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Abstract. Multispectral Optoacoustic Tomography (MSOT) resolves oxy- (HbO2) and deoxy-hemoglobin (Hb) to perform vascular 

imaging. MSOT suffers from gradual signal attenuation with depth due to light-tissue interactions: an effect that hinders the precise 

manual segmentation of vessels. Furthermore, vascular assessment requires functional tests, which last several minutes and result in 

recording thousands of images. Here, we introduce a deep learning approach with a sparse UNET (S-UNET) for automatic vascular 

segmentation in MSOT images to avoid the rigorous and time-consuming manual segmentation. We evaluated the S-UNET on a 

test-set of 33 images, achieving a median DICE score of 0.88. Apart from high segmentation performance, our method based its 

decision on two wavelengths with physical meaning for the task-at-hand: 850 nm (peak absorption of oxy-hemoglobin) and 810 nm 

(isosbestic point of oxy-and deoxy-hemoglobin). Thus, our approach achieves precise data-driven vascular segmentation for 

automated vascular assessment and may boost MSOT further towards its clinical translation. 

 

1 Introduction 

The abundant presence of hemoglobin in the blood renders multispectral optoacoustic tomography (MSOT) an ideal 

technique for imaging vasculature [1-3]. By illuminating tissue at multiple different light wavelengths at the near 

infrared range (~680-980 nm), MSOT is capable of resolving several tissue chromophores, in particular oxy- (HbO2) 

and deoxy-hemoglobin (Hb), with a wide range of clinical applications, such as Crohn’s disease, systemic sclerosis, 

breast cancer, brown adipose tissue imaging and thyroid disease [4-8]. MSOT can provide precise structural 

visualizations of arteries and veins by recording multispectral data and resolving the different oxygenation states of 

human hemoglobin molecule. Moreover, the dynamic nature of the vascular system requires the acquisition not only 

of structural but also of functional data over multiple seconds or minutes to observe, for example, the vascular wall 

kinetics during the cardiac cycle or the arterial responses to stimuli such as the transient arterial occlusion or 

hyperthermia, which are valid descriptors of cardiovascular risk [9, 10]. The need to record multispectral data in order 

to extract molecular information and to perform longitudinal measurements over several minutes radically increases 

the number of recorded images and the data volume.   

Both structural and functional vascular imaging requires the precise segmentation of the vascular lumen in several 

applications, such as the quantification of an atheromatous arterial stenosis, the detection of a venous thrombosis or 

the tracking of the arterial diameter over a 5-minute arterial occlusion challenge to quantify the degree of endothelial 

dysfunction. The segmentation of the vascular lumen is usually performed by expert physicians who manually draw 

the regions of interest (ROIs) on the recorded MSOT images. However, manual segmentation is a time-consuming 

process, in particular in the case of longitudinal recordings of several minutes and thus of hundreds or thousands of 

frames. Furthermore, because of the gradual light attenuation due to scattering and absorption when propagating in 

living tissue, the vascular lumen shows an inhomogeneous and fainting intensity profile with increasing depth, making 

its manual delineation a challenging process. But even in routine imaging diagnostics, a reliable automated 

segmentation method can be beneficial by aiding the clinician in performing the same task much faster. Deep learning 

has been recently shown to be very effective in computer vision tasks [11, 12] and segmentation in particular [13-15]. 

As such, deep learning has been successfully applied to clinical diagnostics  [16-18], with medical image segmentation 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/833251doi: bioRxiv preprint 

https://doi.org/10.1101/833251
http://creativecommons.org/licenses/by-nc-nd/4.0/


applications including prostate [19], retinal disease [20], brain [21, 22] and cervical cell segmentation  [23]. Surveys 

of deep learning applications for medical imaging can be found in [24, 25]. 

We present herein a pilot study to achieve automated vascular segmentation in clinical raw MSOT images via a deep 

learning approach, based on an extension of the UNET architecture originally introduced in [15] that is specifically 

tailored for multispectral optoacoustic data. The proposed Sparse UNET (S-UNET) allows for automated segmentation 

of vascular ROIs in clinical MSOT images, while simultaneously identifying which of the employed illumination 

wavelengths are relevant to the specific task. This way we aim at radically reducing the time needed for vascular 

segmentation in longitudinal scans as well as the number of illumination wavelengths for future task-specific scans, 

facilitating this way the data analysis, increasing the time resolution and reducing the data volume.  

