

1 Engineered niches support the development of human dendritic cells 2 in humanized mice

3 Authors:

4 Giorgio Anselmi¹, Kristine Vaivode¹, Charles-Antoine Dutertre³, Pierre Bourdely¹, Yoann
5 Missolo-Koussou⁵, Evan Newell³, Oliver Hickman^{1,+}, Kristie Wood^{4,++}, Alka Saxena⁴, Julie
6 Helft⁵, Florent Ginhoux³, Pierre Guermonprez^{1,2 *}

7

8 (1) Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department
9 of Immunobiology, King's College London, UK

10 (2) Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM1149,
11 Paris, France

12 (3) Singapore Immunology Network (SIgN), A*STAR, Singapore

13 (4) National Institute of Health Research Biomedical Research Centre at Guy's and St

14 Thomas' Hospital and King's College London, London, United Kingdom

15 (5) Paris-Sciences-Lettres University, Institut Curie Research Center, INSERM U932 &
16 SiRIC, Translational Immunotherapy Team, Paris, France

¹⁷ ⁺ current address: Drug Target Discovery Team, Division of Biotechnology, National Institute of Standards and Technology, Gaithersburg, MD 20892.

12 Institute of Cancer Research, London, UK

21 corresponding author

22

23 Corresponding address: pierre.guermonprez@kcl.ac.uk

24 **Abstract**

25 Classical dendritic cells (cDCs) are rare sentinel cells specialized in the regulation of adaptive
26 immunity. Modeling cDC development is both crucial to study cDCs and harness their
27 potential in immunotherapy. Here we addressed whether cDCs could differentiate in response
28 to trophic cues delivered by mesenchymal components of the hematopoietic niche where they
29 physiologically develop and maintain. We found that expression of the membrane bound
30 form of human FLT3L and SCF together with CXCL12 in a bone marrow mesenchymal
31 stromal cell line is sufficient to induce the contact-dependent specification of both type 1 and
32 type 2 cDCs from CD34⁺ hematopoietic stem and progenitor cells (HSPCs). Engraftment of
33 these engineered mesenchymal stromal cells (eMSCs) together with CD34⁺ HSPCs creates an
34 *in vivo* synthetic niche in the dermis of immunodeficient mice. Cell-to-cell contact between
35 HSPCs and stromal cells within these organoids drive the local specification of cDCs and
36 CD123⁺AXL⁺CD327⁺ pre/AS-DCs. cDCs generated *in vivo* display higher levels of
37 resemblance with human blood cDCs unattained by *in vitro* generated subsets. Altogether,
38 eMSCs provide a novel and unique platform recapitulating the full spectrum of cDC subsets
39 enabling their functional characterization *in vivo*.

40

41

42 Keywords: dendritic cells, stromal cells, hematopoietic niche, immunodeficient mice

43 Introduction

44 Classical human dendritic cells (cDCs) are sentinels of the immune system with a unique
45 ability to regulate the function of T lymphocytes ¹. Dendritic cells can induce immune
46 tolerance ² or drive the development of immunity ³.
47 The analysis of blood circulating subsets has revealed that cDCs consist in two major
48 subtypes: CD141⁺XCR1⁺Clec9A⁺ DCs (cDC1) and CD1c⁺CD11c⁺CD172a (SIRP α)⁺ DCs
49 (cDC2s) ⁴⁻⁶. Both cDC1s and cDC2s arise from a bone marrow committed progenitor ⁷ or
50 from early IRF8⁺ multipotent progenitors ^{8, 9}, which generate a common circulating precursor
51 ¹⁰ that progressively diverge in pre-cDC1s and pre-cDC2s ¹⁰⁻¹². Type 1 DCs are conserved
52 between mouse and human, and they share the expression of specific surface markers such as
53 Clec9A ¹³ and XCR1 ⁵ as well as the transcription factor (TF) IRF8, which is essential for the
54 development of murine cDC1s ^{4-6, 13-15}. Conversely, human CD1c⁺ type 2 DCs have been
55 shown to express the IRF4 TF ¹⁶, which controls the development of their phenotypic
56 equivalent in the mouse model ^{16, 17}. This rather simple picture is complicated by the diversity
57 of CD1c⁺ cells, which encompass migratory DCs as well as CD14^{int} inflammatory DCs
58 recruited during inflammation ¹⁸⁻²⁰. More recently, un-biased approaches have uncovered a
59 deeper complexity in the DC network with the identification of 2 types of cDC2s with
60 distinct transcriptional profiles and the identification of AXL⁺CD11c⁺CD1c⁺ cells which
61 have been proposed to act as a precursor for cDCs ^{12, 21}.

62 Human hematopoietic progenitors reside in the stem cells niche of the bone marrow. Genetic
63 studies in the murine model identified three essential factors supporting HSPCs homeostasis:
64 the membrane-bound form of stem cell factor (SCF/KITL) ^{22, 23}, the C-X-C motive
65 chemokine 12 (CXCL12) ^{24, 25} and thrombopoietin (TPO) ^{26, 27}. In the bone marrow,
66 perivascular mesenchymal stromal cells have been described as the main source of SCF and

67 other niche factors ²⁸. At steady state, Flt3-ligand (FLT3L) is delivered as a membrane-bound
68 precursor expressed on radio-resistant stromal cells ²⁹⁻³¹. After egressing from the bone
69 marrow, DC precursors circulate in the blood and seed the peripheral tissues ³². In the lymph
70 node, stromal fibroblastic reticular cells provide FLT3L ³³, and FLT3-dependent proliferation
71 of cDC in periphery is required for their maintenance ^{34, 35}.

72 Modelling the development of cDCs in culture systems is instrumental to better understand
73 their ontogeny and define their immunological function. Pioneer work from Banchereau *et al.*
74 have identified that GMCSF and TNF- α cooperate to produce CD1a $^+$ cells with features of
75 Langerhans cells from CD34 $^+$ hematopoietic stem and progenitor cells (HSPCs) ³⁶. Sallusto
76 *et al.* have shown that GMCSF and IL-4 induce the differentiation of CD1c $^+$ CD1a $^+$
77 inflammatory DCs from CD14 monocytes ³⁷. More recent work has demonstrated that FLT3L
78 (with TPO or with SCF/KITL, GM-CSF and IL-4) is instrumental in generating CD141 $^+$
79 cDC1s aligning phenotypically and functionally with cDC1s ^{7, 8, 38-40}. This is in line with the
80 crucial role of FLT3L, engaging the Flt3 receptor tyrosine kinase ⁴¹⁻⁴³ in controlling DC
81 homeostasis both in mice ^{32, 34, 44, 45} and humans ^{10, 29, 46, 47}. Moreover, the activation of Notch
82 signaling pathway has been shown to further improve the *in vitro* differentiation of both
83 human and mouse cDC1s ^{48, 49}. Despite the successes in modeling cDC1 differentiation *in*
84 *vitro*, CD1c $^+$ cells found in culture of CD34 $^+$ HSPCs either align poorly with *bona fide* blood
85 circulating cDC2s³⁹ or were not extensively characterized^{48, 49}.

86 Recapitulating human cDC development *in vivo* has the potential to greatly improve our
87 understanding of DC biology and facilitate its translational applications. Human cDCs have
88 been found in stably reconstituted humanized mice treated with supraphysiological
89 concentration of human FLT3L ^{29, 50, 51}. However, the generated CD11c $^+$ CD141 $^+$ and
90 CD11c $^+$ CD1c $^+$ cells were poorly characterized and their dissemination to peripheral tissues
91 has rarely been assessed ⁵².

92 Here we aimed at modeling human cDC development by providing physiological factors
93 associated to hematopoietic niches. We found that engineered mesenchymal stromal cells
94 (eMSCs) expressing a combination of membrane-bound FLT3L and SCF/KITL together with
95 CXCL12 provide a scaffold for human cDC differentiation. Engraftment of eMSCs along
96 with CD34⁺ HSPCs leads to the local development of cDCs in immunodeficient mice. This *in*
97 *vivo* system recapitulates the differentiation of pre/AS-DCs, cDC1s and cDC2s with an
98 unreached level of similarity with the phenotype of human blood cDCs.

99 **Results**

100 **Stromal membrane-bound FLT3L is sufficient to support human cDC differentiation 101 from CD34⁺ HSPCs**

102 We hypothesized that the interaction of hematopoietic progenitors with membrane bound
103 factors expressed by stromal cells of the niche would promote the specification of the cDC
104 lineage.

105 To test this, we engineered a bone marrow-derived murine mesenchymal cell line (MS5)^{7 53}
106 to stably and homogeneously express the transmembrane form of human FLT3L (MS5_F) as
107 probed by flow cytometry (Fig. 1a). Co-culture of MS5_F with CD34⁺ HSPCs drives the
108 appearance of cDC1-like Clec9A⁺CD141⁺ and cDC2-like CD14⁺CD1c⁺ cells. Importantly,
109 MS5_F is more efficient than recombinant soluble FLT3L (MS5+recFL) in generating cDC-
110 like cells (Fig. 1b).

111 In contrast, OP9⁵⁴ hematogenic stromal cells stably expressing membrane bound FLT3L
112 (OP9_F) were less efficient than MS5_F in driving cDC differentiation (Fig. 1c). Besides,
113 MS5_F also promoted the appearance of CD123⁺CD303/4⁺ cells resembling either pDCs or
114 pre/AS-DCs^{12, 21} (Supplementary Fig. 1a and b).

115 Next, we wanted to test whether cell-to-cell interactions mediate the differentiation of cDCs
116 driven by FLT3L-expressing MS5 stromal cells. Using transwell permeable to soluble factors
117 but preventing cognate interactions, we found that direct contact is required to support
118 efficiently cDC differentiation (Fig. 1d).

119 Collectively, these data show that membrane FLT3L expression in stromal cells provide an
120 improved platform to trigger the differentiation of cDC-like cells from CD34⁺ HSPCs *in vitro*
121 *via* cell-to-cell contact.

122

123 **Stromal CXCL12 and membrane bound SCF improve FLT3L-driven development of**
124 **human cDC *in vitro***

125 Next, we sought to improve the efficiency of cDC production in MS5_F by co-expressing
126 additional niche factors. We focused on SCF, CXCL12 and TPO because of their essential
127 role in supporting HSPCs maintenance in the bone marrow niche^{22, 24-27, 55}. SCF had also
128 been extensively used in previously published DC culture protocols^{7, 39, 40, 56}.

129 To this end, we generated a collection of MS5 stromal cells stably expressing either one, two,
130 three or four human factors by combining CXCL12, TPO and membrane-bound SCF/KITL,
131 with or without membrane-bound FLT3L (Supplementary Fig. 2a).

132 We screened this collection of engineered mesenchymal stromal cell (eMSC) lines based on
133 their ability to support human cDC differentiation from cord blood-derived CD34⁺ HSPCs.

134 At day 15, only FLT3L-expressing eMSCs successfully supported the differentiation of
135 CD141⁺Clec9A⁺ and CD14⁻CD1c⁺ cells (Fig. 2a and Supplementary Fig. 3a). We conclude
136 that FLT3L is necessary for the differentiation of cDCs using eMSCs. Besides, optimal cDC
137 production was obtained in cultures containing eMSC co-expressing membrane bound SCF
138 and CXCL12 together with FLT3L (MS5_FS12) (Fig. 2a), whereas no difference was
139 observed for CD14⁺CD16⁻ monocytes and CD14⁺CD16⁺ macrophages as compared to
140 MS5_CTRL (Supplementary Fig. 3b).

141 Furthermore, we noticed that *in vitro* differentiated CD14⁻CD1c⁺ cDC2-like cells were
142 heterogeneous for the expression of the mannose receptor CD206 (Fig. 2a). Circulating blood
143 cDC2s do not generally express CD206 (Supplementary Fig. 3c) whereas CD206 is a marker
144 of skin and migratory cDC2^{19, 57}.

145 Most of the previously described protocols to generate human DC-like cells *in vitro* from

146 both CD14⁺ monocytes and CD34⁺ HSPCs made an extensive use of the cytokine GM-CSF⁷,

147 8, 37, 39, 40, 56, with one exception⁴⁹. Since we did not include GM-CSF in our protocol, we

148 wanted to assess whether human GM-CSF was spontaneously produced in CD34⁺ cultures.

149 We could not detect any GM-CSF from co-culture supernatant (Fig. 2b). Accordingly, GM-

150 CSF blocking antibody did not impact the generation of cDCs driven by MS5_FS12 (Fig.

151 2c). We conclude that GM-CSF is dispensable for the generation of cDCs *in vitro*, as

152 previously reported both in mouse^{58, 59} and human⁴⁹.

153 We also observed that MS5_FS12 stromal cells significantly improve the differentiation of

154 CD123⁺CD303/4⁺ cells (Fig. 3a), a phenotype shared by both plasmacytoid DC and pre/AS-

155 DC^{12, 21}. A more refined phenotypic characterization of the *in vitro* generated cells also shows

156 that all CD123⁺ cells express high levels of CD45RA, and they can be subdivided in AXL⁻

157 CD327^{lo/-} and AXL⁺CD327⁺ subsets, phenotypically aligning to pDC and pre/AS-DC (Fig.

158 3b). This conclusion was further supported by gene set enrichment analysis (GSEA)⁶⁰ of

159 RNA-sequencing data, displaying a significant enrichment of previously reported pDC and

160 AS-DC gene signatures²¹ in *in vitro* generated AXL⁻CD327^{lo/-} and AXL⁺CD327⁺,

161 respectively (Fig. 3c). Moreover, only the AXL⁻CD327^{lo/-} cells were capable to produce type

162 I interferon in response to TLR stimulation, a specific feature of *bona fide* pDC which is not

163 shared with pre/AS-DC^{12, 21} (Fig. 3d).

164 In conclusion, we identified the combination of membrane-bound FLT3L, SCF and CXCL12

165 (MS5_FS12) as the most efficient tested condition to support human DCs differentiation *in*

166 *vitro* from CD34⁺ HSPCs.

167

168 **Human DCs generated *in vitro* using MS5_FS12 align with circulating blood DCs**

169 In order to validate the identity of the cDCs generated using the MS5_FS12 stromal niche,

170 we compared the transcriptome (RNA-seq) and phenotype (CyTOF) of *in vitro* differentiated
171 subsets to circulating blood cDC1s and cDC2s (Fig. 4a-f).

172 Hierarchical clustering of RNA-seq data revealed that subsets generated in culture maintain a
173 strong “culture imprinting” (Supplementary Fig. 4a). Indeed, we could identify a 2000 genes
174 signature (1000 genes up and 1000 genes down-regulated), which clearly separates *in vitro*
175 generated cells from circulating blood subsets regardless of their subset identity
176 (Supplementary Fig. 4b). The majority of these genes were associated to cell cycle and
177 metabolism as shown by pathways enrichment analysis (Supplementary Fig. 4c).

178 Nonetheless, once this “*in vitro* culture signature” was subtracted from the total protein
179 coding genes, CD141⁺Clec9A⁺ and CD1c⁺CD206^{+/−} cells generated in culture
180 transcriptionally align to blood cDC1 and cDC2, respectively (Fig. 4a).

