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Abstract

Signaling between cancer and nonmalignant (stromal) cells in the tumor microenvironment
(TME) is key to tumorigenesis yet challenging to decipher from tumor transcriptomes. Here,
we report an unbiased, data-driven approach to deconvolute bulk tumor transcriptomes and
predict crosstalk between ligands and receptors on cancer and stromal cells in the TME of 20
solid tumor types. Our approach recovers known transcriptional hallmarks of cancer and
stromal cells and is concordant with single-cell and immunohistochemistry data, underlining
its robustness. Pan-cancer analysis reveals previously unrecognized features of cancer-
stromal crosstalk. We find that autocrine cancer cell cross-talk varied between tissues but
often converged on known cancer signaling pathways. In contrast, many stromal cross-talk
interactions were highly conserved across tumor types. Interestingly, the immune checkpoint
ligand PD-L1 was overexpressed in stromal rather than cancer cells across all tumor types.
Moreover, we predicted and experimentally validated aberrant ligand and receptor expression
in cancer cells of basal and luminal breast cancer, respectively. Collectively, our findings
validate a data-driven method for tumor transcriptome deconvolution and establishes a new
resource for hypothesis generation and downstream functional interrogation of the TME in

tumorigenesis and disease progression.
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The tumor microenvironment (TME) is a multi-faceted cellular environment that both
constrains the evolving tumor (Hanahan and Coussens, 2012) and plays a pivotal role in tumor
progression and therapeutic response (Junttila and de Sauvage, 2013). Existing experimental
methods to characterize the TME, such as imaging and single-cell based approaches, cannot
be applied retrospectively to existing large-scale bulk tumor datasets, representing a vast and
mostly unexplored resource for studying cancer cell ligand-receptor repertoires and cross-talk
in the. Existing approaches to deconvolve bulk tumor gene expression profiles have mainly
focused on estimation of cell type fractions (Aran et al., 2017; Newman et al., 2015) or have
been optimized or tested on a limited set of tumor types (Ahn et al. 2013; Moffitt et al., 2015;
Quon et al., 2013; Wang et al., 2018).

Previous studies have analysed tumor purity in a pan-cancer context (Aran et al., 2015)
and developed regression-based methods for accurate mixed-tissue transcriptome
deconvolution (Shen-Orr et al.,, 2010). Here we combined these approaches to estimate
cancer and stromal (comprising any non-cancer cell) compartment molecular profiles from
bulk tumor RNA-seq data and infer signaling interactions between average representative
cells in these two compartments. Uniquely, our approach (TUMERIC) avoids making
assumptions about the transcriptional profiles of cancer and stromal cells in a given tumor by
integrating independent estimates of tumor purity derived from DNA sequencing and copy
number profiling data. We validate the approach using public cancer genomics data, mass
spectrometry protein abundance data, single cell RNA-seq data, and immunohistochemistry
imaging data. We apply the method to ~8000 tumor samples across 20 solid tumor types from
The Cancer Genome Atlas (TCGA) to infer cancer and stromal cell crosstalk conserved across
tumor types as well as tissue specific interactions. Finally, we compare cross talk across the
molecular subtypes of breast cancer and infer signaling interactions specific to the aggressive

basal subtype.
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Results

Overview of approach

We first estimate the cancer cell fraction (tumor purity) from somatic mutation allele
frequencies, DNA copy number profiles, and mRNA expression signatures of the tumors using
a robust consensus approach (Fig. 1 and Methods). The tumor transcriptome profiles are then
deconvolved into an average cancer and stromal cell profile using non-negative linear
regression. To infer cancer and stromal cell ligand and receptor repertoires, as well as
potential crosstalk between these compartments, we combine the inferred expression profiles
with a curated database of ligand-receptor (LR) interactions (Ramilowski et al., 2015) to

estimate relative LR complex concentrations under equilibrium (Methods).

Estimation of tumor purity across 8000 tumor samples
To analyze crosstalk in a pan-cancer context, we first estimated tumor purities of ~8000
samples across 20 solid tumor types from TCGA. Briefly, we obtained purity estimates based
on DNA somatic variant allele frequency (PurBayes and AbsCN-seq), copy number (ASCAT),
and mRNA expression (ESTIMATE) data using four existing algorithms, followed by
imputation and quantile normalization, to produce robust consensus tumor purity estimates
across all sample. Most tumors had a purity in the range 40-70%, but there was large variation
within and between tumor types (Fig. 2a, Suppl. Fig. 1). Pancreatic adenocarcinoma (PAAD)
tumors had very low purity (median ~39%), consistent with previous observations (Wood and
Hruban, 2012). The glioblastoma (GBM) and ovarian cancer (OV) samples had the highest
purity estimates, likely influenced by sample selection bias in the first phase of the TCGA
project.

We found that previously published consensus tumor purity estimates (Aran et al.,
2015), while positively correlated with TUMERIC estimates, were likely overestimating purity
by >30% as compared to genome-derived purity estimates (Suppl. Fig. 1). We then compared
TUMERIC consensus purity values with purity estimates from recently published
transcriptome deconvolution methods, using tumor purity estimates computed by the TCGA
pan-cancer consortium (ABSOLUTE method) as an independent benchmark (Hoadley et al.,
2018). One method (CiberSortX) could only be applied in three tumor types because it
required a tumor type specific signature matrix for deconvolution. Another method (DeMixT)
could only be applied in tumor types where matched normal tissue samples were available.
Overall, the concordance with ABSOLUTE purity was generally low for the three tested
transcriptome deconvolution methods (Pearson r> 0.4 in only 2/8 tested tumor types, Figure

2c). Furthermore, all methods failed (r < 0.15) to estimate tumor purity in at least two of the
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tested tumor types. In contrast, TUMERIC consensus purity estimates were generally highly
correlated (r > 0.75 in 6/8 tumor types, lowest r = 0.42 for THCA) with TCGA ABSOLUTE

purity estimates across cancer types.

