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Abstract

Magnetoencephalography (MEG) is an important part of epilepsy evaluations because of
its unsurpassed ability to detect interictal epileptiform discharges (IEDs). This ability may
be improved by next-generation MEG sensors, where sensors are placed directly on the
scalp instead of in a fixed-size helmet, as in today’s conventional MEG systems. In order
to investigate the usefulness of on-scalp MEG measurements we performed the first-ever
measurements of on-scalp MEG on an epilepsy patient. The measurement was conducted
as a benchmarking study, with special focus on |IED detection. An on-scalp high-
temperature SQUID system was utilized alongside a conventional low-temperature “in-
helmet” SQUID system. EEG was co-registered during both recordings. Visual inspection
of IEDs in the raw on-scalp MEG data was unfeasible why a novel machine learning-based
IED-detection algorithm was developed to guide IED detection in the on-scalp MEG data.
A total of 24 IEDs were identified visually from the conventional in-helmet MEG session (of
these, 16 were also seen in the EEG data; eight were detected only by MEG). The on-
scalp MEG data contained a total of 47 probable IEDs of which 16 |IEDs were co-
registered by the EEG, and 31 IEDs were on-scalp MEG-unique IEDs found by the IED

detection algorithm. We present a successful benchmarking study where on-scalp MEG
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are compared to conventional in-helmet MEG in a temporal lobe epilepsy patient. Our
results demonstrate that on-scalp MEG measurements are feasible on epilepsy patients,
and indicate that on-scalp MEG might capture IEDs not seen by other non-invasive

modalities.

1. Introduction

Magnetoencephalography (MEG) has played a role in epilepsy care for almost thirty years,
and is today widely regarded as an established clinical tool (De Tieége et al., 2012; Hari et
al., 2018). Several studies have demonstrated that MEG detects interictal epileptiform
discharges (IEDs) with unsurpassed sensitivity, detecting them in approximately 70-80% of
all epilepsy patients as compared to a 60% detection rate in EEG (Knake et al., 2006;
Stefan et al., 2003). MEG also plays a role in EEG-negative epilepsy cases, and adding
MEG to the clinical evaluation of such patients increase the spike detection probability with
almost 20% (Colon et al., 2009; Duez et al., 2016; Pataraia et al., 2004). Furthermore,
since MEG source reconstruction is less affected by skull anatomy and conductivity than
EEG is, the localization of an epileptogenic zone is more accurate with MEG than what is
possible with EEG (Hamalainen et al., 1993; Jayakar et al., 2014). Also, using MEG to
guide intracranial electrode placement increases the likelihood of a successful sampling of
the seizure onset zone (Jung et al., 2013; Knowlton et al., 2006; Sutherling et al., 2008).
Additionally, resection of findings localized with MEG increases the likelihood of post-
surgery seizure freedom compared to surgery performed without MEG findings taken into
account (Murakami et al., 2016; Rampp et al., 2019). For the above reasons, MEG has
become a standard part of presurgical evaluation of epilepsy patients (De Tiege et al.,
2017; Hari et al., 2018).

Despite these unique contributions in presurgical epilepsy evaluation, conventional
MEG systems exhibit some inherent limitations, and addressing these might further
enhance the utility of MEG in epilepsy research and clinical evaluations. Conventional
MEG (hereafter called in-helmet MEG) sensors are cooled down to approximately 4 K
(—269 °C) using liquid helium, which is why they must be housed behind thick layer of
insulation (Heiden, 1991) within a fixed-size helmet. On adults, this solution results in a 20-
40 mm sensor-scalp distance typically influencing distance to frontal and temporal cortices
the most; the situation is even worse for children (Riaz et al., 2017). This distance has a
detrimental influence on the signal-to-noise ratio of the cortical signal since the magnetic

field strength weakens quickly with distance (Boto et al., 2016; livanainen et al., 2017).