181 To further validate the similarity of *in vitro* generated cells with physiologically circulating
182 subsets we performed gene set enrichment analysis (GSEA)^{60, 61} using the BubbleGum
183 software⁶². This methodology enables to score the enrichment of a signature in a pairwise
184 comparison of two transcriptomes. We scored cDC1 alignment using gene signatures specific
185 for blood cDC1 obtained from published datasets (cDC1>CD1c⁺⁶³ and DC1>ALL²¹). CD14-
186 CD1c⁺ cells have recently been shown to contain two distinct subsets termed as cDC2 and
187 cDC3²¹. Alignment of cultured cells was probed towards total CD1c⁺ cells (CD1c>cDC1),
188 cDC2 (cDC2>ALL and cDC2>DC3) and DC3 signatures (DC3>cDC2 and DC3>ALL). We
189 found that *in vitro* generated CD141⁺Clec9A⁺ and CD1c⁺CD206^{+/−} cells are enriched in genes
190 defining circulating blood cDC1 and cDC2, respectively (Fig. 4b). The expression of the top
191 50 genes for each signature in the differentiated subsets further supports this conclusion (Fig.
192 4c). Importantly, both CD206⁺ and CD206[−] subsets aligned preferentially to cDC2 as
193 compared to DC3 and cDC1 (Fig. 4b and Supplementary Fig. 4d). CD163 was recently
194 described as a marker selectively expressed in blood cDC3 as compared to cDC2²¹.

195 Supporting our previous conclusion, CD163 was neither expressed in CD1c⁺CD206⁻ nor in
196 CD1c⁺CD206⁺ cells generated *in vitro*, while CD163⁺ cells were detected among CD14⁺
197 monocytes and CD14⁺CD16⁺ macrophages (Supplementary Fig. 4e).

198 To obtain a more exhaustive characterization of the phenotype of *in vitro* generated subsets
199 we performed CyTOF analysis using a panel of 38 metal-conjugated monoclonal antibodies.
200 Dimension reduction of the CyTOF data was performed using the Uniform Manifold
201 Approximation and Projection (UMAP) algorithm⁶⁴. UMAP plots display clusters of cells
202 that were expanded upon MS5_FS12 co-culture as compare to MS5_CTRL (Fig. 4d).
203 Clec9A⁺CD141⁺ cells identified by flow cytometry were shown to also express CADM1 and
204 CD26 further aligning them with blood cDC1s (red cluster, Fig. 4d-f). CD14⁻CD1c⁺ cells did
205 not express high level of monocyte markers such as CD64, CD68 and CD16 while they
206 appeared heterogeneous for CD206 expression (blue cluster, Fig. 4d-f and Supplementary
207 Fig. 4f). Of note, CD14⁻CD1c⁺ cells generated in culture did not express high level of
208 Fc ϵ RIa, CD172a and CD5 found in blood cDC2s (Supplementary Fig. 4f). By contrast they
209 are strongly positive for CD86 and CD80 unlike their circulating counterpart (Supplementary
210 Fig. 4f). In addition, CD123⁺CD303⁺ cells were shown to express heterogeneous levels of
211 pre-DC markers such as CD327 and CX3CR1 and moderate level of AXL (green cluster, Fig.
212 4d-f and Supplementary Fig. 4f), in line with flow cytometry analysis highlighting the
213 presence of both pDC and pre/AS-DC within CD123⁺CD303⁺ cells generated *in vitro* (Fig.
214 3b). On the other hand, by combining flow and mass cytometry analysis we were able to
215 show that MS5_FS12 stromal cells do not support lymphoid development (Fig. 4d and
216 Supplementary Fig. 4g). Indeed, the remaining cells (other than DC) present in culture
217 consist of CD15⁺ Granulocytes and CD14⁺CD16⁺⁻ Monocytes/Macrophages (Supplementary
218 Fig. 4h). Finally, the analysis of *in vitro* cDC differentiation kinetics revealed that both cDC1
219 and cDC2 can be detected in MS5_FS12 cultures as early as day7 (Supplementary Fig. 4i).

220 However, the yield of *in vitro* generated cDC was significantly higher at day14, when most of
221 the cultures were therefore analyzed (Supplementary Fig. 4i).

222 Collectively, our data demonstrate that: *i*) *in vitro* generated CD141⁺Clec9A⁺ recapitulate the
223 phenotype of *bona fide* blood cDC1; *ii*) CD14⁻CD1c⁺ cells align to cDC2 regardless of their
224 CD206 expression; *iii*) CD123⁺CD303⁺ cells contain some recently described pre-DC/AS-
225 DC phenotypically and functionally distinct from pDCs. However, we identified two major
226 limitations of the *in vitro* culture. First, the culture system imposes a strong transcriptional
227 imprinting throughout subsets. Second, *in vitro* generated cDC2s failed to express to full
228 phenotypic profile of blood cDC2s.

229

230 **Subcutaneous engraftment of MS5_FSI2 in NSG mice results in the formation of a**
231 **“synthetic niche” supporting human CD34⁺ progenitor local maintenance, differentiation**
232 **and expansion**

233 We next wanted to assess whether we could use MS5_FSI2 to recapitulate a more
234 physiological niche microenvironment supporting human HSPCs maintenance *in vivo*.

235 To this end, we designed an experimental strategy based on the subcutaneous injection of
236 cord blood-derived CD34⁺ HSPCs together with MS5_FSI2 in a basement membrane matrix
237 (Matrigel) in NSG mice (Fig. 5a).

238 Clusters of cells embedded in Matrigel can be identified as early as day 12 by tissue histology
239 (Fig. 5b). Flow cytometry analysis demonstrated that MS5_FSI2 but not MS5_CTRL
240 induced the expansion of human leukocytes within the Matrigel plugs (Fig. 5c). We then
241 tested whether cell-to-cell interactions of eMSC with human progenitors play a role in this
242 process. We injected two independent plugs of CD34⁺ HSPCs with either MS5_CTRL or
243 MS5_FSI2 in the same recipient mouse (contralateral plugs) (Fig. 5d). We found a relative

244 expansion of human leukocytes in MS5_FS12 as compared to MS5_CTRL contralateral
245 plugs (Fig. 5d). We conclude that MS5_FS12 does not efficiently provide soluble factors
246 enabling human leukocytes expansion systemically. Therefore, we hypothesized that
247 membrane bound FLT3L and SCF together with CXCL12 define an efficient *in vivo* niche by
248 delivering cell-to-cell contacts supporting HSPCs expansion. Supporting this hypothesis, we
249 found that MS5_FS12 expressing GFP persist in the plugs at day 12 of differentiation (Fig.
250 5e). Immunofluorescence analysis further supported this observation and demonstrated the
251 existence of cell-to-cell contact between MS5_FS12 and human CD45⁺ leukocytes (Fig. 5e
252 and Supplementary Fig. 5a). Leukocytes expressing CD34⁺ could also be detected,
253 supporting the notion that a pool of undifferentiated progenitors is maintained in the
254 MS5_FS12 organoids at day 12 (Fig. 5e). Of note, Matrigel plugs contained some mouse
255 CD31⁺ cells suggesting undergoing vascularization as evidenced by the formation of early
256 tube-like structure (Fig. 5f). However, no vascular leak was observed, as demonstrated by the
257 absence of intravenously delivered CTV⁺CD3⁺ cells in the subcutaneous plug
258 (Supplementary Fig. 5b).

259 Taken together, these data show that engineered stromal cells MS5_FS12 provide a minimal
260 synthetic niche scaffold supporting human CD34⁺ HSPCs maintenance and expansion *in*
261 *vivo*.

262

263 **The MS5_FS12 niche efficiently supports human cDC1, cDC2, pre/AS-DC and pDC**
264 **development from CD34⁺ HSPCs *in vivo***

265 We investigated whether the engraftment of CD34⁺ HSPCs together with MS5_FS12 could
266 lead to the local differentiation of human DC subsets.

267 Flow cytometry analysis of Matrigel organoids demonstrates that the MS5_FS12 but not the

268 MS5_CTRL niche specifically supports the differentiation of CD141⁺Clec9A⁺ cDC1-like
269 cells and CD14⁻CD1c⁺ cDC2-like cells (Fig. 6a and Supplementary Fig. 6a). This finding was
270 supported by immunofluorescence staining on plug sections highlighting the occurrence of
271 human CD45 cells expressing either Clec9A or CD1c (Fig. 6b).
272 Further analysis revealed the expansion of CD123⁺CD303/4⁺ cells in MS5_FS12 when
273 compared to MS5_CTRL plugs (Fig. 6c and Supplementary Fig. 6a). All these cells also
274 expressed CD45RA and heterogeneous levels of AXL and CD327, as previously described
275 for their *in vitro* counterparts (Fig. 6c). However, only MS5_FS12 induced a strong
276 accumulation of AXL⁺CD327⁺ pre/AS-DC expressing various levels of CD1c (Fig. 6c). In
277 addition, *bona fide* CD123⁺CD45RA⁺AXL⁻CD327^{lo/-} pDCs could also be detected (Fig. 6c).
278 RNA-seq analysis of *in vivo* generated CD123⁺AXL⁻CD327^{lo/-} and CD123⁺AXL⁺CD327⁺
279 cells further support this conclusion and unequivocally align them to blood circulating pDC
280 and AS-DC, respectively (Fig. 6d).
281 To further refine the phenotypic characterization of HLA-DR⁺ mononuclear phagocytes in
282 MS5_FS12 organoids we performed high-dimensional mass cytometry analysis. The
283 comparison of MS5_FS12 with MS5_CTRL plugs highlighted the expansion of all subsets
284 previously identified by flow cytometry: cDC1s, cDC2s, pre/AS-DCs, pDCs and a distinct
285 population of CD33⁺CCR2⁺CX3CR1⁺Clec12A⁺ myeloid cells (Fig. 6e and Supplementary
286 Fig. 6b). We next wanted to determine whether commitment towards the cDC lineage would
287 be dependent on local developmental cues and possibly cell-to-cell contact between CD34⁺
288 HSPCs and MS5_FS12. To this end, we engrafted mice with two distal organoids, one
289 containing MS5_CTRL and the second one containing MS5_FS12. We found that cDC1,
290 cDC2 and pre/AS-DCs were selectively expanded in MS5_FS12 plugs (Fig. 6f and
291 Supplementary Fig. 6c). On the contrary, pDC were not significantly increased in the same
292 comparison (Fig. 6f and Supplementary Fig. 6c). We conclude that local cues associated to

293 the MS5_Fs12 niche control cDC lineage commitment. In support of this view, we could not
294 detect a systemic increase in the levels of serum FLT3L in mice carrying engineered stromal
295 cell plugs (Fig. 6g). Accordingly, spleen resident murine cDCs did not expand upon
296 MS5_Fs12 engraftment while they massively do so upon administration of recombinant
297 soluble human FLT3L (Fig. 6g). Together with the 2-plugs experiments (Fig. 6f), these
298 observations suggest that most of the FLT3L aegis relies on its membrane bound form
299 delivered in the context of eMSCs. Of note, administration of recombinant soluble FLT3L
300 was poorly efficient at expanding human DCs populations in Matrigel organoids formed with
301 control stromal cells (Fig. 6g). This demonstrates the superiority of local, cell-associated cues
302 (MS5_Fs12, *i.e.*) to achieve the expansion of human cDCs in the dermis of NSG mice.

303 A more extensive characterization of MS5_Fs12 organoids revealed the presence of myeloid
304 lineages other than DCs, such as CD14⁺CD16⁻ monocyte-like cells and CD15⁺ granulocytes
305 (Fig. 6h and Supplementary Fig. 6d). Conversely, no lymphoid specification was observed
306 (Fig. 6h and Supplementary Fig. 6d). Despite this broad spectrum of lineages, CD34⁺ HSPCs
307 represented the most abundant population at day 12 (Fig. 6h). This observation suggests that
308 the MS5_Fs12 niche combines HSPC maintenance with lineage commitment.

309

310 **cDC2 generated *in vivo* more faithfully align to blood circulating cDC2s**

311 Finally, we wanted to establish whether *in vivo* differentiated DCs in MS5_Fs12 organoids
312 had a distinct phenotype from the subsets generated *in vitro* in MS5_Fs12 co-culture.

313 UMAP plots of CyTOF analysis revealed three major findings. First, pre/AS-DCs represent a
314 more abundant population *in vivo* (Fig. 7a and Supplementary Fig. 7a). Second, both cDC1
315 generated *in vitro* and *in vivo* fully align phenotypically, displaying a strong expression of
316 CADM1 and CD26 (Fig. 7a and Supplementary Fig. 7a). Third, unlike cDC1, cDC2

317 generated *in vivo* exhibit noticeable phenotypic differences. *In vivo*-generated cDC2 express
318 higher levels of Fc ϵ RIa, CD172a and CD5 while showing lower expression of HLA-DR and
319 CD86 (Fig. 7b and Supplementary Fig. 7b). The specific phenotype conferred by the
320 MS5_Fs12 niche education renders cDC2s more akin to their blood counterparts. In order to
321 compare extensively the transcriptional landscape of *in vivo* (NSG organoids) generated DCs
322 with primary DCs found in human blood, we performed RNAseq analysis on FACS-sorted
323 cDC2s obtained after the enzymatic digestion of MS5_Fs12-containing plugs or purified
324 from human blood.

325 As previously observed for *in vitro* generated cells, the MS5_Fs12 niche confers an *in vivo*
326 imprinting resulting in the differential expression of 2872 genes (up- or down-regulated) in *in*
327 *vivo* versus *ex vivo* isolated subsets (Supplementary Fig. 7c). Pathway analysis revealed that
328 this *in vivo* bias was mainly due to upregulation of genes associated with DNA replication,
329 cell cycle and proliferation (MYC, CDC6/7, POLA2, MCM6/7 e.g.) (Supplementary Fig. 7c
330 and Supplementary Table 6).

331 Moreover, we found that: *i*) AXL $^+$ Siglec6 $^+$ pre/AS-DCs generated *in vivo* (or *in vitro*) align
332 to their primary counterparts and selectively express a signature that distinguish them from
333 *bona fide* pDCs (*DAB2*, *CD22*, *ADLH2* e.g.) (Fig. 7c). *ii*) conversely, AXL $^-$ Siglec6 $^-$ *bona fide*
334 pDCs generated *in vivo* (or *in vitro*) align to their primary counterparts and express high
335 levels of markers distinguishing them from pre/AS-DCs (*IRF7*, *GZMB*, *TCF4*, *BCL11A*, e.g.)
336 (Fig. 7c). *iii*) cDC2s generated *in vivo* (in NSG mice organoids carrying MS5_Fs12) had
337 higher levels of similarity with blood cDC2s (including higher expression of *BTLA*, *FCER1A*,
338 e.g.) (Fig. 7b, 7d and 7e). Recently, both CD5 $^+$ and CD5 $^-$ cDC2s subsets have been reported
339 in human blood^{65,66} and we found that *in vivo* generated cDC2s aligned particularly well
340 with blood CD5 $^+$ cDC2s (with the expression of CD5, CD2, e.g.) (Fig. 7b and 7e). By
341 contrast, *in vitro* generated cDC2s expressed high levels of activation genes such MHC

342 molecules (*HLA-DR*, *DQ*, *e.g.*); co-stimulatory molecules (*CD80*, *CD40*, *e.g.*), activation
343 markers (*ETS2*, *CCR6*, *CCR7*, *CXCL13*, *CCL22*, *e.g.*) (Fig. 7e and 7f) and genes associated
344 with type I and type II interferon pathways (*STAT1*, *IRF9*, *IGS15*, *GBPI*, *e.g.*)
345 (Supplementary Fig. 7d and Supplementary Table 6).

346 All together, we conclude that MS5_Fs12-containing organoids provide a unique scaffold for
347 the specification and commitment of the DC lineage. This unique and versatile system
348 bypasses the limitation of *in vitro* cultures, which generated inefficiently pre/AS-DCs and
349 biased the differentiation of cDC2s toward an activated phenotype. Collectively, MS5_Fs12
350 organoids faithfully recapitulate the differentiation of DCs with an unattained level of
351 similarity to human blood DCs, especially blood cDC2s.

352

353 **cDC2 generated *in vitro* and *in vivo* recapitulate functional features ascribed to blood
354 cDC2**

355 In the last set of experiments, we aimed at functionally validate cord blood-derived cDC
356 generated in the MS5_Fs12 stromal niche. Moreover, we also assessed whether the
357 phenotypic differences observed in cDC2 generated *in vitro* and *in vivo* may impact their
358 function.

