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�bstract 

The increasing demand of single‐cell RNA‐sequencing (scRNA‐seq) experiments, such as 

the number of experiments and cells queried per experiment, necessitates higher sequencing 

depth  coupled  to  high  data  quality.  New  high‐throughput  sequencers,  such  as  the  Illumina 

NovaSeq 6000, enables this demand to be filled  in a cost‐effective manner. However, current 

scRNA‐seq library designs present compatibility challenges with newer sequencing technologies, 

such as index‐hopping, and their ability to generate high quality data has yet to be systematically 

evaluated. Here, we engineered a new dual‐indexed library structure, called TruDrop, on top of 

the  inDrop  scRNA‐seq  platform  to  solve  these  compatibility  challenges,  such  that  TruDrop 

libraries and standard Illumina libraries can be sequenced alongside each other on the NovaSeq. 

We overcame the index‐hopping issue, demonstrated significant improvements in base‐calling 

accuracy,  and  provided  an  example  of  multiplexing  twenty‐four  scRNA‐seq  libraries 

simultaneously.  We  showed  favorable  comparisons  in  transcriptional  diversity  of  TruDrop 

compared with prior  library  structures. Our approach enables  cost‐effective, high  throughput 

generation of sequencing data with high quality, which should enable more routine use of scRNA‐

seq technologies.  
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Introduction 

Most droplet‐based single‐cell RNA‐seq (scRNA‐seq) libraries to date have been sequenced on 

Illumina  sequencing  platforms  using  their  sequencing‐by‐synthesis  technology  (1‐4).  Libraries 

generated by droplet‐based scRNA‐seq approaches require a certain read depth for adequate 

identification of cell types and states (1‐3). With the introduction of Illumina’s NovaSeq6000 next 

generation sequencing (NGS) platform, the number of scRNA‐seq libraries that can theoretically 

be multiplexed  for  sequencing  together  to  the  required depth has  significantly  increased  (5). 

Coupled  with  improvements  in  hardware  technology  and  sequencing  chemistry,  sequencing 

costs  can be dramatically  reduced, which  in  turn  can  facilitate  scRNA‐seq  for  routine  lab use 

(Supplementary  Table  1).  However,  the  utilization  of  the  improved  exclusion  amplification 

(ExAmp) chemistry and patterned flow cells in this new technology has introduced new problems 

for droplet‐based scRNA‐seq library structures to date (6‐10). 

One aspect to be considered when sequencing using ExAmp chemistry is the increased 

rate of  index‐hopping between samples sequenced together compared with those sequenced 

using  Illumina’s  normal  bridge  amplification  chemistry  (7).  Index  hopping  occurs  due  to  the 

physical  incorporation  of  the  sample  index  from  one  library  into  a  library  molecule  from  a 

different library (Fig. 1A‐E) (8, 9). The end result is the mis‐assignment of reads between samples 

(Fig.  1B).  Index  hoppng  presents  a  significant  problem  for  scRNA‐seq  libraries,  where  data 

resolution and sample integrity are vitally important. While computational approaches to use cell 

barcodes as a second index to solve this mis‐assignment problem have been proposed (9, 10), 

due to the redundant nature of barcodes used in different bead lots, a large amount of data will 

need  to be discarded due  to cross‐sample barcode collisions detailed below. One of  the best 

strategies to solve the index‐hopping problem is to incorporate a second sample index (i5) on the 

other side of the final sequencing library (Fig. 1F‐I) (11). Thus, an index‐hopped read would be 

identified by an un‐anticipated combination of sample indexes and can be filtered out. Currently, 

using a second index and proper sample handling to prevent sample mixing prior to sequencing 

are the only methods available to pro‐actively prevent index‐hopping in bulk sequencing assays 

(8, 11). 
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There are several issues to consider when designing a dual‐indexed scRNA‐seq library for 

compatibility with the NovaSeq. A combinatorial dual‐indexing scheme in which at least one of 

the two sample indexes  is repeated across two or more samples will reduce the samples that 

could be potentially mis‐assigned. However, samples sharing a sample index would still need to 

be treated as a single‐indexed library (Fig. 1G) (7). The best method then is to use a unique dual‐

indexed system (Fig. 1I) so that none of the sample indexes on one side of the library (i7) or the 

other (i5) are shared between samples (7). The indexes used for both sides of the library should 

be sufficiently different that a 1 base error (insertion, deletion, or substitution) should not result 

in the mis‐assignment of the associated read (12).  

Another issue to consider was the use of custom sequencing primers with the prior library 

structures,  such  as  inDrop  V2,  that  were  incompatible  with  large  amounts  of  other  Illumina 

libraries, such as common TruSeq libraries (2, 13). Thus, previous sequencing runs of V2 scRNA‐

seq libraries occupy the entire sequencing lanes (Methods). When sequencing just a single library 

type, the resulting low base composition diversity during the cell barcode read results in a spike 

in base call error rate. The ability to sequence alongside other Illumina libraries should increase 

the diversity of bases incorporated across the flow cell at each cycle, improving not only the base 

calling accuracy, but also the flow cell cluster recognition during sequencing (14).  

Here, we document the development and benchmarking of an Illumina compatible dual‐

index  library  structure  for  the  inDrop  scRNA‐seq  platform  that  builds  upon  the widely‐used, 

commercially available V2 gel beads in a manner independent of the cell barcodes incorporated 

into the library. We demonstrate the necessity for transitioning to uniquely dual‐indexed libraries 

when  sequencing  on  platforms  that  use  ExAmp  chemistry  due  to  cross‐sample  cell  barcode 

collisions. Using the design documented here, anywhere from 1 to 96 of the resulting scRNA‐seq 

libraries can be sequenced alongside other Illumina samples with minimized sample cross‐talk 

and improvements in sequencing accuracy, which should facilitate the widespread adoption of 

scRNA‐seq in experimental workflows.  

 

Results 
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Sequencing quality of inDrop scRE�‐seq libraries is improved when sequenced with a diverse 

Illumina library 

  Previously, it was unknown if certain features of inDrop libraries, such as the cell barcodes 

and spacer  region, would  interfere with  the performance of other  Illumina  libraries  (and vice 

versa)  during  sequencing.  To  assess  compatibility  with  Illumina  TruSeq  libraries,  inDrop  V2 

libraries were sequenced alongside a 10‐15% spike in of Illumina’s PhiX control. Sequencing on 

both  a  low‐throughput  nano  run  on MiSeq,  as  well  as  a mid‐throughput  NextSeq  run,  were 

successful with appreciable number of reads from inDrop V2 libraries (74.6% and 94.2% of the 

target read depth, respectively; Table 1).  

