

1 **Classification: Biological sciences, plant biology/developmental biology**
2 **mRNA decapping machinery targets transcripts of the LBD3/ASL9 transcription factor to**
3 **authorize formation of apical hook and lateral roots in *Arabidopsis***

4 Zhangli Zuo¹, Milena Edna Roux², Eleazar Rodriguez¹, Jonathan Renaud Chevalier¹, Yasin F. Dagdas³,
5 Takafumi Yamashino⁴ & Morten Petersen^{1,*}

6 ¹ Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark

7 ² Novo Nordisk, Regulatory Affairs Durable Devices and Needles, Søborg, Denmark

8 ³ Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria

9 ⁴ Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Nagoya, Japan

10 *Corresponding author. Tel: +45 35322127; E-mail: shutko@bio.ku.dk

11 **Abstract**

12 Multicellular organisms perceive and transduce multiple cues to optimize developmental
13 reprogramming and cell state switching. Core transcription factors drive developmental changes, but
14 transitions also require the attenuation of previous states. Here, we demonstrate that the levels of
15 mRNAs of the *LATERAL ORGAN BOUNDARIES DOMAIN (LBD)/ASYMMETRIC LEAVES9-LIKE*
16 (*ASL9*) transcription factor are directly regulated by mRNA decapping. Capped *ASL9* transcripts
17 accumulate in decapping deficient plants and *ASL9* mRNAs are found together with decapping
18 components. Accumulation of *ASL9* inhibits apical hook and lateral roots formation and interestingly,
19 exogenous auxin application restores apical and lateral roots in both *ASL9* and mRNA decay deficient
20 mutants. Moreover, mutations in the cytokinin transcription factors type-B *ARABIDOPSIS*
21 *RESPONSE REGULATORS* (B-ARRs) *ARR10* and *ARR12* restore these developmental defects of
22 *ASL9* overexpression. Thus, the mRNA decay machinery directly targets *ASL9* transcripts for decay to
23 balance cytokinin/auxin responses during developmental reprogramming.

24 **Keywords:** mRNA decapping, apical hook, lateral roots, *ASL9*, cytokinin/auxin response

25 **Significance Statement**

26 Plants build new structures to shape their growth in response to environmental and developmental cues.
27 Most developmental studies focus on the transcription rates of key regulators but largely neglect the
28 contribution of mRNA stability or decay. Our work describes an essential function of mRNA decay in
29 cellular reprogramming and developmental programs through functional analysis of the PAT (Proteins
30 associated with Topoisomerase II) mRNA decapping components, and of DCP2 (Decapping 2) and
31 DCP5. Developmental defects caused by accumulation of the mRNA decapping target *ASL9* could be
32 restored by interference with a cytokinin pathway and/or exogenous auxin application. Thus, mRNA
33 decapping machinery targets *ASL9* transcripts for decay to keep cytokinin/auxin response in balance
34 and to promote developmental processes including apical hooking and lateral root formation.

35 **Introduction**

36 Understanding normal tissue development requires information about diverse cellular mechanisms
37 controlling gene expression. Much work has focused on the transcriptional networks that govern stem
38 cell differentiation. For example, ectopic expression of Yamanaka factors may lead to induced
39 pluripotency in mice and humans (1, 2). Similarly, ectopic expression of *LATERAL ORGAN*
40 *BOUNDARIES DOMAIN (LBD)/ASYMMETRIC LEAVES2-LIKE (ASL)* transcripts is sufficient to
41 induce spontaneous proliferation of pluripotent cell masses in plants, a reprogramming process
42 triggered *in vitro* by the antagonistic phytohormones auxin and cytokinin (3, 4). Auxin and cytokinin
43 responses are essential for other developmental processes in plants including post-embryonic
44 reprogramming and formation of the apical hook to protect the meristem during germination in darkness
45 (5, 6) as well as lateral root (LR) formation (7). Loss-of-function mutants in genes that regulate auxin-
46 dependent transcription such as *auxin-resistant1* exhibit defective hooking and LR formation (8, 9). In
47 addition, type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs) ARR1, ARR10 and ARR12
48 work redundantly to activate cytokinin transcriptional responses in shoot development and LR
49 formation (10-12). Exogenous cytokinin application disrupts LR initiation by blocking pericycle
50 founder cell transition from G2 to M phase (13). Thus, reshaping the levels of certain transcription
51 factors leads to changes in cellular identity. As cellular reprogramming must be tightly regulated to
52 prevent spurious development, the expression of these transcription factors may be controlled at
53 multiple levels (14). However, most developmental studies focus on their transcription rates and
54 overlook the contribution of mRNA stability or decay to these events (15).

55 Eukaryotic mRNAs contain stability determinants including the 5' 7-methylguanosine triphosphate cap
56 (m7G) and the 3' poly-(A) tail. mRNA decay is initiated by deadenylation, followed by degradation via
57 either 3'-5' exosomal exonucleases and SUPPRESSOR OF VCS (SOV)/DIS3L2 or via the 5'-3'
58 exoribonuclease activity of the decapping complex (16, 17). This complex includes the decapping
59 enzymes DCP1/2 along with other factors (DCP5, DHH1, VCS, LSM1-7 complex and PAT1), and the
60 exoribonuclease XRN that degrades monophosphorylated mRNA. mRNA decapping complex and
61 mRNAs could aggregate into distinct cytoplasmic foci called processing bodies (PBs) (18, 19). PAT1
62 (Protein Associated with Topoisomerase II, PAT1b in mammals) promotes PB assembly and activates
63 decapping by binding mRNA and recruiting other decapping components (20-22).

64 mRNA decay regulates mRNA levels and thereby impacts cellular reprogramming (23, 24). We and
65 others have shown that the decapping machinery is involved in stress and immune responses (25-30),
66 and that RNA binding proteins can target selected mRNAs for decay (29-31). Postembryonic lethality
67 (32) and stunted growth phenotypes (33, 34) associated with disturbance of the decay machinery
68 indicate the importance of mRNA decapping and decay machinery during plant development.
69 However, while much has been learned about how mRNA decapping regulates cellular reprogramming
70 during plant stress responses (29, 30), far less is known about how decapping contributes to plant
71 development. Developmental defects and altered transcriptomes of mRNA decapping deficient mutants
72 are well described: *dcp1*, *dcp2* and *vcs* mutants display postembryonic lethality whereas *lsm1a/lsm1b*
73 and *dcp5* mutants exhibit abnormal development including cotyledons with disorganized veins.
74 Furthermore, *lsm1a/lsm1b* are dwarfs and *dcp5* displays a delayed growth phenotype (32-34). All these
75 differences suggest that mutations in mRNA decay components may cause pleiotropic phenotypes not
76 directly linked to mRNA decapping and decay deficiencies (26, 35, 36). For example, it has been
77 proposed that lethality in some mRNA decay loss-of-function mutants is not due to decay deficiencies
78 per se, but to the activation of immune receptors which evolved to surveil microbial manipulation of
79 the decay machinery (26). In line with this, loss-of-function of *AtPAT1* inappropriately triggers the
80 immune receptor SUMM2, and *Atpat1* mutants consequently exhibit dwarfism and autoimmunity (26).
81 Thus, PAT1 is under immune surveillance and PAT1 function(s) are best studied in SUMM2 loss-of-
82 function backgrounds.

83 Here we disrupt the mRNA decapping components PAT1 and its 2 paralogues PATH1 and PATH2 to
84 study the impact of mRNA decay during developmental reprogramming. By disrupting the decapping
85 machinery in the *summ2* background (26) we can study this process without autoimmunity disturbance.
86 Our approach, together with analyses of the *dcp2* and *dcp5* decay deficient mutants, reveals that the
87 decay machinery directly regulates the important developmental regulator *ASL9*. Thus, when mRNA
88 decay is disrupted, *ASL9* accumulates and inhibits cells from forming apical hooks and lateral roots.
89 Moreover, interference with a cytokinin pathway and/or exogenous auxin application restores the
90 developmental defects in both *ASL9* over-expressing plants and in mRNA decay deficient mutants.
91 These observations indicate that the mRNA decay machinery is fundamental to cellular reprogramming
92 during developmental decision making.

93 **Results**

94 **mRNA decay factors PATS are needed to initiate developmental processes**

95 We previously showed that the PAT1 decapping factor localizes in PBs and that the immune receptor
96 SUMM2 is triggered in the absence of PAT1. In addition to PAT1, two other PATs, PATH1 and
97 PATH2, are encoded by the *Arabidopsis* genome (26). We therefore initially confirmed that the PAT1
98 paralogues PATH1 and PATH2 also localize to PBs and interact with the LSM1 decapping factor (Fig
99 S1A). To examine if impaired mRNA decay stalls developmental reprogramming, we developed a
100 triple knockout of *PAT1*, *PATH1* and *PATH2* in the *summ2* background (Fig 1A, S1B-F). This permits
101 analyses of decapping deficiency in an autoimmune free background (26) (Fig S1G). The growth
102 phenotypes of 6 week-old soil-grown seedlings of *pat* single, double and triple mutants at 21 °C with 8
103 hrs photoperiod are shown in Fig. 1A& S1B. *path1/summ2*, *path2/summ2* and *path1/path2/summ2* have
104 leaves similar to *summ2* while *pat1/summ2*, *pat1/path1/summ2*, *pat1/path2/summ2* and
105 *pat1/path1/path2/summ2* exhibit serrated leaves. Compared to *pat1/summ2*, leaf serration and dwarfism
106 are more severe in *pat1/path1/summ2*, while *pat1/path2/summ2* exhibits less serration but longer
107 petioles. *pat1/path1/path2/summ2* mutants exhibited markedly stunted growth compared to the other
108 *pat* single or double mutants (Fig 1A, S1B-F). To identify genes which affect different developmental
109 programs regulated by mRNA decapping, we performed RNA-seq from plants of
110 *pat1/path1/path2/summ2* and all single and double mutant combinations. Data File S1 and Fig 2B
111 exhibit differently expressed genes in *pat1/path1/path2/summ2* which are clustered in Fig 1C and
112 annotated in Fig 1D&E (37). This cluster analysis of the mRNA decapping deficient mutants showed
113 that *i.* genes involved in oxidation-reduction are largely misregulated, while *ii.* transcripts involved in
114 oxidative stress response accumulated, and *iii.* transcripts responsible for auxin response and signaling,
115 transcription regulation and growth were reduced (Fig 1D&E).

116 **PATs loss-of-function causes deregulation of apical hooking**

117 Our RNA-seq analysis indicates mRNA decay is needed to remove superfluous transcripts which may
118 affect cellular decision making and developmental reprogramming. To assess this, we explored readily
119 scorable phenotypic evidence of defective decision making during development. As apical hooking can

120 be induced by exogenous application of ethylene or its precursor ACC, we germinated seedlings in
121 darkness in the presence or absence of ACC (38, 39). Interestingly, of all lines tested only
122 *pat1/path1/path2/summ2* was hookless and unable to make the exaggerated apical hook under ACC
123 treatment (Fig 2A, B&S2A). This indicates that mRNA decapping is required for the commitment to
124 apical hooking. Supporting this notion, ACC treatment led to a massive increase of Venus-PAT1 and
125 Venus-PATH2 foci exclusively in hook regions in their corresponding *pat1* and *path2* mutants (Salk-
126 _110349) backgrounds. In contrast, CFP-PATH1 exhibited no change in distinct foci number (Fig2C),
127 although Venus-PATH1 foci increased in the hook region in ACC treated *pat1/path1/summ2* triple
128 mutants. Collectively, these data show that PATs may be involved in apical hook formation upon ACC
129 treatment.