2 Methods 

2.1 Network Architecture 

The proposed Sparse-UNET (S-UNET) is based on the fully convolutional architecture of the original UNET [5], with 

the added capability of sparse wavelength selection. The goal of S-UNET is to transform each input image with 

dimensions 400x400x28 (Height x Width x Wavelengths) into a 400x400 probability map p that corresponds to a 

ground truth segmentation mask, while simultaneously assigning a weight 𝑤𝑐 (= wavelength importance) to each of 

the 28 illumination wavelengths (from 700 to 970 nm at steps of 10 nm). The ground truth segmentation mask y is a 

binary image (each pixel is either 0 or 1), extracted from the recorded MSOT image in consensus between two clinical 

MSOT experts. To arrive at a predicted segmentation mask, the resulting S-UNET probability map p is discretized by 

thresholding at 0.5: pixels with probabilities less than 0.5 are set to 0, while the rest are set to 1. 

In order to perform wavelength selection, the first layer of the S-UNET corresponds to a 1x1 2D convolution of a 

single filter and no bias. Given each 400x400x28 input image stack, the first layer essentially performs a linear 

combination of the 28 wavelengths, resulting in a 400x400x1 image that is forward-propagated to the rest of the 

network. In this manner, each wavelength is assigned a unique scalar weight. Moreover, to ensure sparsity of 

wavelength selection we add L1 regularization [26] on the wavelength weights. Regularization does not necessarily 

result in an interpretable model. To ensure interpretability of wavelength selection we force the weights of the first 

layer to be non-negative. As such, there is no possibility to have irrelevant wavelengths of similar wavelengths 

cancelling each other out with weights of similar, potentially high, magnitude and opposite signs. Taken together, the 

two constraints of L1 regularization and non-negative weights ensure that only few relevant wavelengths will be 

assigned with positive weights, while all other non-relevant wavelengths will be set to zero and will effectively be 

excluded from the model. After wavelength selection, we add a batch normalization [27] layer between every 

convolution layer and its respective activation function. The S-UNET architecture employed is visualized in Fig. 1. 

 

 

Fig. 1. The S-UNET identifies important illumination wavelengths in MSOT images while learning to predict segmentation masks 

of human blood vessels. Each wavelength is weighted by a corresponding non-negative weight and all weighted wavelengths are 

combined before being inserted as input into a UNET architecture. Sparsity of wavelength selection is enforced by L1 regularization 

on the non-negative wavelength weights and the weights themselves are learned through standard back-propagation, along with the 

rest of the UNET parameters. 
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2.2 Training and Data Augmentation 

The original dataset of 164 raw MSOT images is randomly split into training, validation and test sets of 98, 33 and 33 

images, respectively.  

Each raw MSOT image corresponds to spatial dimensions of 400x400 pixels (which corresponds to 4x4 cm) and 28 

wavelengths. Each wavelength is normalized to values between 0 and 1 separately, as part of pre-processing. We train 

the model on a training subset of the data using Adam [28] while evaluating model performance on a validation set. 

The model is trained for a maximum number of 200 epochs, or until model performance on the validation set has not 

improved for 20 consecutive epochs (early stopping). The instance of the model that achieved the best performance on 

the validation set is saved as the final model. We keep a separate test set that is hidden from the model during training.  

The model is trained using a batch size of 4 images and data augmentation is performed on-the-fly on each image in 

every batch to increase model performance. Data augmentation includes flipping the x axis and rotating the image in 

a random angle from 5 to 15 degrees. Each of the two augmentation schemes has a 50% probability of being performed 

on any given image. According to our experiments more aggressive augmentation hinders model performance on the 

given task. The last layer of the model corresponds to a pixel-wise binary classification problem of computing a 

probability map of the predicted segmentation mask. The model’s loss corresponds to the loss of the 400x400 binary 

classification tasks. Thus, the total binary cross entropy loss function L, is used to train the model: 

𝐿 =  − ∑ ∑(𝑦ℎ𝑤 ⋅ 𝑙𝑛 (𝑝ℎ𝑤) + (1 − 𝑦ℎ𝑤) ⋅ 𝑙𝑛 (1 − 𝑝ℎ𝑤)) .

𝑊

𝑤=1

𝐻

ℎ=1

 

Here, 𝐻 and 𝑊correspond to the image height and width in pixels (each being 400), 𝑦ℎ𝑤 ∊ {0,1} corresponds to the 

ground truth segmentation class, 𝑝ℎ𝑤 ∊  [0,1] corresponds to the predicted class probability for the corresponding pixel 

in position (h, w) and 𝑙𝑛 is the natural logarithm. 

