
context, and thereby its posterior over actions, so that the action adaptation happens maximal
one trial later.

for the first time. We compare this duration to how long experienced agents
take to recognize the known context 1 in the retrieval phase and reuse their
previously learned behavior. To compute convergence times for the experienced
agent, we determined the first trial in the retrieval phase where the posterior is
lower than the left asymptote which was fitted for the learning phase.

These convergence times, as a function of habitual tendency, are shown in
Figure [§] for both the naive and the experienced agents. We discussed the initial
development and convergence of the posteriors shown in Figure [4] for single runs
of agents in Section[3.2] The results here are a quantification of these for different
habitual tendencies using 200 runs each. Naive agents (see Figure ) are able
to achieve a stable level of knowledge for the context in around 8 trials, if they
have a low habitual tendency (e.g. 0.02), and in around 5 trials, if they have
a high habitual tendency (1.0). As discussed above, context convergence time
are faster for higher habitual tendency, because these depend partially on the
agent’s own more consistent behavior. Action convergence times mainly depend
on learning the outcome rules and the resulting likelihood, which takes, for the
naive agent, with around 40 — 45 trials a lot longer than context inference. We
find that these times are not influenced by an agent’s habitual tendency.

For experienced agents, both, recognition of the known context, as well as
reusing the old outcome rules and habits, happens almost instantaneously, within
first 3 trials of the retrieval phase, see Figure [8b. As a consequence of these
faster convergence times, experienced agents choose the optimal lever more often
in the retrieval phase than in the first half (context 1) of the learning phase (94%
vs 87%, p < 0.001, two-sample t-test, averaged over all habitual tendencies). In
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addition, we find that agents continue to learn outcome contingencies and habits
during the renewed exposure to context 1 (data not shown). Importantly, in
terms of behavior, for both the naive and experienced agent, the percentage of
choosing the optimal action increases with habitual tendency (naive: p = 0.001;
experienced: p = 0.036; linear regression on the median values). This finding
provides another hint that being a strong habit learner might be advantageous if
one’s environment is mostly stable except for sudden switches to already known
contexts, see also Discussion.

3.6. Environmental stochasticity increases habit strength

In this section, we examine how environmental stochasticity, namely the
probability of observing a reward, interacts with the habit learning process
(DeRusso et al., 2010). We again let artificial agents perform in the habit
learning task (see Figure . We varied the probability of receiving a reward v in
both the training and extinction phases from v = 1.0 (completely deterministic)
to v = 0.6 (highly stochastic, where a 0.5 probability would mean that outcomes
are purely random). In the extinction phase, lever 1 has probability v to pay
out a reward, while lever 2 pays out a reward with a probability of 1 — . These
probabilities are reversed in the extinction phase.

Figure [9 shows the habit strength, measured in the extinction phase as a
function of environmental stochasticity 1 — v. As before, we used three agents
with different habitual tendencies (strong (h = 1.0), medium (h = 0.1), weak
(h =0.01)). In a fully deterministic environment (1 — v = 0), all three agents
have a similarly low habit strength (below 10). The agents infer the context
switch immediately (not shown) and adapt their behavior shortly after. When
the reward probability is ¥ = 0.9 and the stochasticity is 1 — v = 0.1, we
find habit strengths between 7 and 15, which replicates the result shown in
Figure[5] For more stochastic rewards, we find that for all three agents the habit
strength increases with stochasticity, until they fail to adapt within the extinction
phase. In addition, one can see that the habit strength is higher, the higher the
habitual tendency of the agent is (p < 0.03 for a ANOVA on parameters of fitted
exponential functions), and the exact amount of stochasticity agents can handle
before they fail to adapt depends on the agent’s habitual tendency.