359 We first confirmed *in vitro* the responsiveness of cord blood-derived cDC2 to TLR agonists
360 expressed in human circulating cDC2, as demonstrated by the up-regulation of maturation
361 markers (i.e. HLA-DR, CD86 and CD83) in response to TLR4 (LPS) and TLR8 (VTX)
362 stimulation (Fig. 8a). We then performed a mixed leukocyte reaction (MLR) by co-culturing
363 CTV-labeled allogeneic naïve T cells together with FACS-sorted cDC subsets
364 (Supplementary Fig. 8a) activated overnight with a TLR agonists cocktail comprising of LPS
365 (TLR4), R848 (TLR7/8) and Poly(I:C) (TLR3). After 7 days of culture, we observed that

366 both *in vitro* and *in vivo* generated cDC2 and pre/AS-DC were capable to efficiently induce
367 CD4⁺ naïve T cells proliferation (Fig. 8b), as expected and reported for circulating blood
368 cDC2^{12, 21} (Supplementary Fig. 8b). Conversely, pDC were significantly less effective on
369 triggering T cells activation, as shown by the consistent reduction in the frequency of
370 dividing CD4⁺ T cells when compared to cDC2 and pre/AS-DC (Fig. 8b).

371 Importantly, only cDC2 were able to produce high amounts of T cell-polarizing cytokines in
372 response to TLR stimulation, as demonstrated by intracellular TNF α and IL-12 detection by
373 flow cytometry (Fig. 8c). All these features demonstrate that cDC2s, pDCs and pre/AS-DCs
374 functionally align to their *in vivo* counterparts as previously described in the literature^{12, 21}.

375 Collectively, our data suggest that: *i*) both *in vitro* and *in vivo* differentiated cDC2 are equally
376 capable to induce CD4⁺ T cells activation as well as produce large amounts of TNF- α and IL-
377 12; *ii*) pre/AS-DC are as efficient as cDC2 in activating allogeneic naïve CD4⁺ T cells *in*
378 *vitro*, a distinctive feature that clearly separate them from the pDC lineage; *iii*) despite their
379 ability to induce CD4⁺ T cell proliferation in MLR settings, pre/AS-DC do not produce high
380 levels of cytokines commonly associated with cDC2 function, such as TNF- α or IL-12.

381

382 Discussion

383 Over the last two decades, DC-based strategies have been proposed for the therapeutic
384 vaccination against cancer, including (i) non-targeted protein-based vaccines captured by
385 DCs *in vivo*, (ii) specific targeting of DC subsets with mAb coupled to tumor antigens⁶⁷ and
386 (iii) antigen loading of *ex vivo* generated dendritic cells³. In this context, experimental
387 models recapitulating the development of human DC subsets are crucially needed.

388 Here we describe a novel approach to model human DC development from CD34⁺ HSPCs
389 both *in vitro* and *in vivo*. To this end, we primarily focused on the physiological niches where
390 human DCs differentiate and maintain: a central bone marrow niche where DC progenitors
391 are specified and peripheral niches in the lymph nodes where DCs reside.

392 Previous studies have shown that the cell-to-cell interaction with membrane-bound factors
393 expressed by the niche microenvironment plays an essential role in HSPCs maintenance and
394 expansion^{22, 23, 68, 69}. Alternative splicing of human and murine SCF transcript results in the
395 synthesis of both a soluble and a membrane-bound non-cleavable form of the protein.

396 Interestingly, the secreted form of SCF/KITLG is not sufficient for the establishment of a
397 functional niche in murine bone marrow^{22, 23} whereas the expression of human membrane-
398 bound SCF is sufficient to support human myeloid development in humanized mice⁶⁹. We
399 therefore wanted to test whether a similar relationship might exist between the soluble and
400 membrane-bound forms of human FLT3L. Consistent with this hypothesis, the expression of
401 transmembrane FLT3L in mesenchymal stromal cells (MS5_F) improved the efficiency of
402 DC differentiation *in vitro*, as compared to its soluble form (MS5+recFL). Moreover, the
403 engraftment of distal organoids (MS5_CTRL vs MS5_FS12) together with the comparison of
404 local (membrane bound) vs systemic (soluble) delivery of human FLT3L *in vivo*, supported
405 the notion that cell-associated FLT3L delivered by engineered stromal cells significantly

406 improves the development of human DCs in NSG mice.

407 Several protocols have been proposed for the *in vitro* differentiation of human cDCs from

408 CD34⁺ HSPCs^{7, 38-40, 48, 49}. *In vitro* differentiated cDC1s have been shown to fully

409 recapitulate both the phenotype and function of circulating *bona fide* blood cDC1s^{8, 39, 48, 49}

410 including high levels of IRF8 expression and Batf3-dependency *in vitro*¹³, as well as IRF8-

411 dependancy both *in vivo*⁷⁰ and *in vitro*⁴⁸. Conversely, several aspects have limited an

412 exhaustive validation of *in vitro* generated CD1c⁺ cDC2-like cells such as the expression of

413 CD14⁷, the transcriptional alignment with monocyte-derived DCs (moDCs)³⁹ or the lack of

414 a high-dimensional phenotypic characterization^{48, 49}.

415 Here we described a new system (MS5_FSI2), which efficiently supports the differentiation

416 of both CD141⁺Clec9A⁺ cDC1s and CD14⁻CD1c⁺ cDC2s. However, cDC2s generated in

417 MS5_FSI2 cultures only partially recapitulate the phenotype of circulating blood cDC2s, as

418 suggested by the lack of expression of cDC2-specific markers such as Fc ϵ RIa and CD5.

419 Nevertheless, engineered MSCs display the unique advantage of being suitable for *in vivo*

420 applications.

421 Immunodeficient mice provide a unique system to model the onset of human immune

422 responses in realistic settings⁷¹. However, a reliable method to achieve the differentiation of

423 human DCs *in vivo* has not been described, yet. Current protocols rely on the engraftment of

424 human CD34⁺ HSPCs in sub-lethally irradiated immunodeficient mice (humanized mice).

425 This strategy has not been successful in the generation of well-characterized circulating DC

426 subsets⁷¹. Administration of supraphysiological levels of recombinant FLT3L has been

427 shown to stimulate cDC differentiation upon reconstitution of NSG^{29, 50} or *Flt3*^{-/-} BRGS⁵¹

428 mice with human CD34⁺ HSPCs. However, the phenotype of CD141⁺ cDC1s and CD1c⁺

429 cDC2s was poorly characterized and, despite exceptions⁵², tissue DCs were not generally

430 investigated. These aspects represent an important limitation by precluding, for instance, the

431 modeling of skin vaccination. Alternatively, transgenic mice expressing human GM-CSF and
432 IL-3 (in the presence or absence of human SCF), either constitutively^{72, 73} or by replacing
433 their murine counterparts (knock-in)⁷⁴, have been generated. Despite displaying higher levels
434 of myeloid reconstitution, as well as the presence of human alveolar macrophages in the
435 lungs of humanized mice⁷⁴, this approach did not improve the development of human cDCs
436 in lymphoid and non-lymphoid tissues of engrafted animals.

437 We demonstrated that MS5_Fs12 support the differentiation of human cDCs *in vivo* in
438 subcutaneous organoids in NSG mice. High-dimensional mass cytometry (Cytof) and
439 transcriptomic (RNA-seq) analysis of *in vivo* generated cells confirmed their phenotypic and
440 transcriptional alignment to circulating blood cDC1s and cDC2s. More importantly, cDC2s
441 generated *in vivo* better resemble their physiologically circulating counterparts by expressing
442 higher levels of Fc ϵ RIa, CD172a, CD5, CD2 and BTLA when compared to *in vitro*
443 differentiated cells. The lower expression of activation markers such as CD86, CD80 and
444 MHC molecules also suggests that *in vivo* cDC2s displayed a less mature phenotype than *in*
445 *vitro* generated cells.

446 Moreover, MS5_Fs12 niche was capable of supporting the local maintenance and expansion
447 of human HSPCs as well as pre/AS-DCs, resulting in the persistence of a long-lasting source
448 of progenitors capable of undergoing DC differentiation. To our knowledge, this is the first
449 time that a well-characterized system supporting the development of human pre/AS-DC is
450 reported.

451 Collectively, we have demonstrated that the engineered stromal cells MS5_Fs12 give rise to
452 a synthetic hematopoietic niche when injected subcutaneously in NSG mice. The niche
453 microenvironment efficiently supports the expansion of CD34 $^{+}$ HSPCs, and human DCs
454 subsets (cDC1, cDC2 and pre/AS-DC) can be detected as early as day 12 in a radiation-free
455 environment. Importantly, *in vitro* culture system imposes a certain level of spontaneous

456 activation that is not found in primary circulating blood DCs. Differentiation of human cDCs
457 within humanized mice limit this phenomenon and make cDCs more similar to circulating
458 primary cDCs. Hence, this approach represents a versatile system to study human DC
459 development and function *in vivo*.

460 **Methods**

461 **Mice**

462 All *in vivo* experiments were performed using NOD.Cg-*Prdc*^{scid} *Il2rg*^{tm1Wjl}/SzJ (NSG) mice
463 (JAX #005557). All mice were used between 8 and 12 weeks of age. They were maintained
464 in specific-pathogen-free conditions and handled according to protocols approved by the UK
465 Home Office.

466 **Generation of engineered MSCs**

467 Human FLT3L, SCF and TPO were amplified by PCR from cDNA expression plasmids
468 (Origene) and cloned into pMX retroviral vectors (vectors details in Supplementary Table 1).
469 Lentiviral vector pBABE-puro-SDF-1 alpha was a gift from Bob Weinberg (Addgene
470 plasmid #12270)⁷⁵. Viral particles were generated using the retroviral packaging plasmid
471 pCL-Ampho and a second generation lentiviral packaging system (psPAX2 and pMD2.G),
472 respectively. MS5 cells were first transduced with CXCL12 lentiviral vector and selected
473 using 15 µg/ml of Puromycin (Thermo Fisher). Then, a combination of single or multiple
474 cytokines were used to transduce MS5 cells as illustrated in Supplementary Fig. 2a. Cells
475 expressing human membrane bound FLT3L and SCF were sorted according to antibody
476 staining of the transmembrane proteins (antibodies listed in Supplementary Table 2). TPO-
477 expressing cells were sorted according to the expression of mCherry reporter.

478 **Flow cytometry and fluorescent-activated cell sorting (FACS)**

479 Extracellular staining of cells was performed in FACS buffer, consisting in PBS (Life
480 Technologies), 1% BSA (Apollo Scientific) and 2 mM EDTA (Life Technologies). For
481 intracellular staining, samples were fixed and permeabilized using the Cytofix/CytopermTM
482 kit (BD Biosciences) according to manufacturers' instructions. Antibodies used in all
483 experiments are listed in Supplementary Table 2. Flow cytometry analysis was performed on

484 LSR Fortessa II (BD Biosciences, BD Diva Software) and data were analyzed using FlowJo
485 software (TreeStar, version 10.2). Cell sorting was performed using AriaII (BD Biosciences,
486 BD Diva Software).

487 **Cell lines maintenance and primary cells isolation**

488 MS5⁵³ and engineered mesenchymal stromal cell (eMSC) lines were cultured in IMDM (Life
489 Technologies) supplemented with 10% heat-inactivated FBS (Life Technologies),
490 penicillin/streptomycin (Life Technologies), 50 µM β-mercaptoethanol (Life Technologies)
491 and maintained at 37°C 5%CO₂. OP9 and OP9_FLT3L were cultured in complete α-MEM
492 (Life Technologies) supplemented with 20% not heat-inactivated FBS,

493 penicillin/streptomycin, 50 µM β-mercaptoethanol and maintained at 37°C 5%CO₂.

494 Cord blood units were obtained from Anthony Nolan Cell Therapy Centre (ANCTC).

495 Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifugation using
496 Ficoll-Paque (GE Healthcare) and CD34⁺ hematopoietic progenitors were isolated using
497 CD34 MicroBead Kit UltraPure (Miltenyi Biotec).

498 Adult peripheral blood was obtained from healthy volunteers from NHS Blood and
499 Transplant. PBMCs were isolated by Ficoll-Paque gradient centrifugation. Cells were
500 collected in FACS buffer and used for downstream applications.

501 **Human dendritic cell differentiation *in vitro***

502 For *in vitro* differentiation of human DCs, MS5, OP9 or eMSCs were seeded in a 96-well
503 plate (flat bottom) at a density of 10⁴ cells/well. The following day, 10⁴ cord blood-derived
504 CD34⁺ cells/well were seeded on top of stromal cells in complete IMDM (10% heat-
505 inactivated FBS, penicillin/streptomycin, 50 µM β-mercaptoethanol) and maintained at 37°C
506 5% CO₂. Half of the medium was replaced at day 5 and 10, and cells were collected with a
507 solution of PBS 5 mM EDTA (at 4°C) at day 15 for flow cytometry analysis. For

508 recombinant FLT3L experiments, human FLT3L (Celldex) 100 ng/ml was used. For
509 transwell experiments, 24-well plates with 0.4 μ m pores Transwell® inserts (Corning) were
510 used. Stromal cells were plated at a density of 10^5 cells/well and 7×10^4 cord blood-derived
511 CD34 $^+$ progenitors were added the following day in each well. Half of the medium was
512 replaced in both the top and bottom well at day 5 and 10. For GM-CSF blocking experiments,
513 2 μ g/ml human GM-CSF neutralizing antibody (R&D cat. #AF-215-SP) and isotype control
514 (R&D cat. #AB-108-C) were added to the culture medium. The presence of human GM-CSF
515 in the supernatant of eMSCs co-cultures with CD34 $^+$ HSPCs was assessed by enzyme-linked
516 immunosorbent assay (ELISA) using the human GM-CSF ELISA MAX kit (Biologen) as
517 per manufacturer's instructions.

518 **RNA sequencing and data processing**

519 RNA sequencing analysis was performed in two independent experiments.
520 In the first experiment, human cDC1s and cDC2s from peripheral blood of n=3 healthy
521 individuals and *in vitro* generated CD141 $^+$ Clec9A $^+$, CD14 $^-$ CD1c $^+$ CD206 $^-$ and CD14 $^-$
522 CD1c $^+$ CD206 $^+$ cells from n=3 independent cord blood donors were FACS sorted. Up to 100
523 cells/subset were collected in lysis buffer (Takara Clontech) containing RNase inhibitors.
524 RNAseq libraries were prepared using Labcyte Echo 525 contactless liquid handling system
525 (Labcyte Inc). In brief, ERCC mix (Thermo Fisher) was added to each sample and first strand
526 full length cDNA was generated with a modified protocol of the SMARTseq v4 Ultra Low
527 Input RNA Kit (Takara Clontech) using poly dT primers and a template switching oligo. Full
528 length cDNA was amplified using SeqAmp™ DNA Polymerase (Takara Clontech). 12 ng of
529 amplified cDNA from each sample was used to generate non-stranded RNA libraries using a
530 modified protocol of the Ovation Ultralow System V2 1-96 kit (NuGEN). In brief, amplified
531 cDNA was fragmented through sonication on Covaris E220 (Covaris Inc), repaired and
532 polished followed by ligation of indexed adapters. Adapter ligated cDNA were pooled before

533 final amplification to add flow cell primers. Libraries were sequenced on HiSeq2500
534 (Illumina Cambridge) for 100 cycles PE in Rapid mode. The raw sequencing data was
535 initially processed using open source, web-based platform Galaxy (version 18.05.rc1)
536 (<https://usegalaxy.org>). Reads were filtered for quality with more than 80% of the sequence
537 having quality score > 33 using FastQC tool. Mapping against reference genome was
538 performed with Hisat2 to the hg38 human genome. Adapter sequences were detected
539 automatically with TrimGalore!. Reads under 20bp were discarded. All processed sequencing
540 files were imported in Partek® Flow® software (Partek Inc., build 7.0.18.0514) and the gene
541 count data was normalised using FPKM.