Importantly,  although  the  PhiX  spike‐in  occupied  some  of  the  read  depth,  the mean 

quality score increased for the transcript read and barcode + UMI, compared with a run without 

PhiX (Table 1)  (15). The  improved quality scores equate to a decrease  in the probability of an 

error  in  base  calling  from  ͺǤͺ0͵ ൈ 10ସ  to  ͶǤͻ1͹ ൈ 10ସ  on  the  transcript  read,  and  a 

corresponding decrease in error probability from ͺǤͶͷͷ ൈ 10ସ to ͶǤͻ0ͺ ൈ 10ସon the barcode + 

UMI read. This represents about a 1.8‐ and 1.7‐fold decrease in the base calling error rate for 

bases  incorporated during sequencing. This  is also reflected  in  the base calling accuracy plots 

from the  two sequencing  runs  (Fig. 2). The base calling accuracy plot describes  the spread of 

quality scores as each base is sequenced. It is interpreted as a series of box plots where each box 

plot maps the percent of clusters in each image of the flow cell with quality scores ш 30 (called 

Q30) in each flow cell imaging cycle. When inDrop V2 and Illumina PhiX are sequenced together 

(Fig. 2B), the transcript read (cycles 1‐100) median Q30 barely drops below 80% from cycles 80‐

100, whereas the inDrop V2 only library median Q30 decrease below 60% during cycles 80‐100 

(Fig. 2A). In addition, for combined libraries, the Q30 during the barcode + UMI read (cycles 114‐

164) is maintained at or above 80% for most of the cell barcode + UMI read (Fig. 2B). These results 

demonstrate  that  inDrop  V2  libraries  are  compatible  with  low  concentrations  of  standard 

Illumina  libraries  for  sequencing  and  that when  sequenced  together,  the  sequencing  quality, 

especially for the non‐diverse barcode region, is improved for inDrop libraries. 

 

Redesigned inDrop library structure potentially enables high‐throughput E'S  
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  Having demonstrated the compatibility of inDrop libraries with standard Illumina libraries 

in NGS, we next sought to re‐engineer the inDrop library structure for the exclusion amplification 

(ExAmp)  chemistry‐based  sequencers,  such  as  the  NovaSeq6000.  Specifically,  we  sought  to 

incorporate dual‐indexing to overcome the well‐documented indexing hopping problem on the 

NovaSeq (3, 6). If two single‐indexed samples share cell barcodes and index hopping occurs, then 

it will be impossible to determine the origins of a particular read belonging to the shared barcode, 

resulting in the discarding of cells with shared barcodes across indices. We call this problem cross‐

sample  barcode  collision,  and  calculated  the  theoretical  amount  of  data  discarded  upon 

multiplexed NovaSeq runs (Supplementary File 2). For pools of 2, 4, 12, 24, and 48 samples the 

percentage of cell barcodes, and hence cells, discarded due to cross sample barcode collisions 

would be 8.67%, 15.99%, 26.19%, and 43.87% respectively (Fig. 2C) (1, 2, 16, 17).  

To  minimize  the  possibility  of  cross‐sample  barcode  collision  a  second  i5  index  was 

incorporated when  designing  the  new  library  structure.  The  i5  and  i7  indexes  used  follow  a 

unique‐dual indexing strategy such that when only considering one side of the library, each index 

is only used once. Because part of the Illumina TruSeq read 1 sequencing primer site is built into 

the oligo used on  the barcoded  inDrop  capture beads  (2,  13),  it was decided  that  the newer 

libraries  would  use  the  dual  indexed,  Illumina  TruSeq  library  structure.  The  new  libraries 

incorporation of standard Illumina TruSeq adapter sequences (Fig. 3) (13), includes the P5 and P7 

flow cell binding sites, the TruSeq standard sequencing primer binding sites (in contrast to prior 

V2  libraries  which  require  custom  sequencing  primers),  and  unique  dual  indexes  (Fig.  3). 

Furthermore, to achieve a standard Illumina TruSeq library structure, the cell barcode + UMI read 

has been swapped to read 1, which has been documented to be the higher quality read (18). 

Since these indexes were designed to be pooled in sets of 8 index pairs (19) and the maximum 

number of libraries that can be sequenced  to a read depth of Ε100 million reads per sample on 

a single lane of the NovaSeq is 25 (5), we selected 24 index pairs to be used as the new indexes 

in the new library structure. Theoretically the number of usable index pairs could be increased 

up  to  3840  using  IDT’s  set  of  10  bp  unique  dual  indexes,  although  they  would  have  to  be 

individually  validated.  We  call  this  new  library  structure  TruSeq‐inDrop  (TruDrop).  The  final 

sequence for the barcode + UMI and transcript sides of TruDrop libraries are as follows:  
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Cell Barcodes: 5’ – 

AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCTTCCGATCT[cell 

barcode 1]GAGTGATTGCTTGTGACGCCTT[cell barcode 2][UMI]TTTTTTTTTTTTTTTTTTT… – 3’. 

Transcript: 5’ – 

CAAGCAGAAGACGGCATACGAGAT[i7]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN… 

– 3’.  

A  detailed  version  of  the  custom primers  for  library  preparation,  indexes,  and methods,  and 

library pooling guidelines used for TruDrop libraries can be found in the supplementary materials.  

 

TruDrop primers function similarly to sϮ primers during inDrop library preparation 

As  TruDrop  uses  redesigned  primers  to  generate  libraries  compatible  with  TruSeq 

libraries, it was important to verify that all indexes could be appropriately used to complete and 

amplify inDrop libraries during the final stages of library preparation. Of the initial 24 tested, all 

but 1 (TruDrop index pair 9) yielded qPCR amplification curves similar to those of V2 primer pairs 

(Supplementary Fig. 1A). Furthermore, the Ct values of TruDrop primer pairs 1‐8 and 10‐24 were 

well within 1.5 cycles of the average Ct (Supplementary Fig. 1B), suggesting little to no difference 

in amplification bias between the new primers and the prior V2 primers. As TruDrop index pair 9 

failed to amplify in a manner similar to that of libraries with V2 index 6 and 12, it was replaced 

with index pair 25 (which behaved similar to V2) in all further testing.  