https://doi.org/10.1101/834275
http://creativecommons.org/licenses/by/4.0/

75

80

85

90

95

100

bioRxiv preprint doi: https://doi.org/10.1101/834275; this version posted November 19, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Spatial resolution depends on the sensor spacing. A smaller sensor-to-sensor distance
results in a better ability to distinguish between neural sources, compared to a greater
sensor-to-sensor distance (Boto et al., 2016; Riaz et al., 2017). To address both the
problems of sensor-cortex distance and that of the fix in-helmet system, as well as improve
both neuroscientific and clinical applicability of MEG, systems where the sensors are
flexibly placed directly on the scalp are under development (Borna et al., 2017; Boto et al.,
2018; livanainen et al., 2019; Pfeiffer et al.,, 2019). On-scalp MEG sensors comprise,
amongst others, optically-pumped magnetometers (OPMs) (Budker and Romalis, 2007)
and high-Tc SQUIDs (Zhang et al., 1993). Both of these on-scalp MEG sensor systems
allow for a significant reduction of the sensor-cortex distance, as well as a rearrangement
of the sensor layout geometry, thus increasing the signal-to-noise ratio and spatial
resolution of the recorded neuronal activity (Boto et al., 2016; livanainen et al., 2017; Riaz
et al., 2017; Schneiderman, 2014). Furthermore, placing the sensors evenly distributed on
the scalp enables a more even sampling of brain regions. Thus, the development of on-
scalp MEG sensors holds the promise of improving the quality of non-invasive MEG
measurements, potentially moving these towards the quality of intracranial registrations.
Potentially, on-scalp MEG sensors could enable better non-invasive characterization of
focal epileptic networks, seizure development and seizure onset zone, which today is only
possible using invasive intracranial recordings (Bartolomei et al., 2017; Jayakar et al.,
2016, 2014; Stefan and da Silva, 2013). Improving the spatial resolution of non-invasive
neurophysiological measurements would thus be of great value both for neuroscientific
and clinical applications.

We present the first-ever measurement on an epilepsy patient using on-scalp MEG
sensors. We aimed to evaluate the potential added value of these sensors compared to in-
helmet MEG with focus on IED detection. To this end, a benchmarking protocol with
acquisition of both on-scalp and in-helmet MEG and co-registration of EEG from the same

patient was utilized.

2. Method and material

2.1 Ethical approval
The experiment was approved by the Swedish Ethical Review Authority (DNR: 2018/1337-

31), and was performed in agreement with the Declaration of Helsinki.
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2.2 MEG systems

2.2.1 On-scalp high-T.-MEG system
The on-scalp high-Tc-MEG system (hereafter referred to as on-scalp MEG) consists of

seven SQUID magnetometers, each with a pickup loop with dimensions 8.6 mm x 9.2 mm.
The magnetometers are positioned with 12.0 mm center-to-center distance in a hexagonal
array enclosed within a cryostat cooled with liquid nitrogen. The distance between the
sensors and the participant’s scalp can be as small as 1 mm. A detailed description of the
system is found in (Pfeiffer et al., 2019).

2.2.2 In-helmet MEG system

For in-helmet MEG recordings, an Elekta Neuromag TRIUX (Elekta Oy, Helsinki, Finland)

with 102 sensor chips, each with one magnetometer with a pickup loop size of 21 mm x 21

mm and two orthogonal planar gradiometers, was used.