542 In the second experiment, human CD5⁻ cDC2, CD5⁺ cDC2, pDC and pre/AS-DC from
543 peripheral blood of n=3 healthy individuals and cDC2, pDC and pre/AS-DC generated both
544 *in vivo* and *in vitro* from n=2/3 independent cord blood donors were FACS sorted. Between
545 100 and 1000 cells/subset were collected in TRIzol® (Thermo Fisher) and stored at -80°C.
546 Frozen samples were shipped to GENEWIZ® where they were processed. RNA was extracted
547 and libraries were prepared using an ultra-low input RNA library preparation kit (Illumina).
548 Libraries were sequenced on HiSeq2500 (Illumina).

549 The raw sequencing data was initially aligned on the human reference genome hg38 using
550 STAR aligner (v2.5.3a)⁷⁶. Raw read counts matrix was made by STAR (with the option –
551 *quantMode GeneCounts*).

552

553 **RNA sequencing analysis**

554 The average gene expression of n=3 blood donors for cDC1s, n=2 blood donors for cDC2 and
555 n=3 cord blood units for *in vitro* generated subsets were used for RNA-seq data analysis.
556 Hierarchical clustering was performed in Morpheus (Broad Institute,

557 https://software.broadinstitute.org/morpheus/) using one minus Pearson's correlation and
558 average linkage.

559 Gene set enrichment analysis (GSEA) (www.broad.mit.edu/gsea)⁶⁰ was used to assess the
560 expression of gene signatures specific for blood cDC1, cDC2, DC3, pDC and AS-DC in *in*
561 *vitro* and *in vivo* generated subsets. To simultaneously visualize pairwise comparisons of
562 transcriptomes from cord blood-derived cDCs, the BubbleMap module of BubbleGum⁶² was
563 used. Results were considered significant when the p value was below 0.05 and the FDR
564 (false discovery rate, q) value was below 0.25. The GSEA was performed using previously
565 published gene signatures defining blood cDC1, cDC2, DC3, pDC and AS-DC²¹ as well as
566 newly generated signatures using the GeneSign module of BubbleMap⁶² (Supplementary
567 Table 4). Briefly, the transcriptome of blood cDC1s and blood CD1c⁺ cells was taken from
568 previously published data sets⁶³. cDC1>CD1c⁺ and CD1c⁺>cDC1 signatures were defined
569 using the “Min(test) vs Max(ref)” statistical method with a minimal linear fold change = 2
570 and a maximal FDR = 0.01.

571 Heatmaps displaying the expression pattern of gene signatures for cDC1, CD1c+ cells, pDC,
572 AS-DC and cDC2 were generated using Morpheus (Broad Institute,
573 <https://software.broadinstitute.org/morpheus/>).

574 The 2000 genes defining the “*in vitro* culture imprinting” were identified using Morpheus as
575 the mean difference of expression values between two groups: the *in vitro* generated cells
576 (including cDC1, cDC2 CD206⁻ and cDC2 CD206⁺) versus *ex vivo*-isolated subsets (blood
577 cDC1 and blood cDC2).

578 The 2872 genes defining the “*in vivo* signature” were identified by DEG analysis using the R
579 package DESeq2 (version 1.24.0)⁷⁷ with a Benjamin-Hochberg p-value correction⁷⁸
580 (Log2FC>1.5, adjusted p-value<0.01). The volcano plot displaying the differentially

581 expressed genes between *in vivo* and *in vitro* differentiated cDC2 was generated using R
582 package ggplot2 (version 3.2.1)⁷⁹ (Log2FC>1.5, adjusted p-value<0.05). All the analysis
583 from the raw counts matrix were performed in Rstudio (1.2.5001) using the version 3.6.1 of
584 R. Pathway analysis was performed using ConsensusPathDB (cpdb.molgen.mpg.de) ⁸⁰ and
585 WikiPathways database.

586 **Mass cytometry staining, barcoding, acquisition and data analysis**

587 For mass cytometry, pre-conjugated or purified antibodies were obtained from Invitrogen,
588 Fluidigm (pre-conjugated antibodies), Biolegend, eBioscience, Becton Dickinson or R&D
589 Systems as listed in Supplementary Table 3. For some markers, fluorophore- or biotin-
590 conjugated antibodies were used as primary antibodies, followed by secondary labeling with
591 anti-fluorophore metal-conjugated antibodies (such as the anti-FITC clone FIT-22) or metal-
592 conjugated streptavidin, produced as previously described ⁸¹. Briefly, 3x10⁶ cells/well in a U-
593 bottom 96 well plate (BD Falcon) were washed once with 200 µL FACS buffer (4% FBS,
594 2mM EDTA, 0.05% Azide in 1X PBS) and then stained with 100 µL 200 µM cisplatin
595 (Sigma-Aldrich) for 5 min on ice to exclude dead cells. Cells were then incubated with anti-
596 CADM1-biotin antibody in a 50 µL reaction for 30 min on ice. Cells were washed twice with
597 FACS buffer and incubated with 50 µL heavy-metal isotope-conjugated secondary mAb
598 cocktail for 30 min on ice. Cells were then washed twice with FACS buffer and once with
599 PBS before fixation with 200 µL 2% paraformaldehyde (PFA; Electron Microscopy
600 Sciences) in PBS overnight or longer. Following fixation, the cells were pelleted and
601 resuspended in 200 µL 1X permeabilization buffer (Biolegend) for 5 minutes at room
602 temperature to enable intracellular labeling. Cells were then incubated with metal-conjugated
603 anti-CD68 in a 50 µL reaction for 30 min on ice. Finally, the cells were washed once with
604 permeabilization buffer and then with PBS before barcoding.

605 Bromoacetamidobenzyl-EDTA (BABE)-linked metal barcodes were prepared by dissolving
606 BABE (Dojindo) in 100mM HEPES buffer (Gibco) to a final concentration of 2 mM.
607 Isotopically-purified PdCl₂ (Trace Sciences Inc.) was then added to the 2 mM BABE solution
608 to a final concentration of 0.5 mM. Similarly, DOTA-maleimide (DM)-linked metal barcodes
609 were prepared by dissolving DM (Macrocyclics) in L buffer (MAXPAR) to a final
610 concentration of 1 mM. RhCl₃ (Sigma) and isotopically-purified LnCl₃ was then added to the
611 DM solution at 0.5 mM final concentration. Six metal barcodes were used: BABE-Pd-102,
612 BABE-Pd-104, BABE-Pd-106, BABE-Pd-108, BABE-Pd-110 and DM-Ln-113.
613 All BABE and DM-metal solution mixtures were immediately snap-frozen in liquid nitrogen
614 and stored at -80°C. A unique dual combination of barcodes was chosen to stain each sample.
615 Barcode Pd-102 was used at 1:4000 dilution, Pd-104 at 1:2000, Pd-106 and Pd-108 at 1:1000,
616 Pd-110 and Ln-113 at 1:500. Cells were incubated with 100 µL barcode in PBS for 30 min on
617 ice, washed in permeabilization buffer and then incubated in FACS buffer for 10 min on ice.
618 Cells were then pelleted and resuspended in 100 µL nucleic acid Ir-Intercalator (MAXPAR)
619 in 2% PFA/PBS (1:2000), at room temperature. After 20 min, cells were washed twice with
620 FACS buffer and twice with water before a final resuspension in water. In each set, the cells
621 were pooled from all samples, counted, and diluted to 0.5x10⁶ cells/mL. EQ Four Element
622 Calibration Beads (DVS Science, Fluidigm) were added at a 1% concentration prior to
623 acquisition. Cell data were acquired and analyzed using a CyTOF Mass cytometer
624 (Fluidigm).
625 The CyTOF data were exported in a conventional flow-cytometry file (.fcs) format and
626 normalized using previously-described software ⁸². Events with zero values were randomly
627 assigned a value between 0 and -1 using a custom R script employed in a previous version of
628 mass cytometry software ⁸³. Cells for each barcode were deconvolved using the Boolean
629 gating algorithm within FlowJo. The CD45⁺Lin (CD7/CD14/CD15/CD16/CD19/CD34)⁻

630 HLA-DR⁺ population of PBMC were gated using FlowJo and exported as an .fcs file. Marker
631 expression values were transformed using the logicle transformation function ⁸⁴. Random
632 sub-sampling without replacement was performed to select 20,000 cell events.

633 The transformed values of sub-sampled cell events were then subjected to Uniform Manifold
634 Approximation and Projection (UMAP) dimension reduction ^{64, 85} using all markers. We used
635 the 2.4.0 release of UMAP, implemented in Python, but executed through the reticulate R
636 package to interface R objects with Python. For both mass-cytometry datasets we used
637 UMAP using 15 nearest neighbors (*nn*), a *min_dist* of 0.2 and euclidean distance.

638 Heatmaps displaying mean intensity values of CyTOF data were generated using Morpheus
639 (Broad Institute, <https://software.broadinstitute.org/morpheus/>).

640 **Human dendritic cell differentiation *in vivo***

641 Human cord blood-derived CD34⁺ hematopoietic cells (5-15x10⁴ cells/plug) were injected
642 subcutaneously along with engineered stromal cells (1:1 to 1:5 ratio HSPC/MS5) in 200 µl of
643 ice-cold Matrigel® (BD Biosciences). Mice were sacrificed at day 12 of differentiation by
644 cervical dislocation and Matrigel® plugs were collected. Subcutaneous Matrigel® plugs were
645 recovered, cut in pieces and incubated in HBSS (Life Technologies) 1% FBS, 0.37 U/ml
646 Collagenase D (Roche), 10 µg/ml DNaseI (Roche) and 1 mg/ml Dispase (Sigma-Aldrich) for
647 30 minutes at 37°C. After digestion, plugs were smashed on a 100 µm strainer (Corning) and
648 cells were collected and resuspended in FACS buffer for flow cytometry analysis.

649 **Histology**

650 Matrigel plugs were fixed with 1% PFA (Alfa Aesar) for 1hr at 4°C, washed and incubated in
651 34% sucrose solution (Sigma-Aldrich) overnight at 4°C. Plugs were embedded in Cryomatrix
652 (Thermo Fischer) and frozen for cryostat sectioning (9 µm-thick). Sections were
653 permeabilized using 0.5% saponin (Sigma-Aldrich), 2% BSA (Sigma-Aldrich), 1% FBS

654 (Life Technologies) for 30 minutes at room temperature. For human DCs staining, plug
655 sections were incubated with 1% rat anti-mouse CD16/32 (homemade) for 30 minutes to
656 block unspecific binding sites. Sections were labeled overnight at 4°C with mouse anti-
657 human CD1c-PE (L161, Biolegend) or mouse anti-human Clec9A-PE (8F9, Biolegend)
658 followed by incubation for 1hr at room temperature with goat anti-mouse Cy3 (Jackson
659 laboratory). After extensive washes, sections were labeled with mouse anti-human CD45-
660 APC (HI30, Biolegend) for 1hr at room temperature. For human CD34⁺ progenitors staining,
661 plugs sections were labeled overnight with purified mouse anti-human CD45 (HI30,
662 Biolegend) followed by 1hr incubation at room temperature with goat anti-mouse Cy3. After
663 extensive washes, sections were labeled with mouse anti-human CD34-APC (561,
664 Biolegend) for 1hr at room temperature. To detect murine endothelial cells, sections were
665 labeled with purified rat anti-mouse CD31 (MEC13.3, Biolegend) and mouse anti-human
666 CD45 (HI30, Biolegend) overnight followed by 1hr incubation at room temperature with goat
667 anti-mouse Cy3 (Jackson laboratory) and goat anti-rat Cy5 (Jackson laboratory). All sections
668 were labeled with Hoechst (Molecular Probes, Thermo Fisher) for nuclei staining 5 minutes
669 at room temperature and mounted with Prolong diamond (Thermo scientific). Slides were
670 imaged using a SP5 (Leica) and analyzed with Fiji software.

671 **Mixed lymphocyte reaction (MLR)**

672 Cord blood-derived DC subsets differentiated in vitro and in vivo were FACS-sorted into a V
673 bottom 96-well plate (Corning) (10⁴ cells/well) and activated overnight (16 hours) using a
674 TLR agonists cocktail containing LPS 10ng/ml, R848 1μg/ml and Poly(I:C) 25μg/ml.

675 Peripheral blood mononuclear cells (PBMC) were isolated by gradient centrifugation using
676 Ficoll-Paque (GE Healthcare) and labeled with Cell Trace Violet (Thermo Fisher) according
677 to manufacturer's user guide. CTV-labeled T cells were then isolated using a Pan naïve T cell
678 isolation kit (Miltenyi Biotec) according to manufacturer's instructions and isolation purity

679 ($\geq 95\%$) was assessed by flow cytometry. Isolated naïve T cells (10^5 cells/well) were seeded
680 together with FACS-sorted DC (1:10 ratio DC/T cells) and incubated at 37°C 5% CO₂ for 7
681 days.

682 **Statistical analysis**

683 In all graphs each dot represents an independent cord blood donor and lines represent the
684 median value. The number of biological as well as experimental replicates is indicated in
685 figure legend. For each experiment, the appropriate statistical test is stated in figure legend.
686 Statistical significance was defined as P < 0.05.

687

688 **Data availability**

689 Data that support the findings of this study have been deposited in Gene Expression Omnibus
690 (GEO) with the accession codes (*available before publication*).

691 **Acknowledgments**

692 PG is a CNRS investigator. The research was supported by the NC3Rs, BBSRC, CRUK,
693 Rosetree Trust and King's Health Partners. Authors are recipient of awards and grants
694 BBSRC-, CRUK-CIPA C57672/A22369, WWCR-18-0422, ANR-18-IDEX-0001, ANR-17-
695 CE11-0001-01. This work was supported by the Institut Curie, Institut National de la Santé et
696 de la Recherche Médicale, Labex DCBIO (ANR-10-IDEX-0001-02 PSL and ANR-11-
697 LABX0043), SIRIC INCa-DGOS-Inserm_12554, ANR JCJC (ANR-17-CE15-0004). We
698 thank Dr Michael Ridley for assisting in RNA-seq analysis and Emily Hanton and Beth
699 Ormrod for their technical help in performing experiments. We also want to thank Anthony
700 Nolan Cord Blood Bank and Cell Therapy Centre for providing the cord blood units used in
701 this study. All flow cytometry work was performed within the NIHR Biomedical Research
702 Centre based at Guy's and St. Thomas' NHS Foundation Trust and King's College London.

703

704 **Author contributions**

705 GA, PB and OH performed the experiments. KV and YMK performed the bioinformatics
706 analysis of RNA-seq data. CAD and EN performed CyTOF experiments and analysis. KW
707 and AS performed RNA library preparation and sequencing. JH provided reagents and
708 expertise for *in vitro* cultures. FG provided reagents and expertise for CyTOF analysis. GA
709 and PG designed the experiments and wrote the manuscript. PG conceived and supervised the
710 project.