3 Experiments 

3.1 Data Acquisition 

In this pilot study we scanned six (n=6) healthy volunteers (3 men, 3 women, age 30 ± 5.44 years). All healthy 

volunteers consented to participate in this study in full accordance with the work safety regulations of the Helmholtz 

Center Munich (Neuherberg, Germany). The radial artery, the brachial artery, the dorsal artery of the foot, as well as 

the cephalic vein, the radial veins and the dorsal vein of the foot were scanned by means of a clinical hand-held 

MSOT/Ultrasound system (iThera Medical GmbH, Munich, Germany). All subjects were asked to consume no food 

or caffeine for 8 hours before the examination, which was conducted in a quiet dark room with normal temperature of 

25°C. Each scan lasted for 5-10 seconds. The system used was equipped with a near-infrared laser for achieving 

optimal penetration depth in tissue (3-4 cm) even with low illumination energy (~15 mJ per pulse). For multispectral 

data recording we used 28 wavelengths (700:10:980 nm). Tissue was illuminated by short light pulses (~10 ns) at a 

frame rate of 25fps. The ultrasound detection was performed by 256 ultrasound sensors with a central frequency of 4 

MHz which covered an angle of 145° and was mounted on the hand-held scanning probe. Acquired ultrasound signals 

for each illumination pulse were reconstructed into a tomographic image using a model-based reconstruction algorithm 

[29]. For each MSOT image a co-registered ultrasound image was recorded. The segmentation of the scanned arteries 

and veins was manually performed on the appropriate MSOT frame by simultaneous view of the co-registered 

ultrasound image. We decided to segment the blood vessels directly on the MSOT frames because of better contrast, 

compared to ultrasound, provided by the high light absorption of hemoglobin at the near-infrared illumination range. 

The appropriate frame for vein segmentation was the frame corresponding to the 750 nm illumination wavelength were 

the absorption of Hb is clearly higher than that of HbO2. The appropriate frame for artery segmentation was the frame 

corresponding to the 850 nm illumination wavelength were the absorption of HbO2 is clearly higher than that of Hb. 

Manual segmentation was conducted in consensus of two clinicians with experience in MSOT and clinical ultrasound 

imaging. 

3.2 Model Comparison and Wavelength Selection 

We compared three segmentation methods on the MSOT images described above: the proposed S-UNET as well as 

two differently sized variants of a standard UNET to the segmentation task. The S-UNET corresponds to the 
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architecture described in the previous section. The wavelength selection layer is followed by a downsized UNET where 

every convolutional layer corresponds to 1/8 of filters compared to the architecture in [15]. Two variants of the UNET 

were applied: one with the same number of filters as in [15] (‘original’) and a variant with 1/8 of filters (‘downsized’). 

Additionally, a batch normalization layer was inserted between every convolutional layer and its corresponding 

activation function in both UNET variants. Training was performed as described in the previous section. The results 

of all segmentation methods were compared to the binary ground truth segmentation mask, which was manually 

generated from expert clinicians on the recorded MSOT images under co-registered ultrasound guidance (see 

Methods). Model comparison is based on the Dice coefficient [22] defined as: 

𝐷𝑖𝑐𝑒 =  2𝑇𝑃/(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁), 

where TP, FP and FN correspond to true positive, false positive and false negative classified pixels: A TP pixel is a 

correctly classified foreground pixel, a FP pixel is a background pixel falsely classified as foreground, and a FN pixel 

corresponds to a foreground pixel that was incorrectly classified as background by the model. The Dice coefficient is 

well-suited to tackle the class imbalance inherent to the segmentation task [30], where more than 99% of the pixels in 

our dataset are background pixels. As such, it is preferred for model assessment compared to the standard cross entropy 

used to train the model. The Dice coefficient lies between 0 and 1, with higher values being better since they correspond 

to larger overlap between the ground truth and predicted segmentation masks. 

3.3 Wavelength Selection 

Wavelength selection was performed by the first layer of the S-UNET (see Methods). However, since feature selection 

is an inherently noisy process [31, 32] it is good practice to average a number of models [33] in order to obtain a 

smoothed version of wavelength importance. We thus train 100 different instances of the S-UNET and aggregate their 

results for the tasks of segmentation, as well as for wavelength selection. In the case of segmentation, we average the 

probability maps of all models before discretizing in order to obtain the binary segmentation mask. 