In the model, this effect is due to two factors: First, as the environment
becomes more stochastic, it is harder for an agent to detect the switch contin-
gencies. This delays context inference and thereby action adaptation. Second,
the likelihood encoding the goal-directed value is less pronounced in a stochastic
environment, as it maps to the decreased probability of achieving a reward for an
action. In the model, the agent samples actions from the posterior, which is the
product of the likelihood and the prior. If the likelihood is less pronounced, the
habits, as represented by the prior, will automatically gain more weight in the
posterior, leading to an increased reliance on habitual behavior in a stochastic
environment. Intuitively, this means that a decrease in goal-directed value of
actions gives way to a stronger influence of habits. Conversely, habits are also
learned more slowly in more stochastic environments because actions are not
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Figure 9: Habit strength as a function of environmental stochasticity 1 — v. The three habit
learners (strong, medium, weak) develop stronger habits if the reward scheme is more stochastic,
i.e. reward probabilities v are lower. Solid line: strong habit learner with A = 1.0; dashed line:
medium habit learner with A = 0.1; dotted line: weak habit learner with A = 0.01. The shaded
area surrounding the lines is the confidence interval of 95%. A habit strength of 100 means
that the agent does not adapt its behavior within the extinction period of 100 trials.

chosen as consistently because of the decreased goal-directed value. We will
come back to the important implications of these findings in the Discussion.

3.7. Outcome devaluation

In this final results section, we show that the proposed model can also
qualitatively replicate results from outcome devaluation studies, e.g. (Adams),
1982). We modified the habit learning task (Figure [3|) by introducing an outcome
devaluation in the extinction phase, in addition to the switch in outcome rules.
This was done by reducing the prior preference for the reward of lever 1 but not
lever 2 in the extinction phase (for details see Appendix).

In general, we find that the outcome devaluation results in a discontinuous
jump in the likelihood, as the devalued reward means that action 1 suddenly
has no more goal-directed value (data not shown) while action 2 remains useful.
Nonetheless, we can apply the same analyses as in Section [3.3] to show the effect
of habitual tendency on habit strength under outcome devaluation.

Figure 10| shows, as a function of habitual tendency, (i) the trials numbers
in the extinction phase when agents inferred a switch in context and (ii) habit
strengths. Independent of habitual tendency (p = 0.54, linear regression),
agents infer the context switch slightly earlier than in the task without outcome
devaluation (median trials 2.4 vs 3.6, p < 0.001, two-sample t-test). As before,
agents with a low habitual tendency (< 0.02) only develop a very weak habit
within the training phase of 100 trials (see Figure ) When the usefulness of
actions now changes due to the devaluation, these agents can instantly, at the
beginning of the extinction phase, adapt their behavior to start pressing lever
2. Agents with a higher habitual tendency (> 0.1) on the other hand, learn a
pronounced habit during training. As a result, these strong habit learners show
in the extinction phase after devaluation a delayed action adaptation and thereby
a habit strength greater 1 (up to 4). Generally, as before, a higher habitual
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Figure 10: Context inference and action adaptation in the devaluation experiment. Pink line:
Time points in the extinction period of when agents infer a switch in context, as a function
of the habitual tendency. Brown line: habit strength, as a function of the habitual tendency.
The x-axis is logarithmically scaled. This figure is based on the same analysis methods as
Figure [f] but here we analyzed the posteriors in an environment with contingency degradation
and outcome devaluation.

tendency leads to a greater habit strength (p < 0.001, linear regression on the
medians).

Clearly, we found a devaluation effect for agents with a habitual tendency
h > 0.1. Although the habit strengths are fairly low, we found that if we increase
the training duration to more extensive training (> 500 trials), habit strength
increases, so that even weak habit learners show a habit strength greater than 1,
and strong habit learners have a habit strength of up to 8 (data not shown).

While these effects are lower than in the contingency degradation experiment,
these results show that our model can in principle emulate habitual behavior
in both classical experimental designs, contingency degradation and outcome
devaluation (Yin and Knowlton, [2006).

4. Discussion

In this paper, we proposed a Bayesian contextual habit learning model. In
this model, habits are the prior over policies, which implements an a priori and
value-free bias to repeat previous policies, while the goal-directed evaluation is
represented by a likelihood, which encodes the anticipated goal-directed value
of policies. An agent who uses this model for action selection samples actions
from the posterior, which is the product of the prior times the likelihood. One
of the key results is that this rather simple procedure implements an adaptive
and automatic balancing of goal-directed and habitual control. An important
ingredient for this procedure to work is that habits and outcome rules are learned
in a context-specific manner so that an agent can learn and retrieve specific habits
and outcome rules for each context it encounters. We used a free (adjustable)
parameter to model a trait-like habitual tendency h, which determines the
learning rate of the prior over policies, and thereby the acquisition speed of the
habit. We introduced a habit learning task with a training and extinction phase,
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and showed the basic properties of an agent’s information processing employing
the model. Using agent-based simulated experiments, we were able to show that
our model captures important properties of experimentally established habit
learning: insensitivity to both contingency degradation and outcome devaluation,
increased habit strength both with extended training duration and with increased
environmental stochasticity, and near-instantaneous recovery of habits when
exposed to a previously experienced context. We also found that the habitual
tendency interacts with these effects: Agents with higher habitual tendencies
exhibit increased habitual contributions to control and habit strength in all of
these experimental conditions.