Validation of approach

We performed multiple analyses to evaluate the accuracy of TUMERIC in deconvolution of
cancer and stromal compartment transcriptomes. Firstly, known stromal (FAP, CD3D, CD4,
CSF1R) and epithelial-cell specific factors (EPCAM) showed expected strong and consistent
gene expression differences between stromal and cancer compartments across cancer types
(Suppl. Fig. 2-6). Next, since somatic copy number alterations (CNAs) are hallmarks of cancer
cell genomes, we reasoned that genes expressed exclusively in the stromal compartment
should not be affected by tumor CNAs. We used TUMERIC to infer the top-100 cancer and
stromal-cell specific genes in each tumor type. The cancer-specific genes in each tumor type
were distributed widely across the genome (Suppl. Fig. 17). We found strong correlation
between bulk tumor CNA and expression of cancer-specific genes, but no correlation between
tumor CNA and expression of stroma-specific genes (Fig. 3a). Variation in correlation between
tumor types could be explained by the overall prevalence of CNAs in a given tumor type,
where tumor types with higher levels of chromosomal instability showed higher correlation of
tumor CNA and expression of cancer-specific genes (Fig. 3a). Similarly, as a positive control,
we found that previously derived stromal and immune-cell specific genes (Yoshihara et al.,
2013) were inferred by TUMERIC to have markedly higher expression in the stroma
compartment of all tumor types (Fig 3b).

To test the concordance of TUMERIC with tumor single-cell RNA-seq (scRNA-seq)
profiling, we analyzed TUMERIC expression estimates for cancer and stromal-cell specific
genes identified by scRNA-seq of melanoma tumors (Tirosh et al., 2016). TUMERIC inferred
significantly higher stroma-compartment expression for scRNA-seq stromal-cell specific
genes (P=2e-55, Mann Whitney, two-tailed), and significantly higher cancer-compartment
expression for cancer-cell specific genes (P=3.6e-4, Fig. 3c). Next, using gene set enrichment
analysis, we found consistent association of compartment-wise inferred gene expression and
known hallmarks of cancer (e.g. cell cycle and DNA repair) and stromal cells (e.g.
angiogenesis and immune response) across cancer types (Fig. 3d, Suppl. Fig. 7). We then
evaluated the extent that the deconvolved mRNA profiles represent an accurate proxy for
protein levels in the cancer and stromal cells. We used TUMERIC to deconvolve protein
abundance data from two TCGA tumor types (Edwards et al., 2015), and found strong

concordance between the mRNA and protein expression profiles (Fig 3e). Finally, to test the
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concordance of TUMERIC with immunohistochemistry (IHC) data, we identified genes with
high variability of cancer and stromal cell differential expression across tumor types and used
IHC data from The Human Protein Atlas (Uhlen et al., 2017) to confirm that expression
patterns of two such genes were indeed variable and concordant across tumor types (Fig 3f
and Suppl. Fig 8). Although this IHC comparison is limited to two genes, the combined
concordance of transcriptome deconvolution data with both proteomic and IHC data supports
an overall concordance between transcriptome and protein-level data. Overall these diverse
comparisons with orthogonal types of data support that TUMERIC can robustly deconvolve

gene expression profiles of cancer and stromal cell compartments across the 20 tested tumor

types.

Compartment specific expression of ligands and receptors

To explore ligand-receptor (LR) signaling across cancer types, we focused on 263 ligands and
242 receptors (603 LR pairs) with detectable bulk tumor gene expression (>1 RPKM in >25%
of samples) in at least half of the 20 cancer types. We first analyzed for compartment
specificity of these ligands and receptors. Expectedly, ligands belonging to the complement
system (e.g. C1QB and C3) as well as leukocyte specific chemokines (e.g. CCL5 and CCL21)
had high stroma specific expression across tumor types (Fig 4a). Cancer-specific ligand
expression across tumor types was much less frequent and pronounced. Among the most
common cancer-specific ligands were endothelial cell targeting factors (PODXL2 and
VEGFA), consistent with the hypothesis that cancer cells interact with and induce tumor
vascularization. Immune (e.g. CD2 and CD4) and macrophage cell (CSF1R) specific factors
were expectedly among the top stromal specific receptors across tumor types (Fig 4b). Similar
to ligands, receptors with cancer-cell specific expression across tumor types were less
common. The top common cancer specific receptors included known cancer associated
members of the EGF-family (ERBB2 and ERBB3), Wnt-family (LRP4, LRP5 and LRP6), and
FGF-family (FGFR3). In summary, these data underline that our approach is able to tease
apart cancer and stromal-compartment specific expression of ligands and receptors from bulk

tumor transcriptome profiles.