3.4 Results 

The performance of all three segmentation models is comparable as reported by the Dice coefficient (see Table 1). The 

original UNET with over 30 million parameters is potentially slightly overfitting the training dataset while the 

downsized UNET, as well as the S-UNET achieve very similar segmentation results with roughly half a million 

parameters. The downsized UNET achieves slightly higher Dice scores on average (0.90±0.08) than the S-UNET 

ensemble (0.86±0.11), but the difference is not statistically significant given the test set size of 33 images (p-value = 

0.37, two-sample Wilcoxon rank-sum test). This similarity in performance is to be expected since both methods 

correspond to a similar number of parameters. However, this also suggests that the added sparsity of wavelength 

selection does not affect, at least not significantly, the quality of the generated segmentation masks in the case of S-

UNET. 

The advantage of the S-UNET approach over the two UNET approaches is clearly its interpretability of results due to 

the embedded wavelength selection. As visualized in Fig. 2, out of the 28 input wavelengths the model has identified 

two as being the most important in a purely data-driven manner. These wavelengths correspond to the maximum of 

the absorption spectra of total blood volume (HbO2 and Hb) at 810nm and HbO2 at 850nm. Both of these identified 

wavelengths are thus meaningful since they mark the presence of blood in the detected image regions. The 

segmentation results of S-UNET on an exemplary set of images are visualized in Fig. 3. Interestingly, our approach is 

able to discriminate blood vessels from similar objects probably by exploiting the wavelength information. 
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Fig. 2. The S-UNET identifies wavelengths relevant to the segmentation task. Each boxplot (the box’s edges correspond to quartiles 

1 and 3 while whiskers extend to ±1.5 times the interquartile range) corresponds to the weights assigned by the ensemble of 100 S-

UNET instances to each wavelength. Averaging results is necessary since feature selection is an inherently noisy process. According 

to the median weight of each wavelength, the two most important wavelengths are 850 nm and 810 nm, corresponding to the 

maximum absorption of HbO2 and total hemoglobin (THb), respectively. 

Table 1. Model Performance. Dice results correspond to mean±std. 

Model Test Set Dice Parameters Wavelength Selection 

UNET (original) 0.75±0.28 31,416,897 No 

UNET (downsized) 0.90±0.08 495,881 No 

S-UNET 0.86±0.11 493,965 Yes 
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Fig. 3. The S-UNET successfully segments human vasculature from MSOT images. Each row corresponds to a different image of 

the test set. The first column (images a, e, i, m) shows the 850nm channel of the MSOT image. The second (images b, f, j, n) and 

third columns (c, g, k, o) show the ground truth (true mask, blue) and predicted segmentation masks (red), respectively, visualized 

on top of the input image. The true segmentation mask is identified by expert physicians, while the S-UNET predicted segmentation 

mask corresponds to the output of the S-UNET ensemble. The fourth column (images d, h, l, p) corresponds to the absolute 

difference between the true and predicted binary segmentation masks and is equivalent to the logical operation of XOR (exclusive 

or). The predicted masks almost completely overlap with the ground truth segmentation. The S-UNET is successful even in the last 

two cases (rows) where the mask is relatively small and located in an area where similar bright spots are present. The white dashed 

line represents the skin surface. The white arrows point to the blood vessel of interest. The scale bar is 5 mm. The gray color bar 

ranges from 0 to 1 and corresponds to the normalized intensity of each image (columns 1-3) or the difference of the true and 

predicted segmentation masks (column 4). 

4 Discussion 

In this work we applied a deep learning approach based on an adapted S-UNET to perform automated vascular 

segmentation in clinical MSOT images. Our model successfully segments blood vessels (arteries and veins) and its 

performance is comparable to a standard UNET of similar model size. Furthermore, our model is capable of selecting 

the illumination wavelengths that are most important for the segmentation task at hand in a purely data driven manner. 

Our results show that among the 28 illumination wavelengths used for data acquisition, two wavelengths are associated 

with the light absorption of hemoglobin at the near-infrared range of illumination (700 to 970 nm). These correspond 

to 810 nm, which is the isosbestic point of HbO2 and Hb and reflects the absorption of total hemoglobin or else the 

total blood within the vasculature and 850nm, which is the point where HbO2 absorbs significantly more than Hb and 

reflects the arterial blood.  