In recent years, several approaches to computationally model goal-directed
and habitual behavior have been proposed. An often used interpretation of two
distinct habitual and goal-directed systems has been the mapping to model-free
and model-based reinforcement learning (Daw et all |2011). Here, the model-
free system implements an action evaluation based on which actions have been
rewarding in the past. The model-based system implements goal-directed forward
planning resting on a Markov decision process. Typically, these models have to
be run in parallel and require an additional arbitration unit, which evaluates
both systems and assigns a weight to each, determining the respective influence
on action selection, see e.g. (Lee et al. [2014). However, it seems an open
question, whether model-free learning can be indeed mapped to habitual control.
For example, [Friedel et al.| (2014) were able to map model-based reinforcement
learning to goal-directed behavior but failed to find such a relation for habitual
behavior and model-free reinforcement learning, see also (Wood and Riinger),
2016) for a recent review about the relationship between habitual control and
model-free learning.

To resolve this issue, Miller et al.|(2018]) proposed to map habitual behavior to
a value-free system, which implements a tendency to repeat actions. In this view,
the goal-directed system corresponds to a value-based system, which includes
model-based as well as model-free reinforcement learning, and both systems
are arbitrated using an additional arbitration unit. Our model aligns with this
proposal, as we model the prior as based on pseudo-counts which indicate how
often an action has been chosen in the past. As a result, an action will have a
higher habitual weight if it has been chosen more often, implementing a habit
based on repetition of previous behavior. Goal-directed control is described
based on a Markov decision process as well, which in our model is solved using
Bayesian methods, instead of reinforcement learning. Despite these conceptual
similarities with regard to the interpretation of the nature of habitual behavior,
the proposed value-free model is fairly different from the model presented here.
A key difference is that we used a hierarchical model to implement context-
dependent learning, which we found essential for reproducing key features of
habitual behavior. Furthermore, our model does not require an additional
arbitration unit with additional computational costs. Rather, in the present
model, habitual and goal-directed contributions are balanced directly using
Bayes rule. In other words, we interpret experimental evidence for habitual and
goal-directed control not as evidence for a dichotomy that competes for action
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control. Rather, we see action control as a probabilistic inference problem, where
two sources of information are integrated: The likelihood which looks at the
situation at hand, and the prior which is shaped by past experience.

There have been other Bayesian proposals to habit learning, particularly
using active inference. [FitzGerald et al. (2014) and [Friston et al.| (2016) regarded
habits in a similar manner to model-free learning, and implemented them as an
additional simplified policy. This approach is therefor fundamentally different
from and potentially complementary to ours. Nonetheless, we think it possible
that the brain uses both value-free as well as model-free learning processes, so
that it would not be unreasonable to assume that both contribute to action
selection. |Maisto et al.| (2019) regarded habits as cached values of the likelihood
calculated in previous trials of the experiment. This means that the likelihood
was only calculated when first encountering a new context, and is then kept stable
and cached as long as the context does not change. These proposals of a Bayesian
treatment of habit learning are different from (and possibly complementary to)
our approach, as we view habits as a prior over actions or policies, and not
related to the likelihood (which in our model represents goal-directed control).
Under extensive training regimes, both approaches might lead to similar results.
However, under limited training, when both, goal-directed and habitual control
influence behavioral control, our approach may lead to more plausible behavior
in this regime because of the balancing of the two contributions.