130 **The decay component PATs target ASL9**

131 To search for transcripts responsible for the hookless phenotype, we revisited our RNA-seq data (Data
132 Set S1) and verified that transcripts of *RSM4* (*RADIALIS-LIKE SANT/MYB*) and of *ASL9*
133 (*ASYMMETRIC LEAVES 2-LIKE 9*, also named *LBD3*, *LOB DOMAIN-CONTAINING PROTEIN 3*)
134 accumulated specifically in *pat1/path1/path2/summ2* mutants (Data Set S1). Overexpression of the
135 close *RSM4* homologue *RSM1* prevents apical hook formation (40). However, qPCR analysis of *RSM4*
136 transcripts revealed that it accumulated in several *pat* mutants which were able to develop apical hooks
137 (Fig S2B). This indicates that over-accumulation of *RSM4* does not contribute to the hookless
138 phenotype of *pat1/path1/path2/summ2*.

139 ASL9 belongs to the large AS2/LOB (ASYMMETRIC LEAVES 2/LATERAL ORGAN
140 BOUNDARIES) family (41) which includes key regulators of organ development (42). Interestingly,
141 the ASL9 homologue ASL4 negatively regulates brassinosteroid accumulation to limit growth in organ
142 boundaries, and overexpression of *ASL4* impairs apical hook formation and leads to dwarfed growth
143 (43). While *ASL4* mRNA did not accumulate in *pat1/path1/path2/summ2* mutants, we hypothesized
144 that ASL9 could also interfere with hook formation. We therefore analyzed mRNA levels of *ASL9* in
145 ACC treated seedlings and verified that *pat1/path1/path2/summ2* accumulated at least 2-fold higher
146 levels of *ASL9* transcript compared to any other lines (Fig 3A, S2C). Concordantly, an over-expressor
147 line (Fig 3B) of *ASL9* (Col-0/*oxASL9*) (44) also exhibited a hookless phenotype (Fig 3C&D). These

148 results indicate that apical hook formation in *pat1/path1/path2/summ2* is compromised due to
149 misregulation of *ASL9*.

150 To determine whether *ASL9* is a target of the decapping complex, we assayed for capped *ASL9*
151 transcripts in ACC and mock treated *pat(s)* mutants. By calculating the ratio between capped versus
152 total *ASL9* transcripts, we verified that with ACC treatment, *pat1/path1/path2/summ2* accumulated
153 significantly higher levels of capped *ASL9* transcripts than all lines but *pat1/path2/summ2* (Fig 3E,
154 S2D), although only the former was statistically different from the *summ2* control. Moreover, RNA
155 immunoprecipitation (RIP) revealed enrichment of *ASL9* in all Venus-PATs lines compared to a free
156 YFP control line (YFP-WAVE) (Fig 4F), being highest for PATH2 and lowest for PATH1. These data
157 confirm that *ASL9* mRNA can be found in PAT complexes, and that mRNA decapping contributes to
158 ACC induced apical hook formation by regulating *ASL9* mRNA levels, preferentially but not
159 exclusively by PAT1 and PATH2.

160 **Accumulation of *ASL9* suppresses LR formation**

161 Lateral root (LR) formation is another example of post embryonic decision making. In *Arabidopsis* the
162 first stage of LR formation requires that xylem pole cells change fate to become LR founder cells, a
163 process positively regulated by auxin and negatively regulated by cytokinin and ethylene (45, 46). We
164 therefore examined LR formation in *pat(s)* mutants and in Col-0/*oxASL9*, as *ASL9* has been implicated in
165 cytokinin signaling (44) and as the auxin related genes *PIN5* and *SAUR23* are repressed in both
166 *pat1/path1/path2/summ2* and Col-0/*oxASL9* (Fig S3). While LR formation was reduced in
167 *pat1/path1/summ2* and *pat1/path2/summ2*, it was almost absent in *pat1/path1/path2/summ2* and
168 *oxASL9* (Fig 3G-J, S4).

169 **Core mRNA components are involved in regulating *ASL9* transcripts**

170 The mRNA decay component PATs are needed to unlock apical hooking and LR formation, indicating
171 the mRNA decay machinery is involved in these processes. We therefore examined apical hook and LR
172 formation in 2 other mRNA decay deficient mutants, *dcp2* (32) and *dcp5* (33). Etiolated 4-day old *dcp2*
173 and *dcp5* seedlings also exhibited a hookless phenotype (Fig 4A& B). Since *dcp2* mutants are

174 postembryonic lethal, we used seeds from a parental heterozygote but genotyping showed all hookless
175 seedlings were *dcp2* homozygotes (Fig S5A). Similar to observations in *pat1/path1/path2/summ2*,
176 *ASL9* expression is not affected by ACC treatment of *dcp2* and *dcp5* seedlings while expression is
177 lower in ACC treated Col-0 seedlings compared to untreated controls (Fig 4C). In line with this, capped
178 *ASL9* transcripts also accumulate in ACC treated *dcp2* and *dcp5* seedlings (Fig 4D) and LR formation
179 is also significantly reduced in *dcp5* mutants (Fig 4E& F). Thus, regulation of *ASL9* transcript levels
180 involves core components of the mRNA decapping machinery.

181 **Interference with a cytokinin signaling pathway and/or exogenous auxin restores developmental**
182 **defects of *ASL9* over-expressor and mRNA decay deficient mutants**

183 *ASL9* has been implicated in cytokinin signaling (44) in which ARR1, ARR10 and ARR12 are
184 responsible for activation of cytokinin transcriptional responses (10, 11) and cytokinin acts
185 antagonistically with auxin. Apical hooking and lateral root formation are classic examples of auxin
186 dependent developmental reprogramming (47). Since auxin responsive genes are repressed in both
187 mRNA decay mutants and in Col-0/*oxASL9*, we assume the developmental defects of mRNA decay
188 mutants and Col-0/*oxASL9* are due to repressed auxin responses caused by strong cytokinin signaling.
189 To test this, we examined the developmental phenotype of *ASL9* over-expressors in *arr10/arr12*
190 mutants (10). Interestingly, both apical hooking and lateral root formation phenotype were largely
191 restored in this background (Fig 5&S5B). We also applied exogenous auxin to mRNA decay mutants
192 *pat1/path1/path2/summ2* and *dcp5* and Col-0/*oxASL9*. This showed that 0.2 μ M IAA could partially
193 restore LR formation in *pat1/path1/path2/summ2* and *dcp5* while 2 μ M IAA could partially restore LR
194 formation in Col-0/*oxASL9* (Fig S6). These findings indicate that the mRNA decay machinery targets
195 *ASL9* to keep cytokinin/auxin responses balanced during development.

196 **Discussion**

197 Cellular reprogramming requires massive overhauls of gene expression (48). Apart from unlocking
198 effectors needed to install a new program, previous states or programs also need to be terminated (14).
199 We report here that mRNA decay is required to unlock cellular states during development. The stunted
200 growth phenotype and downregulation of developmental and auxin responsive mRNAs in the

201 *pat1/path1/path2/summ2* mutant (Fig 1C) supports a model in which defective clearance of suppressors
202 of development hampers decision making upon hormonal perception. Apical hooking and LR
203 formation are classic examples of auxin dependent developmental reprogramming (47). In line with
204 this, we and others observed that mRNA decay deficient mutants are impaired in apical hooking (Fig
205 2A, B, 4A&B) and LR formation (Fig 3G, H, 4E&F) (34, 49). Interestingly, among the transcripts
206 upregulated in these decay deficient mutants was capped *ASL9/LBD3* (Fig 3A&4C), which is involved
207 in cytokinin signaling (44). Cytokinin and auxin act antagonistically (50), and cytokinin can both
208 attenuate apical hooking (51) and directly affect LR founder cells to prevent initiation of lateral root
209 primordia (52). Our findings that defective reprogramming during those developmental events in
210 mRNA decay deficient mutants involves *ASL9* was supported by our observation that *ASL9* mRNA is
211 directly regulated by the decapping machinery and that *oxASL9* transgenic lines cannot reprogram to
212 attain an apical hook or to form LRs (Fig 3). In line with this, we speculate that the inability to
213 terminate cytokinin dependent programs prevents the correct execution of auxin-dependent
214 reprogramming in mRNA decay deficient mutants. This is supported by the observation that treating
215 *pat1/path1/path2/summ2*, *dcp5* and Col-0/*oxASL9* with exogenous auxin partially restores LR
216 formation (Fig S6), and that the defects in both apical hooking and LR formation of *ASL9* over-
217 expressing plants are largely restored by internally knocking out the cytokinin signaling activator genes
218 *ARR10* and *ARR12* (Fig 5).

219 Constitutive *ASL9* expression is sufficient to suppress apical hook and LR formation, and the
220 accumulation of capped *ASL9* transcripts in *pat* triple mutants after ACC treatment indicates that all
221 three PATs can target *ASL9* for decay. Our observation that all three PATs can re-localize to PBs in the
222 hook region during the triple response supports this model. However, we only detected Venus-PATH1
223 in PBs of ACC-treated hook region in *pat1/path1/summ2*, and this may exemplify the compensatory
224 activities of subfunctionalized paralogues (53, 54).

225 Deadenylated mRNA can be degraded via either 3'-5' exosomal exonucleases and SUPPRESSOR OF
226 VCS (SOV)/DIS3L2 or via the 5'-3' exoribonuclease activity of the decapping complex (16, 17).
227 Sorenson et al. (2018) found that *ASL9* expression is dependent on both VCS and SOV based on their
228 transcriptome analysis, therefore *ASL9* might be a substrate of both pathways (17). While more direct
229 data is needed to conclude whether SOV can directly regulate *ASL9* mRNA levels, we have shown that

230 *ASL9* is a target of the mRNA decapping machinery. The function of PBs in mRNA regulation has
231 been controversial since mRNAs in PBs may be sequestered for degradation or re-enter polysomal
232 translation complexes (55). Recent study has confirmed that PBs function as mRNA reservoirs in dark-
233 grown seedlings (49). However, our finding of direct interaction of *ASL9* transcripts and the PATs,
234 together with the accumulation of capped *ASL9* in mRNA decay mutants, indicates that *ASL9*
235 misregulation in *pat1/path1/path2/summ2*, *dcp2* and *dcp5* mutants is due to mRNA decapping
236 deficiency (Fig 3A, E, F&4A-D).

237 **Materials and Methods**

238 **Plant materials and growth conditions**

239 *Arabidopsis thaliana* ecotype Columbia (Col-0) was used as a control. T-DNA insertion lines for
240 At1g79090 (PAT1) *pat1* (Salk_040660), At1g12280 (SUMM2) *summ2-8* (SAIL_1152A06) and double
241 mutant of PAT1 and SUMM2 *pat1/summ2* have been described (26, 56, 57), T-DNA insertion lines for
242 AT5G13570 (DCP2) *dcp2* (Salk_000519), At1g26110 (DCP5) *dcp5* (Salk_008881) and double mutant
243 *arr10/arr12* has also been described (10, 32, 33). The T-DNA line for PATH1 (AT3g22270) is
244 Salk_097409 with an insertion in the 5'-UTR and that for PATH2 (AT4g14990) is Salk_110349 with
245 an insertion in the last exon. Primers for newly described T-DNA lines are provided in Table S1.
246 *pat1/path1/summ2* and *path2/summ2* mutants were generated using CRISPR/CAS9 following standard
247 procedures with plasmid pHEE401 containing an egg cell-specific promoter to control CRISPR/CAS9
248 (58). Cas9-free T2 plants were used in crosses to produce *path1/summ2*, *pat1/path2/summ2*,
249 *path1/path2/summ2*, *pat1/path1/path2/summ2* mutants. Homozygous F2 plants were used for
250 experiments. The YFP WAVE line was from NASC (Nottingham, UK) (59). Col-0/*oxASL9* line has
251 been described before (44).