2.3 Patient and experimental procedure

In order for IEDs to be feasibly detected via on-scalp recordings, they need to be focal,
reliably sampled by in-helmet MEG, and frequently occurring. Furthermore, in order to
compare |IED properties across MEG/EEG sensors, the IED configuration should be as
simple as possible, preferably distinct, solitary sharp waves or spikes. To identify potential
participants that met these criteria, scalp EEG of ten adult, cognitively intact epilepsy
patients who had undergone long-term video EEG as part of an epilepsy evaluation at the
department of clinical neurophysiology at the Karolinska University Hospital during 2018
were screened. Six patients diagnosed with focal epilepsy were contacted; three agreed to
be screened for inclusion in the benchmarking study. These three patients subsequently
underwent an in-helmet MEG recording with co-registration of EEG, electrooculography
(EOG), and electrocardiography (ECG). These recordings were used to identify patients
with IEDs that are clearly visible on MEG. For EEG, a 10-20 montage with 21 channels
was used. During measurements, patients were seated upright and instructed to try to stay
awake. Data was recorded for one hour: 30 minutes with eyes closed and 30 minutes with
eyes open. Two patients with prominent in-helmet MEG detected IEDs were invited to
participate in further measurements involving both in-helmet and on-scalp MEG. One
patient (female, 45 years old) agreed to further participation. This patient is diagnosed with
left temporal lobe epilepsy and underwent epilepsy surgery in 1996, resulting in only a

short period of seizure freedom.
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2.4 Benchmarking measurements and analysis

The main measurements involved both in-helmet and on-scalp MEG measurements from
the epilepsy patient and were conducted in accordance with the benchmarking protocol
described by Xie et al. (Xie et al.,, 2017). In short, this protocol involves an initial
measurement using in-helmet MEG, from which the magnetic fields related to the brain
activities of interest are projected to the scalp to guide the placement of the on-scalp MEG
system, currently having a small and limited scalp coverage.

2.4.1 In-helmet MEG session

2.4.1.1 Measurements.

An initial measurement session of one hour was performed, involving in-helmet MEG with
co-registered EEG, EOG, and ECG. EEG was recorded with the 21 electrodes previously
mentioned, based on the 10-20 placement system. A total of 74 points of the head
including the 21 EEG electrodes were digitized with a Polhemus Fastrak system. During
the session, the patient was asked to rest with closed eyes, while remaining awake during
measurements. Data was sampled at 5000 Hz, online low and high pass filtered at 1650
and 0.1 Hz, respectively. The EEG data was recorded together with the MEG data, using
the TRIUX EEG channels.

2.4.1.2 Analysis.

In-helmet MEG data was initially pre-processed using MaxFilter (Elekta Neuromag) signal-

space separation (Taulu and Simola, 2006) (buffer length 10 s, cut-off correlation
coefficient at 0.98). The EEG signal and the maxfiltered raw in-helmet MEG data was
filtered using a 1-40 Hz Butterworth bandpass filter in order to allow visual inspection of
the signal. IEDs were detected via visual inspection of the in-helmet MEG and co-
registered EEG data by a physician (KW) trained in IED detection both in EEG and MEG
data. IEDs were averaged across events and source localization was performed using
software package MNE Python (Gramfort et al., 2013). Minimum norm estimates (MNE)
(Hamalainen and limoniemi, 1994) was used to localize the IED origin (Fig. 1). To this end,
the patient’s clinical MRI was used to create a full head and brain segmentation using
FreeSurfer (Dale et al.,, 1999; Fischl et al., 1999). The segmentation was used to
determine skin, skull, and brain surface boundaries using the MNE-C software watershed
algorithm (Gramfort et al., 2013). A source and single compartment volume conductor

model based upon these were created using MNE-C. The locations of the peak positive
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and negative magnetic fields of the IEDs averaged across events were determined and
plotted alongside the EEG electrode positions on a model of the patient’'s head that
included the EEG cap and 74 digitalization points (Fig. 2). These projections and points
were used to guide the positioning of the on-scalp MEG sensor array at the center of both

the positive and negative peak field positions on the patient’s head.

2,75e-11 4,92e-11 7,08e-11 17e-11 1,03e-10
I

Figure 1: Source localization of averaged IEDs using MNE (unit: Am). Peak of IED activity

marked by arrow.
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A B

Figure 2A: Maximum (red) and minimum (blue) peak magnetic fields of averaged IEDs and
digitalized position of EEG electrodes (cyan). Peak of IED activity marked by arrow.
Figure 2B: Schematic layout of on-scalp MEG sensor system. The cross indicates the

positioning of the sensor at the recording sites.