 

TruDrop libraries see improved performance when sequenced using ex�MP chemistry 

  To put TruDrop libraries into action, we first sequenced these libraries on the iSeq 100, 

which utilizes patterned flow cells and ExAmp chemistry to test clustering efficiency and priming 

effectiveness  during  the  sequencing  run  (20,  21).  Two  replicates  of  V2  libraries  that  had 

previously  performed well  on  the NextSeq were  prepared  as  TruDrop  libraries.  The  TruDrop 

samples were then sequenced alongside PhiX on the iSeq 100, yielding an average of 151% of the 

2 million reads per library target read depth (Supplementary Table 2). The median Q30 remained 

at or above 90% during most of the barcode + UMI cycles (cycles 1‐11 and 31‐50). While for the 

transcript cycles (cycles 167 – 316), the median Q30 remained at or above 80% for the full 150 
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cycle transcript read (Fig. 4A).   However,  if only the first 100 bases of the transcript read (the 

same length as the NextSeq read length) were considered then 90% or more of reads were above 

Q30. Thus, it is expected that TruDrop libraries can be sequenced on the NovaSeq but also see 

improved read quality scores compared with V2 libraries sequenced on the NextSeq with PhiX. 

  The same TruDrop  libraries were then sequenced on the NovaSeq 6000 alongside 107 

other  standard  Illumina  libraries  (Table  2).  The  TruDrop  libraries  yielded  107%  and  89.1%, 

respectively,  of  their  target  read  depth  (50 million  reads),  accounting  for  0.64%  and  0.53%, 

respectively, of the 3 NovaSeq lanes they were on. Compared to prior tests with V2 libraries on 

the NextSeq, this was the equivalent of sequencing alongside 99% PhiX with no loss in targeted 

read depth. In addition, there was an increase of 1.5% – 5.3% in the number of flow cell clusters 

with perfect index reads compared to V2 libraries on the NextSeq (Table 2). Quality scores were 

further improved, corresponding to a 2.1‐ and 1.8‐fold reduction in base call error rate compared 

with  sequencing  V2  libraries  on  the  NextSeq  with  PhiX,  and  a  3.7‐  and  3.0‐fold  decrease 

compared with sequencing just V2 libraries alone on the NextSeq. The base call accuracy plot 

reflects this  improvement (Fig. 4B), as 90% or more of reads that were from TruDrop libraries 

during read 1 (cell barcode + UMI) and read 2 (transcript) that are of interest in inDrop libraries 

were  at  or  above  Q30.  These  results  demonstrate  that  not  only  can  TruDrop  libraries  be 

sequenced on the NovaSeq, they also see significant improvements in the sequencing quality for 

both the transcript and barcode + UMI regions. 

 

TruDrop libraries maintain high quality when multiplexed in a high throughput fashion 

  With the successful testing of the two initial pairs of indices on the NovaSeq, 24 human 

and mouse samples were prepared and sequenced, each uniquely dual‐indexed, on the NovaSeq 

6000 alongside 186 other Illumina libraries. TruDrop libraries yielded 94%‐151% of the target 125 

million reads per sample (Supplementary Table 3). In total, the 24 samples represented 29.4% of 

the  raw  sequencing  yield  across  all  of  the  lanes  from  the  flow  cell,  equivalent  to  sequencing 

alongside Ε70% PhiX on the NextSeq. Based on our prior sequencing results of the V2 libraries 

alongside PhiX on the NextSeq, we would therefore have expected to see a decrease in the read 

quality scores compared with the 2‐sample run due to a decrease in the of libraries represented 
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on the flow cell. However, the quality scores and error rates were observed to be very similar. 

The average transcript and barcodes + UMI quality scores were 35.32 and 36.07, respectively, 

(Supplementary Table 3). These do not differ greatly from the prior TruDrop NovaSeq sequencing 

run (Table 2) and are still a 2.0‐ and 1.7‐ fold reduction in base call error rate over V2 libraries on 

the NextSeq with PhiX, and a 3.6‐ and 2.9‐fold reduction in error over just V2 libraries alone on 

the NextSeq. These results suggest that the improved quality scores observed on the NovaSeq 

can be maintained as long as some minimum diversity of Illumina libraries are present. The base 

calling  accuracy  plot  also  confirms  this  improvement  in  base  calling  accuracy,  as  the  region 

covering the cell barcodes + UMI (cycles 1‐11 and 31‐50) displays more than 90% of the reads 

were above Q30 (Fig. 4C). For the first 100 transcript read bases, 90% or more of the reads were 

at or above Q30. The drop observed in the base calling accuracy plot at cycle 60 that continues 

to the end of read 1 (cycle 150), corresponding with where the poly T capture sequence is located. 

This  decrease  in  accuracy only  continued  through  regions  that would be  trimmed out during 

mapping  and  barcode  deconvolution.  The  decrease  in  accuracy  did  not  affect  other  Illumina 

libraries on the flow cell, as when considered  individually, 95% of other  Illumina  libraries had 

greater  than  90%  of  reads  at  or  above  Q30  for  the  entire  sequencing  run.    These  results 

demonstrate  that  up  to  24  TruDrop  libraries  can  be  multiplexed  on  the  NovaSeq  alongside 

standard Illumina libraries, while maintaining a very high sequencing quality for both inDrop and 

Illumina libraries. With lane splitting, 4 pools of 24 samples can be sequenced across 4 sequencing 

lanes for a total of 96 inDrop libraries sequenced at a time. 

 

TruDrop libraries sees sequence alignment rates 

  To  investigate  if  the  improvement  in  base  call  accuracy  had  a  measurable  effect  on 

downstream data quality, two colonic (one mouse and one human) libraries that had previously 

been sequenced as V2 libraries on the NextSeq were re‐made with the TruDrop structure and 

sequenced on the NovaSeq. The reads for the sequenced V2 libraries and the TruDrop libraries 

were then aligned and deconvolved in parallel. The overall percentage of reads that aligned did 

not significantly change from V2 to TruDrop libraries for either the mouse (96.38% and 96.56%, 

respectively  respectively)  or  human  (96.11%  and  95.12%,  respectively)  replicates  (Table  3). 
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However, for the mouse sample the percentage of unique alignments increased from 67.15% to 

73.48%, while the human sample experienced a similar improvement from 84.44% to 87.23%. 