252 Plants were grown in 9×9cm or 4×5cm pots at 21°C with 8/16hrs light/dark regime, or on plates
253 containing Murashige–Skoog (MS) salts medium (Duchefa), 1% sucrose and 1% agar with 16/8hr
254 light/dark.

255 **Plant treatments**

256 For ethylene triple response assays, seeds were plated on normal MS and MS+50µM ACC, vernalized
257 96hrs and placed in the dark at 21°C for 4 days before pictures were taken. Cotyledon and hook regions
258 of etiolated seedlings were collected after placing in the dark at 21°C for 4 days for gene expression
259 and XRN1 assay. For LR formation assays, seeds on MS plates were vernalized 96hrs and grown with
260 16/8 hrs light/dark at 21°C vertically for 10 days. For external IAA application for LR formation
261 experiments, seeds on MS plates were vernalized 96hrs and grown with 16/8 hrs light/dark at 21°C for
262 7 days and the seedlings were moved to MS or MS+IAA plates and grown vertically for 7 days.

263 **Cloning and transgenic lines**

264 *PATs* promoter sequences with 5' HindIII and 3' XbaI linkers were amplified from Col-0 genomic
265 DNA and cloned in plasmid pGWB515 to make pGWB515-PATsprom (60). The Venus sequence
266 without stop codon was amplified from pEN-L1-Venus-L2 (61) and cloned in pGWB515-PATsprom.
267 PAT genes were amplified from Col-0 genomic DNA and cloned into pENTR-D-TOPO (Invitrogen).
268 The entry clones were combined with pGWB515-PATsprom and pGWB515-PATsprom-Venus to
269 obtain N-terminal HA and Venus tags respectively (60). pENTR-D-TOPO-GUS (Invitrogen) and
270 pENTR-D-TOPO-LSM1 (26) were combined to pK7WGY2.0 (62) to obtain N-terminal YFP tags. The
271 PATH1 promoter was also cloned in pK7WGC2.0 to obtain pK7WGC2.0-PATH1prom, then combined
272 with pENTR-D-TOPO-PATH1 to produce PATH1 with an N-terminal CFP tag. These fusions were
273 transformed into *Agrobacterium tumefaciens* strain GV3101 for transient and stable expression.
274 Arabidopsis transformation was by floral dipping (63). *arr10/arr12/oxASL9* was generated by vacuum
275 infiltrating *arr10/arr12* with *A. tumefaciens* strain EHA101 harbouring pSK1-ASL9(44).
276 Transformants were selected on hygromycin (30 mg/L, for pGWB515) or kanamycin (50mg/L, for
277 pK7WGC2.0) MS agar, and survivors tested for transcript expression by qRT-PCR and protein
278 expression by immuno-blotting. Primers for cloning are provided in Table S1

279 **Transient expression, protein extraction and co-IP in *Nicotiana benthamiana***

280 *A. tumefaciens* strains carrying PAT fusions were grown in YEP medium supplemented with
281 appropriate antibiotics overnight. Cultures were centrifuged and re-suspended in buffer (10mM MgCl₂,
282 10 mM MES-K (pH 5.6), 100 µM acetosyringone) to OD600=0.8. *A. tumefaciens* strains carrying

283 PATs-HA and YFP-LSM1 or YFP-GUS were mixed 1:1 and infiltrated into 3 week-old *N.*
284 *benthamiana* leaves. Leaf samples for protein extraction and immunoprecipitation were collected 3
285 days post infiltration (dpi). Tissues for protein extraction were ground in liquid nitrogen and IP buffer
286 (50mM Tris-HCl pH 7.5; 150 mM NaCl; 5 % (v/v) glycerol; 1 mM EDTA; 0.1%(v/v) NP40; 10 mM
287 DTT; protease inhibitor cocktail (Roche); Phosstop (Roche)) added at 2mL/g tissue powder. Following
288 20 min centrifugation at 4°C and 13000 rpm, sample supernatants were adjusted to 2mg/ml protein and
289 incubated 4 hours at 4°C with GFPTrap-A beads (Chromotek). Beads were washed 4 times with wash
290 buffer (20 mM Tris pH 7.5; 150m M NaCl; 0.1 %(v/v) NP40 before adding 4×SDS buffer (novex))
291 and denatured by heating at 95°C for 5 min.

292 **Protein extraction, SDS-PAGE and immunoblotting**

293 Tissue was ground in liquid nitrogen and 4×SDS buffer (novex) was added and heated at 95°C for 5
294 min, cooled to room temperature for 10min, samples were centrifuged 5min at 13000 rpm.
295 Supernatants were separated on 10% SDS-PAGE gels, electroblotted to PVDF membrane (GE
296 Healthcare), blocked in 5% (w/v) milk in TBS-Tween 20 (0.1%, v/v) and incubated 1hr to overnight
297 with primary antibodies (anti-GFP (AMS Biotechnology 1:5.000, anti-HA 1:1,000 (Santa Cruz)).
298 Membranes were washed 3 × 10 min in TBS-T (0.1%) before 1hr incubation in secondary antibodies
299 (anti-rabbit or anti-mouse HRP or AP conjugate (Promega; 1: 5.000)). Chemiluminescent substrate
300 (ECL Plus, Pierce) was applied before camera detection. For AP-conjugated primary antibodies,
301 membranes were incubated in NBT/BCIP (Roche) until bands were visible.

302 **Confocal microscopy**

303 Imaging was done using a Leica SP5 inverted microscope. All images were taken with a 63X water
304 objective. The confocal images were analysed with Zen2012 (Zeiss) and ImageJ software.
305 Representative maximum intensity projection images of 6 Z-stacks per image have been shown in Fig2.

306 **RNA extraction and qRT-PCR**

307 Total RNA from tissues was extracted with TRIzol™ Reagent (Thermo Scientific), 2µg total RNA
308 were treated with DNase I (Thermo Scientific) and reverse transcribed into cDNA using RevertAid

309 First Strand cDNA Synthesis Kit according to the manufacturer's instructions (Thermo Scientific). The
310 *ACT2* gene was used as an internal control. qPCR analysis was performed on a Bio-RAD CFX96
311 system with SYBR Green master mix (Thermo Scientific). Primers are listed in Table S1. All
312 experiments were repeated at least three times each in technical triplicates.

313 **XRN1 assay**

314 Total RNA was extracted from tissues using the NucleoSpin® RNA Plant kit (Machery-Nagel). 1 μ g
315 RNA was incubated with 1 unit XRN1 (New England Biolabs) or water for 2hr at 37°C. RNA was then
316 reverse transcribed into cDNA with RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific).
317 Target transcript accumulation was measured by qPCR using SYBR Green master mix (Thermo
318 Scientific) and normalized to *ACT2*. Calculating 5' capped versus total transcripts was done by
319 comparing transcript levels from XRN1 and mock-treated samples for the individual genotypes (26,
320 64).

321 **RIP assay**

322 RIP was performed as previously described (65). 1.5g tissues were fixated by vacuum infiltration with
323 1% formaldehyde for 20min followed by 125 mM glycine for 5min. Tissues were ground in liquid
324 nitrogen and RIP lysis buffer (50mM Tris-HCl pH 7.5; 150mM NaCl; 4mM MgCl2; 0.1% Igepal; 5
325 mM DTT; 100 U/mL Ribolock (Thermo Scientific); 1 mM PMSF; Protease Inhibitor cocktail (Roche))
326 was added at 1.5mL/g tissue powder. Following 15 min centrifugation at 4°C and 13000rpm,
327 supernatants were incubated with GFPTrap-A beads (Chromotek) for 4 hours at 4°C. Beads were
328 washed 3 times with buffer (50 mM Tris-HCl pH 7.5; 500 mM NaCl; 4 mM MgCl2; 0.5 % Igepal; 0.5
329 % Sodium deoxycholate; 0.1 % SDS; 2 M urea; 2 mM DTT before RNA extraction with TRIzol™
330 Reagent (Thermo Scientific)). Transcript levels in input and IP samples were quantified by qPCR, and
331 levels in IP samples were corrected with their own input values and then normalized to YFP WAVE
332 lines for enrichment.

333 **RNA-seq analysis**

334 Total RNA was extracted from 6 week-old soil grown plants using the NucleoSpin® RNA Plant kit
335 (Machery-Nagel). RNA quality, library preparation and sequencing were performed by BGI. RNA-seq
336 reads were mapped to the *Arabidopsis thaliana* TAIR10 reference genome with STAR (version 2.5.1b)
337 using 2-pass alignment mode(66). The read counts for each gene were detected using HTSeq (version
338 0.5.4p3)(67). The Araport11 annotation was used for both mapping and read counting. The counts were
339 normalized using the TMM normalization from edgeR package in R. Prior to statistical testing the data
340 was voom transformed and then the differential expression between the sample groups was calculated
341 with limma package in R. Genes with fold change ≥ 2 or ≤ -2 and P-value ≤ 0.01 are listed in Data File
342 S1. Functional Annotation Tool DAVID Bioinformatics Resources 6.8 has been used for GO term
343 analysis (37).

344 **Statistical analysis**

345 Statistical details of experiments are reported in the figures and legends. Systat software was used for
346 data analysis. Statistical significance between groups was determined by one- or two-way ANOVA
347 (analysis of variance) followed by Holm-Sidak test.

348 **Figure Legends**

349 **Fig 1. mRNA decay component PATs are needed for transcript removal and developmental**
350 **processes initiation.** (A) 6 week-old plants of *summ2* and *pat1/path1/path2/summ2* grown in soil in a
351 chamber with 8/16hrs light/dark at 21°C. A representative plant for each line is shown and pictures in
352 Fig S1B were taken at the same time. (B) Volcano plot for differently expressed genes in
353 *pat1/path1/path2/summ2* compare to *summ2*. Up-regulated genes ($FC \geq 2$ ($\log_2(FC) \geq 1$), P-value ≤ 0.05)
354 are coloured red and down-regulated ($FC \leq 2$ ($\log_2(FC) \leq -1$), P-value ≤ 0.05) green. (C) Heat map
355 clustering of differentially expressed genes for comparison of *pat1/path1/path2/summ2* and *summ2*.
356 Pearson's metrics were used in hierarchical clustering of the genes. In the plot, red indicates high
357 expression and blue low expression. Gene ontology of transcripts upregulated (D) or downregulated
358 (E) in 6 week-old plants of mRNA decay deficient mutant *pat1/path1/path2/summ2* compared to
359 *summ2*.

360 **Fig 2. PATs loss-of-function causes deregulation of cell decision making during apical hooking.**
361 Hook phenotypes (A) and apical hook angles (B) in triple responses to ACC treatment of etiolated
362 *summ2* and *pat1/path1/path2/summ2* seedlings. The experiment was repeated 3 times, and
363 representative pictures are shown. The scale bar indicates 1cm. (C) Quantification of PBs/cell and (D)
364 representative confocal microscopy pictures of hook regions following ACC treatment. 4 day-old dark-
365 grown *pat1*/Venus-PAT1, Salk_097409/CFP-PATH1, *pat1/path1/summ2*/Venus-PATH1 and
366 Salk_110349/Venus-PATH2 seedlings on MS (1st, 3rd, 5th and 7th rows) or MS+ACC plates (2nd, 4th, 6th
367 and 8th rows) for 4 days. Scale bars indicate 10 μ m. Chl A: Chlorophyll A; BF: bright field. Bars
368 marked with the same letter are not significantly different from each other (P-value>0.05).