2.4.2 On-scalp MEG session

2.4.2.1 Measurements.

Two consecutive one-hour on-scalp MEG sessions were performed with the high-T.-MEG
central sensor pointing at the center of each peak field position (Fig. 2). The patient was
seated upright with closed eyes and asked to stay awake, similar to the in-helmet MEG
measurements in Session 1. For each peak field position, co-registration of EEG was
performed using the 10-20 system. During the positive peak field registration, one
electrode was removed and two were slightly shifted; during the negative peak field
registration, three electrodes were removed in order to make room for the on-scalp MEG

system. Data from the on-scalp MEG was acquired through analog channels of the TRIUX.
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On-scalp MEG data and co-registered EEG was sampled and filtered as in the in-helmet
session (see 2.4.1.1, In-helmet MEG session, Measurements)
2.4.2.2 Analysis.

EEG data was preprocessed as in the in-helmet MEG session. From the two on-scalp

MEG recording sessions (one at the maximum field peak projected from the IEDs
registered in the in-helmet MEG, one at the minimum field peak) only data from the
maximum peak field recording was analyzed. Data from the minimum field peak was
unfortunately rendered useless due to the removal of EEG electrodes in order to fit the
cryostat, making inspection of the EEG difficult and IED detection unreliable, if not
impossible. Any minimum peak on-scalp findings would hence be impossible to validate
against EEG-recorded |IEDs. In the data from the maximum field measurement, one high-
T. sensor was excluded due to high noise. Internal noise levels of the remaining high-T.
sensors were typically around 75 fT/Hz'? across frequencies 1-40 Hz and sensors. Visual
inspection of on-scalp MEG epochs locked to IEDs in the EEG recording (hereafter
referred to as EEG-positive IEDs) revealed that some of these on-scalp IEDs were sharp,
transient events easily distinguishable from the background activity, while some were
obscured by artifacts (Fig. 3-4). Importantly, beyond these EEG-positive on-scalp MEG
IEDs, the on-scalp MEG data contained a large number of high-amplitude events visually
resembling the EEG-positive IEDs (Fig 5), but without any coinciding IEDs in the co-
registered EEG to validate them. Thus, visually distinguishing which of these events that
might be EEG-negative, on-scalp MEG-positive IEDs, and which might be artifacts or
epilepsy-related, non-IED focal activity was not possible, and an alternative approach to
IED detection in this data was developed. Inspection of the dataset was performed with
bandpass filtering 1-40 Hz and 5-20 Hz. Frequency bands were chosen so as to optimize
visual inspection of IEDs. High-amplitude events were more distinguishable with 5-20 Hz

bandpass filtering.
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Clearly visible EEG-positive on-scalp MEG IED
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Figure 3: EEG-positive IED visible in raw data (bandpass filtered 1-40 Hz). On-scalp

sensor numbering refer to the on-scalp MEG system layout.
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EEG-positive on-scalp MEG IED obscured by artifact

On-scalp sensors
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Figure 4: EEG-positive IED obscured by artifact (bandpass filtered 1-40 Hz). On-scalp

sensor numbering refer to the on-scalp MEG system layout.
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Figure 5: High-amplitude on-scalp MEG event (bandpass filtered 5-20 Hz). On-scalp

sensor numbering refer to the on-scalp MEG system layout.
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2.5 Spike detection
2.5.1 In-helmet MEG session data

IED detection was performed as described in 2.4.1.2 In-helmet MEG session, Analysis.
2.5.2 On-scalp MEG session data

In order to reveal whether the on-scalp MEG raw data contained any EEG-negative IEDs,
a detection algorithm based upon inherent data characteristics of the on-scalp MEG data
was needed. However, it is not initially given what data parameters should be used to
distinguish on-scalp IED events. Definitions of interictal activity are largely arbitrary
descriptions of scalp EEG-IED morphology, which varies greatly between patients (Kane et
al., 2017). In order to capture their appearance, IED-detection algorithms typically depend
on feature extraction from a large number of IEDs followed by classification, which can be
performed using machine learning, template matching, or independent component
analysis, amongst others (Wilson and Emerson, 2002). Here, we aimed to employ a
similar approach combined with anomaly detection. Due to the expected difference in on-
scalp and in-helmet MEG data characteristics, in-helmet MEG IEDs could not be used as
templates. The one existing on-scalp recording (our current recording) therefore had to be
used both for parameter extraction and spike detection validation. In order to minimize
overfitting, a genetic algorithm (GA) was used to create artificial data parameter vectors
resembling the corresponding real on-scalp IED data parameters.