Furthermore, there are other proposals to view reinforcement, contingency
degradation, and outcome devaluation experiments as a context inference and
rule learning problem (Palminteri et al., 2015; |Gershman et al., [2010; [Wilson
et al.} [2014)). These studies view task states as latent variables or contexts, which
need to be inferred, while reward generation rules from these states are learned,
which essentially translates to a non-hierarchical, partially observable Markov
decision process. What sets our proposal apart, is that we view the context
as a latent variable on a higher level of a hierarchical model, which modulates
how rewards are generated from the same states. This allows us to describe not
only actions but sequences of actions which enables an agent to navigate a state
space, where the rules might change even within the same environment. We can
thereby incorporate the assumption that habits are based on chunked action
sequences which allows us to map our model to interesting neurophysiological
findings which we discuss below. These ideas also align with proposals such as
event coding (Hommel et al.l |2001)) and event segmentation theory (Zacks et al.,
2007)), which posit that behavior is segmented into events or episodes. Based
on these proposals, Butz et al.| (2019) put forward an interesting context and
contingency learning model which implements ideas similar to our goal-directed
evaluation in a neural network model.

Typically habit experiments focus on providing evidence that animals have
acquired a habit, which are by experimental design non-functional, as the habit
is measured by its suboptimality, i.e. to perform an action even though it will
not longer produce a reward. In contrast, as we have access to the internal
variables of the agent, we can observe, in addition, subtle changes in behavior
and the causes for these changes before and during extinction and devaluation.
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This perspective allows us to asses the advantages of being a strong habit learner,
e.g. (Wood and Riinger, |2016)): Fast and efficient action evaluation, choosing
consistent and reliable behavior, especially in uncertain conditions, an increased
success rate, and quick retrieval of previous habits in a known context which
amounts to retrieving optimized behavior. In the following, we will discuss how
these advantages come about in terms of the proposed model.

According to the model, habits are fast and efficient because the prior over
policies is retrieved from some context-specific "prior over policies memory’ and
is not evaluated in a costly manner. Interestingly, we found that being a strong
habit learner supports choosing consistent, reliable behavior. For example, agents
with higher habitual tendencies chose the better option more reliably in our tasks.
This was true as long as agents were in a stable context where outcome rules did
not change. Only in the short time after a contingency switch did they choose
the unrewarded option more often due their delayed behavioral adaptation, in
comparison to an agent with a low habitual tendency. Strikingly, precisely
this effect has been observed in a recent study, where [McKim et al.| (2016)
found that participants with a history of substance use disorder (SUD) have a
heightened ability to execute previously learned stimulus-response associations,
in comparison to controls. Assuming that a history of SUD is correlated with
a stronger tendency to learn habits, this result directly reflects on our finding
of an increased performance for higher habitual tendencies in known contexts.
As we found in our simulated experiments, the participants with presumed
higher habitual tendency (SUD history) were also found to show a decrease in
performance after a switch to a new context, and showed signs of perseverance
of behavior.

This effect of improved choice behavior was also seen when agents revisited
a known context. Here, the already learned, contextual habit enables an agent
to quickly retrieve previously acquired behavioral patterns for this context,
which are presumably optimal if the contingencies of the context did not change
between the two visits. Importantly, being a strong habit learner also helped
performance in uncertain conditions: When rewarding outcomes were highly
stochastic, we found that the habit (prior over policies) has a stronger weight
on action selection and helps an agent choosing the better option more reliably.
Taken together this means that being a strong habit learner is advantageous,
as long as one’s environment is subdivided into stable phases of already known
contexts, separated by infrequent switches. Interestingly, there is evidence for
such a mechanism of rapid context-dependent habit retrieval (Bouton and Bolles,
1979; |Gershman et al. 2010): Using optogenetics, [Smith et al.| (2012) observed
rapid re-instantiations of a previously learned habit after a context change, where,
similar to our simulated experiments, reward contingencies changed. Obviously,
this advantage of habits may be even increased, if agents, as is the case in our
real-life environment, were able to choose the context they are in or switch to.
While we did not implement this active component here, it would most likely lead
to agents choosing long stable contexts for which they already learned habits.
These scenarios would lead to interesting research about how agents decide to
switch contexts to balance exploration and exploitation in their environmental
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niche.