369 **Fig 3. PATs target ASL9 to regulate apical hooking and LR formation.** (A) *ASL9* mRNA levels in
370 cotyledons and hook regions of dark-grown *summ2* and *pat1/path1/path2/summ2* seedlings under
371 control or ACC treatment. Error bars indicate SE (n = 3). One representative of 3 biology replicates is
372 shown. (B) *ASL9* expression levels in 4 day-old seedlings of Col-0 and Col-0/*oxASL9*. Error bars
373 indicate SE (n = 3). One representative of 3 biology replicates is shown. Hook phenotypes (C) and
374 apical hook angles (D) of triple response to ACC treatment of etiolated seedlings of Col-0 and Col-
375 0/*oxASL9*. The experiment was repeated 3 times, and representative pictures are shown. The scale bar
376 indicates 1cm. (E) Capped *ASL9* transcript levels in cotyledons and hook regions of dark-grown *summ2*
377 and *pat1/path1/path2/summ2* seedlings. Error bars indicate SE (n = 3). (F) All 3 PATs can bind *ASL9*
378 transcripts. 4-day dark-grown plate seedlings of *pat1*/Venus-PAT1, *pat1/path1/summ2*/Venus-PATH1
379 and *pat1/path2/summ2*/Venus-PATH2 were taken for the RIP assay. *ASL9* transcript levels were
380 normalized to those in RIP of MYC-YFP as a non-binding control. Error bars indicate SE (n=3).
381 Phenotypes (G) and LR number counts (H) of 10-day old seedlings of *summ2* and
382 *pat1/path1/path2/summ2*. The experiment was repeated 4 times, and representative pictures are shown.
383 The scale bar indicates 1cm. Pictures in Fig S4A were taken at the same time. Phenotypes (I) and LR
384 number counts (J) of 10-day old seedlings of Col-0 and Col-0/*oxASL9*. Treatment was repeated 3
385 times, and representative pictures are shown. The scale bar indicates 1cm. Bars marked with three
386 asterisk (****) are statistically extremly significant (P-value <0.001) and bars marked with the same
387 letter are not significantly different from each other (P-value>0.05).

388 **Fig 4. ASL9 transcripts accumulate in many mRNA decay mutants with defects in apical hook**
389 **and LR formation.** Hook phenotypes (**A**) and apical hook angles (**B**) in triple responses to ACC
390 treatment of etiolated Col-0, *dcp5* and *dcp2* seedlings. The treatment was repeated 3 times, and
391 representative pictures are shown. The scale bar indicates 1cm. (**C**) *ASL9* mRNA levels in cotyledons
392 and hook regions of dark-grown Col-0, *dcp5* and *dcp2* seedlings under control or ACC treatment. Error
393 bars indicate SE (n = 3). One representative of 3 biology replicates is shown. (**D**) Capped *ASL9*
394 transcript levels in cotyledons and hook regions of dark-grown Col-0, *dcp5* and *dcp2* seedlings. Error
395 bars indicate SE (n = 3). Phenotypes (**E**) and LR number counts (**F**) of 10-day old seedlings of Col-0
396 and *dcp5*. Treatment was repeated 3 times, and representative pictures are shown. The scale bar
397 indicates 1cm. Bars marked with three asterisk (****) are statistically extremely significant (P-value
398 <0.001) and bars marked with the same letter are not significantly different from each other (P-
399 value>0.05).

400 **Fig 5. ARR10 and ARR12 loss-of-function restores apical hook and LR formation in ASL9 over-**
401 **expressor plants.** Hook phenotypes (**A**) and apical hook angles (**B**) in triple responses to ACC
402 treatment of etiolated Col-0, *arr10/arr12*, Col-0/*oxASL9* and *arr10/arr12/oxASL9* seedlings. The
403 treatment was repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm.
404 Phenotypes (**C**) and LR number counts (**D**) of 10-day old seedlings of Col-0 *arr10/arr12*, Col-
405 0/*oxASL9* and *arr10/arr12/oxASL9*. Treatment was repeated 3 times, and representative pictures are
406 shown. The scale bar indicates 1cm. Bars marked with the same letter are not significantly different
407 from each other (P-value>0.05).

408 **Fig S1. Characterization of *pat* mutants generated using CRISPR/CAS9 system.** (**A**), Co-IP
409 between the three PAT-HA and YFP-LSM1 fusions. Proteins were transiently co-expressed in *N.*
410 *benthamiana* and tissue harvested 3 days post-infiltration. Immunoblots of inputs (left panels) and GFP
411 IPs (right panels) were probed with anti-HA antibodies and anti-GFP antibodies. (**B**), 6 week-old plants
412 of *pat1/summ2*, *path1/summ2*, *path2/summ2*, *pat1/path1/summ2*, *pat1/path2/summ2* and
413 *path1/path2/summ2* grown in soil in a chamber with 8/16hrs light/dark at 21°C. One representative
414 plant for each line is shown. The scale bar indicates 1cm. (**C**), Sequencing of *path1* and *path2* mutations
415 in independent lines *pat1/path1/path2/summ2* 42-33 and *pat1/path1/path2/summ2* 41-60. (**D**), 6 week-
416 old plants of *summ2*, *pat1/summ2*, *path1/summ2* 41-198 and *pat1/path1/summ2* 41-60

417 grown in soil in chamber with 8/16hr light/dark at 21°C. One representative plant for each line is
418 shown. The scale bar indicates 1cm. Western blots detecting the expression of PATH1 and PATH2
419 fusions with N-Venus (**E**) and growth phenotype (**F**) of complemented lines. One representative plant
420 for each line is shown. The scale bar indicates 1cm. (G) PR1 expression level in 5 week-old plants of
421 *pats* mutant in *summ2* background, *pat1* and Col-0, the experiment was repeated 3 times, bars marked
422 with three asterisk (****) are statistically extremly significant (P-value <0.001).

423 **Fig S2. Apical hook in *pat* single and double mutants.** (A) Hook phenotypes of triple response to
424 ACC treatment of etiolated seedlings of *summ2*, *pat1/summ2*, *path1/summ2*, *path2/summ2*,
425 *pat1/path1/summ2*, *pat1/path2/summ2*, *path1/path2/summ2* and *path1/path2/summ2*. The treatment
426 was repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm. (B) *RSM4*
427 expression levels in cotyledons and hook regions of dark-grown *pat* single, double and triple mutants
428 under control or ACC treatment. Error bars indicate SE (n = 3). One representative of 3 biology
429 replicates is shown. (C) *ASL9* expression levels in cotyledons and hook regions of dark-grown *pat*
430 single and double mutants under control or ACC treatment. Experiments were performed together with
431 Fig 4A. Error bars indicate SE (n = 3). One representative of 3 biology replicates is shown. (D) Capped
432 *ASL9* transcript levels in cotyledons and hook regions of dark-grown *pat1/summ2*, *path1/summ2*,
433 *path2/summ2*, *pat1/path1/summ2*, *pat1/path2/summ2* and *path1/path2/summ2* seedlings. Error bars
434 indicate SE (n = 3) and bars marked with the same letter are not significantly different from each other
435 (P-value>0.05)

436 **Fig S3. Auxin related genes expression in mRNA decay deficient mutant and *ASL9* over-**
437 **expressor.** Auxin pathway genes *PIN5* and *SAUR23* expression levels in 10 day-old seedlings of Col-0,
438 *summ2*, Col-0/*oxASL9* and *pat1/path1/path2/summ2*. The experiment was repeated 3 times, and
439 representative pictures are shown. Bars marked the same letter are not significantly different from each
440 other (P-value>0.05).

441 **Fig S4. LR formation in *pat* single and double mutants.** Phenotypes (**A**) and LR number counts (**B**)
442 of 10-day old seedlings of *pat1/summ2*, *path1/summ2*, *path2/summ2*, *pat1/path1/summ2*,
443 *pat1/path2/summ2* and *path1/path2/summ2*. The treatment was repeated 4 times, and representative

444 pictures are shown. The scale bar indicates 1cm. Bars marked with asterisks are statistically significant
445 (**:P-value <0.01; ***: P-value<0.001).

446 **Fig S5. Characterization of *dcp2* and *arr10/arr12/oxASL9* mutants.** (A) Determining the genotype
447 of hookless seedlings germinated from *dcp2* heterozygote seeds. PCR was carried out on genomic
448 DNA from Col-0 and hookless seedlings germinated from *dcp2* heterozygote seeds using primer
449 DCP2LP and DCP2RP to detect plants that contained a wild-type copy of *DCP2*, LBb1.3 for the T-
450 DNA and gene-specific primer DCP2R were used to detect the presence of T-DNA. Annotation in this
451 analysis is indicated: LP, DCP2LP; RP, DCP2RP; LBP, LBb1.3. (B) *ARR10*, *ARR12* and *ASL9*
452 expression levels in Col-0, *arr10/arr12* and *arr10/arr12/oxASL9* 1-5 seedlings. The experiment was
453 repeated 3 times, and representative pictures are shown. Bars marked with three asterisk (***)
454 are statistically extremly significant (P-value <0.001).

455 **Fig S6. Auxin restores LR formation in mRNA decay deficient mutants and Col-0/oxASL9.**
456 Phenotypes(A) and LR number counts(B) of 14-day old seedlings of *summ2* and
457 *pat1/path1/path2/summ2* on MS or MS with 0.2 μ M IAA. Phenotypes (C) and LR number counts (D)
458 of 14-day old seedlings of Col-0 and *dcp5* on MS or MS with 0.2 μ M IAA. Phenotypes (E) and LR
459 number counts (F) of 14-day old seedlings of Col-0 and Col-0/*oxASL9* on MS, MS with 0.2 μ M IAA or
460 MS with 2 μ M IAA. Seeds on MS plates were vernalized 96hrs and grown with 16/8 hrs light/dark at
461 21°C for 7 days. The seedlings were moved to MS or MS+IAA plates and grown vertically for 7 days.
462 The treatment was repeated 3 times, and representative pictures are shown. The scale bar indicates
463 1cm. Bars marked the same letter are not significantly different from each other (P-value>0.05).

464 **Acknowledgments**

465 We thank Qi-Jun Chen for Phee401 and Nam-Hai Chua for *dcp5* and *dcp2* seeds. Special thanks to
466 John Mundy for advice throughout the project and critically reading the manuscript. We acknowledge
467 the Bioinformatics and Scientific Computing Facility (VBCF) for the next-generation sequencing data
468 analysis. This work was supported by the Novo Nordisk Fonden to MP (NNF18OC0052967) and a
469 PhD scholarship from China Scholarship Council to ZZ (201504910714).

470 ZZ, MER, and MP conceived and designed the experiments. ZZ, MER, ER, JRC, YD and TY
471 performed experiments. ZZ and MP analyzed the data. ZZ, ER and MP wrote the manuscript.