Recurrence of ligand-receptor interactions across tumor types

Next, we developed the Relative Crosstalk (RC) score to quantify and differentiate between
types of autocrine and paracrine (here denoting signaling within or between compartments,
respectively) ligand-receptor (LR) crosstalk (Fig 4c and Suppl. Table 1). We first evaluated the

extent that known LR pairs had consistent crosstalk directionality across tumors types and
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found a striking difference between the cancer and stromal compartment. While only 3 LR
pairs had strong autocrine cancer signaling scores (median RC score > 40%) across tumor
types, 264 LR pairs showed strong autocrine stroma signaling RC scores across cancer types
(Fig 4d). This suggests that, in solid tumors, autocrine cancer signaling tends to be tumor type
specific and determined by the cancer cell-of-origin. In contrast, stromal autocrine signaling is
often conserved and independent of tumor type and tissue. Interestingly, the paracrine
signaling interface between cancer and stromal cell compartments also had a high number of
recurrent interactions (26-40 conserved interactions, respectively), highlighting the importance
of the tumor environment on cancer cell biology.

Inferred recurrent cancer-cell autocrine LR pairs included receptors such as FGFRS,
LRP6 and MST1R (Fig. 4e). Signaling through ACVR2B was notably both among the top
inferred cancer autocrine and stroma-to-cancer signaling interactions across tumor types (Fig
4e,g), highlighting a common role for ACVR-coupled TGF-beta/SMAD signaling in
tumorigenesis. We analyzed recurrent cancer-to-stroma LR interactions to investigate how
cancer cells may engage and shape their microenvironment (Fig 4f). Top inferred cancer-to-
stroma interactions included the lymphocyte-specific selectin (PODXL2-SELL), highlighting a
possible conserved interaction between cancer cells and leukocytes or endothelial cells
(Fieger et al., 2003) (only the leukocyte-specific selectin (SELL) was abundantly expressed

across most tumors and included in our analysis).

PD-1 and CTLA-4 immune checkpoint ligands are overexpressed in stromal cells

The top recurrent stroma-stroma interactions included many chemokine signaling interactions,
especially involving CXCR3 and CXCR5 receptors, suggesting common stroma induced
recruitment of leukocytes and lymphocytes to solid tumors (Suppl. Fig 9). Interestingly, the top
recurrent stromal interactions also included the known immune checkpoint interactions
CD86/CTLA-4 (CD86/CTLA4) and PD-L2/PD-1 (PDCD1LG2/PDCD1). The known PD-L1/PD-
1 (CD274/PDCD1) checkpoint interaction was not among our initial curated and analyzed
ligand-receptor interactions, but a follow-up analysis of this LR pair revealed a similar stroma-
stroma enriched cross-talk pattern (median stroma-stroma RC=87%). Interestingly,
expression levels of immune checkpoint ligands (PD-L1, PD-L2, CD86) were highest in stroma
across all tumor types. This suggests that the bulk of immune checkpoint inhibitory signals in
the tumor microenvironment may be mediated by non-cancer cells. However, some tumor
types showed moderate to high expression of especially PD-L1 and CD86 in cancer cells.
Glioblastoma (GBM) was the tumor type with highest expression of both CD86 and PD-L2 in

both stroma and cancer cells. In contrast, brain tumors (GBM and LGG) also had the lowest


https://doi.org/10.1101/835512
http://creativecommons.org/licenses/by/4.0/

O © 00 N O o b~ WO N =

W W W W W W NN NN DD DN N DD DN =+ =22 a2 d g a4
a A O N =2 O © 0 N O o0 h O N = O © 00N O O b WO N =

bioRxiv preprint doi: https://doi.org/10.1101/835512; this version posted November 8, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

stromal expression of both the CTLA-4 and PD-1 receptor as compared to all other tumor
types, highlighting potential differences in T-cell infiltration levels, activation states, or

dynamics of checkpoint inhibition in brain tumor tissue.

Expression of immune checkpoints and response to immune checkpoint inhibition

Expectedly, inferred gene expression of the two checkpoint receptors, PD-1 and CTLA-4, was
high in stroma and almost absent in cancer cells (Fig. 4h). Stromal expression of these two
receptors was highest in melanoma (SKCM), the solid tumor type where immune checkpoint
blockade was first clinically approved and where therapeutic blockade currently shows the
most profound response rates (Sharma and Allison, 2015; Yarchoan et al., 2017). PD-L1 was
inferred to have high expression in cancer cells of cervical squamous cell carcinoma (CESC),
lung squamous cell carcinoma (LUSC), and renal cell carcinoma (KIRC, KIRP) (Fig 4h, Suppl.
Fig 9). These tumor types all have high response rates to PD-L1/PD-1 checkpoint inhibition
(Yarchoan et al., 2017). In contrast, colorectal cancer (CRC) has one of the poorest response
rates to checkpoint inhibition (Yarchoan et al., 2017) and also showed the lowest (near-zero)
inferred cancer cell expression of PD-L1 as compared to other tumor types. Overall, these
results indicate that bulk tumor deconvolution of immune checkpoint cell-cell interactions in
cancer and stroma compartments may provide insights into deciphering the conditions for

effective immune checkpoint therapy.

Convergence of autocrine cancer cell crosstalk across tumor types

The pan-cancer analysis indicated that cancer-cell directed LR interactions tended to differ
across tumor types. We therefore searched for LR interactions with extreme autocrine RC
scores in individual tumor types. Indeed, we found that most (14/20) cancer types had multiple
LR interactions with high cancer autocrine scores (RC score > 60%, Fig 4i). Interestingly, the
top autocrine cancer-cancer LR interactions tended to converge on the same signaling
pathways. 9/20 solid tumor types had (among top-2, Fig 4i) autocrine interactions converging
on TGF-beta and SMAD signaling pathways (BMP and ACVR-receptors). 8 tumor types had
interactions involving different fibroblast growth factor ligands and receptors, and 6 tumor
types had interactions converging on Eph/ephrin signaling. These results suggest that cancer
cells of solid tumors may often be dependent on autocrine activation of these signaling
pathways, and our data highlight specific LR candidate interactions associated with this

activation in each tumor type.