711

712 **Competing interests**

713 The authors declare no competing interests.

714 References

- 715 1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. *Nature*
716 **392**, 245-252 (1998).
- 717 2. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. *Annu
718 Rev Immunol* **21**, 685-711 (2003).
- 719 3. Palucka, K. & Banchereau, J. Dendritic-cell-based therapeutic cancer vaccines.
Immunity **39**, 38-48 (2013).
- 720 4. Bachem, A. et al. Superior antigen cross-presentation and XCR1 expression define
721 human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. *J Exp
722 Med* **207**, 1273-1281 (2010).
- 723 5. Crozat, K. et al. The XC chemokine receptor 1 is a conserved selective marker of
724 mammalian cells homologous to mouse CD8alpha+ dendritic cells. *J Exp Med* **207**,
725 1283-1292 (2010).
- 726 6. Jongbloed, S.L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a
727 unique myeloid DC subset that cross-presents necrotic cell antigens. *J Exp Med* **207**,
728 1247-1260 (2010).
- 729 7. Lee, J. et al. Restricted dendritic cell and monocyte progenitors in human cord blood
730 and bone marrow. *J Exp Med* (2015).
- 731 8. Helft, J. et al. Dendritic Cell Lineage Potential in Human Early Hematopoietic
732 Progenitors. *Cell Rep* **20**, 529-537 (2017).
- 733 9. Lee, J. et al. Lineage specification of human dendritic cells is marked by IRF8
734 expression in hematopoietic stem cells and multipotent progenitors. *Nat Immunol* **18**,
735 877-888 (2017).
- 736 10. Breton, G. et al. Circulating precursors of human CD1c+ and CD141+ dendritic cells.
J Exp Med **212**, 401-413 (2015).
- 737 11. Breton, G. et al. Human dendritic cells (DCs) are derived from distinct circulating
738 precursors that are precommitted to become CD1c+ or CD141+ DCs. *J Exp Med* **213**,
739 2861-2870 (2016).
- 740 12. See, P. et al. Mapping the human DC lineage through the integration of high-
741 dimensional techniques. *Science* **356** (2017).
- 742 13. Poulin, L.F. et al. DNLR-1 is a specific and universal marker of mouse and human
743 Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. *Blood* **119**,
744 6052-6062 (2012).
- 745 14. Montoya, M. et al. Type I interferons produced by dendritic cells promote their
746 phenotypic and functional activation. *Blood* **99**, 3263-3271 (2002).
- 747 15. Haniffa, M. et al. Human tissues contain CD141hi cross-presenting dendritic cells
748 with functional homology to mouse CD103+ nonlymphoid dendritic cells. *Immunity*
749 **37**, 60-73 (2012).
- 750 16. Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in
751 human and mouse control mucosal IL-17 cytokine responses. *Immunity* **38**, 970-983
752 (2013).
- 753 17. Tamura, T. et al. IFN regulatory factor-4 and -8 govern dendritic cell subset
754 development and their functional diversity. *J Immunol* **174**, 2573-2581 (2005).
- 755 18. Segura, E. et al. Human inflammatory dendritic cells induce Th17 cell differentiation.
Immunity **38**, 336-348 (2013).
- 756 19. Segura, E. et al. Characterization of resident and migratory dendritic cells in human
757 lymph nodes. *J Exp Med* **209**, 653-660 (2012).

761 20. Grinberg, K., Granot, M., Lowenstein, L., Abramov, L. & Weissman-Fogel, I. A
762 common pronociceptive pain modulation profile typifying subgroups of chronic
763 pelvic pain syndromes is interrelated with enhanced clinical pain. *Pain* **158**, 1021-
764 1029 (2017).

765 21. Villani, A.C. et al. Single-cell RNA-seq reveals new types of human blood dendritic
766 cells, monocytes, and progenitors. *Science* **356** (2017).

767 22. Barker, J.E. Sl/Sld hematopoietic progenitors are deficient in situ. *Exp Hematol* **22**,
768 174-177 (1994).

769 23. Barker, J.E. Early transplantation to a normal microenvironment prevents the
770 development of Steel hematopoietic stem cell defects. *Exp Hematol* **25**, 542-547
771 (1997).

772 24. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for
773 haematopoietic stem-cell maintenance. *Nature* **495**, 227-230 (2013).

774 25. Dar, A. et al. Chemokine receptor CXCR4-dependent internalization and resecretion
775 of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. *Nat
776 Immunol* **6**, 1038-1046 (2005).

777 26. Qian, H. et al. Critical role of thrombopoietin in maintaining adult quiescent
778 hematopoietic stem cells. *Cell Stem Cell* **1**, 671-684 (2007).

779 27. Yoshihara, H. et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell
780 quiescence and interaction with the osteoblastic niche. *Cell Stem Cell* **1**, 685-697
781 (2007).

782 28. Mendelson, A. & Frenette, P.S. Hematopoietic stem cell niche maintenance during
783 homeostasis and regeneration. *Nat Med* **20**, 833-846 (2014).

784 29. Guermonprez, P. et al. Inflammatory Flt3l is essential to mobilize dendritic cells and
785 for T cell responses during Plasmodium infection. *Nat Med* **19**, 730-738 (2013).

786 30. Saito, Y., Boddupalli, C.S., Borsotti, C. & Manz, M.G. Dendritic cell homeostasis is
787 maintained by nonhematopoietic and T-cell-produced Flt3-ligand in steady state and
788 during immune responses. *Eur J Immunol* **43**, 1651-1658 (2013).

789 31. Eidenschenk, C. et al. Flt3 permits survival during infection by rendering dendritic
790 cells competent to activate NK cells. *Proc Natl Acad Sci U S A* **107**, 9759-9764
791 (2010).

792 32. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. *J
793 Exp Med* **206**, 3115-3130 (2009).

794 33. Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting
795 lymph nodes defines immunological hallmarks. *Nat Immunol* **13**, 499-510 (2012).

796 34. Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell
797 development in peripheral lymphoid tissues. *Nat Immunol* **9**, 676-683 (2008).

798 35. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. *Nat
799 Immunol* **8**, 578-583 (2007).

800 36. Caux, C., Dezutter-Dambuyant, C., Schmitt, D. & Banchereau, J. GM-CSF and TNF-
801 alpha cooperate in the generation of dendritic Langerhans cells. *Nature* **360**, 258-261
802 (1992).

803 37. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured
804 human dendritic cells is maintained by granulocyte/macrophage colony-stimulating
805 factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. *J Exp
806 Med* **179**, 1109-1118 (1994).

807 38. Proietto, A.I., Mittag, D., Roberts, A.W., Sprigg, N. & Wu, L. The equivalents of
808 human blood and spleen dendritic cell subtypes can be generated in vitro from human
809 CD34(+) stem cells in the presence of fms-like tyrosine kinase 3 ligand and
810 thrombopoietin. *Cellular & molecular immunology* **9**, 446-454 (2012).

811 39. Balan, S. et al. Human XCR1+ dendritic cells derived in vitro from CD34+
812 progenitors closely resemble blood dendritic cells, including their adjuvant
813 responsiveness, contrary to monocyte-derived dendritic cells. *J Immunol* **193**, 1622-
814 1635 (2014).

815 40. Poulin, L.F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as
816 putative equivalents of mouse CD8alpha+ dendritic cells. *J Exp Med* **207**, 1261-1271
817 (2010).

818 41. Lyman, S.D. et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase
819 receptor: a proliferative factor for primitive hematopoietic cells. *Cell* **75**, 1157-1167
820 (1993).

821 42. Rosnet, O. et al. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the
822 surface of normal and malignant hematopoietic cells. *Leukemia* **10**, 238-248 (1996).

823 43. Skie, M.C., Ebraheim, N.A., Hannum, S.Q. & Podeszwa, D.A. Anatomic
824 considerations for the placement of distraction pins in the talus. *Foot Ankle Int* **15**,
825 221-222 (1994).

826 44. McKenna, H.J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting
827 hematopoietic progenitor cells, dendritic cells, and natural killer cells. *Blood* **95**,
828 3489-3497 (2000).

829 45. Maraskovsky, E. et al. Dramatic increase in the numbers of functionally mature
830 dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations
831 identified. *J Exp Med* **184**, 1953-1962 (1996).

832 46. Pulendran, B. et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize
833 distinct human dendritic cell subsets in vivo. *J Immunol* **165**, 566-572 (2000).

834 47. Onai, N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A. & Manz, M.G. Activation
835 of the Flt3 signal transduction cascade rescues and enhances type I interferon-
836 producing and dendritic cell development. *J Exp Med* **203**, 227-238 (2006).

837 48. Kirkling, M.E. et al. Notch Signaling Facilitates In Vitro Generation of Cross-
838 Presenting Classical Dendritic Cells. *Cell Rep* **23**, 3658-3672 e3656 (2018).

839 49. Balan, S. et al. Large-Scale Human Dendritic Cell Differentiation Revealing Notch-
840 Dependent Lineage Bifurcation and Heterogeneity. *Cell Rep* **24**, 1902-1915 e1906
841 (2018).

842 50. Ding, Y. et al. FLT3-ligand treatment of humanized mice results in the generation of
843 large numbers of CD141+ and CD1c+ dendritic cells in vivo. *J Immunol* **192**, 1982-
844 1989 (2014).

845 51. Li, Y. et al. A novel Flt3-deficient HIS mouse model with selective enhancement of
846 human DC development. *Eur J Immunol* **46**, 1291-1299 (2016).

847 52. Yu, C.I. et al. Human CD1c+ dendritic cells drive the differentiation of CD103+
848 CD8+ mucosal effector T cells via the cytokine TGF-beta. *Immunity* **38**, 818-830
849 (2013).

850 53. Itoh, K. et al. Reproducible establishment of hemopoietic supportive stromal cell lines
851 from murine bone marrow. *Exp Hematol* **17**, 145-153 (1989).

852 54. Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from
853 embryonic stem cells in culture. *Science* **265**, 1098-1101 (1994).

854 55. Ding, L., Saunders, T.L., Enikolopov, G. & Morrison, S.J. Endothelial and
855 perivascular cells maintain haematopoietic stem cells. *Nature* **481**, 457-462 (2012).

856 56. Caux, C. et al. CD34+ hematopoietic progenitors from human cord blood differentiate
857 along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. *J
858 Exp Med* **184**, 695-706 (1996).

859 57. Alcantara-Hernandez, M. et al. High-Dimensional Phenotypic Mapping of Human
860 Dendritic Cells Reveals Interindividual Variation and Tissue Specialization. *Immunity*
861 **47**, 1037-1050 e1036 (2017).

862 58. Xu, Y., Zhan, Y., Lew, A.M., Naik, S.H. & Kershaw, M.H. Differential development
863 of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for
864 inflammation and trafficking. *J Immunol* **179**, 7577-7584 (2007).

865 59. Naik, S.H. et al. Cutting edge: generation of splenic CD8+ and CD8- dendritic cell
866 equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. *J Immunol*
867 **174**, 6592-6597 (2005).

868 60. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for
869 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545-
870 15550 (2005).

871 61. Mootha, V.K. et al. PGC-1alpha-responsive genes involved in oxidative
872 phosphorylation are coordinately downregulated in human diabetes. *Nat Genet* **34**,
873 267-273 (2003).

874 62. Spinelli, L., Carpentier, S., Montanana Sanchis, F., Dalod, M. & Vu Manh, T.P.
875 BubbleGUM: automatic extraction of phenotype molecular signatures and
876 comprehensive visualization of multiple Gene Set Enrichment Analyses. *BMC*
877 *Genomics* **16**, 814 (2015).

878 63. McGovern, N. et al. Human dermal CD14(+) cells are a transient population of
879 monocyte-derived macrophages. *Immunity* **41**, 465-477 (2014).

880 64. Becht, E. et al. Evaluation of UMAP as an alternative to t-SNE for single-cell data.
881 *bioRxiv* (2018).

882 65. Yin, X. et al. Human Blood CD1c+ Dendritic Cells Encompass CD5high and
883 CD5low Subsets That Differ Significantly in Phenotype, Gene Expression, and
884 Functions. *The Journal of Immunology* **198** (2017).

885 66. Dutertre, C.A. et al. Single-Cell Analysis of Human Mononuclear Phagocytes Reveals
886 Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells.
887 *Immunity* **51**, 573-589 e578 (2019).

888 67. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor
889 DEC-205 in the steady state leads to antigen presentation on major histocompatibility
890 complex class I products and peripheral CD8+ T cell tolerance. *J Exp Med* **196**, 1627-
891 1638 (2002).

892 68. Toksoz, D. et al. Support of human hematopoiesis in long-term bone marrow cultures
893 by murine stromal cells selectively expressing the membrane-bound and secreted
894 forms of the human homolog of the steel gene product, stem cell factor. *Proc Natl*
895 *Acad Sci U S A* **89**, 7350-7354 (1992).

896 69. Takagi, S. et al. Membrane-bound human SCF/KL promotes in vivo human
897 hematopoietic engraftment and myeloid differentiation. *Blood* **119**, 2768-2777 (2012).

898 70. Kong, X.F. et al. Disruption of an antimycobacterial circuit between dendritic and
899 helper T cells in human SPPL2a deficiency. *Nat Immunol* **19**, 973-985 (2018).

900 71. Rongvaux, A. et al. Development and function of human innate immune cells in a
901 humanized mouse model. *Nat Biotechnol* **32**, 364-372 (2014).

902 72. Nicolini, F.E., Cashman, J.D., Hogge, D.E., Humphries, R.K. & Eaves, C.J.
903 NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor
904 constitutively mobilize engrafted human progenitors and compromise human stem
905 cell regeneration. *Leukemia* **18**, 341-347 (2004).

906 73. Ito, R. et al. Establishment of a human allergy model using human IL-3/GM-CSF-
907 transgenic NOG mice. *J Immunol* **191**, 2890-2899 (2013).

908 74. Willinger, T. et al. Human IL-3/GM-CSF knock-in mice support human alveolar
909 macrophage development and human immune responses in the lung. *Proc Natl Acad
910 Sci U S A* **108**, 2390-2395 (2011).

911 75. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas
912 promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion.
913 *Cell* **121**, 335-348 (2005).

914 76. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21
915 (2013).

916 77. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and
917 dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

918 78. Benjamini, Y. Controlling the False Discovery Rate: A Practical and Powerful
919 Approach to Multiple Testing. *Journal of the Royal Statistical Society: : Series B
920 (Methodological)* (1995).

921 79. Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. *Springer Science &
922 Business Media* (2009).

923 80. Kamburov, A., Wierling, C., Lehrach, H. & Herwig, R. ConsensusPathDB--a
924 database for integrating human functional interaction networks. *Nucleic Acids Res* **37**,
925 D623-628 (2009).

926 81. Becher, B. et al. High-dimensional analysis of the murine myeloid cell system. *Nat
927 Immunol* **15**, 1181-1189 (2014).

928 82. Finck, R. et al. Normalization of mass cytometry data with bead standards. *Cytometry
929 A* **83**, 483-494 (2013).

930 83. Newell, E.W., Sigal, N., Bendall, S.C., Nolan, G.P. & Davis, M.M. Cytometry by
931 time-of-flight shows combinatorial cytokine expression and virus-specific cell niches
932 within a continuum of CD8+ T cell phenotypes. *Immunity* **36**, 142-152 (2012).

933 84. Parks, D.R., Roederer, M. & Moore, W.A. A new "Logicle" display method avoids
934 deceptive effects of logarithmic scaling for low signals and compensated data.
935 *Cytometry A* **69**, 541-551 (2006).

936 85. McInnes, L. & Healy, J. UMAP: Uniform Manifold Approximation and Projection for
937 Dimension Reduction. (2018).