472 The authors declare no competing interests.

473 Correspondence and requests for materials should be addressed to MP.

474 **References**

1. Takahashi K & Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell* 126(4):663-676.
2. Yu JY, *et al.* (2007) Induced pluripotent stem cell lines derived from human somatic cells. *Science* 318(5858):1917-1920.
3. Fan MZ, Xu CY, Xu K, & Hu YX (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in *Arabidopsis* regeneration. *Cell Res* 22(7):1169-1180.
4. Ikeuchi M, Sugimoto K, & Iwase A (2013) Plant Callus: Mechanisms of Induction and Repression. *Plant Cell* 25(9):3159-3173.
5. Chaudhury AM, Letham S, Craig S, & Dennis ES (1993) *amp1* - a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. *Plant J* 4(6):907-916.
6. Hu YM, Vandenbussche F, & Van Der Straeten D (2017) Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. *Planta* 245(3):467-489.
7. Jing HW & Strader LC (2019) Interplay of auxin and cytokinin in lateral root development. *Int J Mol Sci* 20(3).
8. Lehman A, Black R, & Ecker JR (1996) *HOOKLESS1*, an ethylene response gene, is required for differential cell elongation in the *Arabidopsis* hypocotyl. *Cell* 85(2):183-194.
9. Estelle MA & Somerville C (1987) Auxin-resistant mutants of *Arabidopsis thaliana* with an altered morphology. *Mol Gen Genet* 206(2):200-206.
10. Ishida K, Yamashino T, Yokoyama A, & Mizuno T (2008) Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of *Arabidopsis thaliana*. *Plant Cell Physiol* 49(1):47-57.
11. Xie MT, *et al.* (2018) A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. *Nat Commun* 9.
12. Riefler M, Novak O, Strnad M, & Schmülling T (2006) *Arabidopsis* cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. *Plant Cell* 18(1):40-54.
13. Li X, Mo XR, Shou HX, & Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of *Arabidopsis*. *Plant Cell Physiol* 47(8):1112-1123.
14. Tatapudy S, Aloisio F, Barber D, & Nystul T (2017) Cell fate decisions: emerging roles for metabolic signals and cell morphology. *Embo Rep* 18(12):2105-2118.
15. Crisp PA, Ganguly D, Eichten SR, Borevitz JO, & Pogson BJ (2016) Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. *Sci Adv* 2(2).
16. Garneau NL, Wilusz J, & Wilusz CJ (2007) The highways and byways of mRNA decay. *Nat Rev Mol Cell Bio* 8(2):113-126.
17. Sorenson RS, Deshotel MJ, Johnson K, Adler FR, & Sieburth LE (2018) *Arabidopsis* mRNA decay landscape arises from specialized RNA decay substrates, decapping- mediated feedback, and redundancy. *P Natl Acad Sci USA* 115(7):E1485-E1494.
18. Balagopal V & Parker R (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. *Curr Opin Cell Biol* 21(3):403-408.
19. Brengues M, Teixeira D, & Parker R (2005) Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. *Science* 310(5747):486-489.

518 20. Charenton C, *et al.* (2017) A unique surface on Pat1 C-terminal domain directly interacts with
519 Dcp2 decapping enzyme and Xrn1 5'-3' mRNA exonuclease in yeast. *P Natl Acad Sci USA*
520 114(45):E9493-E9501.

521 21. Chowdhury A, Kalurupalle S, & Tharun S (2014) Pat1 contributes to the RNA binding activity
522 of the Lsm1-7-Pat1 complex. *RNA* 20(9):1465-1475.

523 22. Ozgur S, Chekulaeva M, & Stoecklin G (2010) Human Pat1b connects deadenylation with
524 mRNA decapping and controls the assembly of processing bodies. *Mol Cell Biol* 30(17):4308-
525 4323.

526 23. Newman R, *et al.* (2017) Maintenance of the marginal-zone B cell compartment specifically
527 requires the RNA-binding protein ZFP36L1. *Nat Immunol* 18(6):683-693.

528 24. Essig K, *et al.* (2018) Roquin targets mRNAs in a 3'-UTR-specific manner by different modes
529 of regulation. *Nat Commun* 9.

530 25. Merret R, *et al.* (2013) XRN4 and LARP1 are required for a heat-triggered mRNA decay
531 pathway involved in plant acclimation and survival during thermal stress. *Cell Rep* 5(5):1279-
532 1293.

533 26. Roux ME, *et al.* (2015) The mRNA decay factor PAT1 functions in a pathway including MAP
534 kinase 4 and immune receptor SUMM2. *Embo J* 34(5):593-608.

535 27. Crisp PA, *et al.* (2017) Rapid recovery gene downregulation during excess-light stress and
536 recovery in *Arabidopsis*. *Plant Cell* 29(8):1836-1863.

537 28. Xu J & Chua NH (2012) Dehydration stress activates *Arabidopsis* MPK6 to signal DCP1
538 phosphorylation. *Embo J* 31(8):1975-1984.

539 29. Perea-Resa C, *et al.* (2016) The LSM1-7 complex differentially regulates *Arabidopsis* tolerance
540 to abiotic stress conditions by promoting selective mRNA decapping. *Plant Cell* 28(2):505-520.

541 30. Yu X, *et al.* (2019) Orchestration of processing body dynamics and mRNA decay in
542 *Arabidopsis* immunity. *Cell Rep* 28(8):2194-2205.

543 31. Gerstberger S, Hafner M, & Tuschl T (2014) A census of human RNA-binding proteins. *Nat
544 Rev Genet* 15(12):829-845.

545 32. Xu J, Yang JY, Niu QW, & Chua NH (2006) *Arabidopsis* DCP2, DCP1, and VARICOSE form
546 a decapping complex required for postembryonic development. *Plant Cell* 18(12):3386-3398.

547 33. Xu J & Chua NH (2009) *Arabidopsis* Decapping 5 is Required for mRNA decapping, P-body
548 formation, and translational repression during postembryonic development. *Plant Cell*
549 21(10):3270-3279.

550 34. Perea-Resa C, Hernandez-Verdeja T, Lopez-Cobollo R, Castellano MD, & Salinas J (2012)
551 LSM Proteins provide accurate splicing and decay of selected transcripts to ensure normal
552 *Arabidopsis* development. *Plant Cell* 24(12):4930-4947.

553 35. Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, & Riha K (2012) Aberrant growth and
554 lethality of *Arabidopsis* deficient in nonsense-mediated RNA decay factors is caused by
555 autoimmune-like response. *Nucleic Acids Res* 40(12):5615-5624.

556 36. Gloggnitzer J, *et al.* (2014) Nonsense-mediated mRNA decay modulates immune receptor
557 levels to regulate plant antibacterial defense. *Cell Host Microbe* 16(3):376-390.

558 37. Huang DW, Sherman BT, & Lempicki RA (2009) Systematic and integrative analysis of large
559 gene lists using DAVID bioinformatics resources. *Nat Protoc* 4(1):44-57.

560 38. Bleecker AB, Estelle MA, Somerville C, & Kende H (1988) Insensitivity to ethylene conferred
561 by a dominant mutation in *Arabidopsis thaliana*. *Science* 241(4869):1086-1089.

562 39. Guzman P & Ecker JR (1990) Exploiting the triple response of *Arabidopsis* to identify ethylene
563 related mutants. *Plant Cell* 2(6):513-523.

564 40. Hamaguchi A, *et al.* (2008) A small subfamily of *Arabidopsis RADIALIS-LIKE SANT/MYB*
565 genes: A link to *HOOKLESS1*-mediated signal transduction during early morphogenesis. *Biosci Biotech Bioch* 72(10):2687-2696.

566 41. Matsumura Y, Iwakawa H, Machida Y, & Machida C (2009) Characterization of genes in the
567 *ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB)* family in *Arabidopsis*
568 *thaliana*, and functional and molecular comparisons between AS2 and other family members.
569 *Plant J* 58(3):525-537.

570 42. Xu C, Luo F, & Hochholdinger F (2016) LOB domain proteins: beyond lateral organ
571 boundaries. *Trends Plant Sci* 21(2):159-167.

572 43. Bell EM, *et al.* (2012) *Arabidopsis LATERAL ORGAN BOUNDARIES* negatively regulates
573 brassinosteroid accumulation to limit growth in organ boundaries. *P Natl Acad Sci USA*
574 109(51):21146-21151.

575 44. Naito T, *et al.* (2007) A link between cytokinin and *ASL9 (ASYMMETRIC LEAVES 2 LIKE 9)*
576 that belongs to the *AS2/LOB (LATERAL ORGAN BOUNDARIES)* family genes in *Arabidopsis*
577 *thaliana*. *Biosci Biotech Bioch* 71(5):1269-1278.

578 45. Jung JKH & McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root
579 architecture. *Front Plant Sci* 4.

580 46. Weijers D, Nemhauser J, & Yang ZB (2018) Auxin: small molecule, big impact. *J Exp Bot*
581 69(2):133-136.

582 47. Peer WA, Blakeslee JJ, Yang HB, & Murphy AS (2011) Seven things we think we know about
583 auxin transport. *Mol Plant* 4(3):487-504.

584 48. Miyamoto T, Furusawa C, & Kaneko K (2015) Pluripotency, differentiation, and
585 reprogramming: A gene expression dynamics model with epigenetic feedback regulation. *Plos*
586 *Comput Biol* 11(8).

587 49. Jang GJ, Yang JY, Hsieh HL, & Wu SH (2019) Processing bodies control the selective
588 translation for optimal development of *Arabidopsis* young seedlings. *P Natl Acad Sci USA*
589 116(13):6451-6456.

590 50. Su YH, Liu YB, & Zhang XS (2011) Auxin-cytokinin interaction regulates meristem
591 development. *Mol Plant* 4(4):616-625.

592 51. Tantikanjana T, *et al.* (2001) Control of axillary bud initiation and shoot architecture in
593 *Arabidopsis* through the *SUPERSHOOT* gene. *Gene Dev* 15(12):1577-1588.

594 52. Laplaze L, *et al.* (2007) Cytokinins act directly on lateral root founder cells to inhibit root
595 initiation. *Plant Cell* 19(12):3889-3900.

596 53. Force A, *et al.* (1999) Preservation of duplicate genes by complementary, degenerative
597 mutations. *Genetics* 151(4):1531-1545.

598 54. Duarte JM, *et al.* (2006) Expression pattern shifts following duplication indicative of
599 subfunctionalization and neofunctionalization in regulatory genes of *Arabidopsis*. *Mol Biol Evol*
600 23(2):469-478.

601 55. Franks TM & Lykke-Andersen J (2008) The control of mRNA decapping and P-body
602 formation. *Mol Cell* 32(5):605-615.

603 56. Zhang ZB, *et al.* (2012) Disruption of PAMP-induced MAP kinase cascade by a *Pseudomonas*
604 *syringae* effector activates plant immunity mediated by the NB-LRR protein SUMM2. *Cell*
605 *Host Microbe* 11(3):253-263.

606

607 57. Petersen M, *et al.* (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired
608 resistance. *Cell* 103(7):1111-1120.

609 58. Wang ZP, *et al.* (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently
610 generates homozygous mutants for multiple target genes in Arabidopsis in a single generation.
611 *Genome Biol* 16.

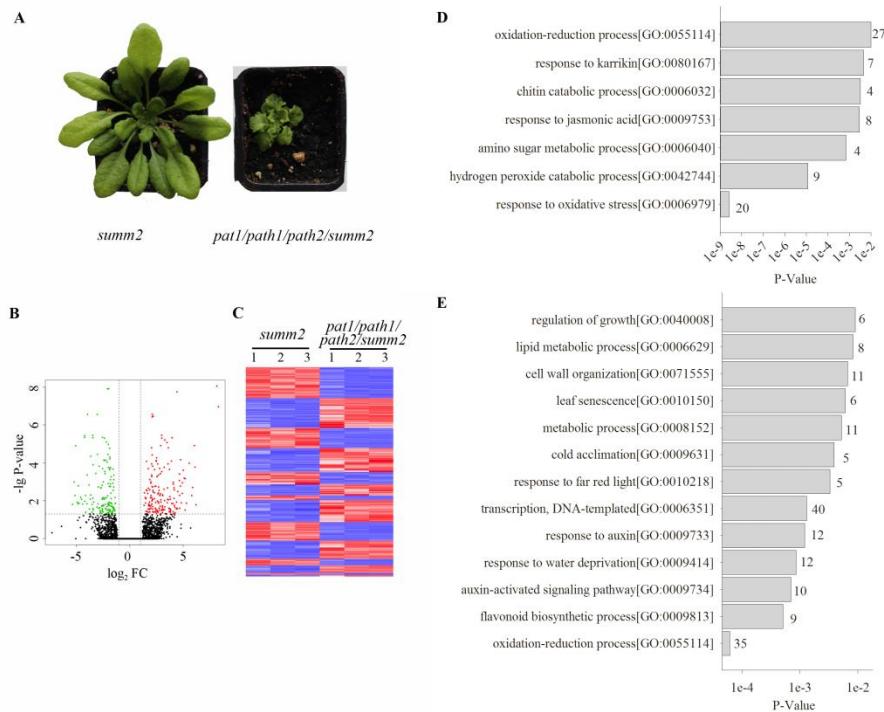
612 59. Geldner N, *et al.* (2009) Rapid, combinatorial analysis of membrane compartments in intact
613 plants with a multicolor marker set. *Plant J* 59(1):169-178.