The  improved  rates  of  uniquely  aligned  reads  have  been  consistent  to  date  for  all  TruDrop 

samples sequenced on the NovaSeq (data not shown).  

 

Single‐cell data generated by TruDrop maintain the same cell population structure as sϮ  

  To  determine whether  scRNA‐seq data  generated with  TruDrop was  valid,  count  data 

were  generated  by  alignment,  deconvolution,  and  filtering  in  a manner  parallel  to  the  same 

samples generated with V2. For sets of mouse and human samples, data generated by the two 

library structures were analyzed together using t‐SNE (22) to reveal significant mixing between 

TruDrop and V2, with identical cell types detected (Fig. 5A, C, Supplementary Fig. 2A). To quantify 

this mixing, we used sc‐UniFrac (23), a distance metric between 0 and 1, with 0 signifying two 

samples  to  be  identical  and  1  signifying  complete  non‐overlap.  For  all  sets  samples 

(mouse/human),  the  sc‐UniFrac  distance  is  0.07,  strongly  suggesting  that  cell  populations 

identified with the different libraries are almost completely identical (Fig. 5B, D Supplementary 

Fig. 2B), with minor differences (such as in erythrocytes) due to the small number of cells in those 

clusters. These data suggest that the library structure and sequencer used did not result in any 

overt biases in data for recovering cell types.  

 

TruDrop libraries generate larger throughput of data on the EovaSeq  

  We  evaluated  the  performance  of  TruDrop  libraries  of  human  colonic  specimens  at 

different  sequencing  depths  by  comparing  the  number  of  UMIs  and  genes  recovered  after 

NovaSeq sequencing (Fig. 5E, F). Similar to prior testing, diminishing returns were observed with 

increasing read depth due to re‐sequencing of reads that collapse into single UMIs (3).  In this 

prior work, medians of Ε3,000 UMI/cell and Ε1,300 genes/cell were reported when samples were 

sequenced  to Ε60K  reads per  cell, with a predicted maximum of Ε3,500 UMI/cell  and Ε1,400 

genes/cell (3). For the samples sequenced here, we observed medians of Ε16,000 UMI/cell and 

Ε3,800 genes/cell when samples were sequenced to 150K reads per cell (Supplementary Table 

4). The predicted maximum output in our runs is 20,507 UMI/cell and 4,280 genes/cell (Fig. 5E, 
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F). While cell typing could be done with as few as Ε20K reads per cell (Fig. 5A‐D), we find that 

analysis in the range of 40K to 60K reads per cell (Ε11,000 UMI/cell, Ε2800 genes/cell) yields the 

most return for value. 

 

Discussion 

  Multiplexed  NGS  is  currently  essential  for  performing  scRNA‐seq  in  a  cost‐efficient 

manner. In order fully realize the advantage of the decreased costs associated with sequencing 

on platforms that utilize Illumina’s ExAMP chemistry,  it  is necessary for scRNA‐seq libraries to 

utilize a multiplex sequencing strategy that adequately addresses the problem of index hopping. 

With the development of TruDrop, we take a preventative approach in utilizing a unique dual‐

indexing  method  that  minimizes  sample  cross‐talk  (6).  Most  prior  work  on  high‐throughput 

scRNA‐seq libraries has focused on using computational methods to deconvolve and filter out 

entire  barcodes  (cells)  with  reads  that  could  have  originated  from  index‐hopped  sequencing 

reads, resulting in substantial data loss (9). To our knowledge only the V3 inDrop library structure 

has previously endeavored to implement a dual‐indexed system for high‐throughput scRNA‐seq 

(8). Its use of a portion of the cell barcode as the i7 index, however, means that the i7 index could 

be repeated across samples.  It was  thus a combinatorial dual‐indexed system that would not 

resolve the cross‐sample barcode collision problem. The work documented here allows for the 

independent evaluation of samples when filtering for barcode collisions, resulting in an increased 

retention of cell barcodes compared with that of single‐indexed samples. Users who do not have 

access  to  the  NovaSeq  can  also  use  this  dual‐indexed  design  for  decreased  cross‐sample 

contamination on the HiSeq 3000, HiSeq 4000, and HiSeq X Ten, which also rely on patterned 

flow  cells  and  ExAmp  chemistry. Meanwhile,  users  who  are  restricted  to  sequencing  inDrop 

libraries on the NextSeq platform, but still wish to use standard Illumina sequencing primers can 

use a single‐indexed version via the universal TruSeq P5 (cell barcode + UMI) structure. 

  Sequencing  inDrop  libraries alongside  libraries with a diverse base composition on the 

NovaSeq results in much lower (3.7‐fold decrease) base‐calling error rates compared with those 

observed  on  the NextSeq.  This  substantial  improvement  of  sequencing  quality  is maintained 

when 24 TruDrop samples (30% of a run) were sequenced alongside Illumina libraries, with no 
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effect  on  the  quality  of  the  standard  libraries.  The  reduction  in  the  base‐calling  error  rate 

observed with  the TruDrop on  the NovaSeq  is  likely  the major  contributor  to  the  increase  in 

percent of uniquely aligned reads to the reference genome, as more accurate reads should result 

in a lower rate of ambiguous alignments. The uniquely aligned reads are those that move on to 

downstream data analysis, and thus, this improvement results in substantially more useable data. 

As for the discrepancy in the percentage of uniquely aligned reads between mouse (73%) and 

human (87%), this is a routinely observed difference between mapping to reference genomes of 

mouse  versus  human.  Furthermore,  the  TruDrop  libraries  did  not  generate  biased  results,  as 

sequencing the same samples using either library structures recovered the same cell types, with 

TruDrop libraries producing higher quality data.  