938

939 **Figure Legends**

940 **Figure 1. Stromal membrane bound FLT3L efficiently supports human DC**
941 **differentiation from CD34⁺ HSPCs**

942 (a) Expression of membrane bound FLT3L in mouse bone marrow-derived stromal cells
943 engineered to express human FLT3L (MS5_F) and control (MS5_CTRL).
944 (b) Human cDC subsets differentiated *in vitro* from CD34⁺ cord blood-derived HSPCs
945 cultured with MS5 expressing membrane bound FLT3L (MS5_F) or MS5 supplemented with
946 recombinant human FLT3L (MS5+recFL) at day 15 (n=3 donors in one experiment. Line
947 represents median; * p<0.05, ** p<0.01, *** p<0.001, one-way ANOVA test).
948 (c) Representative flow cytometry plots and quantification of human cDC subsets
949 differentiated *in vitro* from cord blood-derived CD34⁺ progenitors in culture with mouse
950 stromal cell lines MS5 and OP9 expressing human FLT3L (MS5_F and OP9_F) at day 15
951 (n=4 donors in one experiment. Line represents median; * p<0.05, one-way ANOVA test).
952 (d) Absolute number and frequency of CD141⁺Clec9A⁺ and CD14⁻CD1c⁺ human cDCs
953 differentiated from CD34⁺ HSPCs in direct contact (lower well) or physically separated
954 (upper well) from engineered MS5_F. DC differentiation was assessed at day 15 by flow
955 cytometry (n=6 donors in 3 independent experiments. Line represents median; * p<0.05, two-
956 tailed paired Student t test).

957 **Figure 2. Stromal membrane bound SCF and CXCL12 improve the FLT3L-driven**
958 **development of human cDC *in vitro***

959 (a) Representative FACS plots and absolute number of CD141⁺Clec9A⁺, CD1c⁺CD206⁻ and
960 CD1c⁺CD206⁺ cells generated from CD34⁺ HSPCs cultured with MS5 expressing human
961 FLT3L (MS5_F) in combination with human SCF (S), TPO (T) and CXCL12 (12). Day15
962 flow cytometry analysis of n=3 cord blood donors in 3 independent experiments (line
963 represents median; * p<0.05, one-way ANOVA test).

964 (b) ELISA detecting human GM-CSF in the supernatant of CD34⁺ HSPCs cultured with
965 engineered MS5 expressing human FLT3L, SCF and CXCL12 (MS5_FS12) at day 15 (mean
966 ± SEM of n=2-4 independent experiments).

967 (c) Absolute number of human DC subsets generated *in vitro* from CD34⁺ HSPC using
968 MS5_FS12 stromal cells in the presence of human GM-CSF neutralizing antibody as
969 compared to isotype control (n= 6 independent donors in two experiments. Line represents
970 median).

971 **Figure 3. MS5_Fs12 stromal cells support the development of both pDC and pre/AS-**

972 **DC *in vitro***

973 (a) Representative FACS plots and absolute number of CD123⁺CD303/4⁺ cells generated *in*
974 *vitro* from CD34⁺ HSPCs co-cultured with MS5 expressing human FLT3L (MS5_F) in
975 combination with human SCF (S), TPO (T) and CXCL12 (12). Day15 flow cytometry
976 analysis of n=3 cord blood donors in 3 independent experiments (line represents median; *
977 p<0.05, one-way ANOVA test).

978 (b) Gating strategy used to identify AXL⁻CD327^{lo/-} pDC and AXL⁺CD327⁺ pre/AS-DC
979 within CD123⁺CD45RA⁺ cells generated *in vitro* using MS5_Fs12. Graph illustrates the
980 frequency of each subset in CD45⁺ cells (n=4 cord blood donors).

981 (c) GSEA comparing *in vitro* differentiated pDC and pre/AS-DC using published human
982 pDC and AS-DC gene signatures²¹. (NES=normalized enrichment score; FDR=false
983 detection rate).

984 (d) Intracellular flow cytometry analysis of IFN α production in pDC and pre/AS-DC in
985 response to 16 hours of TLR stimulation (LPS 10ng/ml, R848 1 μ g/ml, Poly(I:C) 25 μ g/ml).
986 Bar graph shows the frequency of IFN α ⁺ cells in each subset with (+ TLR) or without (NT)
987 stimulation (n=4 cord blood donors; line represents median; * p<0.05, one-way ANOVA
988 test).

989

990 **Figure 4. Human DCs generated *in vitro* using MS5_FSI2 align with circulating blood**

991 **DCs**

992 (a) Hierarchical clustering of primary (n=3 healthy donors) versus *in vitro* generated (n=3
993 cord blood donors) cDCs based on 17791 genes after removing the “*in vitro* culture
994 signature” (2000 genes) defined by pairwise comparison of primary versus *in vitro* generated
995 subsets.

996 (b) GSEA using blood cDC1s (DC1>CD1c⁺) and CD1c⁺ cells (CD1c⁺>DC1) signatures
997 generated from published datasets⁶³ as well as previously published signatures of blood
998 cDC1 (DC1>ALL), cDC2 (DC2>ALL) and cDC3 (DC3>ALL)²¹. BubbleMap shows the
999 enrichment of each gene signature in the pairwise comparison of CD141⁺Clec9A⁺,
1000 CD1c⁺CD206⁻ and CD1c⁺CD206⁺ cells generated *in vitro* (NES=normalized enrichment
1001 score; FDR=false detection rate).

1002 (c) Heatmaps of RNA-seq data displaying the expression of the top 50 genes of blood cDC1
1003 and CD1c⁺ cells signatures in CD141⁺Clec9A⁺, CD1c⁺CD206⁻ and CD1c⁺CD206⁺ cells
1004 generated *in vitro*. Genes shared with previously published signatures²¹ are highlighted in
1005 bold.

1006 (d) UMAP (Uniform Manifold Approximation and Projection) plots of CyTOF data from
1007 CD45⁺HLA-DR⁺ cells differentiated *in vitro* using MS5_FSI2 and MS5_CTRL as compared
1008 to cord blood PBMCs. Pie charts indicate the frequency of each subset among the
1009 CD45⁺HLA-DR⁺ cells (mean of n=2 cord blood donors in 2 independent experiments).

1010 (e) Relative expression of selected markers in UMAP plots of CyTOF data from cells
1011 differentiated *in vitro* with MS5_FSI2.

1012 (f) Heat map of markers mean intensity in each subset identified in MS5_FSI2 cultures.

1013 **Figure 5. Subcutaneous engraftment of MS5_FS12 in NSG mice results in the formation of**
1014 **a “synthetic niche” supporting human CD34⁺ progenitor local maintenance,**
1015 **differentiation and expansion**

1016 (a) Experimental strategy for an *in vivo* synthetic niche. Human HSPCs were injected
1017 subcutaneously along with MS5_FS12 in a basement membrane matrix (Matrigel) preparation.

1018 (b) Hematoxylin-eosin staining of subcutaneous organoids at day 12. Arrows show clusters of
1019 Matrigel-embedded cells.

1020 (c) Flow cytometry analysis at day 12 of Matrigel organoids containing either MS5_CTRL or
1021 MS5_FS12 cells. Absolute number and frequency of human CD45⁺ cells recovered are
1022 summarized in bar graphs (n=13 cord blood donors in 6 independent experiments; ** p<0.01,
1023 two-tailed paired Student t test).

1024 (d) Experimental strategy and quantification of human CD45⁺ cells recovered from physically
1025 separated plugs containing either MS5_CTRL or MS5_FS12 cells injected in the same recipient
1026 (n=3 cord blood donors in one experiment; two-tailed paired Student t test).

1027 (e) Immunofluorescence staining of plug sections displaying the interaction of GFP⁺ MS5_FS12
1028 (green) with human CD45⁺ cells (red). Human hematopoietic progenitors were also identified as
1029 CD45⁺ (red) CD34⁺ (blue) cells in MS5_FS12 plugs. Nuclei were stained with Hoechst (blue).
1030 Arrows show interaction of human CD45⁺ leukocytes with GFP⁺ MS5_FS12. The presence of
1031 GFP⁺ stromal cells in Matrigel organoids at day 12 was further confirmed by flow cytometry.

1032 (f) Visualization of mouse CD31⁺ endothelial cells by immunofluorescence. Fixed sections were
1033 stained for human CD45 (green) and mouse CD31 (red). Nuclei were stained with Hoechst
1034 (blue). The presence of mouse CD31⁺ cells was further confirmed by flow cytometry.

1035 **Figure 6. The MS5_Fs12 niche efficiently supports human cDC1, cDC2 and pre/AS-DC**
1036 **development from CD34⁺ HSPCs *in vivo***

1037 (a) Flow cytometry analysis of Matrigel organoids containing either MS5_CTRL or MS5_Fs12
1038 stromal cells. Bar graphs show the frequency of CD141⁺Clec9A⁺ cDC1 and CD1c⁺CD206⁻
1039 cDC2 in total CD45⁺ cells (n=14 donors in 6 independent experiments. Line represents median;
1040 **p<0.01 ****p<0.0001, two-tailed paired Student t test).

1041 (b) Immunofluorescence staining of Matrigel plugs sections confirming the presence of
1042 huCD45⁺ (green) Clec9A⁺ (red) cDC1 and huCD45⁺ (green) CD1c⁺ (red) cDC2 in MS5_Fs12
1043 organoids *in vivo*. Nuclei (blue) were stained with Hoechst.

1044 (c) (*left panel*) Flow cytometry analysis and quantification of CD123⁺CD303/4⁺ cells recovered
1045 from MS5_CTRL and MS5_Fs12 organoids (n=14 donors in 6 independent experiments. Line
1046 represents median; two-tailed paired Student t test). (*middle panel*) Gating strategy used to
1047 identify AXL⁻CD327^{lo/-} pDC and AXL⁺CD327⁺ pre/AS-DC within CD123⁺CD45RA⁺ cells
1048 generated *in vivo* in MS5_Fs12 organoids. Bar graph illustrates the frequency of each subset in
1049 CD123⁺CD45RA⁺ cells (n=3 cord blood donors). (*right panel*) Frequency of pre/AS-DC in total
1050 CD45⁺ cells in MS5_CTRL vs MS5_Fs12 organoids (n=7 donors in 4 independent experiments.
1051 Line represents median; * p<0.05, two-tailed paired Student t test).

1052 (d) GSEA comparing *in vivo* differentiated pDC and pre/AS-DC using published human pDC
1053 and AS-DC gene signatures²¹. (NES=normalized enrichment score; FDR=false detection
1054 rate).

1055 (e) UMAP plots of CyTOF data comparing CD45⁺HLA-DR⁺ cells differentiated *in vivo*
1056 using MS5_Fs12 and MS5_CTRL. Pie charts indicate the frequency of each subset among
1057 the CD45⁺HLA-DR⁺ cells (mean of n=2 cord blood donors in 2 independent experiments).

1058 (f) Frequency of CD141⁺Clec9A⁺ cDC1, CD1c⁺CD206⁻ cDC2, CD123⁺CD45RA⁺AXL-

1059 pDC, CD123+CD45RA+AXL+ pre/AS-DC and total CD123⁺CD45RA⁺ cells recovered from
1060 two physically separated plugs containing either MS5_CTRL or MS5_FS12 injected in the
1061 same recipient (n=3 cord blood donors in one experiment; line represents median; * p<0.05,
1062 two-tailed paired Student t test).

1063 (g) To assess the local versus systemic effect of MS5_FS12 niche, NSG mice were injected
1064 subcutaneously either with MS5_CTRL or MS5_FS12 stromal cells. Human recombinant
1065 FLT3L was administered intra-peritoneum to mice bearing MS5_CTRL plugs at day 0, 4 and
1066 8 (10ug/mouse/injection) (MS5_CTRL+recFL). Frequency of *in vivo* differentiated human
1067 cDC1, cDC2 and pDC detected in subcutaneous organoid (left) and murine cDC1, cDC2 and
1068 pDC detected in the spleen (center) were reported. The levels of human recombinant FLT3L
1069 in the serum were measured by ELISA (right). Mean ± SEM of n=4 mice/group in 2
1070 independent experiments. * p<0.05, **p<0.01, one-way ANOVA test.

1071 (h) Frequency of *in vivo* differentiated cell subsets among the total huCD45⁺ cells recovered
1072 from MS5_FS12 plugs at day 12 (line represents median).

1073 **Figure 7. *In vitro* generated cDC2s more faithfully recapitulate the phenotype of human**
1074 **circulating cDC2s**

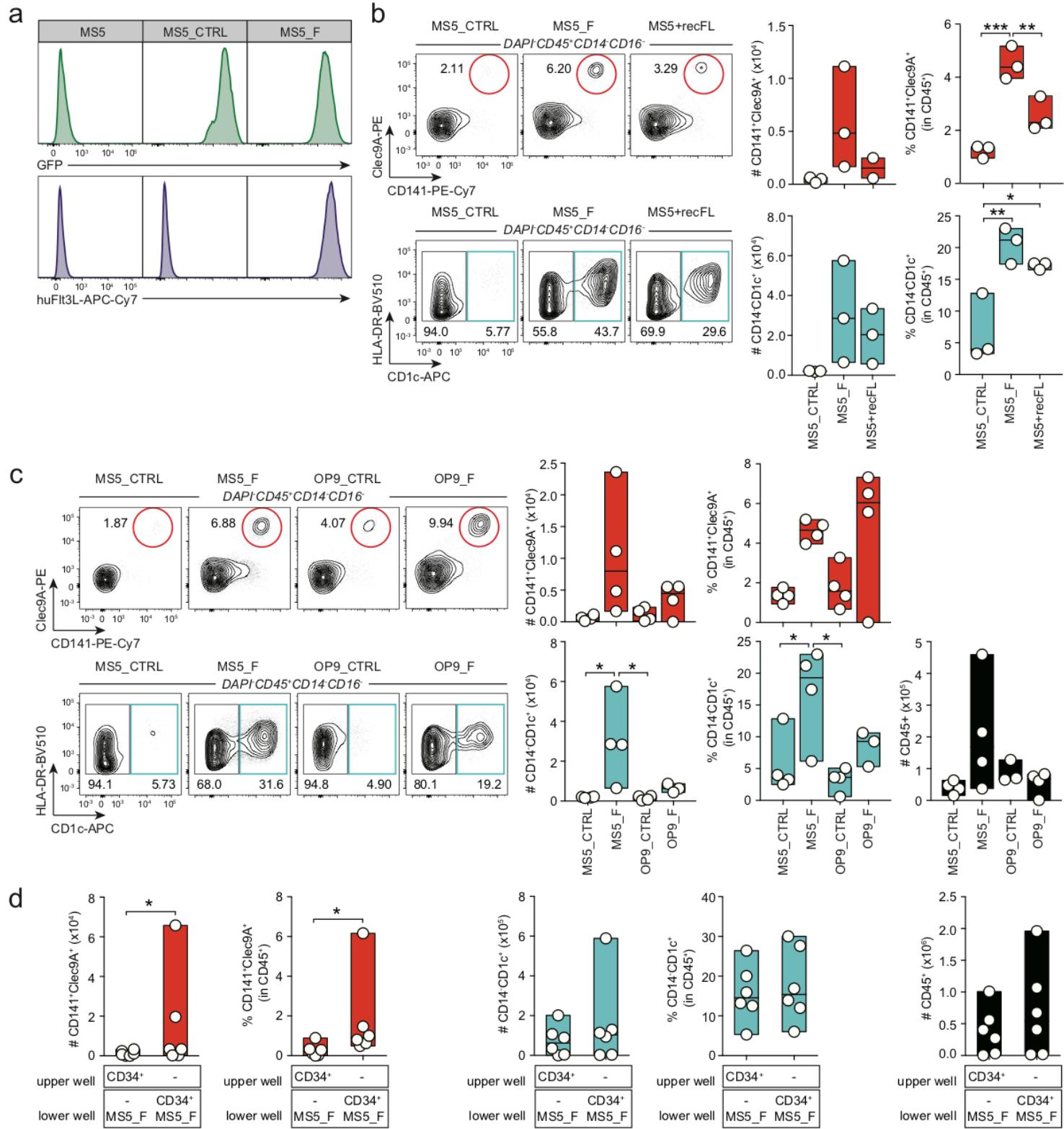
1075 (a) UMAP plots of CyTOF data comparing CD45⁺HLA-DR⁺ cells generated using
1076 MS5_FS12 stromal cells either *in vitro* or *in vivo*. Relative expression of selected markers is
1077 shown for each condition.