Validation of compartment-specific ligand-receptor expression using scRNA-seq data
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We next investigated compartment-specific expression of candidate ligand-receptor pairs
using a melanoma scRNA-seq dataset (Tirosh et al., 2016). Firstly, we analyzed the 3 pan-
cancer cancer-to-cancer pairs with highest inferred cancer-cancer signalling in SKCM (BMP7
> ACVR2B, BMP8B > ACVR2B, WNT3> LRP6, Fig 4e). Among these pairs, the two receptors
(ACVR2B and LRP6) were inferred to be overexpressed in cancer cells (~4-fold higher
expression) and ligands were inferred to have unaltered expression in SKCM (Suppl. Table
1). We then compared the expression of the 2 receptors in malignant and non-malignant cells
as inferred by the authors (Tirosh et al., 2016). Confirming our results, both receptors were
significantly overexpressed in the cancer compartment (P <1e-10, Wilcoxon rank-sum, Suppl.
Fig. 16). Next, we analysed the top 2 inferred SKCM cancer autocrine pairs (BMP7 >
BMPR1B, SEMAG6A > PLXNA2, Fig. 4i). Within each of these two pairs, the receptor BMPR1B
and the ligand SEMAGA were inferred to be significantly overexpressed in cancer cells (4 and
7-fold, respectively, Suppl. Table 1). Confirming our results, both of these genes were also
significantly overexpressed in cancer cells of the melanoma RNA-seq dataset (P <1e-10,
Suppl. Fig. 16).

Autocrine and paracrine crosstalk in brain tumors

The two brain tumor types (LGG and GBM) were both characterized by very high autocrine
Delta-Notch signaling scores (DLL1-NOTCH1, RC > 80%, Fig 4i). Both DLL1 and NOTCH1
were inferred to have >4 fold higher expression in cancer compared to tumor stromal cells and
normal brain tissue in both tumor types. DLL1 cancer cell expression was ~16-fold higher than
stroma and normal tissue in LGG (Suppl. Fig 10). These data are consistent with previous
studies showing that Notch autocrine/juxtacrine signaling is critical for glioma tumorigenesis
(Purow et al., 2005; Teodorczyk and Schmidt, 2015).

In contrast to autocrine cancer cell signaling, stroma-to-cancer crosstalk is lost when
cancer cells are cultured in vitro. Interestingly, the top-2 stroma-to-cancer specific interactions
for glioblastoma (GBM) converged on EGFR (Suppl. Fig 11). EGFR is a well-studied
oncogene in GBM where 40-50% of patient tumors have EGFR overexpression driven by gene
amplification (Brennan et al., 2013). We inferred >30-fold higher EGFR expression in GBM
cancer cells compared to the stromal compartment and normal brain tissue (Suppl. Fig 11). In
contrast, all canonical EGFR ligands were expressed at highest levels in the stroma (Suppl.
Fig 11). SPINK1 and AREG ligands were inferred to be exclusively expressed in stroma, and
the most abundant ligand, EFEMP1, had ~8-fold higher expression in the stromal
compartment compared to cancer cells and normal brain tissue. A similar pattern was

observed in lower grade gliomas (LGG) (Suppl. Fig 11), suggesting that EGFR signaling in
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glioma and glioblastoma cancer cells is driven mainly by ligands produced by the tumor
infiltrating stroma. These data are also consistent with the observation that glioblastoma
cancer cells rapidly loose EGFR amplifications during cell culture (Pandita et al., 2004; William
et al., 2017).

Crosstalk associated with subtypes of breast cancer

To investigate whether TUMERIC could identify differences in crosstalk between subtypes of
a given tumor type, we inferred cross-talk associated with basal-like triple-negative breast
cancers (TNBCs), a more aggressive subtype of breast cancer that generally do not
overexpress HER2 and estrogen receptors. Expectedly, cancer cells of basal tumors had ~60-
fold and 250-fold lower expression of HER2 (ERBB2) and estrogen (ESR1) receptors as
compared to cancer cells of HER2+ and Luminal subtypes, respectively (Suppl. Figure 12).
NOTCH?1 receptor expression was elevated in cancer cells of basal tumors, with MFAP2 and
JAG1 as the top autocrine and paracrine specific ligands, respectively (Fig 5a-c, Suppl. Table
1). Consistent with this observation, cancer cells of basal tumors showed gene expression
signatures of notch pathway activation relative to non-basal tumors (Suppl. Figure 13). Cancer
cells of basal tumors also showed upregulated FZD7 receptor expression and enrichment of
autocrine WINTT11 and autocrine/paracrine WNT3 interactions. Gene set enrichment analysis
indicated an overall enrichment for activation of WNT/beta-catenin signaling in cancer cells of
basal tumors (Suppl. Figure 13). Interestingly, the Frizzled/Wnt ligand antagonist, SFRP1, was
inferred to have high expression in cancer cells of basal tumors while being nearly absent in
cancer cells of other breast cancer subtypes (Fig 5c). At the receptor tyrosine kinase interface,
cancer cells of basal tumors were characterized by increased KIT and decreased RET
signaling compared to non-basal tumor types. Our analysis also inferred strong up-regulation
of IL-6 signaling through GP130 (/L6ST) in cancer cells of non-basal tumors.