First, on-scalp MEG IEDs time locked to IEDs found by visual inspection of the
EEG-recording were located. The parameters of Table 1 were extracted from these EEG-
positive on-scalp MEG IEDs creating /ED feature vectors. The genetic algorithm was used
to generate artificial IED feature vectors resembling these. Non-IED feature vectors were
obtained by extraction Table 1 parameters from |IED-free raw data. Artificial IED feature
vectors and non-IED feature vectors were used to train a support vector machine (SVM).
Secondly, the SVM was evaluated on the EEG-positive on-scalp MEG IEDs, calling
correctly classified ones “true positives”, and incorrectly classified ones “false negatives”.
Third, classification was performed on the remaining on-scalp MEG raw data set. Positive
peaks of each wave constituted the center of an epoch from which a feature vector was
extracted, and classification was performed upon these vectors. Thus, on-scalp MEG
events with similar statistical properties as the EEG-positive on-scalp MEG IEDs will be

found (and called potential IEDs).

12
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Since it is central to the IED definition that such an activity should stand out against
the background activity, an IED can be considered a time series anomaly (Chandola et al.,
2009; Kane et al., 2017). Only potential IEDs constituting discordant events should be
kept. To this end, changes in the extracted parameters induced by the potential IEDs were
quantified and only events exhibiting an equal or larger change than the smallest change
exhibited by the EEG-positive on-scalp IEDs were kept. These were labeled likely IEDs.

(For details, see Supplementary).

Features extracted from EEG-
positive on-scalp MEG IEDs

Standard deviation

Skewness

Mean

Kurtosis

Sum of points in time series

Maximum value of time series

Minimum value of time series

Range of time series

Energy of time series

Integral of time series

Duration of peak

Fractal dimension

Variance

Slope of peak

Table 1: Features extracted from EEG-positive |IEDs used create artificial IED feature

vectors (for details, see Supplementary)

13
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3. Results

320 3.1 In-helmet MEG session
3.1.1 EEG data

From the EEG data co-registered with the in-helmet MEG recording, a total of 16 IEDs
were identified via visual inspection.
3.1.2 In-helmet MEG data

325 Visual inspection of the in-helmet MEG data revealed 24 IEDs. While 16 of these
coincided with the EEG IEDs, the remaining eight in-helmet MEG IEDs were not visible in
the EEG data. MNE source localization of averaged IEDs placed the epileptic focus of the
MEG IEDs in the left temporal lobe (cf. Fig. 1). Amplitude of averaged IEDs was 2000 fT.
MNE source localization and an average of the 16 EEG-positive IEDs (i.e. the IEDs

330 detected both in MEG and EEG data) are found in Figure 6. A corresponding MNE source
localization and averaged data for the EEG-negative IEDs (i.e. the IEDs detected only in

the in-helmet MEG data) are found in Figure 7.

14
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EEG-positive in-helmet IEDs

Nave=16 In-helmet magnetometers (102 channels)
2000

1500 +

1000 +

= Y=
~1000 N4

-0.20 —0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
Time (s)

2,6de-11 4,65e-11 é,66e-11 8,67e-11 9,68e-11

Figure 6: Average (A) and source localization (B) of EEG-positive IEDs found in in-helmet
MEG. Source localization performed using MNE (unit: Am).
335
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EEG-negative in-helmet IEDs

Naye=8 In-helmet magnetometers (102 channels)

2000 A

=1000 b i—

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
Time (s)