  In  summary,  the  TruDrop  library  structure  resulted  in  the  ability  to  sequence  inDrop 

libraries on the NovaSeq by solving the problem of index hopping. The resulting sequencing data 

have lower base call error rates, likely due to increased diversity of libraries sequenced from high 

multiplexity,  resulting  in  better  sequence  alignments.  The  adoption  of  high‐throughput  next 

generation sequencing technologies results in substantial cost savings that should enable large 

scale cohort studies, with hundreds of samples, to be assayed by scRNA‐seq.  
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Figure Legends 
 
Figure 1. Mechanism for index hopping and its effects on sequencing library 
demultiplexing. (A-E) Illustration of index hopping due to (A) free adapter molecules remaining 

after purification post-PCR, resulting in (B) mis-priming of a single stranded library molecule. (C) 

The mis-primed library molecule is extended via ExAmp polymerase to generate (D) a fully 

complete library molecule with an incorrect sample index assigned. (E) Both correct and index-

hopped molecule can form clusters on the flow cell. (F-I) Demultiplexing runs with single- or dual-

indexed libraries with index hopping. (F) The case with a single index and no index hopping where 

the read(s) for a cluster are associated with a specific sample index (green with green and blue 

with blue) added to each molecule during library preparation, allowing reads to be assigned to its 

correct library of origin. (G) The case as above but with index hopping  

(a blue index now marks a green cluster), where that read will be incorrectly assigned to the wrong 

library. (H) A unique dual-indexed strategy allows for a single sample to have 2 indexes to be 

associated with a single library molecule. Here, library 1 = yellow + green, library 2 = purple and 

blue. (I) The case as above but with index hopping will result in reads displaying unanticipated 

combination of indexes (e.g., purple + green). The reads associated with unanticipated indexes 

can then be filtered out. 

 

Figure 2. Quality of single-indexed inDrop libraries sequenced alongside Illumina libraries 
and predicted data loss due to index hopping. (A) The base calling accuracy plot for a V2 

inDrop library on a NextSeq sequencing run, depicting the spread of quality scores as each base 

is sequenced. This plot consists of a series of box plots where each box plot maps the percent of 

clusters in each image of the flow cell with quality scores ≥ 30 (called Q30) in each cycle. The first 

100 cycles correspond to the transcript read; the next 6 correspond to the i7 index read; the final 

50 correspond to the cell barcode +UMI reads. The last 6 cycles read into the Poly A tail due to 

the variable length of the inDrop cell barcodes. (B) The base calling accuracy plot for a V2 inDrop 

library alongside the control Illumina library, PhiX, on a NextSeq. When sequencing alongside 

PhiX, the 7-base long i7- and i5- index reads are used so that PhiX reads can be filtered out and 

discarded during demultiplexing. (C) Plot of the calculated proportion of cell barcodes that will 

need to be discarded from single-indexed sequencing runs at different levels of multiplexing. We 

assume each sample will contain ~3000 cell barcodes. 

 

Figure 3. Variations of inDrop library structures from the perspective of sequencing  
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(A) A standard Illumina library contains P7 and P5 adapter sites that are used to bind Illumina 

sequencing flow cells. i7-and i5-indexes are incorporated onto the P7 and P5 sides, respectively, 

to adopt a dual-indexing strategy. On either side of the insert are sites (R1 and R2) where 

standard Illumina sequencing primers are used to read across both sides of the insert. The 

reverse complement of these read priming sites then allows for the priming and subsequent 

reading of the i7 and i5 sample indexes. (B) The V2 inDrop library structure also incorporates the 

P7 and P5 flow cell adapter binding sites, with a single i7 index. The V2 structure utilizes a R1 

priming site that is a truncated version of the standard R2 priming site, and a R2 priming site that 

is a deprecated R2 priming site. In addition, the R1 and R2 of the V2 structure are flipped so that 

the insert is read backwards from a normal Illumina library. (C) The TruSeq-inDrop (TruDrop) 

structure incorporates a second (i5) index and the standard Illumina R1 and R2 priming sites that 

are used in all Illumina TruSeq libraries. 

 

Figure 4. Sequencing quality of TruDrop libraries on exAmp chemistry sequencers  
(A) The base calling accuracy plot for two dual-indexed TruDrop libraries on iSeq alongside PhiX. 

Cycles 1 – 50 depict the quality scores for the cell Barcode + UMI read. Cycles 51 – 151 are 

sequence data that will be trimmed and discarded during analysis. Cycles 152 – 159 correspond 

to the i7 index read. Cycles 160 – 167 are the i5 index read. Cycles 168 – 318 are on the transcript 

read. For the purpose of direct comparison only cycles 168-267 are marked as transcript as only 

100 bases of transcript were sequenced for the V2 libraries. (B) The base calling accuracy plot 

for the same 2 TruDrop libraries when sequenced on the NovaSeq alongside 107 other libraries. 

(C) The base calling accuracy plot for 24 dual-indexed TruDrop library sequenced on a NovaSeq 

alongside 186 other libraries.  

 

Figure 5. Comparison of cell types identified between V2 libraries on NextSeq and TruDrop 
on NovaSeq  
(A and C) Combined t-SNE analysis of cells identified from a TruDrop and V2 library prepared 

from the same samples of (A) mouse and (C) human tumors. (B and D) sc-UniFrac tree 

representations of subpopulation structures for libraries presented in A and C, respectively. Cell 

groups enriched using V2 NextSeq libraries have red branches, while those enriched using 

TruDrop NovaSeq have blue branches. Thickness of branches represent level of enrichment. 

Distance values range from 0 to 1, with 0 representing complete overlap between two datasets. 

(E) Median UMI/cell and (F) genes/cell detected as a function of read depth using TruDrop on the 

NovaSeq. The maximum UMI/Cell and genes/cell are predicted by hyperbolic curve fitting. 
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Supplementary Figure 1. Comparison of amplification of TruDrop and V2 primers during 
library preparation 

(A) Diagnostic qPCR amplification curves comparing performance of all TruDrop primer pairs to 

V2 primers, all performed on the same sample. (B) Ct values of A.  

 

Supplementary Figure 2. Another example comparison of cell types identified between V2 
on NextSeq and TruDrop on NovaSeq 

(A) t-SNE and (B) sc-UniFrac analysis as performed in Figure 5. 
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Table 1. Sequencing yield and quality of V2 inDrop with/without standard illumina libraries 
Sequencing Run Sequencer Seqeuncing Kit Expected 

total reads 
Observed 

inDrop 
Reads 

Mean 
transcript 

Quality 
Score  

Mean 
Barcodes 
and UMI 
Quality 

V2 structure 
mouse 1 

NextSeq Mid-
throughput 

130,000,000 148,238,920 30.72 30.55 

V2 structure 
mouse 1 + 10% 
illumina PhiX 

MiSeq* Nano 1,000,000 745,903 34.94 32.24 

V2 structure 
mouse 2 and 3 + 

15% illumina PhiX 

NextSeq Mid-
throughput 

130,000,000 122,520,660 33.09 33.08 

*It is thought that the inDrop reads (745,903) for the MiSeq test was lower than the expected 1 
million reads due to the fact that the loading concentration of inDrop libraries has been 
optimized on the NextSeq, but not on the MiSeq. On the NextSeq we have found that loading 
the inDrop libraries at 1.5x the listed optimal loading concentration improves clustering 
efficiency on the flow cell. The loading concentration of inDrop libraries on the MiSeq for this 
sequencing run was just the standard loading concentration. 
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Table 2. Evaluation of 2 TruDrop libraries’ raw yield and quality in sequencing run on the 
NovaSeq 