We identified several causes of variability in habitual control in the agent.
First, as habits in the form of a prior over actions are learned by exposure to
stochastic stimuli, their contribution is therefore dynamic and adaptive during a
task. In other words, in our model, an agent never stops adapting a habit so
that habit strength varies and is context- and experience-dependent. Secondly,
we found that behavior is strongly controlled by habits in those situations when
goal-directed forward planning cannot determine a clearly best action, so that
there is uncertainty on what the best course of action is. This means that habits,
when there is conflict between different possible (goal-directed) actions, can be
seen as an informed guess to select an action and resolve the conflict rapidly.
This uncertainty-weighting of control is in line with previous findings (Daw et al.|
2005; |Lee et al., 2014)). Thirdly, we found that one can emulate an individual
habitual tendency simply by varying the initial pseudo counts of the prior so
that the individual learning rate during habit acquisition varies, which in turn
leads to variations in delayed action adaptation and different habit strengths.

Even though there are advantages of using habits, it clearly depends on the
environment whether habits will be mostly advantageous or disadvantageous.
For example, a strong habit learner would be best placed in an environment
with rare switches between already learned contexts, see e.g. (Barnes et al.
2005; |Gremel and Costa, 2013|). Conversely, an environment with frequent
changes between contexts dissimilar from previously learned ones would lead to
decreased choice performance of a strong habit learner, in comparison to a weak
habit learner. Another possibility how the habitual control mechanism may be
detrimental to performance is if context inference is for some reason dysfunctional.
For example, with suboptimal context inference, one may expect that there
is confusion between contexts that are similar in appearance but effectively
distinct. We speculate that this confusion may express itself experimentally as
an apparent decrease of top-down control by cortical areas (context-inference) on
the striatum (habitual control), as e.g. found in (Renteria et al.l [2018)). Another
interesting and experimentally relevant example of biased context inference may
be the established phenomena of Pavlovian to Instrumental Transfer (PIT),
(Garbusow et al., 2014; Talmi et al.,|2008), where participants are biased towards
a previously encountered context by cues of that context. Note that in our
model, contexts are not cued and instead need to be implicitly inferred from
the observed reward rules of the environment, where we refer to a context as a
specific set of states and their corresponding outcome rules. Nonetheless, even
without cues, retrieval of previously learned habits was almost instantaneous,
which would only be facilitated if, in addition, cues were presented.

This mechanism may relate to addictive behavior like substance use disorders
(SUD), which are characterized by a shift from goal-directed to habitual and
compulsive use. We speculate that difficulties in context inference may help
explain how addictive behavior becomes habitual: While there is a clear difference
in the outcomes between initial substance use (euphoria or relaxation) and the
outcome after a prolonged time period of use (e.g. adverse health or social
consequences), the user may not infer that these two outcomes are two different
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contexts. Additionally, the use is typically associated with some stimuli or cues,
like the ringing sound of glasses, which become connected with the context and
associated contingencies. As outcomes become gradually less rewarding, the
cues remain the same, and the contingencies may not change quickly enough to
be sufficiently driving a change in context inference. Consequently, the action
control of the user might not infer that prolonged use has placed the user into
a qualitatively new context, in which the initially learned habit provides for
suboptimal behavior. With suboptimal context inference in place, behavior will
be strongly biased by the already learned habit. As habits are hard to unlearn
within a context, the user will have difficulties to unlearn the habit. As uncertain
probabilistic rewards shift control further to habits, the difficulty to unlearn is
further enhanced, where the reward stochasticity may result from differences of
outcomes but also from the user’s memory of the desirable outcomes after initial
substance use. It is an open question, whether people who become addicted
have a higher habitual tendency, or/and whether drugs of abuse increase an
individual’s habitual tendency. Another potential reason in the model that action
control will be biased towards habits is if the likelihood, i.e. the goal-directed
evaluation, does not produce a clearly best action, e.g. due to uncertainty about
goals or a relatively low planning depth. According to the model, limited planning
capacity would translate into a less accurate and potentially less pronounced
likelihood, which leads to the habitual prior automatically gaining more weight
in the action selection. This holds while learning habits, but also when reentering
a known context.