Our approach achieves accurate automated segmentation of both arteries and veins on raw clinical MSOT data. Apart 

from facilitating the segmentation process, which is time-costly for longitudinal scans of several minutes during 

functional vascular testing, it may help tackling a significant limitation of optical and optoacoustic imaging: the 

attenuation of light due to scattering and absorption when propagating in living tissue. This effect causes a gradual 

attenuation of measured intensity in the vascular lumen with increasing depth rendering the partial or even the total 

visualization and thus the accurate segmentation of it a real challenge even for clinicians with extensive MSOT 

experience. In the current study, we scanned blood vessels where this effect was apparent (e.g. Fig. 3a) but not to an 

extent that would jeopardize the accurate manual segmentation of the vascular lumen directly on the MSOT images 

under ultrasound guidance. Thus, future studies are required to further investigate the efficacy of deep learning 

approaches in automatically detecting and segmenting vessels with clinical interest (e.g. the carotid artery) deep in 

tissue in clinical MSOT data.   
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In this study, we preferred to work on raw MSOT data. However, the discrete spectral difference of HbO2 and Hb at 

the near-infrared range as well as the strong presence of HbO2 in arteries and Hb in veins would allow for the direct 

spectral unmixing of HbO2 and Hb in the MSOT data and thus for direct vascular segmentation. Nevertheless, 

spectrally unmixed data suffer from errors related to imaging depth and motion, either exogenous (e.g. operator’s hand 

and random patient movement) or endogenous (e.g. arterial pulsation or breathing).  

Regarding motion-related errors, the dynamic character of the vascular system introduces significant inaccuracy when 

it comes to spectral unmixing results, especially when illuminating at multiple different wavelengths (e.g. 28) to 

achieve high spectral quality. For example, the recording of a multispectral stack of 28 wavelengths at a frame rate of 

25 Hz takes more than one second. Considering that the cardiac cycle of a normal individual with a heart rate of 70-

75 Hz is approximately 0.8 sec, the use of 28 wavelengths renders the spectrally unmixed data vulnerable to errors due 

to arterial wall motion, especially in the periphery of the vascular lumen, potentially degrading the precision of vascular 

segmentation when performed by means of direct spectral unmixing.  

Moreover, multispectral optoacoustic imaging at increased tissue depths (> 1cm), where normally the blood vessels 

lie, renders the spectral unmixing output vulnerable to the spectral coloring effect: the random absorption of each 

illumination wavelength before reaching the HbO2 or the Hb of the vascular lumen according to the light absorption 

properties of the set of tissues covering them (e.g. skin, subcutaneous fat, muscle). Thus, usual linear spectral unmixing 

methods fail to unmix the absorbers of interest (e.g. HbO2 and Hb) at increasing depths since the measured spectra 

have been colored and thus deflected from the known absorption spectra, as measured in the lab. For the 

abovementioned reasons, we decided to work on the recorded raw MSOT data.   

Our model showed that the decision for segmenting the vasculature was mainly based on two near-infrared 

wavelengths: the 810 nm where HbO2 and Hb absorb light to the same extent and the 850 nm where the light absorption 

of HbO2 is significantly higher than that of Hb. Our results provide evidence for effective and task-specific wavelength 

selection via the suggested deep learning model for accurate segmentation of blood vessels in clinical MSOT data. 

Apart from increasing the time resolution by skipping a number of unnecessary illumination wavelengths and 

decreasing the data volume, the effective wavelength selection may be used for indirect spectral characterization of 

more complex tissues or even homogeneous tissues at high depths by identifying the wavelengths critical for achieving 

their segmentation. This approach may help overcoming the limitations introduced by the spectral coloring effect and 

thus providing a blind or data-driven spectral unmixing with great implications for clinical MSOT imaging. Our 

method may be used for segmenting and characterizing tissues with clinical relevance (e.g. the subcutaneous fat or the 

atherosclerotic plaques which contain lipids, the skeletal muscle which contains water) or even the detection and 

distribution mapping of injected contrast agents targeting specific molecules involved in the pathophysiology of a 

disease.    

To the best of our knowledge, while deep learning has been used before in the context of optoacoustic imaging data 

[34, 35], this is the first time where a deep learning method is applied to clinical MSOT data. Our approach has 

significant implications for future MSOT applications with clinical relevance, such as the automated segmentation of 

more complex soft tissues (e.g. muscle, fat, atherosclerotic plaques) and foreseeable for more accurate diagnosis of 

vascular disease. 
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