Library TruDrop 
Mouse 4 

TruDrop 
Mouse 5 

V2 Mouse 2 + 15% 
illumina PhiX 

V2 Mouse 3 + 15% 
illumina PhiX 

Sequencer NovaSeq 
6000 

NovaSeq 
6000 NextSeq NextSeq 

i7 CCGCGGTT TTATAACC GCCAAT CTTGTA 
i5 AGCGCTAG GATATCGA --- --- 

Targeted inDrop 
Read Depth 50,000,000 50,000,000 65,000,000 65,000,000 

Observed inDrop 
Reads 53,655,662 44,554,464 57,847,546 64,673,114 

Average % of the 
lane 0.64% 0.53% 37.68% 42.14% 

Percent perfect 
index reads 96.99% 94.13% 91.72% 92.64% 

Mean transcript 
Quality Score 35.57 35.53 33.06 33.12 

Mean Barcodes 
and UMI quality 

score 
36.22 36.19 33.02 33.14 
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Table 3. Comparison of data alignment quality of the V2 and TruDrop structures 

Sample Sequencer Sequencing 
Depth (reads) 

mapped reads 
(%) 

Uniquely aligned 
reads (%) 

V2 Mouse NextSeq 98606967 96.38 67.15 
TruDrop Mouse NovaSeq 43657381 96.56 73.48 

V2 Human NextSeq 55507773 96.11 84.44 
TruDrop Human NovaSeq 188061057 95.12 87.23 
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Supplementary Table 1. Cost of Sequencing for inDrop† 

Sequencer Flow cell Sequencing 
Kit 

Cost of Flow 
cell 

Number 
of lanes 

Possible 
Number 

of 
Samples 
per flow 

cell 

Sequencing 
Cost per 
sample 

NextSeq High Throughput PE 75 $3055.00 4 4 $764.75 
NovaSeq S2** PE 150 $9,840.00** 2 37 $531.89 
NovaSeq S4 PE 150 $36,135.00 4 96* $361.35 

†assuming a read dept of 100 million reads per sample and unless otherwise noted costs are 
from local sequencing core facility 
*Assumes sharing flow cell with other users 
** requires lane splitting and cost is pulled from University of Wisconsin 
(https://www.biotech.wisc.edu/services/dnaseq/pricing) 
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Supplementary Table 2. Evaluation of  two TruDrop libraries’ raw yield and quality in low-
throughput sequencing run on the iSeq 100 

Library Sequencer i7 I5 Expected 
Reads 

Observed 
inDrop Reads* 

Mouse 4 iSeq 100 CCGCGGTT AGCGCTAG 2,000,000 2,876,464 
Mouse 5 iSeq 100 TTATAACC GATATCGA 2,000,000 3,166,938 

*Libraries were sequenced alongside a 10% spike-in of PhiX. 
The TruSeq-inDrop (TruDrop) libraries using both an i7 and i5 index saw about 1.5x the 
expected yield on the iSeq sequencer indicating that for this test the flow cell over-clustered. 
The iSeq uses similar chemistry to that of the NovaSeq. This shows that the TruDrop structured 
libraries could be sequenced on the NovaSeq. 
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Supplementary Table 3. 24 TruDrop libraries raw data yield and quality in combined high-
throughput sequencing run on the NovaSeq 

Sample i7 i5 Expected 
inDrop Reads 

Observed 
inDrop 
reads 

Average 
% of the 

lane 

perfect 
index 

read (%) 

Mean Barcodes 
and UMI  

Quality Score 

Mean 
Transcript 

Quality Scores 
1 CCGCGGTT AGCGCTAG 125,000,000 163,510,352 1.38 96.84 36.05 35.36 
2 TTATAACC GATATCGA 125,000,000 141,764,120 1.20 96.44 36.02 35.34 
3 GGACTTGG CGCAGACG 125,000,000 127,912,777 1.08 96.91 35.97 35.44 
4 AAGTCCAA TATGAGTA 125,000,000 141,900,719 1.20 96.83 36.03 35.41 
5 ATCCACTG AGGTGCGT 125,000,000 153,271,668 1.29 97.04 36.02 35.36 
6 GCTTGTCA GAACATAC 125,000,000 131,683,586 1.11 96.71 36.09 35.16 
7 CAAGCTAG ACATAGCG 125,000,000 168,538,426 1.42 96.84 36.10 35.43 
8 TGGATCGA GTGCGATA 125,000,000 124,903,031 1.05 97.61 36.04 35.42 
9 GACCTGAA TTGGTGAG 125,000,000 125,928,312 1.08 95.63 36.07 35.24 

10 TCTCTACT CGCGGTTC 125,000,000 132,604,827 1.13 96.32 36.10 35.31 
11 CTCTCGTC TATAACCT 125,000,000 121,444,989 1.03 96.79 36.16 35.53 
12 CCAAGTCT AAGGATGA 125,000,000 127,434,526 1.08 96.80 36.12 35.48 
13 TTGGACTC GGAAGCAG 125,000,000 143,214,632 1.21 97.09 36.08 35.46 
14 GGCTTAAG TCGTGACC 125,000,000 121,001,482 1.03 96.30 36.09 35.34 
15 AATCCGGA CTACAGTT 125,000,000 117,718,028 1.00 96.35 36.10 34.59 
16 TAATACAG ATATTCAC 125,000,000 176,705,278 1.50 96.49 36.01 35.30 
17 CGGCGTGA GCGCCTGT 125,000,000 176,054,943 1.51 95.49 36.04 35.37 
18 ATGTAAGT ACTCTATG 125,000,000 164,005,038 1.38 97.05 36.11 35.20 
19 GCACGGAC GTCTCGCA 125,000,000 150,680,775 1.26 97.57 36.04 35.31 
20 GGTACCTT AAGACGTC 125,000,000 170,171,924 1.43 97.14 36.09 35.29 
21 AACGTTCC GGAGTACT 125,000,000 128,785,547 1.09 96.74 36.12 35.36 
22 GCAGAATT ACCGGCCA 125,000,000 188,900,350 1.61 95.62 36.11 35.45 
23 ATGAGGCC GTTAATTG 125,000,000 126,939,171 1.08 96.08 36.06 35.30 
24 ACTAAGAT AACCGCGG 125,000,000 150,500,764 1.31 93.28 36.14 35.18 
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Supplementary Table 4. Diversity of UMI’s and genes expressed for cells sequenced with the 
TruDrop structure 