Although we have used in our simulated experiments policies of just a single
action (len (w) = 1), the proposed model also supports behavioral episodes
and policies with length len (7) > 1, i.e. sequences of actions. Interestingly,
a growing and compelling area of research is to view habits as chunked and
automatic action sequences (Graybiel and Grafton, 2015, |Smith and Graybiel,
2016)), which might be embedded in a hierarchical model (Dezfouli and Balleine,
2012, [2013). This sequential view on habits rests on both neurophysiological
and behavioral evidence, see (Smith and Graybiel, [2014; |Corbit| [2018]) for recent
reviews: In animal experiments, both the dorsolateral striatum (DLS) and
infralimbic (IF) cortex have been found to be implicated in habitual control
and to exhibit so-called (task-) bracketing activity, where neurons are active
at the beginning and the end of an action sequence, e.g. (Smith and Graybiel,
2013)). The computational function of this bracketing activity is yet unclear. We
speculate, building on insights from the proposed model, that this bracketing
activity may be the expression of a context-dependent prior over policies being
set at the beginning of an action sequence, see Fig. [I} Setting such a prior has
the advantage that the organism, during executing a fast, but controlled action
sequence, can focus only on a single or few policies whose prior is greater than 0.
This focus enables fast action control as only for these few policies the likelihood
needs to be evaluated. Critically, in the proposed model, the computation of
prior and the likelihood of policies have a clear sequential order in time; as
the prior refers to what policies in a specific context are predicted to be useful,
even before the organism has actually evaluated any policy, selecting this prior
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clearly has temporal precedence, as in the proposed model, over the evaluation
of the likelihood during performing the action sequence. Precisely this temporal
precedence has been observed experimentally during habit learning: First, the
beginning of the bracketing activity, e.g. in DLS, could be interpreted as a
retrieval and encoding of a prior over policies, while subsequent activity during
the action sequence, e.g. observed in dorsomedial striatum (DMS), could be an
expression of the evaluation of the likelihood over policies and the computation
of a posterior over actions, i.e. once the organism is receiving sensory input
caused by executing the selected policy. Experimentally, this DMS activity has
been reported to be mostly present during rather early stages of habit learning,
and to decrease over time until a habit has been learned (Thorn et al. 2010)).
In our model, this gradual decrease, over time, of DMS activity is reflected by
the increasing prior and posterior over policies over trials, e.g., see Figure [df,d.
Finally, the bracketing activity in DLS at the end of an action sequence can be
explained in the proposed model by the updating of the prior over policies after
performing the action sequence (see Fig. , in particular the ’sharpening’ of
end activity and the reduction in entropy, over trials, as reported in (Desrochers
et all 2015). Findings of lesioning experiments also fit into this picture: After
habit learning, lesioning DLS led to a behavioral switch from habits back to
goal-directed action while lesioning of the DMS had no apparent effect (Yin
et al |2004). Similarly, in another study, at an early stage of habit learning,
inactivation of DMS reduced the goal-directed response (i.e., in the model,
likelihood and posterior can no longer be computed) while inactivation of DLS
was without effect (i.e., in the model no prior over actions had be learned yet)
(Corbit et al,[2012). In the same study, after habit learning, inactivation of DLS
let the animals return to goal-directed behavior (i.e., in the model, the prior
over policies is now flat) while inactivation of DMS is without effect (i.e., in the
model, the prior over policies outweighs the now flat likelihood). Future studies
will have to experimentally test whether our predictions hold, and if our model
indeed maps to these brain structures.

In summary, the proposed modelling approach provides the novel perspective
that habitual control relies on learned context-specific priors of policies. The
resulting model provides for a simple way to balance action control between
habits and goal-directed control. As we have discussed, experimental findings
seem to support this perspective of a separation into prior and posterior over
policies. We anticipate that the present computational modelling approach may
support novel directions of research aimed at the central role of context inference
as a means to reduce the number of policies that have to be evaluated and
implement fast action control relying on the interplay between the prior and
posterior over policies.
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Appendix A. Appendix

Appendiz A.1. Derivations of the update equations

The variational free energy functional is defined as the Kullback-Leibler diver-
gence between the approximate posterior [6] and the joint probability distribution
of the generative model [d] Hence, we can write the variational free energy as

F [q] :DKL [q (StJrliTﬂ ryy 1.7, 7, 03 ¢7 ck) |p (SltTv ry.r,m, 97 ¢a Ck)]

N q(ck) q(¢) q(9) q (7ler)
_%;q(ck) In k)+/d¢q(¢) In —— + doq () 1n179)+;61(7fl%) hlm

p(c P ()

q (St+1:T,I't+1:T|7T,Ck)
P (St Tegro7|Se, T, b, Ck)