Next, we wanted to validate the TUMERIC predicted differential expression of SFRP1
and IL6ST in the cancer cells of basal versus luminal breast cancer subtypes. We performed
RNA in situ hybridization (ISH) using specific RNAScope probes generated against either
SFRP1 or IL6STin FFPE sections of breast tumors from each subtype (see Methods, Fig 5d).
Cancer cell mRNA expression in each subtype was quantified using two different approaches
yielding similar results (Fig 5e and Suppl. Fig 14). Remarkably, and consistent with the
TUMERIC prediction, we observed higher expression of SFRP1 in the cancer cells of the basal
subtype, compared to the luminal tumors (Fig 5e). In contrast, IL6ST had lower expression in

cancer cells of the basal tumors as compared to the luminal subtype.
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Overall, these data highlight putative differences in crosstalk of basal and non-basal
breast cancer tumors and demonstrates how our approach can be applied to study cell

signaling associated with specific molecular, genetic, or clinical subtypes of tumors.
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Discussion

Tumors are heterogenous mixtures of cancer cells and infiltrating non-cancer (stromal) cells.
Molecular measurements obtained from a bulk tumor sample reflect an average across these
components. By chance, the composition of these components will vary across tumor
samples, introducing noise for downstream integrative analysis. However, in this study we
demonstrate how this variability also enables inference of (average) cancer and stromal cell
gene expression profiles across a collection of tumor samples. Our approach, TUMERIC, uses
genomic data to first produce unbiased tumor purity estimates followed by constrained
regression to deconvolve the matched bulk tumor transcriptome profiles. We show that this
approach consistently recovers known hallmarks of cancer and stromal cell transcriptomes
and is concordant with orthogonal single cell transcriptome and immunohistochemistry
imaging data. The general methodology is in theory not restricted to transcriptomic data and
might be used to deconvolve other types of bulk tumor molecular data such as proteomic (Fig
3e) or epigenetic profiles.

By applying the method to ~8000 tumor samples across 20 solid tumors, we inferred
ligand and receptor expression profiles in cancer and stromal cells across tumor types (Suppl.
Table 1). We then nominated potential crosstalk within and between cancer and stromal
compartments across tumor types. A large number of crosstalk interactions were inferred to
be highly stroma specific across all tumor types. These interactions included many chemokine
interactions as well as therapeutically important PD-1 and CTLA-4 immune checkpoint
interactions. Checkpoint receptors were expectedly exclusively expressed in stromal cells.
However, we inferred substantial expression of especially PD-L1 and CD86 ligands in the
cancer cells of many tumor types, consistent with the hypothesis that cancer cells can express
these ligands to attenuate T-cell responses (Sharma and Allison, 2015). Unexpectedly, most
tumor types showed even higher expression of these checkpoint ligands in the stromal
compartment, suggesting that the bulk of immune checkpoint inhibitory signals in the tumor
microenvironment may be mediated by non-cancer cells. Interestingly, the tumor types with
highest (e.g. lung squamous and kidney cancers) and lowest (e.g. colorectal cancer) inferred
PD-L1 cancer cell expression have markedly different response rates to PD-L1/PD-1
checkpoint inhibition in clinical trials (Yarchoan et al., 2017). Further studies are however
needed to explore the hypothesis that bulk tumor deconvolution of immune checkpoints can
provide novel insights into the conditions for effective immune checkpoint therapy.

Our inferred recurrent cancer-cell autocrine LR pairs included the MST1R (RON)
receptor, which acts upstream of the RAS-ERK and PI3K-AKT signaling pathways and is a

prognostic marker and candidate therapeutic target in many solid cancer types (Yao et al.,
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2013). Additionally, LR interactions involving different low-density lipoprotein receptor-related
proteins (LRPs) were frequently recurrently directed towards cancer cells (e.g. WNT3-LRP6,
APOE-LRP5, LTF-LRP11), corroborating the importance of Wnt-signaling on cancer cell
biology. Furthermore, our analysis showed that a recently proposed non-canonical CXCR4
ligand, CEL (Panicot-Dubois et al., 2007), is frequently up-regulated in cancer cells of many
tumor types, indicating a mechanism by which cancer cells might perturb CXCR4 signaling in
addition to the canonical CXCL12-CXCR4 axis (Guo et al., 2015).

Cancer cell specific cross-talk interactions were often variable across tissues,
underscoring the notion that cancer cell signaling is often tissue specific and likely dependent
on the cell of origin. However, inferred cancer-cell autocrine cross talk often converged on
Wnt, TGF-beta, Ephrin, and FGFR-family signaling pathways. The importance of these
pathways in tumorigenesis is well established (Hanahan and Weinberg, 2011), underscoring
the validity and utility of our approach. Moreover, the top cancer cell-specific interactions in
individual tumor types highlight specific putative cancer cell signaling dependencies. Further
functional studies are needed to validate these interactions and test whether they represent
vulnerabilities that could be targeted therapeutically. Encouragingly, the inferred cancer cell
specific interactions in brain tumors were highly concordant with previous studies. Firstly, the
top inferred autocrine interaction was DLL1-NOTCH1, an autocrine/juxtacrine interaction
critical for glioma tumorigenesis (Purow et al., 2005; Teodorczyk and Schmidt, 2015).
Secondly, the top stroma-to-cancer specific interactions converged on EGFR, and all
canonical EGFR ligands were overexpressed in the stroma. Stroma-to-cancer crosstalk is
interesting because it comprises interactions and dependencies that are potentially lost when
cancer cells are cultured in vitro or engrafted in a non-human microenvironment. Indeed, GBM
cancer cells rapidly lose EGFR amplification and overexpression following in vitro cell culture
(Pandita et al., 2004; William et al., 2017), however, amplification and overexpression can be
maintained if the cancer cells are co-cultured with EGF ligands (William et al., 2017). Overall,
these observations are consistent with our data and suggest that our methodology and data
could help design in vitro assays and co-culture models that more accurately mimic the biology
of the human TME.