Sample Reads/cell 
encapsulated 

Cells 
detected 

Median UMI’s/Cell 
(25th percentile, 75th 

percentile) 

Median Genes/Cell 
(25th percentile, 75th 

percentile) 
TruDrop Human 1 19398 1246 4902 (3162, 7074) 1916 (1292, 2498) 
TruDrop Human 2 39302 927 10332 (6178, 15303) 2393 (1674, 3241) 
TruDrop Human 3 61974 1381 11545 (8043, 15921) 3208 (2382, 4207) 
TruDrop Human 4 149535 2049 16141 (12034, 21397) 3760 (2985, 4537) 
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Supplementary text 
 
Rationale of library and primer design 

The standard Illumina TruSeq library incorporates the following adapter sequences on 
either end of the library respectively: 
P7: 5’ – CAAGCAGAAGACGGCATACGAGAT[i7]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT – 3’ 
P5: 5’ – AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCTTCCGATCT 
– 3’.  
The sequence present on the 5’ side of the i7 and i5 indexes are the adapter sequence required 
for annealing and cluster formation on the Illumina flow cell. The sequences to the 3’ side of 
the i7 and i5 indexes are where the TruSeq sequencing primers will bind during the sequencing 
process.  

The sequence of the V2 inDrop library structure is as follows:  
Cell Barcode + UMI(P7): 5’ – CAAGCAGAAGACGGCATACGAGAT [i7] 
CTCTTTCCCTACACGACGCTCTTCCGATCT [cell barcode 1] GAGTGATTGCTTGTGACGCCTT [Cell 
barcode 2] [UMI] TTTTTTTTTTTTTTTTTTT… – 3’ 
Transcript (P5): 5’ – 
AATGATACGGCGACCACCGAGATCTACACGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNN
NN… – 3’. 
For the cell barcode + UMI side of the V2 library structure, a truncated version of the Illumina i5 
sequencing primer site was used as the sequencing primer for the cell barcode + UMI (P7 side). 
On the P5 - transcript side of the V2 inDrop library, a sequencing primer site that is currently 
considered obsolete by Illumina was used. This obsolete priming site on the P5 side of the V2 
structure is added on via the use of a random hexamer during the 2nd RT and is then extended 
to the complete P5 V2 structure during a brief PCR. The truncated P5 sequencing priming site 
used on the P7 side of the V2 library is partly built into the primer sequence attached to the 
hydrogel bead used to capture the transcriptomic material during encapsulation. This truncated 
Illumina P5 primer sequence used on the P7 side has 12 bases in common with the full length 
standard Illumina P7 primer sequenced. This will likely result in mis-priming events on inDrop 
libraries when sequencing V2 inDrop alongside large numbers of Illumina libraries. The P5 side 
of the V2 structure could be changed due to its priming with a random hexamer. The P7 side 
could be changed so long as the resulting structure used the Illumina P5 sequencing primer site 
present on the primer used by the V2 hydrogel beads.  

For the new TruSeq-inDrop (TruDrop) library structure the P7 and P5 sides were 
swapped so that the sequencing primer and flow cell binding site for the cell barcode + UMI 
side of the library followed Illumina’s TruSeq libraries. The transcript side of the library now 
uses the P7 structure of TruSeq. The sequence for the final TruDrop library is as follows: 
Transcript (P7): 5’ – CAAGCAGAAGACGGCATACGAGAT [i7] 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN… – 3’ 
Cell Barcode + UMI (P5): 5’ – AATGATACGGCGACCACCGAGATCTACAC [i5] 
ACACTCTTTCCCTACACGACGCTCTTCCGATCT [cell barcode 1] GAGTGATTGCTTGTGACGCCTT [cell 
barcode 2] [UMI] TTTTTTTTTTTTTTTTTTT… -3’.  
The new TruDrop library structure utilizes the standard Illumina TruSeq sequencing primers. It 
also incorporates a unique i7 and unique i5 index for each sample. The i7 and i5 index pairs 
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were picked from the set of 96 pairs of unique dual indexes that Illumina has published as the 
“IDT for Illumina TruSeq UD Indexes”. The TruDrop library preparation follows the same steps 
as previously published for the V2 library with the substitution of the following primers for their 
V2 counterparts: 
TruDrop 2nd RT primer: 5’ – GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN – 3’ 
TruDrop PE1: 5’ – AATGATACGGCGACCACCGAGATCTACAC [i5] ACACTCTTTCCCTACACGA – 3’ 
TruDrop PE2: 5’ – CAAGCAGAAGACGGCATACGAGAT [i7] GTGACTGGAGTTCAGACGTGT – 3’. 
TruDrop 2nd RT primer was ordered from IDT as desalted. TruDrop PE1 and PE2 primers were all 
ordered from IDT as TruGrade HPLC purified primers in individual tubes to minimize risk of 
cross-contamination during synthesis and handling. V2 PE2-N6 primer was ordered as desalted 
from Sigma. V2 PE1 and PE2 primers were ordered PAGE purified from Sigma. Primers were all 
resuspended at 100 µM in 10 mM Tris-HCl pH 8.0 and 0.1 mM EDTA pH 8.0. PE1 and PE2 
primers were then diluted to 10 µM. For V2 libraries PE1 was mixed with PE2 in a 1:1 ratio 
(concentration of 5 µM for each primer) for working aliquots. For TruDrop libraries, unique 
dual-index primer pairs were then mixed in 1:1 ratio (concentration of 5 µM for each primer) 
for working aliquots. 
 
Methods 
 
Calculation of cross-sample barcode collision as a result of index hopping. 