6,28e-11 1,00e-10 1,38e-10 1,75e-10 1,94e-10

Figure 7: Average (A) and source localization (B) of EEG-negative |IEDs found in in-helmet
MEG. Source localization performed using MNE (unit: Am).
340
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3.2 On-scalp MEG session
3.2.1 EEG data

345 From the EEG data co-registered with the on-scalp MEG recording, a total of 16 IED
events were detected in left temporal lobe channels, similarly to in the in-helmet MEG

recording (see Fig. 8 for raw trace examples of IEDs).
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Figure 8: Raw trace of IED from EEG (reference montage) co-registered with on-scalp
425 MEG.

18


https://doi.org/10.1101/834275
http://creativecommons.org/licenses/by/4.0/

430

435

440

445

450

455

bioRxiv preprint doi: https://doi.org/10.1101/834275; this version posted November 19, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

3.3 Spike detection algorithm

First, the combined genetic algorithm-support vector machine (GA-SVM) was evaluated on
the 16 EEG-identified IEDs events in the on-scalp MEG data (see Fig. 9 for average, see
Fig. 3-4 for example of raw IEDs). Amplitude of averaged such EEG-identified on-scalp
IEDs was 4000 fT. Of these, 11 events were correctly classified. Inspection of the 5 false
negative epochs revealed that these on-scalp MEG events contained artifacts obscuring
the IED. See Figures 10 and 11 for an average of the true positive and false negative
EEG-positive on-scalp MEG IEDs; see Figure 4 for an example of a raw false negative
event. Second, the GA-SVM was used to detect potential IEDs in the raw on-scalp MEG
data. A total of 4623 epochs were extracted, as described in Supplementary, from the part
of the on-scalp MEG recording on which classification was performed. Out of these, 416
events were classified as potential IEDs. An average of these are found in Figure 12.

Third, the potential IEDs constituting anomalies (see Supplementary for details) were kept
and considered as likely IEDs. The on-scalp MEG recording contained 31 such likely IEDs
not seen by the co-registered EEG (see Fig. 13 for average of these, and Figs. 14A,B for

examples of such events in raw data). Amplitude of the averaged likely IEDs was 3000 fT.

EEG-positive on-scalp MEG IEDs

Nave=16 On-scalp magnetometers (6 channels)
4000 ey
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N
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Figure 9: Average of all EEG-positive on-scalp MEG IEDs
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Figure 10: EEG-positive IEDs correctly classified as such (true positives)
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Figure 11: EEG-positive IEDs incorrectly classified as such (false negatives)
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Figure 12: Average of potential IEDs found by the GA-SVM
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Figure 13: Average of likely IEDs found by combining the GA-SVM and the anomaly
detector
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Figure 14A-H: Examples of likely IED in raw on-scalp MEG data (bandpass filtered 5-20
Hz).

4. Discussion

We present the first-ever on-scalp MEG epilepsy study with the aim to investigate whether
the sensor technology could improve non-invasive |IED detection. Both on-scalp and in-
helmet MEG, with co-registered EEG, was recorded from the same temporal lobe epilepsy
patient. A novel on-scalp MEG IED-detection algorithm was also developed to help discern
IEDs from the on-scalp MEG background activity. Below, the following aspects are
discussed separately: (4.1) the feasibility of benchmarking recordings on epilepsy patients,
(4.2) registration of IEDs, and (4.3) the usefulness of a detection algorithm for on-scalp
MEG data.

4.1 Benchmarking protocol/on-scalp measurement

Data presented in this study rely on an initial careful screening of suitable epilepsy
patients, and the development of a reliable benchmarking protocol. From the perspective
of a study protocol, we deem on-scalp MEG recordings of epileptogenic foci activity
feasible, but for now limited to patients capable of adhering to the benchmarking protocol.
The temporal lobe epilepsy patient included herein exhibits relatively frequent IEDs, which
enables source localization from the in-helmet MEG recording, and thus accurate
placement of the on-scalp MEG system for sampling of the maximal field generated by the
IEDs. However, epileptogenic foci that are difficult to localize by EEG or in-helmet MEG
would hinder such optimal positioning of the on-scalp MEG system and provide poor
benchmarking data, at least in studies using an on-scalp MEG array with limited coverage
as we do here. A limited-coverage on-scalp MEG system is thus unlikely to be suited for
measurements on patients with inconclusive non-invasive recordings, thus requiring
intracranial measurements for localization (Gonzalez-Martinez et al., 2014; Jayakar et al.,
2014).