Furthermore, we demonstrate that TUMERIC can nominate differences in crosstalk
between molecular or clinical subtypes of a given tumor type. By inferring crosstalk specific to
basal breast cancers, we recovered the expected patterns for HER2 and estrogen receptor
expression across breast cancer subtypes. We inferred specific Notch and Wnt autocrine
cancer cell signaling interactions specific to basal tumors. Interestingly, the Wnt inhibitory

ligand, SFRP1, was inferred to have very high expression in cancer cells of basal tumors while
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being nearly absent in cancer cells of other breast cancer subtypes (Fig 4d). Downregulation
of SFRP1 has been linked to epithelial to mesenchymal transition (EMT) in breast cancer cells
(Scheel et al., 2011), indicating potential differences in EMT pathways or states between
luminal and basal breast cancer cells. Interestingly, our analysis also inferred strong up-
regulation of IL-6 signaling through GP130 (/L6ST) in cancer cells of non-basal tumors,
consistent with previous studies highlighting a functional role for RET-IL6 crosstalk in ER-
positive breast tumors (Gattelli et al., 2013). Importantly, we could validate the predicted
subtype specific expression of SFRP1 and IL6ST (GP130) using RNA-ISH in breast cancer
FFPE tissue sections. Overall, these data suggest that tumor subtypes can have profound
differences in crosstalk, and our analysis can provide a list of putative, testable interactions
underlying breast cancer subtypes.

We note that a key limitation of our approach is that local concentrations of ligands
and receptors may differ considerably from our average compartment-level estimates. While
this is especially important when considering between-compartment crosstalk, it likely matters
less for the inference of cancer-to-cancer autocrine signaling (where the same cell produces
the interacting ligand and receptor). We expect future high-throughput technologies such as
sample-level spatial transcriptomics could be combined with our cohort-scale approach to
provide a more accurate and comprehensive description of tumor crosstalk.

Overall, our study provides unique insights into the complex interactions shaping the
TME. Our approach is especially useful in settings where bulk tumor biopsy data is either
already abundant or the only feasible data source, which is the case in many clinical settings.
We anticipate that the method could complement existing biomarker and target discovery
approaches by providing computationally purified molecular profiles of cancer cells as they

exist inside human tumors.

Methods

Tumor data sources

We analyzed 20 solid tumor types with TCGA acronyms BLCA, BRCA, CESC, CRC (COAD
and READ combined), ESCA, GBM, HNSC, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV,
PAAD, PRAD, SKCM, STAD, THCA and UCEC. The full names of cancer types and sample
size are indicated in the Suppl. Table 1. We obtained somatic mutation (SNV) and copy

number variation (CNV) data for 20 tumor types from the Broad Institute Firehose website
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(See data availability section below). Uniformly processed TCGA RNA-seq (FPKM) data was

obtained from the UCSC Xena server.

Tumor purity estimation

We used 4 different published methods for consensus tumor purity estimation: AbsCNseq,
PurBayes, Ascat and ESTIMATE. AbsCNseq uses CNA segmentation and SNV variant allele
frequency (VAF) data of individual tumors(Bao et al.); PurBayes utilizes SNV VAF data of
diploid genes (inferred from CNA data)(Larson and Fridley); Ascat purity estimation is based
on CNA (SNP array) data, where tumor ploidy and purity are co-estimated to identify allele
specific CNA(Loo et al.), pre-computed Ascat tumor purity estimates for the TCGA cohort were
obtained from the COSMIC website (See data availability section). ESTIMATE uses mRNA
expression signatures of known immune and stromal gene signatures to infer tumor
purity(Yoshihara et al., 2013), and tumor purity values were obtained by applying ESTIMATE
to the TCGA RNA-seq (log2 FPKM) data. In order to derive consensus tumor purity estimates,
we carried out missing data imputation followed by quantile normalization separately for each
cancer type. Some tumor purity values were missing because the algorithms failed to
converge on certain input data. Additionally, we observed some instances of very high (>98%)
or low (<10%) purity estimates, but such cases were usually only found by a single method
for a given tumor and were therefore also assigned as missing data. Missing data was then
imputed using an iterative Principal Component Analysis of the incomplete algorithm-vs-
sample tumor purity matrix (using the missMDA R package(Josse and Husson, 2016)). We
used quantile normalization to further align and standardize the tumor purity distributions of
different algorithms per tumor type. Briefly, a mean reference purity distribution is computed
and these mean values are substituted back into the purity distributions of the individual
algorithms. Since ESTIMATE generated purity estimates with a large bias compared to the
other three methods (generally 30-50% higher, Suppl. Fig 1), we did not use ESTIMATE purity
values to compute the mean reference distribution (see code in Supplementary Data). The
final TUMERIC consensus tumor purity estimate was obtained as the mean of these

normalized purity values.

Compatrison of transcriptome deconvolution methods

TCGA RNA-seq HTSeq count data for BRCA, GBM, HNSC, LGG, LUAD, LUSC, SKCM and
THCA tumor types (used for DeMixT (Wang et al., 2018), LinSeed (Zaitsev et al., 2019)) and
TPM data for HNSC, LUAD, LUSC tumor types (used for CiberSortX (Newman et al., 2019))

were downloaded from the UCSC Xenahub platform (https://xenabrowser.net/). All methods

were executed on 100 randomly selected tumor transcriptome samples from each tumor type.