614 60. Nakagawa T, *et al.* (2007) Development of series of gateway binary vectors, pGWBs, for
615 realizing efficient construction of fusion genes for plant transformation. *J Biosci Bioeng*
616 104(1):34-41.

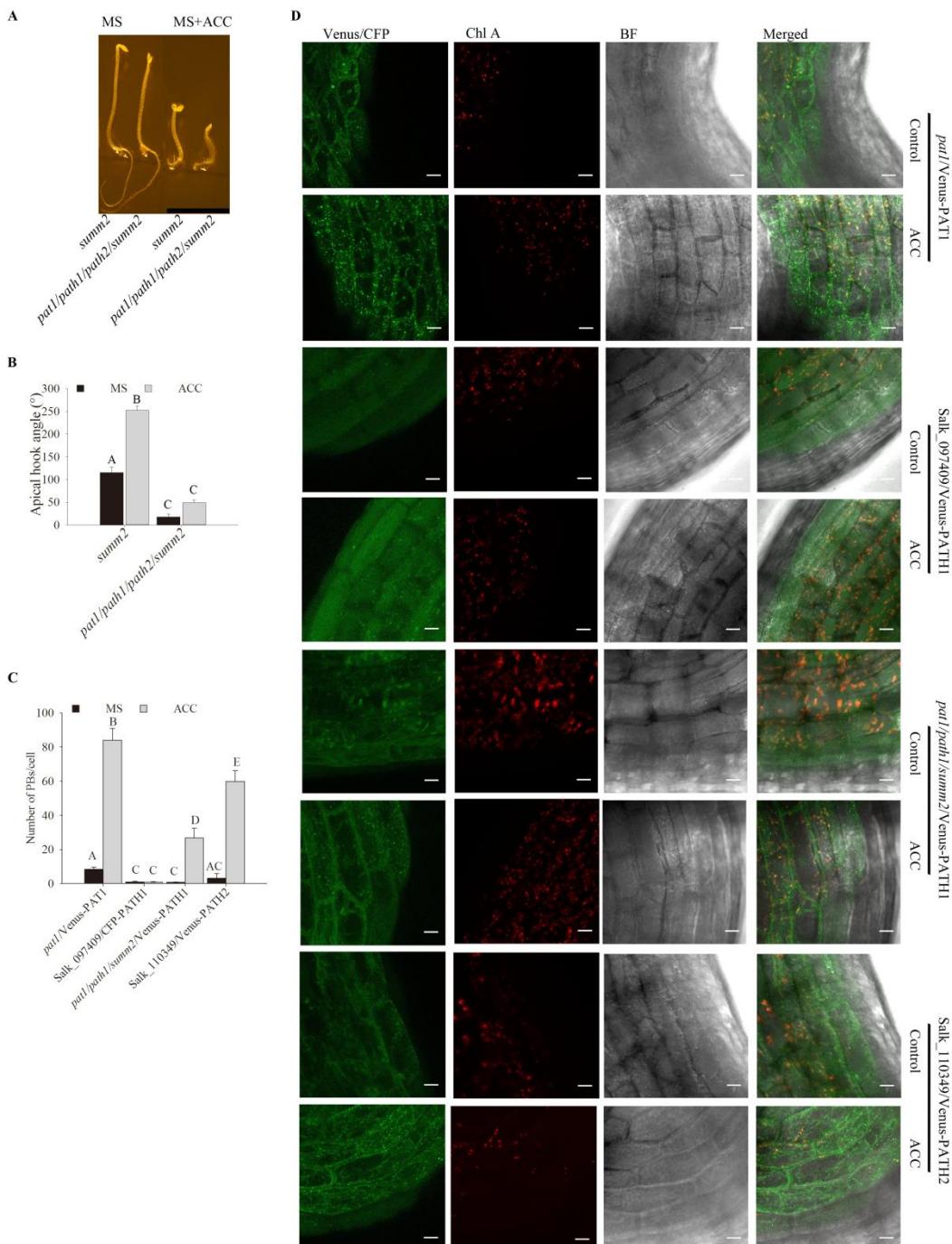
617 61. Mylle E, Codreanu MC, Boruc J, & Russinova E (2013) Emission spectra profiling of
618 fluorescent proteins in living plant cells. *Plant Methods* 9.

619 62. Karimi M, Depicker A, & Hilson P (2007) Recombinational cloning with plant gateway
620 vectors. *Plant Physiol* 145(4):1144-1154.

621 63. Clough SJ & Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated
622 transformation of *Arabidopsis thaliana*. *Plant J* 16(6):735-743.

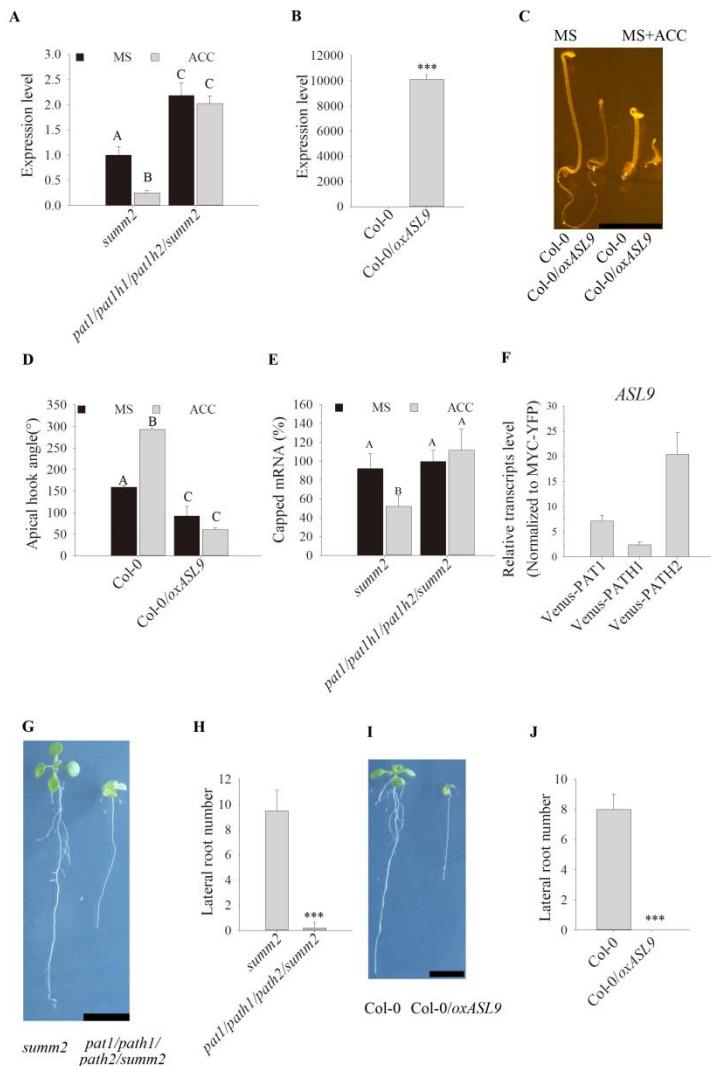

623 64. Kiss DL, *et al.* (2016) Cap homeostasis is independent of poly(A) tail length. *Nucleic Acids Res*
624 44(1):304-314.

625 65. Streitner C, *et al.* (2012) An hnRNP-like RNA-binding protein affects alternative splicing by in
626 vivo interaction with transcripts in *Arabidopsis thaliana*. *Nucleic Acids Res* 40(22):11240-
627 11255.

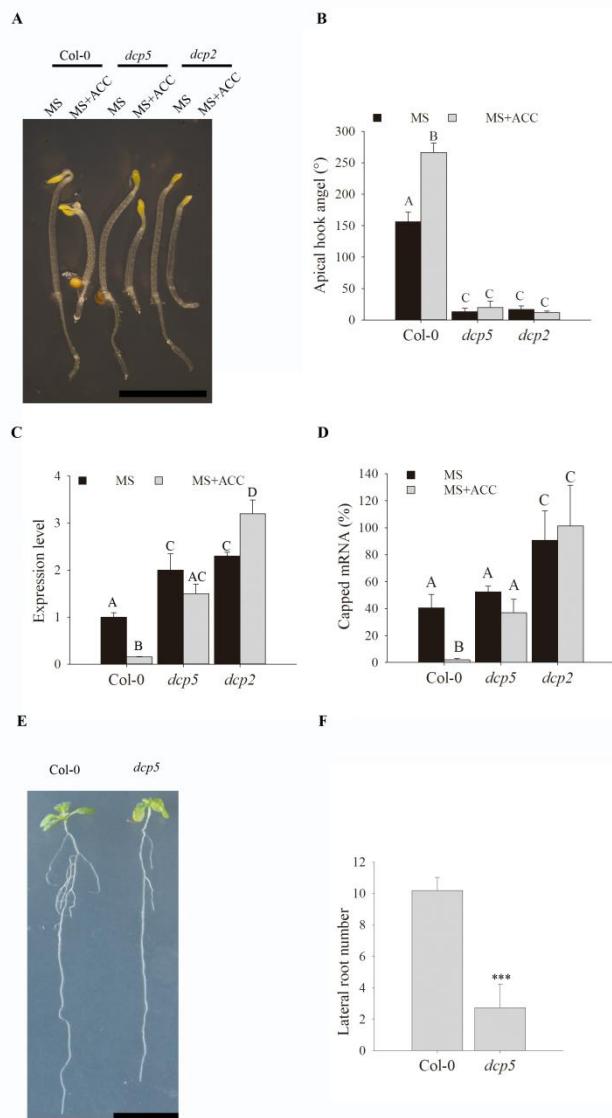

628 66. Dobin A, *et al.* (2013) STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29(1):15-21.

629 67. Anders S, Pyl PT, & Huber W (2015) HTSeq-a Python framework to work with high-
630 throughput sequencing data. *Bioinformatics* 31(2):166-169.