An estimate of the number of barcodes/cells to be thrown out per sample can be 
calculated as follows. A prior study (1) documents the index hopping rate on a NovaSeq run to 
be 4.85%. Assuming it is equally likely for any given read to hop from one sample to the next, all 
of the samples should be treated as if all of the cells that they contain belong to a single 
sample. The manner of calculating rates of barcode collision for inDrop libraries was previously 
documented by (2-5). Rates of barcode collision for pools of 2, 4, 12, 24, and 48 samples (6000, 
120000, 36000, 72000, and 144000 cells respectively). Barcode collision and index hopping are 
2 independent events so the probability of either occurring in a set number of cells is 
!(#$%&'()	&'++,-,'.) + !(,.()1	ℎ'3) − !(#$%&'()	&'++,-,'.	$.(	,.()1	ℎ'3). The 
resulting rate represents the percentage of cell barcodes discarded due to cross-sample 
barcode collision.  
 
Mouse Colonic Crypt Isolation and Dissociation 
 All animal protocols were approved by the Vanderbilt University Animal Care and Use 
Committee and in accordance with NIH guidelines. Lrig1CreERT2 and Apcfl mice on C57BL/6 
background were purchased from Jackson Laboratory. At 12 weeks mice received 1-3 
colonoscopy guided orthotropic injections of 0.70 mL of 100µM 4-hydroxytamoxifen. The 
following day mice were administered 2.5% DSS (TdB consultancy, batch DB001-37) in 
deionized water for 6 days in their drinking water. Mice were sacrificed 28 days following 4-
hydroxytamoxifen injections. Colonic tumors were dissected and incubated in chelation buffer 
(3mM EDTA, 0.5 mM DTT) at 4°C for 1 hour 15 minutes. The tissue was shaken in 10 mL of PBS 
in a 15 mL conical tube for 2 minutes to release the crypts. The crypt suspension was 
centrifuged at 250-300 xg for 5 min at 4°C. Crypts were washed three times with 1x DPBS. The 
crypts were dissociated into single cells using a cold-activated protease (1 mg/mL) and DNase I 
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(2.5 mg/mL) mixture in 1x DPBS on a rocker at 4°C. The cells were then washed three times 
with 1x DPBS after spinning 600x g for 5 min each at 4°C. 
 
Human Colonic Crypt Isolation and Dissociation 
 All studies were performed according to Vanderbilt University Institutional Review 
Board. Colonic biopsies were collected and placed into RPMI or UWA prior to processing. Upon 
arrival biopsies were minced to 4 mm2 and washed with 1x DPBS. They were then incubated in 
chelation buffer (4mM EDTA, 0.5 mM DTT) at 4°C for 1 hour 15 minutes. The tissue was then 
dissociated with cold protease and DNase I for 25 min. Single-cell suspensions were triturated 
at the start and every 10 minutes with a P1000 pipette tip with the tip 0.1-0.5 cm removed. 
Single cells were washed three times with 1x DPBS after spinning 600X g for 5 min each at 4°C. 
 
inDrop Single-Cell Encapsulation and Library Preparation 

A target of 3000 single cells per sample were encapsulated and barcoded using the 
inDrop platform with 1Cell-Bio library preparation protocol version 2.3. Modifications to the 
protocol include reverse transcription as noted in (6), ExoI digestion, second strand synthesis, 
and T7 in vitro transcription as noted in version 1.2. Furthermore, we doubled the volumes of 
diagnostic qPCR and final PCR steps, with a final double-sized size selection. For TruDrop-
specific modifications, we used TruDrop custom primers (RT, PE1, PE2). 
 
TruDrop Primer Testing via qPCR 
 To test if the efficiency of TruDrop dual indexing primers, a single mouse inDrop library 
was prepared up through the second RT using the TruDrop RT primer. The sample was used to 
run a diagnostic qPCR each pair of TruDrop i7 and i5 indexes, all in parallel, on a BioRad C1000 
Touch Thermal Cycler CFX96 Real-time system. To verify that the TruDrop primers amplified 
appropriately, we compared their amplification curves with two V2 libraries that had previously 
produced good results on the NextSeq. An index pair not reaching the Ct value of 5000 RFU was 
not included in subsequent analysis. Based off of prior testing by (7), it was expected that the Ct 
for individual primer pairs would not deviate from the average by more than 1.5 cycles.  
 
Illumina Sequencing 
All libraries were evaluated on a Qubit 3.0 fluorometer and an Agilent 2100 Bioanalyzer 
regarding concentration and fragment size distribution prior to sequencing on various 
platforms. 
NextSeq: V2 libraries were sequenced on the NextSeq 500 using a PE 75 kit in a customized 
sequencing run as previous (Herring et al., 2018). 10-15% PhiX was pooled when appropriate. 
MiSeq: Sequencing of a V2 library on the MiSeq was performed using the Reagent Kit v2 Nano 
with custom sequencing primers, along with a 10% PhiX spike-in. Sequencing was performed 
using 30 cycles for read 1 (transcript), 6 cycles for the index read, and 30 cycles for read 2 (cell 
barcode + UMI). 
iSeq 100: TruDrop libraries were sequenced on the iSeq with a 10% PhiX spike-in using a PE 150 
kit.  The cell barcode + UMI was sequenced on read 1. The transcript was sequenced on read 2. 
NovaSeq 6000: Sequencing on the NovaSeq was performed using a S4 flow cell with a PE 150 
kit. TruDrop libraries, at a 2nM standard loading concentration, were pooled with other 
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Illumina compatible libraries, and sequenced to various target depths (50 – 500 million reads). 
 
Downstream data analysis 

For all sequence data, reads were demultiplexed using bcl2fastq v2.20.0.422. Base call 
accuracy (% >= Q30 score) plots were generated via Illumina' BaseSpace. Quality scores were 
generated using fastQC to find the average quality score per cycle for reads from the 
demultiplexed fastq files (8). The proportion for how much each cycle was contributing to each 
transcript, barcode 1, barcode 2, and UMI read was determined and used to calculated the 
weighted average of the quality score for the transcript (first 100 bases only) and cell barcodes 
+ UMI. Base call error rates were then calculated using the formula 3 = 10(89/;<). 
 

Following demultiplexing, reads were filtered, sorted by their barcode of origin, and 
aligned to the reference transcriptome to generate a counts matrix using the DropEst pipeline 
(9). Barcodes containing cells were filtered for further analysis, as previous (10), and aligned 
using Harmony (11). t-SNE and sc-UniFrac analyses were performed following previous methods 
(10, 12) in Matlab (Mathworks) and R, respectively. 
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