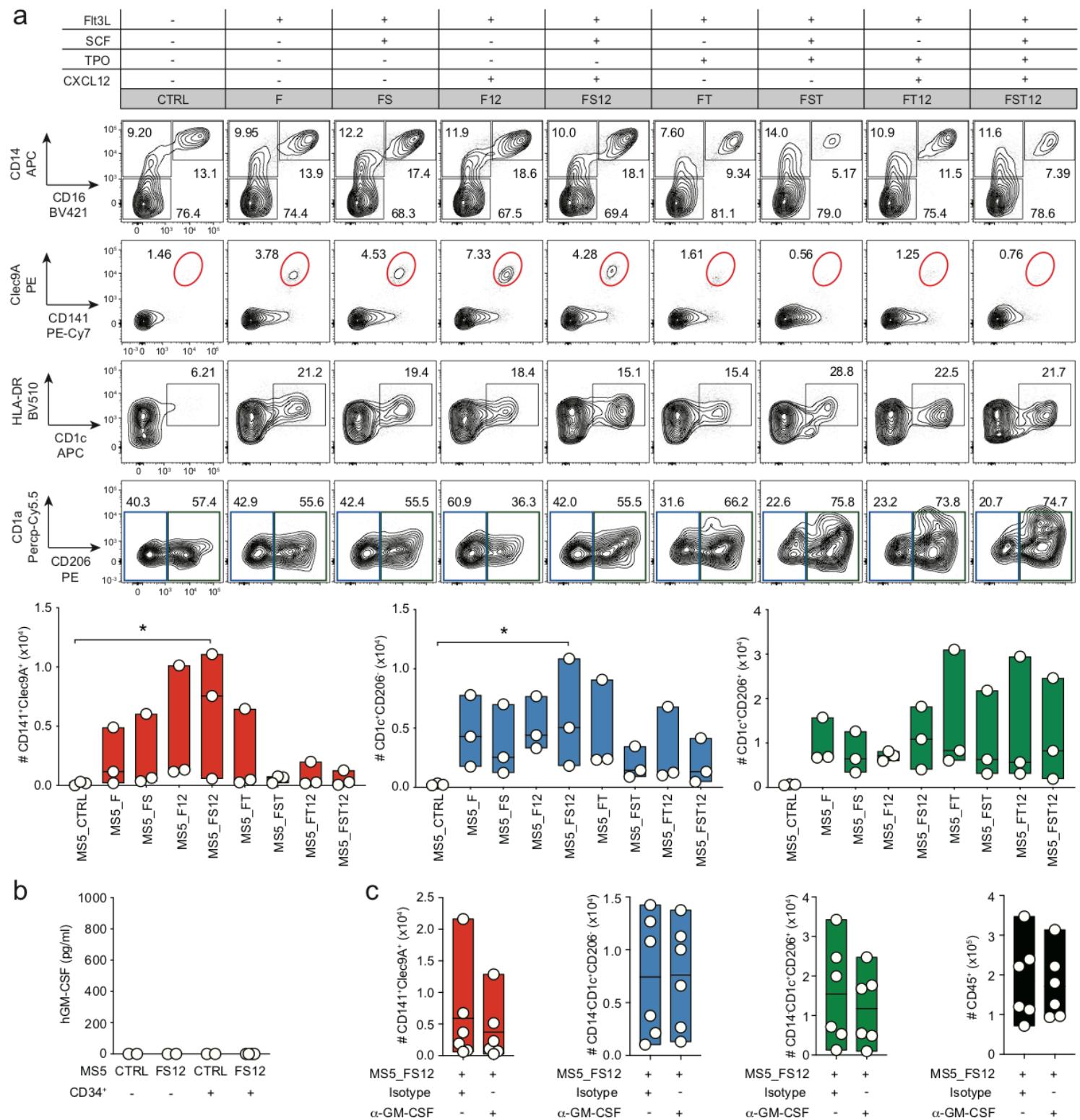
1078 (b) Relative expression of selected markers highlighting the phenotypic differences between
1079 cDC2s generated *in vitro* and *in vivo* using MS5_FS12 stromal cells.

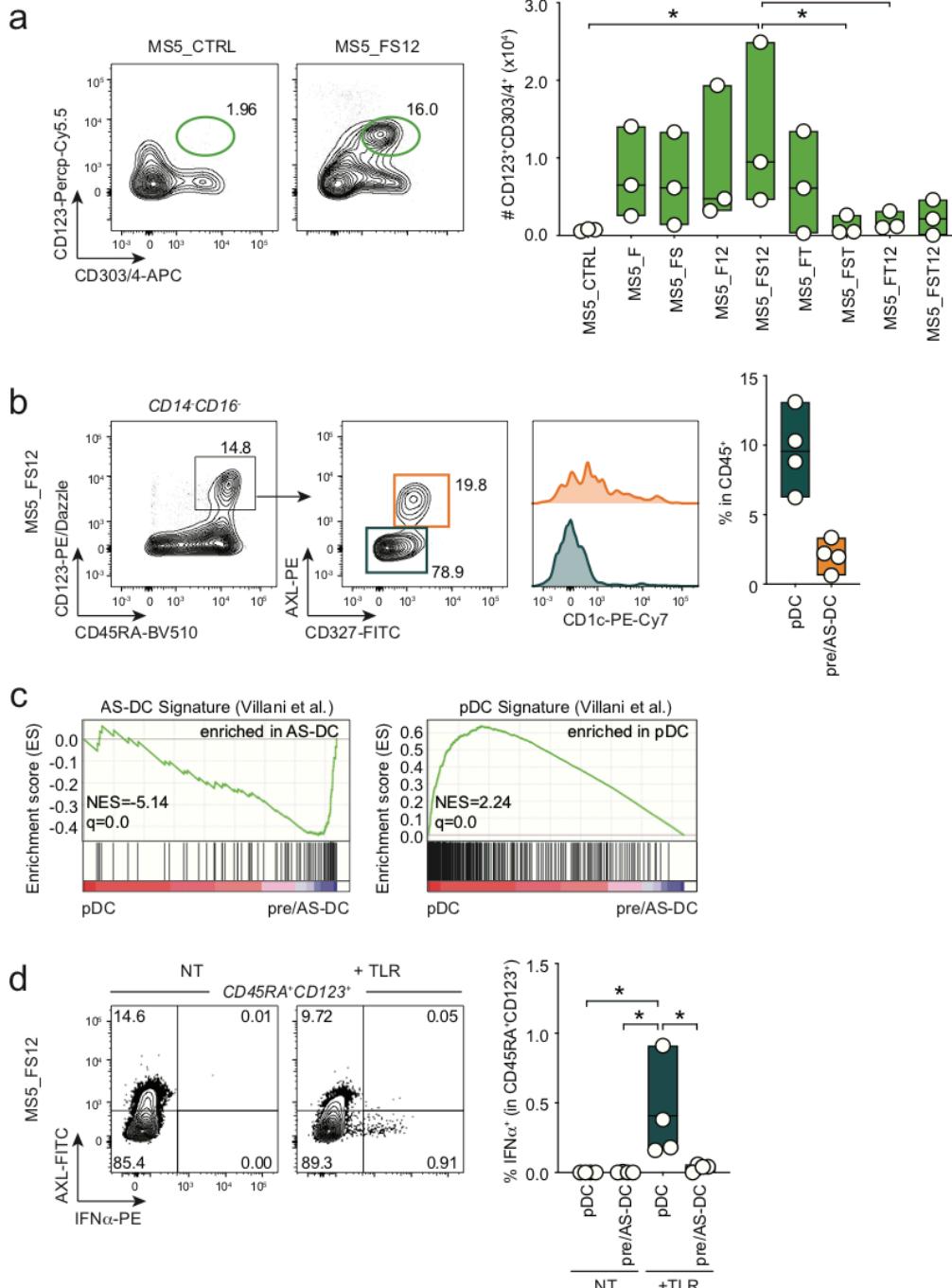
1080 (c) Heatmap displaying gene expression of the top 10 genes of blood pDC and AS-DC
1081 published signatures²¹ in pDC and pre/AS-DC generated *in vitro*, *in vivo* and isolated from
1082 blood PBMC (n=2-3 independent donors).

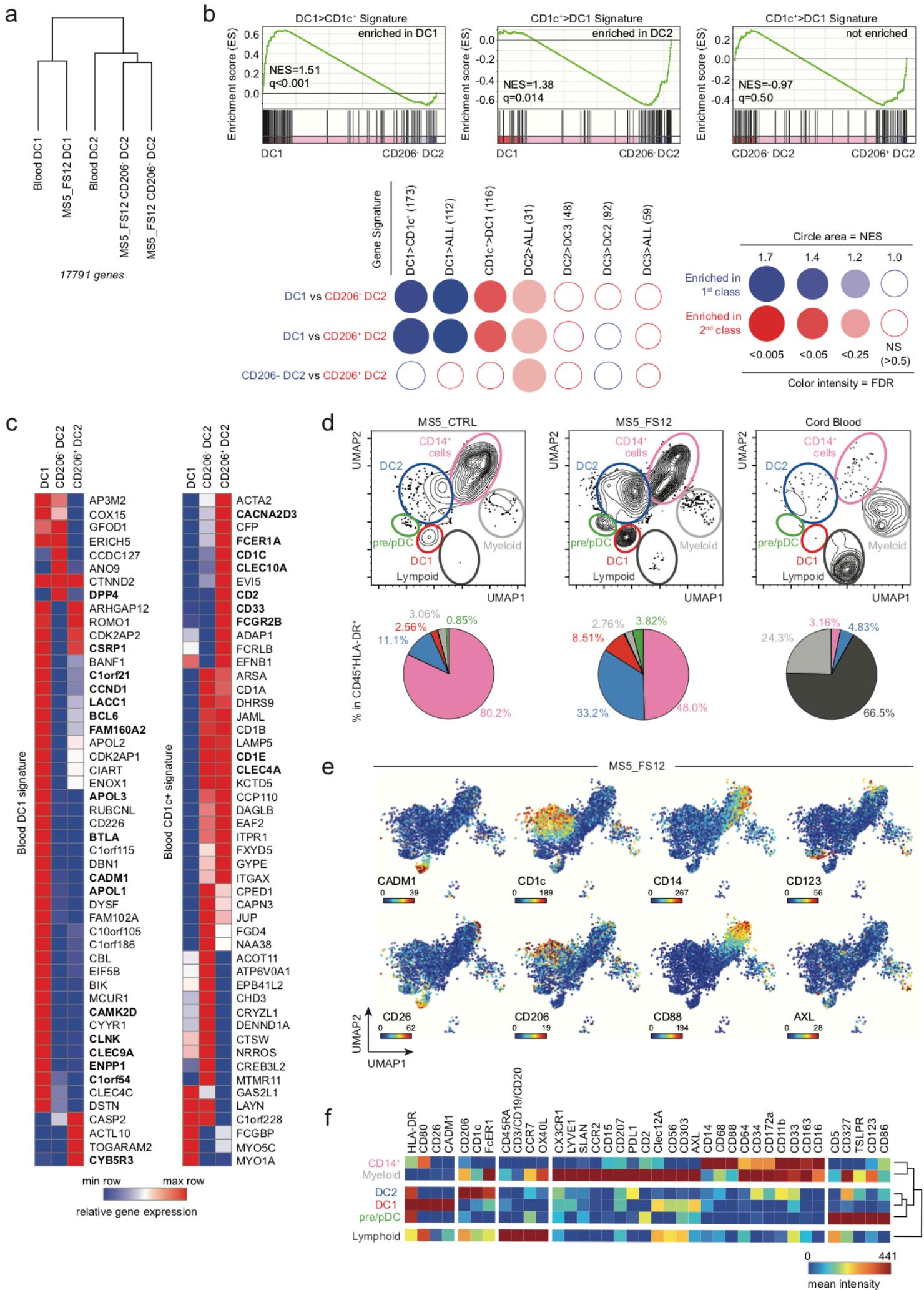
1083 (d) Heatmap displaying gene expression of the blood cDC2 published signature²¹ in cDC2
1084 cells generated *in vitro*, *in vivo* and isolated from blood PBMC (n=3 independent donors).

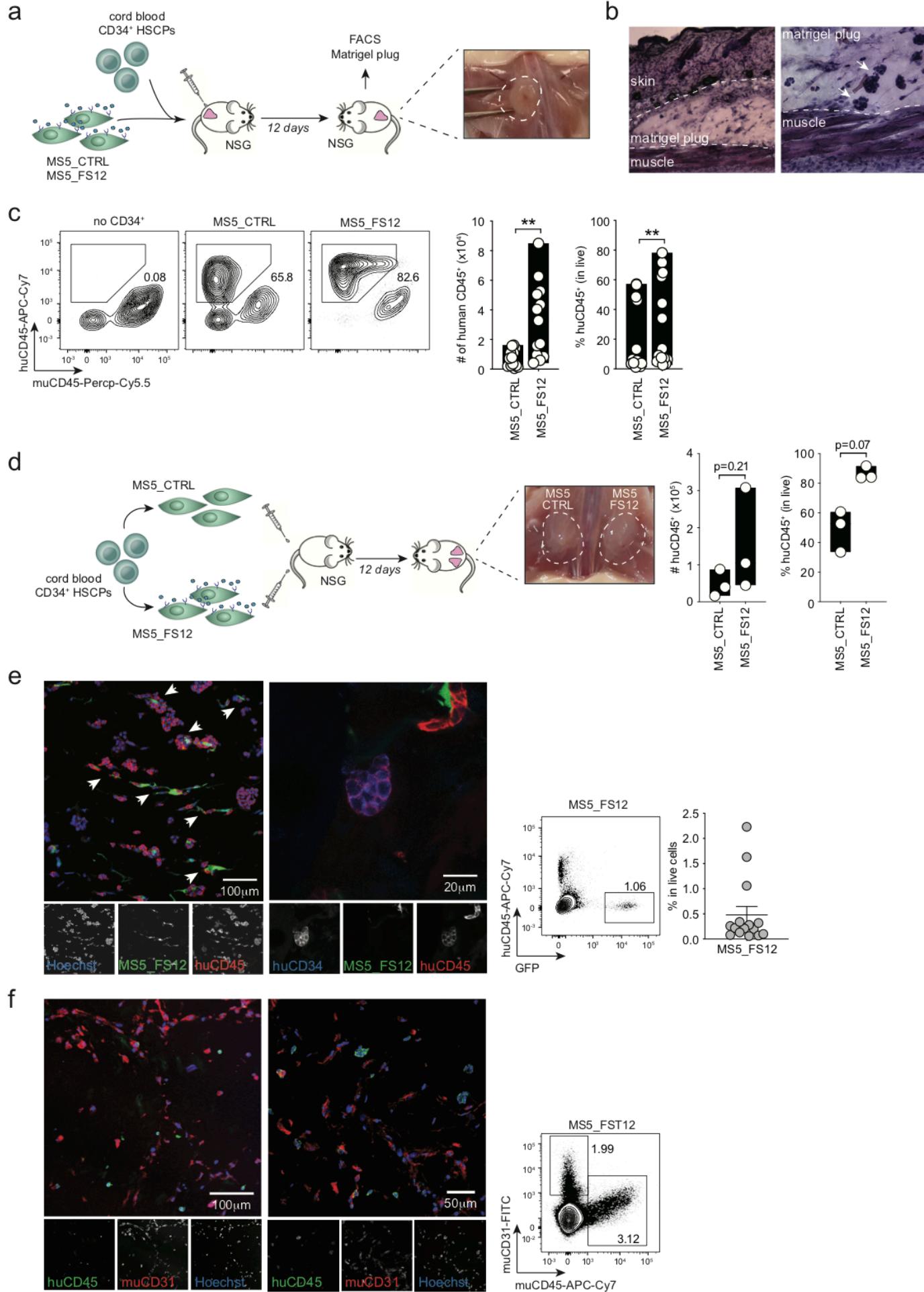
1085 (e) Volcano plot showing differentially expressed genes between *in vitro* and *in vivo*
1086 generated cDC2 (Log2FC>1.5, adjusted p-value<0.05).