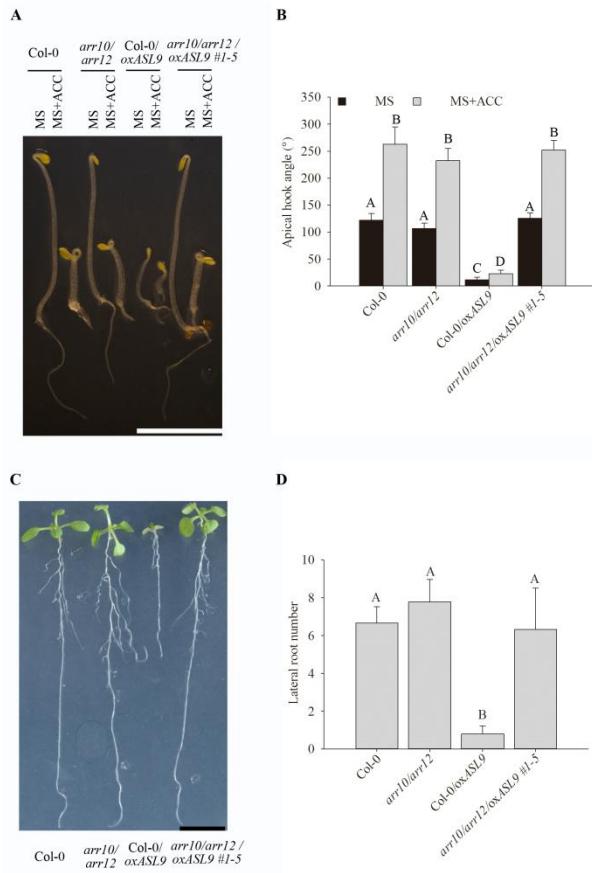
631 **Figures**



632 **Fig 1. mRNA decay component PATs are needed for transcript removal and developmental**
633 **processes initiation.** (A) 6 week-old plants of *summ2* and *pat1/path1/path2/summ2* grown in soil in a
634 chamber with 8/16hrs light/dark at 21°C. A representative plant for each line is shown and pictures in
635 Fig S1B were taken at the same time. (B) Volcano plot for differently expressed genes in
636 *pat1/path1/path2/summ2* compare to *summ2*. Up-regulated genes ($FC \geq 2$ ($\log_2(FC) \geq 1$), $P\text{-value} \leq 0.05$)
637 are coloured red and down-regulated ($FC \leq 2$ ($\log_2(FC) \leq -1$), $P\text{-value} \leq 0.05$) green. (C) Heat map
638 clustering of differentially expressed genes for comparison of *pat1/path1/path2/summ2* and *summ2*.
639 Pearson's metrics were used in hierarchical clustering of the genes. In the plot, red indicates high
640 expression and blue low expression. Gene ontology of transcripts upregulated (D) or downregulated
641 (E) in 6 week-old plants of mRNA decay deficient mutant *pat1/path1/path2/summ2* compared to
642 *summ2*.


643 **Fig 2. PATs loss-of-function causes deregulation of cell decision making during apical hooking.**
644 Hook phenotypes (A) and apical hook angles (B) in triple responses to ACC treatment of etiolated
645 summ2 and *patl/pathl/path2/summ2* seedlings. The experiment was repeated 3 times, and
646 representative pictures are shown. The scale bar indicates 1cm. (C) Quantification of PBs/cell and (D)

647 representative confocal microscopy pictures of hook regions following ACC treatment. 4 day-old dark-
648 grown *pat1*/Venus-PAT1, Salk_097409/CFP-PATH1, *pat1/path1/summ2*/Venus-PATH1 and
649 Salk_110349/Venus-PATH2 seedlings on MS (1st, 3rd, 5th and 7th rows) or MS+ACC plates (2nd, 4th, 6th
650 and 8th rows) for 4 days. Scale bars indicate 10 μ m. Chl A: Chlorophyll A; BF: bright field. Bars
651 marked with the same letter are not significantly different from each other (P-value>0.05).


Fig 3. PATs target ASL9 to regulate apical hooking and LR formation. (A) *ASL9* mRNA levels in cotyledons and hook regions of dark-grown *summ2* and *pat1/path1/path2/summ2* seedlings under control or ACC treatment. Error bars indicate SE (n = 3). One representative of 3 biology replicates is shown. (B) *ASL9* expression levels in 4 day-old seedlings of Col-0 and Col-0/oxASL9. Error bars indicate SE (n = 3). One representative of 3 biology replicates is shown. Hook phenotypes (C) and apical hook angles (D) of triple response to ACC treatment of etiolated seedlings of Col-0 and Col-0/oxASL9. The experiment was repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm. (E) Capped *ASL9* transcript levels in cotyledons and hook regions of dark-grown *summ2* and

671 *pat1/path1/path2/summ2* seedlings. Error bars indicate SE (n = 3). (F) All 3 PATs can bind *ASL9* 672 transcripts. 4-day dark-grown plate seedlings of *pat1*/Venus-PAT1, *pat1/path1/summ2*/Venus-PATH1 673 and *pat1/path2/summ2*/Venus-PATH2 were taken for the RIP assay. *ASL9* transcript levels were 674 normalized to those in RIP of MYC-YFP as a non-binding control. Error bars indicate SE (n=3). 675 Phenotypes (G) and LR number counts (H) of 10-day old seedlings of *summ2* and 676 *pat1/path1/path2/summ2*. The experiment was repeated 4 times, and representative pictures are 677 shown. The scale bar indicates 1cm. Pictures in Fig S4A were taken at the same time. Phenotypes (I) and LR 678 number counts (J) of 10-day old seedlings of Col-0 and Col-0/oxASL9. Treatment was repeated 3 679 times, and representative pictures are shown. The scale bar indicates 1cm. Bars marked with three 680 asterisk (****) are statistically extremely significant (P-value <0.001) and bars marked with the same 681 letter are not significantly different from each other (P-value>0.05).

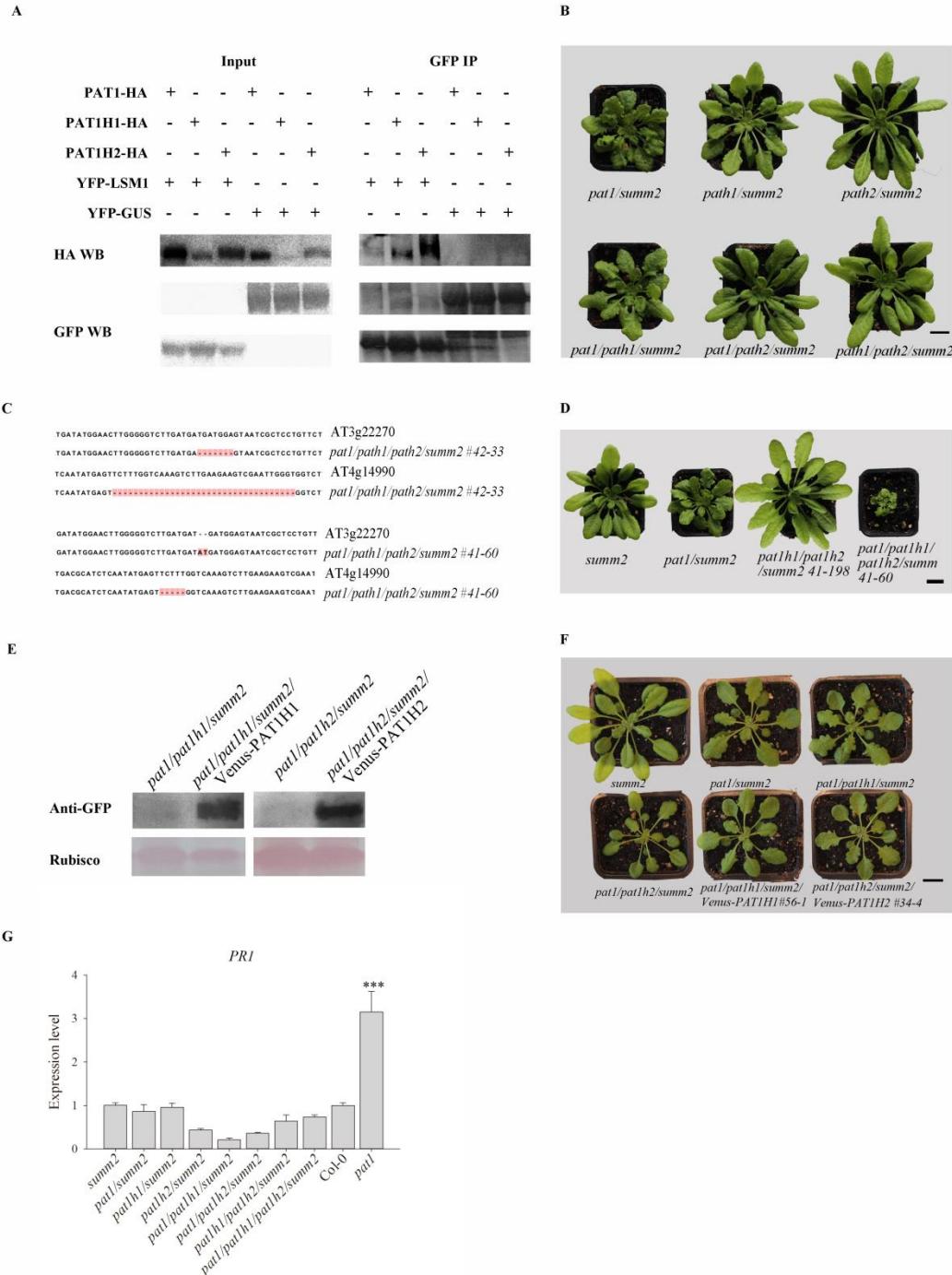


Fig 4. *ASL9* transcripts accumulate in many mRNA decay mutants with defects in apical hook and LR formation. Hook phenotypes (A) and apical hook angles (B) in triple responses to ACC treatment of etiolated Col-0, *dcp5* and *dcp2* seedlings. The treatment was repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm. (C) *ASL9* mRNA levels in cotyledons and hook regions of dark-grown Col-0, *dcp5* and *dcp2* seedlings under control or ACC treatment. Error bars indicate SE (n = 3). One representative of 3 biology replicates is shown. (D) Capped *ASL9* transcript levels in cotyledons and hook regions of dark-grown Col-0, *dcp5* and *dcp2* seedlings. Error bars indicate SE (n = 3). Phenotypes (E) and LR number counts (F) of 10-day old seedlings of Col-0 and *dcp5*. Treatment was repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm. Bars marked with three asterisk (****) are statistically extremely significant (P-value <0.001) and bars marked with the same letter are not significantly different from each other (P-value >0.05).

703 marked with the same letter are not significantly different from each other (P-value >0.05).

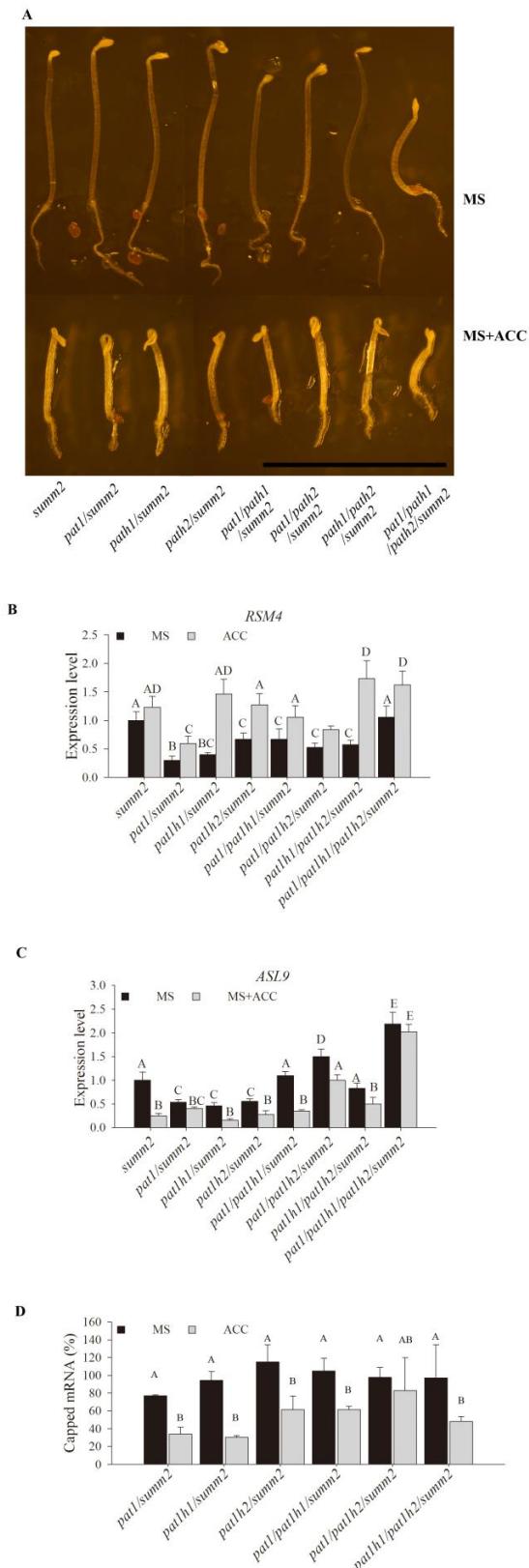
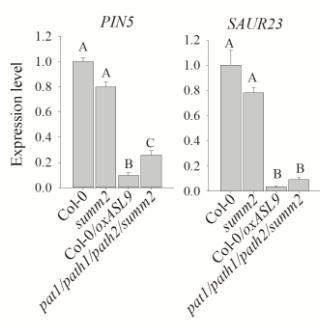


Fig 5. *ARR10* and *ARR12* loss-of-function restores apical hook and LR formation in *ASL9* over-expressor plants. Hook phenotypes (A) and apical hook angles (B) in triple responses to ACC treatment of etiolated Col-0, *arr10/arr12*, Col-0/*oxASL9* and *arr10/arr12/oxASL9* seedlings. The treatment was repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm. Phenotypes (C) and LR number counts (D) of 10-day old seedlings of Col-0 *arr10/arr12*, Col-0/*oxASL9* and *arr10/arr12/oxASL9*. Treatment was repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm. Bars marked with the same letter are not significantly different from each other (P-value>0.05).