4.2 Registration of IEDs
EEG data was co-registered with MEG in both the in-helmet and on-scalp MEG

recordings. From each EEG data set, we could successfully detect 16 IEDs using visual
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inspection, indicating that the occurrence rate of IEDs in the patient were the same during
both recordings. From the in-helmet MEG data, we could independently detect the same
16 IEDs found in the EEG data, plus an additional 8 MEG-positive IEDs. This is in line with
the literature on IEDs in MEG and EEG, where MEG typically demonstrates a higher
sensitivity to IEDs (Knake et al., 2006; Stefan et al., 2003).

While the IEDs in on-scalp MEG data could not be readily discriminated from other
high-amplitude activities using visual inspection alone, we could guide the visual
identification of the IEDs using the co-registered EEG data to validate on-scalp MEG IEDs.
Leaning on EEG, we could thus identify 16 IEDs also in the on-scalp MEG data. When
averaged, these on-scalp MEG IEDs revealed a prominent peak followed by
hyperpolarization (Fig. 9), just like those extracted from conventional MEG measurements
(Figs. 6-7). They showed typical characteristics of IEDs once we knew where they were,
but were too difficult to reliably discern from other events in the data using vision alone. To
explore the on-scalp MEG data for additional IEDs, we therefore used an IED detection
algorithm that focuses on the abstract statistical features of IEDs, rather than their
characteristic visual appearance. Using this approach, we could detect EEG-positive IEDs
not obscured by artifacts (cf Fig. 4, Fig. 11 for IEDs with artifact, cf Fig. 5, Fig. 10 for
clearly visible IEDs), plus an additional 31 additional IEDs uniquely registered in the on-
scalp MEG data (Figs. 13-14).

Inspection of in-helmet MEG IEDs and EEG-positive on-scalp MEG IEDs (cf Fig. 6-
7, Fig. 9) reveal that the field magnitude of these on-scalp MEG |IEDs were roughly two
times larger than the amplitude of in-helmet MEG IEDs (4000 fT and 2000 fT,
respectively). This increase is in accordance with modeling predictions of the field strength
acquired through a one-channel system employing the same type of on-scalp sensor used
here (Xie et al., 2017, 2015). The amplitude of the 31 additional on-scalp MEG IEDs on the
other hand exhibit a lower amplitude (3000 fT, Fig. 13) than do the EEG-positive ones (Fig.
9). These amplitude differences may explain why on-scalp MEG can detect IEDs that are
not identified by EEG. Tao et al. have reported that the majority of IEDs visible on scalp
EEG arise from hypersynchronization of at least 10 cm? cortex, and no IED originating
from cortical patches smaller than 6 cm? can be detected with scalp EEG. However, the
majority of IEDs recorded intracranially arise from smaller areas and remain undetected by
scalp EEG (Tao et al., 2005). Indeed, the region capable of generating IEDs, the irritative
zone (Jehi, 2018; Rosenow and Luders, 2001), is organized in subregions which might

independently generate epileptic activity (Janca et al., 2018; Keller et al., 2010; Sabolek et
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al., 2012; Wilke et al., 2011; Zhang et al., 2017). It is thus possible that the additional IEDs
detected in on-scalp MEG arise from such functional subunits of an epileptic network.