The datasets were normalized and parameters were set according to authors instructions (see
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Supplementary Methods). CiberSortX could only be run for tumor types where a compatible
signature matrix was available (HNSC, LUAD, and LUSC), and DeMixT could only be run for
tumor types with available normal samples (all selected tumor types except SKCM). DeMixT
and LinSeed were run using R v.3.6.1 and their respective R packages, CiberSortX was run
using its online web interface. Estimated tumor purity fractions were compared to values
computed by the TCGA pan-cancer consortium using the ABSOLUTE algorithm

(https://gdc.cancer.gov/about-data/publications/pancanatlas).

Database of ligand-receptor interactions

We obtained ~1400 ligand-receptors pairs supported by evidence in the literature as compiled
and curated by Ramilowski et al. (Ramilowski et al., 2015). 7 additional known immune
checkpoint interactions (Khalil et al., 2016) were manually added to the analysis: CD274-
PDCD1, CD80-CTLA4, CD80-CD28, NECTIN2-CD226, NECTIN2-TIGIT, PVR-TIGIT,
SIGLEC1-SPN. The complete list of ligand-receptor interactions can be found in Suppl. Table
2.

Cancer-stroma gene expression deconvolution

We assume tumors to be comprised of cancer and stromal (any non-cancer) cells. Measured
bulk tumor mRNA abundance is then given by the sum of MRNA molecules derived from these
two compartments. Tumor mRNA expression (eq,mor,;) Measured for a given gene in sample

i can then be expressed as:

€tumor,i = Di X écancer + (1 - pi) X e_stroma

Here p; denotes the cancer cell proportion (tumor purity) in sample i, and é.qncer aNd Estroma
are average expression levels for the gene in the cancer and stromal compartment (not
dependent on sample i), respectively. We make the simplifying assumption that these (non-
negative) average compartment expression levels are constant across the set of tumors and
estimate them using non-negative least squares regression. 95%-confidence intervals and
standard deviations for the cancer and stroma point estimates are estimated using
bootstrapping.

Bulk tumor RNA-seq FPKM data was log-transformed, logz(X+1), before
deconvolution. It has previously been discussed whether mixed-tissue gene expression
deconvolution should be done using linear or log-transformed gene expression values(Shen-
Orr et al., 2012; Zhong and Liu, 2012). Firstly, we observed that the relationship between

tumor purity and raw bulk tumor gene expression was generally heteroscedastic: Across all
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cancer types, tumor purity had overall stronger linear correlation with log-transformed RNA-
seq gene expression data, as can be observed in deconvolution of known stromal-specific
genes (Suppl. Fig 2-5). Secondly, we directly compared results for raw and log-transformed
data, and while the results were overall similar, we found that log-transformation provided
better separation between inferred cancer and stroma compartment gene expression for
known stromal genes (Suppl. Fig 15), which is consistent with previous empirical analysis
(Shen-Orr et al., 2012).

We found that the equation above tended to misestimate stromal gene expression for
genes with somatic copy number alterations (CNA) affecting gene expression in a subset of
the samples (for example ERBB2 in HER2-positive breast tumors). We therefore used a
modified approach for such genes. We first identified genes with correlation between CNA
and mRNA expression (comparing expression for samples with diploid and non-diploid CNA,
Mann-Whitney U-test, P<1e-6, to account for multiple testing) in a given set of tumors, and
then estimated cancer and stromal compartment gene expression using a two-step approach.
Stromal compartment mRNA expression was first inferred using the above approach using
only samples with diploid copy number for the gene. We then used the inferred mean stroma
compartment expression, the measured mean tumor expression, and the mean purity of the
tumor samples to calculate the mean cancer compartment expression using the above
equation.

A limitation of TUMERIC is that the method estimates average cancer and stromal
compartment gene expression across a cohort of tumor samples. Since the stromal
compartment is a mix of many different types of cells, the averaged stromal expression
estimates therefore require careful interpretation. Furthermore, exploration of biologically
relevant between-sample variation in gene expression, not due to variation in tumor purity,

requires additional downstream analysis of the expression residuals.

Deconvolution of iTRAQ tumor protein abundance data

We obtained iTRAQ protein abundance data for BRCA and OV tumor types using CPTAC
consortium data available at cBioPortal (www.cbioportal.org). Bulk abundance profiles were
deconvolved into cancer and stroma compartment abundance profiles similar to the
procedures described for RNA-seq data above. Briefly, we have matched protein abundance
and consensus tumor purity data available for each tumor. We can therefore use the
consensus tumor purity estimates and NNLS to infer the (mean) abundance of individual

proteins in the cancer and stromal compartment, respectively.

Ligand-Receptor Relative Crosstalk (RC) score
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Following the law of mass action, we can estimate the concentration of a ligand-receptor (LR)
complex from the molar concentrations of the individual ligand, L, receptor, R, and their

dissociation constant, Kp, under equilibrium:

[LR] = [L][R]kp"

In our analysis we are only evaluating relative changes of individual LR complex
concentrations across samples or compartments. Since the dissociation constant cancels out
(present in numerator and denominator) when we compute relative concentrations (RC score
below) we can ignore the dissociation constant in downstream analysis. Our analysis depends
on multiple simplifying assumptions. We assume that compartment-level mRNA expression
estimates are reasonable proxies for ligand and receptor molar concentration at the site of
LR-complex formation. Additionally, we assume there is no external competition for individual
ligands and receptors of a given LR pair, or that these effects are constant across samples or
compartments.