1087 (f) Heatmap displaying gene expression of activation markers and co-stimulatory molecules
1088 expressed in cDC2 generated *in vivo* and *in vitro* (n=3 independent donors).

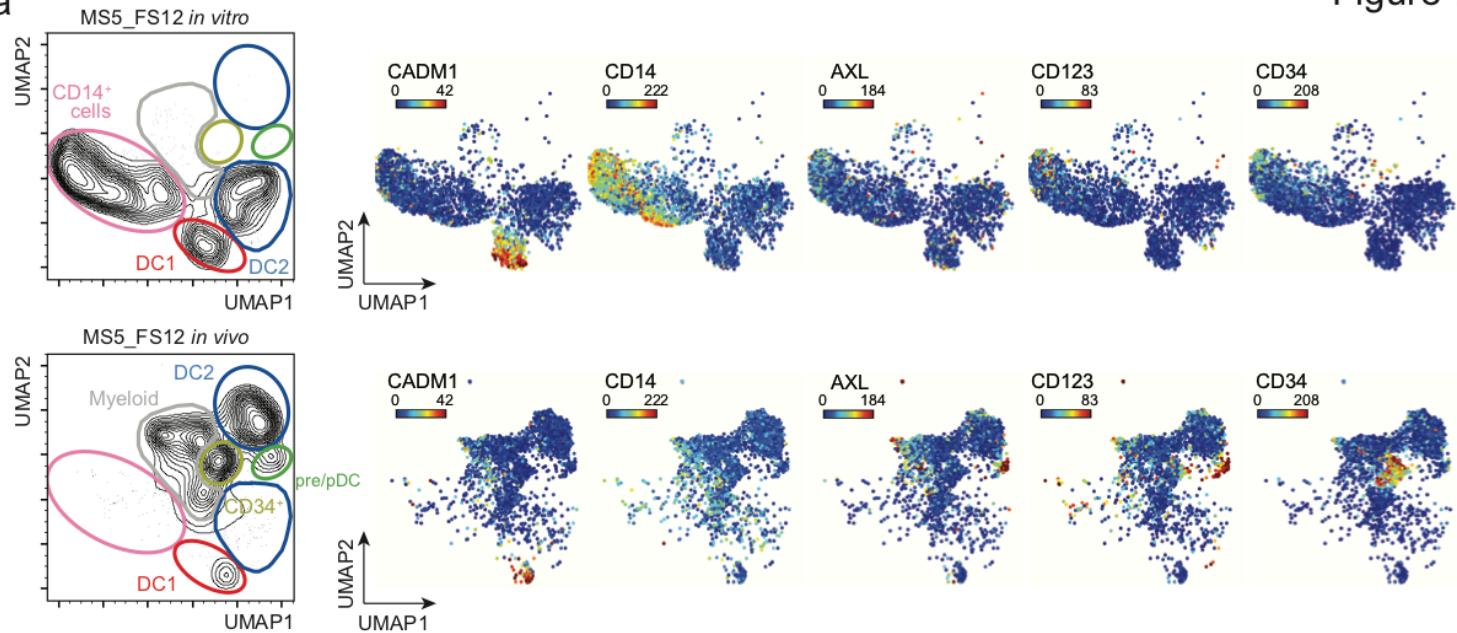

1089 **Figure 8. cDC2 generated *in vitro* and *in vivo* recapitulate functional features ascribed
1090 to blood cDC2.**

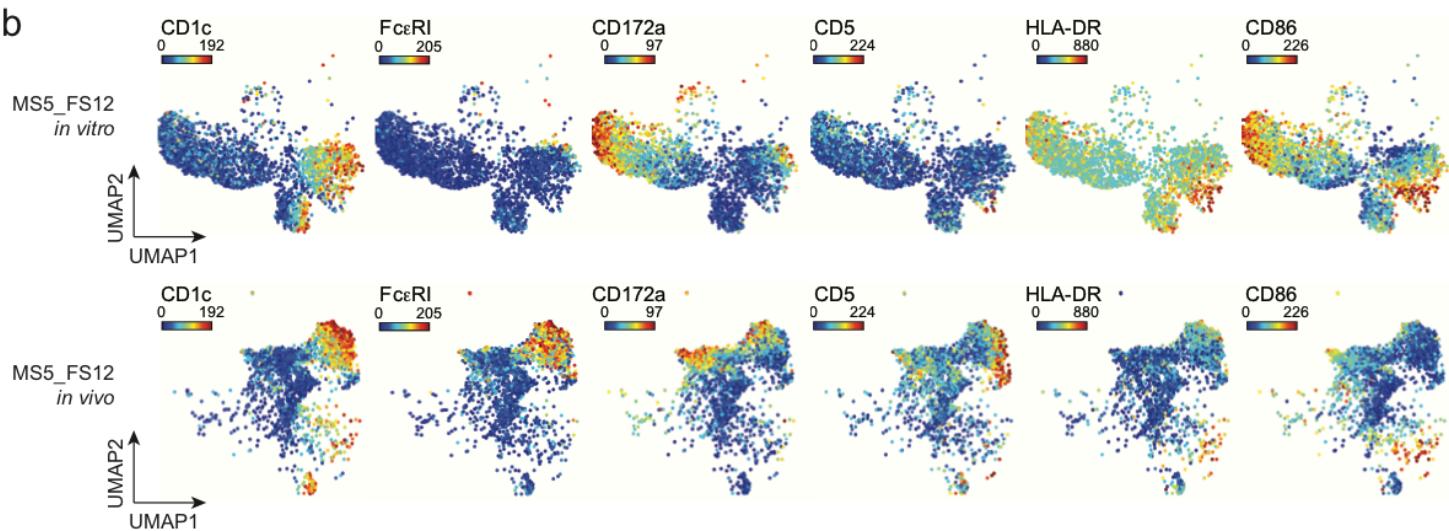

1091 (a) Histograms showing up-regulation of activation markers HLA-DR, CD86 and CD83 in *in
1092 vitro*-differentiated cDC2 in response to TLR4 (LPS) and TLR8 (VTX) overnight (16 hours)
1093 stimulation.

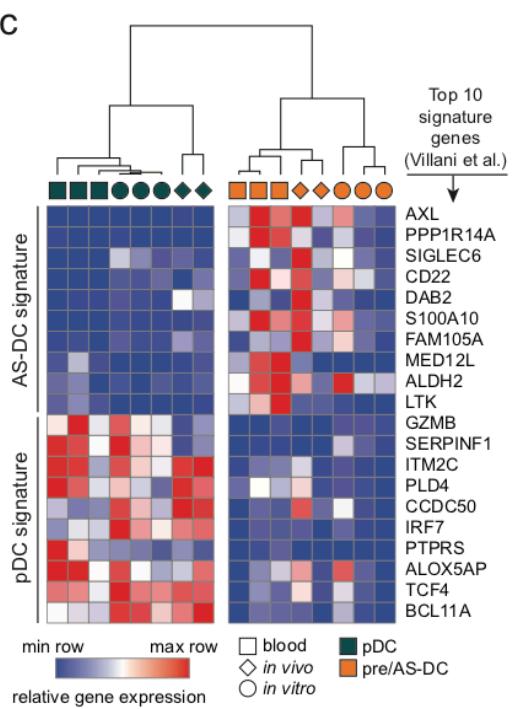

1094 (b) Representative FACS plots and quantification of mixed lymphocyte reaction (MLR) using
1095 *in vitro* and *in vivo* differentiated cDC2, pDC and pre/AS-DC. FACS-sorted DC subsets were
1096 activated overnight (16 hours) using a TLR agonist cocktail (LPS 10ng/ml, R848 1 μ g/ml and
1097 Poly(I:C) 25 μ g/ml) and co-cultured with CTV-labeled naïve T cells for 7 days; n=2-4
1098 independent cord blood donors in two independent experiments; line represents median; *
1099 p<0.05, **p<0.01, one-way ANOVA test.

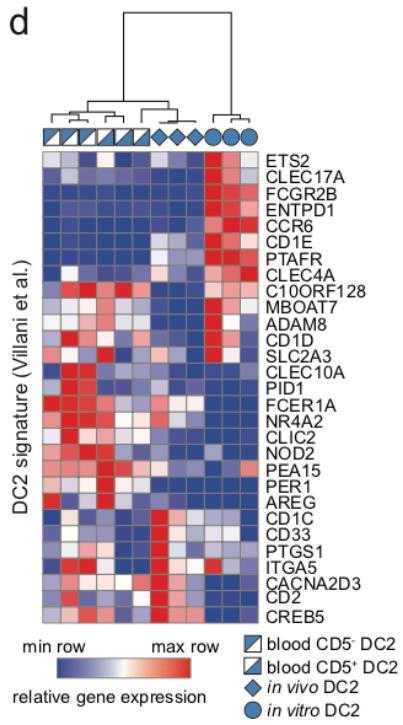

1100 (c) Intracellular flow cytometry analysis of TNF α and IL-12 expression in *in vitro* and *in
1101 vivo*-differentiated DC subsets upon overnight (16 hours) stimulation with TLR agonist
1102 cocktail (LPS 10ng/ml, R848 1 μ g/ml and Poly(I:C) 25 μ g/ml). Mean \pm SEM of n=4
1103 independent cord blood donors. ** p<0.01, ***p<0.001, one-way ANOVA test.

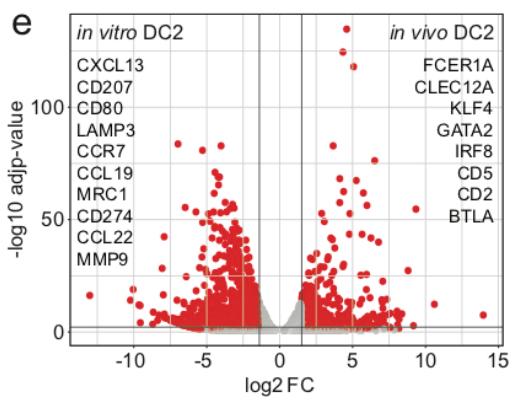


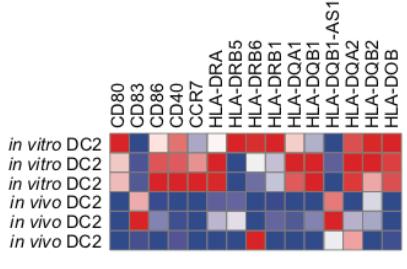


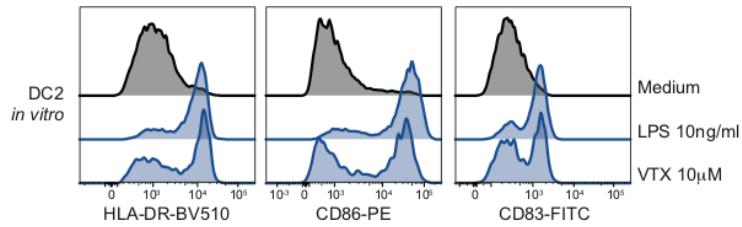


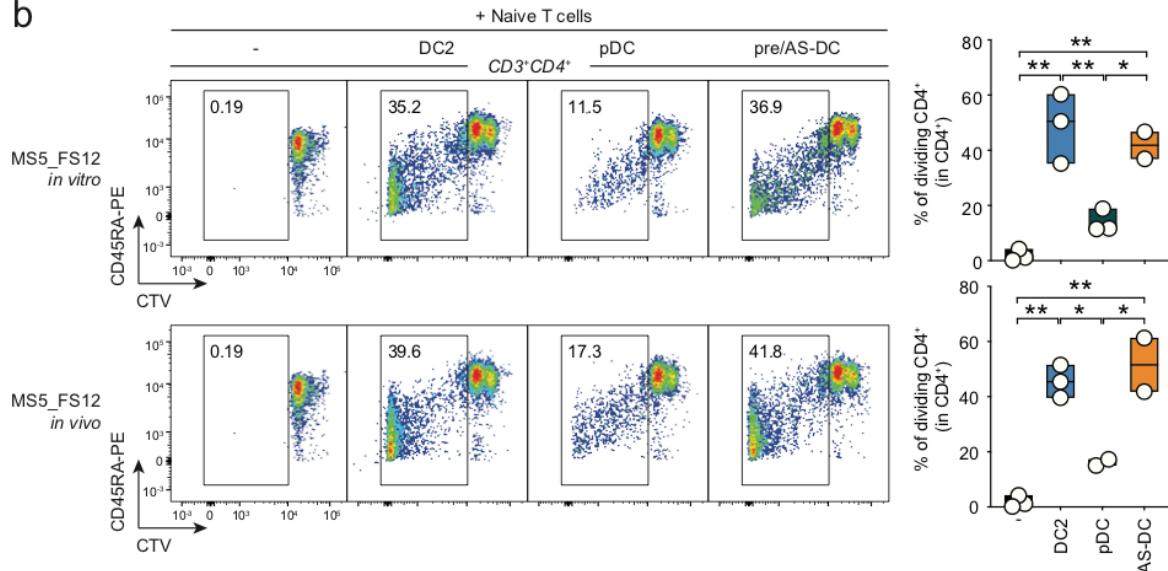

a

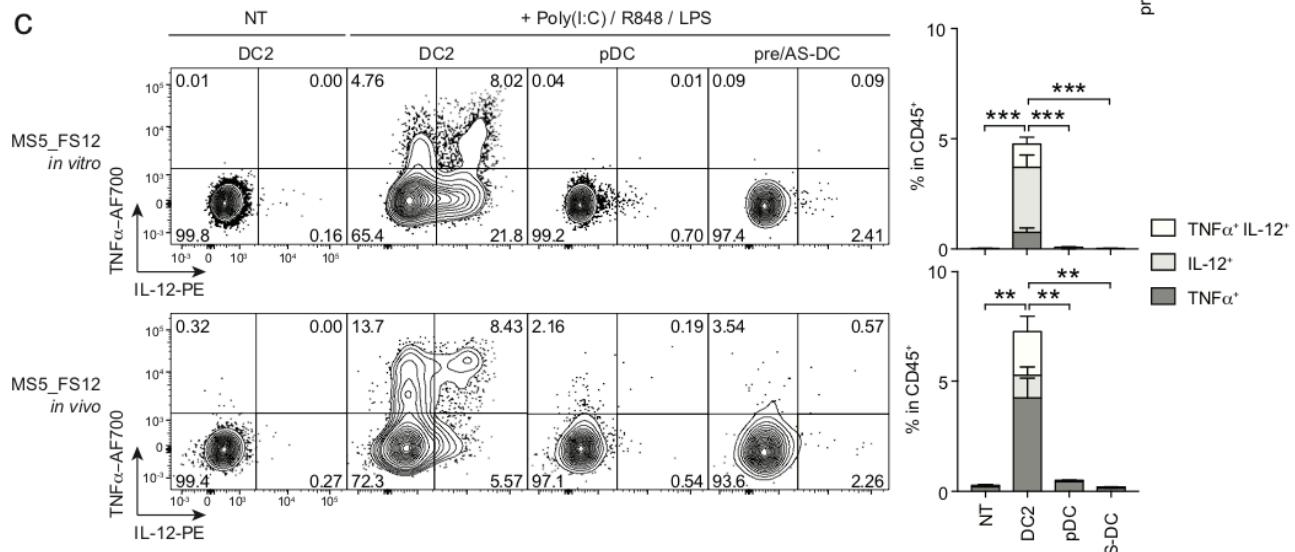

b


c


d


e


f


a

b

c