Today, characterization of functional connectivity within a small region is impossible using
EEG or in-helmet -MEG (Schoffelen and Gross, 2009). However, it is possible that the
improved source separation and neural signal amplitude of the on-scalp MEG
measurement (Boto et al., 2016; Riaz et al., 2017) would allow not only identification of
such subunits, but also characterization of network dynamics. These are of course issues
that need to be further explored in future on-scalp MEG measurements on epilepsy

patients.

4.3 Using algorithm-based IED detection

Since conventional visual IED identification was unfeasible in the raw on-scalp MEG data,
a SVM based IED detection was employed instead. To compensate for having only a
single on-scalp MEG data set, a genetic algorithm was utilized to generate a synthetic
training data set for classification based upon statistical features of the EEG-locked on-
scalp MEG IEDs. The results from the GA-SVM algorithm was first evaluated on the EEG-
locked on-scalp MEG IEDs, successfully classifying all on-scalp MEG IEDs that were not
obscured by high-amplitude artifacts (cf. Fig. 4. Fig. 11). Running the GA-SVM on the
remaining on-scalp MEG dataset resulted in the classification of 416 additional events as
potential IEDs (Fig. 12). However, keeping only events constituting time series anomalies
left only 31 events (Fig. 13-14). In comparison to in-helmet MEG, where MEG data
showed 8 IEDs in addition to the 16 IEDs also seen by EEG, this demonstrates a potential
increase in IED detection compared to EEG from 50% using in-helmet MEG to almost
200% using on-scalp MEG. Visual inspection of these 31 additional IEDs (Fig. 14) reveal a
striking resemblance with the EEG-positive IEDs, showing that the algorithm-based IED
detection discerns visually convincing IEDs. The resemblance between EEG-positive and
algorithm-detected IEDs indicates a consistency in the statistical features underlying both
categories of IEDs. Our results demonstrate a feasibility in registering and detecting IEDs
in on-scalp MEG data, but also show that the added complexity in on-scalp MEG data
might require assistance from algorithms so pick up on the abstract statistical features of
IED events. In the in-helmet MEG data, the IEDs do not display this type of complexity and
can readily be visually identified, why a GA-based approach is not needed or relevant for
that data set.
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4.4 Challenges and limitations

There are several limitations to this study. The ultimate value of on-scalp MEG epilepsy
recordings can be said to depend on the extent to which on-scalp MEG can acquire
information that is not available to in-helmet MEG or other existing non-invasive
technologies. We present a successful benchmarking protocol that may be used to
demonstrate the identification of IEDs uniquely detected by on-scalp MEG. However, the
data consist of just one session from a single patient using a relatively small on-scalp MEG
sensor array.

To further evaluate the potential usefulness of on-scalp MEG in epilepsy, as well as
to evaluate the GA-SVM approach for IED detection, further studies are needed:
preferably with larger-coverage (ideally whole-head) on-scalp MEG system, preferably on
several epilepsy patients, and preferably with a higher-density co-registered EEG in both
conventional and on-scalp MEG. The present study demonstrates that such studies are
feasible, both from the perspective of screening suitable patients and from the perspective

of a data recording protocol.

4.4 Conclusions

In this study, we present data from measurements on a temporal lobe epilepsy patient,
where both on-scalp MEG data and in-helmet MEG data are obtained and compared.
Using a benchmarking protocol aimed to quantify the amount of IEDs that are captured by
on-scalp MEG, as compared to in-helmet MEG, we employed a novel automatic IED
detection algorithm validated on the patient’'s in-helmet MEG recording. The results
indicate that we were able to find almost twice as many IEDs in the on-scalp MEG
recording (42 IEDs: 16 EEG positive IEDs and 31 MEG-only IEDs) as we did in the in-
helmet MEG measurement (24: 16 EEG positive IEDs and 8 MEG-only IEDs). It is
possible that the additional IEDs detected in on-scalp MEG stem from cortical sources that
are too small to be reflected in EEG or in-helmet MEG, potentially indicating that the on-
scalp MEG system can identify IEDs that are not detectable by other non-invasive
methods. Additional studies are needed to further evaluate the potential clinical usefulness

of on-scalp MEG in epilepsy.
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