To estimate the relative flow of signaling between cancer and stromal cell
compartments, we developed the Relative Crosstalk (RC) score. LR complex activity is first
approximated using the product of ligand and receptor gene expression inferred for the given
compartments (in linear scale). The RC score then estimates the relative complex
concentration given all four possible directions of signaling and a normal tissue state, e.g. for

cancer-cancer (CC) signaling:

erc X egc
eLcXepcte,cXegpste,sXepcte,sXepst+e,yXern

RCCC =

The normal term in the denominator is included to normalize for complex activity in normal
tissue, and this term is calculated directly from the observed gene expression levels in normal

tissue samples available for each tumor type in TCGA.

Gene-set enrichment analysis

To study genes differentially expressed between cancer and stromal compartments, we
performed GSEA (Subramanian et al., 2005) pre-ranked analysis of genes sorted by
differential expression (log fold-change) in the two compartments. We analyzed all hallmark

gene sets and used a FDR cut-off of 0.25 to determine gene sets with differential enrichment.

Immunohistochemistry (IHC) quantification analysis of Human Protein Atlas data
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In order to quantify cancer and stromal cells expression of genes, we performed color
deconvolution of IHC images obtained from the Human Protein Atlas (proteinatlas.org) (Uhlen
et al., 2017) using the Imaged software package and standard protocols (Schindelin et al.,
2015). Following manual selection and segmentation of cancer and stromal cells (without
knowledge of antibody staining), color intensities were measured with Imaged, and DAB
(target), hematoxylin (cells), and complementary components were estimated. Average
antibody intensities were then estimated for the cancer and stromal compartment of a given

slide. Further technical details are provided in the supplementary methods.

RNA-ISH of breast cancer tissue
We obtained Formalin-Fixed Paraffin-Embedded (FFPE) breast cancer tissue slides for 2
luminal (ER+/PR+) and 2 triple negative basal-like breast tumors. In situ hybridization (ISH)

was performed using specific RNAScope (https://acdbio.com) probes to evaluate IL6ST and

SFRP1 RNA level and localization. The FFPE slides were deparaffinised, rehydrated, and
pretreated using the RNAScope Sample Preparation kit according to the manufacturer’s
recommendations. The slides were incubated in target retrieval solution (#322000, Advanced
Cell Diagnostics) for 15 minutes at 97°C followed by a protease solution (#322330, Advanced
Cell Diagnostics) for 30 minutes at 40°C. RNAScope IL6ST (#447251) and SFRP1 (#429381-
C2) target probe and RNAScope 2.5 HD Duplex Detection (Chromogenic) kit (#322430,
Advanced Cell Diagnostics) were applied to the slide according to the manufacturer’s
instructions. RNA expression was quantified using two approaches. Firstly, according to the
manufacturer’s instructions (TS 46-003), we segmented the Images using supervised machine
learning. Briefly, we used Fiji/lmageJ to train a 4-class random forest classifier to distinguish
regions with SFRP1 staining, IL6ST staining, nuclear regions, and background signal. We
used this model to segment all 8 images. We selected 5 cancer cell regions in each image
and recorded the mean probability for the SFRP1 and ILST6 staining classes in each region.
These staining probabilities were summarized (mean and standard deviation) across all
regions from the four images (2 patients) for the luminal and basal subtype, respectively. As
a second and different approach, we quantified IL6ST and SFRP1 mRNA expression in cancer
cells of basal and luminal breast cancer tissues using 3-channel color deconvolution.
Channels were specified for probe 1 (SFRP1), probe 2 (IL6ST), and background. Multiple
areas enriched for cancer cells were selected in each tissue slide and the optical density (OD)
was calculated for each area. The average and standard deviation of the OD for each gene

and tissue type was calculated.

Supplementary data
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All code used to generate the figures and statistics of the paper is included in Supplementary
Data 1. Source code for Tumeric is attached as Supplementary data 2. RC scores and other
summary metrics for all analyzed ligand-receptor pairs are summarized in Supplementary

Table 1. Supplementary data files can be accessed at: https://bit.ly/2Ingp03.

Data availability
TCGA SNV and CNV data: https://gdac.broadinstitute.org/. Data release version 2016/01/28.
TCGA RNA-seq data: https://toil.xenahubs.net/download/tcga RSEM_gene fpkm.gz

ASCAT purity estimates: https://cancer.sanger.ac.uk/cosmic/download

IHC data: https://www.proteinatlas.org.
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Figure 1: Overview of approach. The purity of each bulk tumor sample is first estimated
using a consensus approach. mRNA expression levels in “average” cancer and stromal cells
are inferred for a set of tumors (e.g. tumor type) using non-negative least-squares regression;
figure shows data for CD4 in breast cancer. Candidate autocrine and paracrine signaling

interactions are inferred using a database of curated receptor-ligand signaling interactions.
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Figure 2: Consensus tumor purity estimation. a) TUMERIC consensus tumor purity
estimates for ~8000 bulk tumor samples across 20 solid tumor types. b) Median tumor purity
of each tumor type as estimated by 4 different methods, including TUMERIC consensus
estimates. Points (representing median purity across tumor type) are color coded according
to tumor types in panel a). ¢) Concordance of tumor purity estimates from existing
transcriptome deconvolution methods with ABSOLUTE (DNA-derived) tumor purity estimates;

TUMERIC consensus purity estimates included for comparison.
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16  RNA-seq expression data. f) Comparison of immunohistochemistry (IHC) and deconvolved
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2 Figure 4: Pan-cancer inference of crosstalk. a, b) Differential expression (median) between
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5 directions between cancer and stromal cell compartments, including a bulk (non-deconvolved)
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