— Inp (st Tielm dcn) + Y q(Seyrr Teprr|m cp) In

St41:T,Ct41:T
(A.1)

where for clarity we omitted the parametric dependence of each distribution.
The approximate posterior is than obtained as the minimum of the free energy,
defining the upper bound on surprise (negative marginal log-likelihood).
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We first write down the update equations for the beliefs over future states
and rewards within an episode, using the belief propagation message passing
update rules (Pearl, 2014; [Yedidia et al., [2003)). For details on the derivation
steps see our previous work (Schwobel et al.l [2018)) in which we investigated the
Bethe approximation for a Bayesian treatment of a partially observable Markov
decision process. The results shown here are an adaptation for fully observable
states, which is just a special case.

p(R=1r;)p (rrlsr, cx) mIth (sr|ex) mI! (sy]ex)

q (rT7ST|7T7Ck:> =

Z7T
T
=1 T
q (rr|7r,0k) =2 (R |rTZ)7rm,, (rT‘Ck)
¢ (Sry871|m,0) = ”(Z'i”)ml (sr—1)m7 (s7) mE T (srler) mh (s,-1]ck)
T,7—1
T+1 T—1
q(srlm,cr) = i (ST|Ck)Z:nW (6-lex)
T
(A.2)
using the messages
m) (S.,-|Ck) = Zp (R = 1|rT) P’ (rT|sT,ck) ,
r.
mL (r-|ck) = Zp’ (rr|s-, cr) mItt (srlex) mI~! (srlek)
sy
T+1 _ 1 T+1 T42
mItt (s;|cg) = i > p(seaalse,m) mIt (srpaler) mEt? (srialek)
T sy
1
m " (srlex) = i > p(selsr—r,m) mi™ (sro1ler) mL % (sr-1lex)
T s, 1
(A.3)
where
Inp’ (I‘.,-|S.,-, ck) = /d¢q (¢)Inp (I‘.,-|S.,., ®, ck) (A.4)

the free energy mandated that we average out the dependency on ¢.
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The posterior beliefs over policies given some context are calculated as

Ing (mlex) o / d8q (6) Inp (w6, 1) + / d6q (6) Inp (1, r1ul, 6, 1)

q \St+1:7, T't+1:T|T, Ck
/d(bq Q(St+1:T,rt+1:T\7T,Ck) In ( s a2k )
Sein. Tyrt+1 . p (St417, Tegrn|m, ¢, )
o Inp’ 7T|Ck Zlnp Sm|Sm—1,7) —InZT — Z an;’,ﬂ
T=t+1
< Inp’ (7r|ck.) — (7T|Ck)

q (m|ck) op’ (wlex) exp (—F (ﬂ'\ck))
(A.5)

where p’ (7r|ck) is the marginalized prior over policies, and F (7r|ck) is the
policy-specific free energy in a given context (see (Schwobel et al., 2018])).
The posterior over the parameters 6 of the prior over policies can be derived

as
Ing(0) < lnp(9) + Z (7|ck) g (ck) Inp (7|6, cx)
T,Ck
xln [ —— TTo0 + Z (7lek) ¢ (cx) In Heél’”g"’ck
B (Ol) ln ln T,Ck ln "

o« ln He% 1 +Zq(ﬂ':l|ckzn)q(ckzn)ln(ﬁln)

ln
x In He% ) o | et
ln

Heam 1+q m=l|c= n)q(ck:n)

ln

_ 1 af,—1

l,n

afn_azn +Q(7T_l|ck_n)Q<Ck:n)

(A.6)

and is itself again a Dirichlet distribution with updated pseudo counts . These
are updated by adding the posterior over policies times the posterior over context.
At the end of an episode, the pseudo count will be increased by 1 for the policy
which has been followed in the context the agent inferred to be in.