719 **Fig S1. Characterization of *pat* mutants generated using CRISPR/CAS9 system. (A)**, Co-IP
720 between the three PAT-HA and YFP-LSM1 fusions. Proteins were transiently co-expressed in *N.*
721 *benthamiana* and tissue harvested 3 days post-infiltration. Immunoblots of inputs (left panels) and GFP
722 IPs (right panels) were probed with anti-HA antibodies and anti-GFP antibodies. (B), 6 week-old plants

723 of *pat1/summ2*, *path1/summ2*, *path2/summ2*, *pat1/path1/summ2*, *pat1/path2/summ2* and
724 *path1/path2/summ2* grown in soil in a chamber with 8/16hrs light/dark at 21°C. One representative
725 plant for each line is shown. The scale bar indicates 1cm.(C), Sequencing of *path1* and *path2* mutations
726 in independent lines *pat1/path1/path2/summ2* 42-33 and *pat1/path1/path2/summ2* 41-60. (D), 6 week-
727 old plants of *summ2*, *pat1/summ2*, *path1/path2/summ2* 41-198 and *pat1/path1/path2/summ2* 41-60
728 grown in soil in chamber with 8/16hr light/dark at 21°C. One representative plant for each line is
729 shown. The scale bar indicates 1cm. Western blots detecting the expression of PATH1 and PATH2
730 fusions with N-Venus (E) and growth phenotype (F) of complemented lines. One representative plant
731 for each line is shown. The scale bar indicates 1cm.(G) PR1 expression level in 5 week-old plants of
732 *pats* mutant in *summ2* background, *pat1* and Col-0, the experiment was repeated 3 times, bars marked
733 with three asterisk (****) are statistically extremly significant (P-value <0.001).

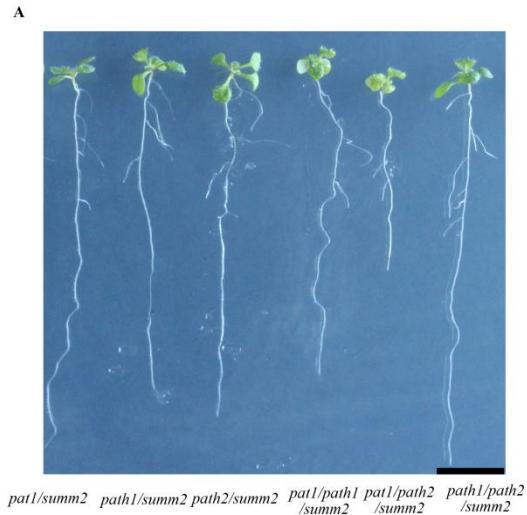
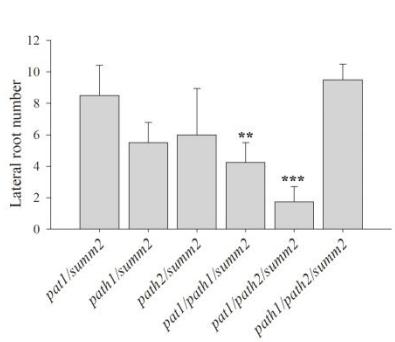
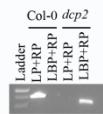
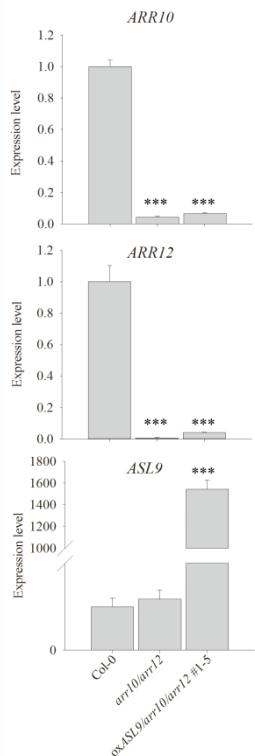


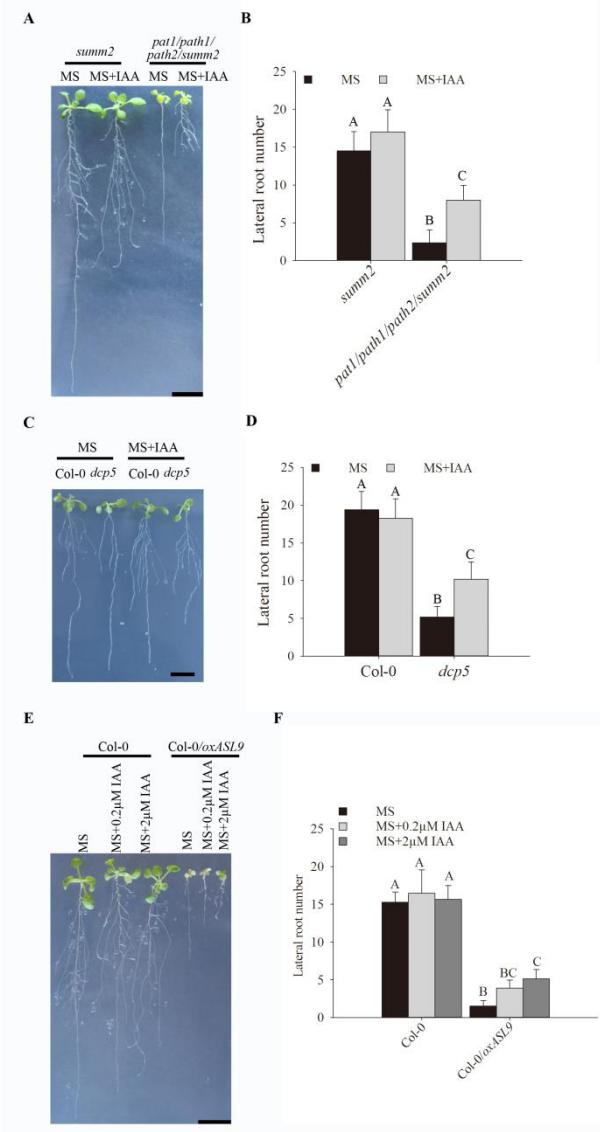
Fig S2. Apical hook in *pat* single and double mutants.


(A) Hook phenotypes of triple response to ACC treatment of etiolated seedlings of *summ2*, *pat1/summ2*, *path1/summ2*, *path2/summ2*, *pat1/path1*, *pat1/path2*, *path1/path2*, and *path1/path2/summ2*. The treatment was repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm. **(B)** *RSM4* expression levels in cotyledons and hook regions of dark-grown *pat* single, double and triple mutants under control or ACC treatment. Error bars indicate SE (n = 3). One representative of 3 biology replicates is shown. **(C)** *ASL9* expression levels in cotyledons and hook regions of dark-grown *pat* single and double mutants under control or ACC treatment. Experiments were performed together with Fig 4A. Error bars indicate SE (n = 3). One representative of 3 biology replicates is shown. **(D)** Capped *ASL9* transcript levels in cotyledons and hook regions of dark-grown *pat1/summ2*, *path1/summ2*, *path2/summ2*, *pat1/path1/summ2*, *pat1/path2/summ2* and *path1/path2/summ2* seedlings. Error bars indicate SE (n = 3) and bars marked with the same letter are not significantly different from each other (P-value>0.05)


Fig S3. Auxin related genes expression in mRNA decay deficient mutant and *ASL9* over-expressor. Auxin pathway genes *PIN5* and *SAUR23* expression levels in 10 day-old seedlings of *Col-0*, *summ2*, *Col-0/oxASL9* and *pat1/path1/path2/summ2*. The experiment was repeated 3 times, and representative pictures are shown. Bars marked the same letter are not significantly different from each other (P-value>0.05).


Fig S4. LR formation in *pat* single and double mutants. Phenotypes (A) and LR number counts (B) of 10-day old seedlings of *pat1/summ2*, *path1/summ2*, *path2/summ2*, *pat1/path1/summ2*, *pat1/path2/summ2* and *path1/path2/summ2*. The treatment was repeated 4 times, and representative pictures are shown. The scale bar indicates 1cm. Bars marked with asterisks are statistically significant (**:P-value <0.01; ***: P-value<0.001).

A



B

Fig S5. Characterization of *dcp2* and *arr10/arr12/oxASL9* mutants. (A)

Determining the genotype of hookless seedlings germinated from *dcp2* heterozygote seeds. PCR was carried out on genomic DNA from Col-0 and hookless seedlings germinated from *dcp2* heterozygote seeds using primer DCP2LP and DCP2RP to detect plants that contained a wild-type copy of *DCP2*, LBb1.3 for the T-DNA and gene-specific primer DCP2R were used to detect the presence of T-DNA. Annotation in this analysis is indicated: LP, DCP2LP; RP, DCP2RP; LBP, LBb1.3. **(B)** *ARR10*, *ARR12* and *ASL9* expression levels in Col-0, *arr10/arr12* and *arr10/arr12/oxASL9* 1-5 seedlings. The experiment was repeated 3 times, and representative pictures are shown. Bars marked with three asterisk (****) are statistically extremely significant (P-value <0.001).

Fig S6. Auxin restores LR formation in mRNA decay deficient mutants and Col-0/oxASL9.

Phenotypes (A) and LR number counts (B) of 14-day old seedlings of *summ2* and *pat1/path1/path2/summ2* on MS or MS with 0.2μM IAA. Phenotypes (C) and LR number counts (D) of 14-day old seedlings of Col-0 and *dcp5* on MS or MS with 0.2μM IAA. Phenotypes (E) and LR number counts (F) of 14-day old seedlings of Col-0 and Col-0/oxASL9 on MS, MS with 0.2μM IAA or MS with 2μM IAA. Seeds on MS plates were vernalized 96hrs and grown with 16/8 hrs light/dark at 21°C for 7 days. The seedlings were moved to MS or MS+IAA plates and grown vertically for 7 days. The treatment was repeated 3 times, and representative pictures are shown. The scale bar indicates 1cm. Bars marked the same letter are not significantly different from each other (P-value>0.05).