43


https://doi.org/10.1101/836106
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/836106; this version posted November 9, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

The posterior over the parameters ¢ of the outcome rules can be derived as

Ing(¢) cInp(d) + D q(ck)np (rielsie, ¢, cx)

Ck
t
scinp(@)+ 33 q(er) np (Enlsm, 6, i)
m=1 cg
Bijn' 1 v 05,5 O
o | g 1L o 3 Y ateom [T oot
i,J,n m=1 cg INED
-1
st [ TL ] + 30 S ater=mm (om0
2,7,m m=11,5,n
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x In H (;Szﬁjjln q(cp=n) Zm ;rm 9d,sm
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Lastly, we want to derive the posterior over contexts
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with context-specific free energy F'(ci). Note, that we set

P (cx) =Y qlcr-1)p(ckler) (A.9)

Cr—1

As most of the posteriors described here are interdependent on each other,
one has to iterate over their updates until convergence. Practically, we only used
one iteration step: We used the priors over 6, ¢ and cj to calculate the posterior
over policies. Then we calculated the posteriors over 8 and ¢, which were then
used to calculate the posterior over contexts. We evaluated if this procedure
is equivalent to a full iteration until convergence and found that the resulting
posteriors only differed by less than 1% of their values.

Appendiz A.2. Agent and task setup

The generative process of the habit learning task (Section was set up as
follows:

e An episode has length T' = 2.
e There are 200 episodes so that k € [1,200]

e There are ny = 3 states S = {s1, s2, s3}, where s is the state where lever
1 distributes a reward, s, is the state where lever 2 distributes a reward,
and state s3 is the starting state in front of the two levers.

e There are n,, = 3rewards R = {r1, 72,3}, where r; is the reward payed out
by lever 1, r5 is the reward payed out by lever 2, and 73 is the no-reward.

e There are n, = 2 actions A = {a1, a2}, where a; leads to state s1, and as
leads to state s, from any starting state.

e There are n. = 2 contexts C = {c1, ca} which amount to lever 1 or lever 2
being the better arm, respectively.

e The state transitions are set up to be deterministic:
11 1 0 0 0
Ts (St+1|5t73t = al) =0 0 0] and7; (st+1|st,at = al) =11 1 1
0 0 0 0 0 0
S

so that a; leads to state s; from any starting state, and as to ss, while
can not be reached.

3

e The reward generation rules are as depicted in Figure Bp. Mathemat-

ically, the reward generation in the training phase as 7, (rt|st,ck) =
v 0 0

0 1—v 0] for k € [1,dtmmin9], where v is the probability
1-—v v 0

of lever 1 distributing a reward. In the extinction phase, the reward
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1—v 0 0
probabilities switch, so that 7, (r¢|ss, cx) = 0 v 1| forke
v 1—-v 0
[dtrm'ning + 17 dtraining + 100]

e The context transitions are deterministic and happen after the training, so

1 0
that 7—0 (Ck+1 |Ck> = (0 1) for k € {17 R dtraining7 dtraining + 27 s 7dtraining + 100}

1
and 72 (Ck+1|ck) = <? 0) fOI‘ k = dtraining + 1

In each episode k, the agent starts at ¢ = 1 in the state s3 in front of the levers.
The agent’s generative model is set up to reflect the generative process, or
learn the respective quantities:

e The agent knows it starts in state s3 in each episode, so we set the prior
of the starting state as p (sl|so, 77) =p(s1) = (0,0, 1)T

e As we set T = 2, policies and actions map one to one, so that len (1) =1
and n, = 2. This means, 7, = a; and 73 = as

e We assume the agent knows the state transitions instead of learning those,
so that p (si1[se, ) = Ts (seg1lse, ar)

e The pseudo counts ijn which are used to parameterize the outcome rules
for reward ¢ and state j in context n, are initialized as B?jn = 1 for all
iy,

e The pseudo counts ozfn which parameterize the prior over actions for policy
[ in context n are initialized as a?n = Qpit = % using the habitual tendency
h and are initialized the same for all [, n.

o We set the agent’s representation of context transitions, i.e. temporal

. 0.99 0.01
stability as p (cpt1lck) = 001 0.99 for k = diraining + 1. Here, the
agent assumes that both contexts are equally stable and change once in

100 trials.

e Finally, we set the agents preference for outcomes as p(R = 1|rT) =
(0.495,0.495, 0.01)T, so that the agent prefers the rewards of levers 1 and
2 equally, but dislikes the no-reward rs. In the contingency degradation
tasks, these values are kept constant. In the outcome devaluation task
(Section , the preference for outcomes was reset in the extinction phase
as p (R = 1|rT) = (0.01942,0..96117,0.01942)T, which effectively devalues
the reward for lever 1 and keeps the ratio of desirability between reward
and no reward unchanged.
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