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ABSTRACT  

Skeletal muscle dysfunction in survivors of pneumonia is a major cause of lasting morbidity that 

disproportionately affects older individuals. We found that skeletal muscle recovery was impaired in aged 

compared with young mice after influenza A virus-induced pneumonia. In young mice, recovery of muscle loss 

was associated with expansion of tissue-resident skeletal muscle macrophages and downregulation of MHC II 

expression, followed by a proliferation of muscle satellite cells. These findings were absent in aged mice and in 

mice deficient in Cx3cr1. Transcriptomic profiling of tissue-resident skeletal muscle macrophages from aged 

compared with young mice showed downregulation of pathways associated with phagocytosis and 

proteostasis, and persistent upregulation of inflammatory pathways. Consistently, skeletal muscle 

macrophages from aged mice failed to downregulate MHCII expression during recovery from influenza A virus 

induced pneumonia and showed impaired phagocytic function in vitro. Like aged animals, mice deficient in the 

phagocytic receptor Mertk showed no macrophage expansion, MHCII downregulation or satellite cell 

proliferation and failed to recover skeletal muscle function after influenza A pneumonia. Our data suggest that 

a loss of phagocytic function in a CX3CR1+ tissue-resident skeletal muscle macrophage population in aged 

mice precludes satellite cell proliferation and recovery of skeletal muscle function after influenza A pneumonia. 
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INTRODUCTION 

While elderly individuals are at increased risk of developing and dying from pneumonia, most patients with 

access to modern health care survive (Jain et al., 2015; Thannickal et al., 2015). A growing body of literature 

suggests that elderly pneumonia survivors are at increased risk of developing age-related disorders including 

persistent lung dysfunction (Mittl et al., 1994), skeletal muscle atrophy limiting mobility (Herridge et al., 2003), 

myocardial infarction (Corrales-Medina Vicente et al., 2012) chronic kidney disease (Murugan et al., 2010), 

dementia (Tate et al., 2014) and cognitive impairment (Girard et al., 2018). Skeletal muscle dysfunction 

develops in the majority of survivors of pneumonia and may persist for years after hospital discharge, where it 

is a major driver of morbidity (Chan et al., 2018; Dos Santos et al., 2016; Herridge et al., 2003; Herridge et al., 

2011; Walsh et al., 2014). Persistent skeletal muscle weakness in survivors of severe pneumonia 

disproportionately affects elderly patients, resulting in reduced quality of life including an increased risk of 

hospitalizations, long-term disability, and loss of independence (Barreiro et al., 2015; Falsey et al., 2005; 

Gozalo et al., 2012; Herridge et al., 2011; Pfoh et al., 2016). 

 

Because skeletal muscle fibers are post-mitotic, muscle myofibers lost during injury must be replaced through 

activation, proliferation, and differentiation of muscle satellite cells, a muscle-specific progenitor cell population 

(Brack and Rando, 2012; Wang and Rudnicki, 2011). After injury, muscle satellite cells undergo rapid 

proliferation, expand in number and fuse with damaged myofibers, restoring the number of myonuclei, myofiber 

content and volume (Munoz-Canoves and Michele, 2013; Sala et al., 2019; Tierney et al., 2014). The process 

of muscle repair has been studied in models of direct injury, for example freezing, trauma, and toxin injection, 

but the mechanisms by which muscle fibers are regenerated after the indirect injury that develops after 

pneumonia are not known. 

 

Infection with the influenza A virus is among the most common causes of pneumonia and the morbidity and 

mortality attributable to influenza A pneumonia disproportionately impacts the elderly (Jain et al., 2015; Ortiz et 

al., 2013). Influenza A virus-induced pneumonia in mice is an attractive model to study the effects of aging on 

pneumonia-induced muscle function as it recapitulates worsened skeletal muscle dysfunction reported in older 

survivors of pneumonia (Bartley et al., 2016). Furthermore, as the influenza A virus is trophic for the lung 
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epithelium, there is little if any viremia (Radigan et al., 2019). Therefore, the muscle loss after influenza A 

pneumonia is likely attributable to endocrine factors common to pneumonia secondary to a variety of 

pathogens, rather than the virus itself. Here we report that when the dose of influenza A administered to young 

and aged mice is titrated to induce nearly equivalent mortality, surviving young but not aged mice recovered 

muscle function after pneumonia. In young mice, a population of Cx3cr1-expressing tissue-resident 

macrophages in the skeletal muscle expanded and downregulated MHCII expression after influenza A infection 

in the absence of recruitment of monocytes from the bone marrow. This was followed by proliferation of muscle 

satellite cells. All of these findings were absent in aged mice and mice deficient in Cx3cr1. Transcriptomic 

profiling suggested a loss of phagocytic function in tissue-resident macrophages from the skeletal muscle of 

aged mice, which was confirmed using in vitro assays. Knockout of Mertk, a tyrosine kinase involved in 

macrophage phagocytosis, phenocopied the molecular and physiologic findings in aged mice. Our findings 

implicate phagocytosis-induced signaling in Cx3cr1-expressing, tissue-resident skeletal muscle macrophages 

driving satellite cell proliferation during muscle recovery after pneumonia-induced atrophy. These findings may 

have broad implications for other systemic inflammatory conditions associated with age-related muscle 

dysfunction. 
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RESULTS 

Aged mice do not recover skeletal muscle function after influenza A-induced pneumonia. When infected 

with the same dose of influenza A virus, aged mice exhibit increased mortality (Figure S1A). Therefore, to 

examine muscle recovery after injury, we titrated the dose of influenza A virus in young (4 months old) and 

aged (20-24 months old) mice to achieve ~25% mortality and similar levels of weight loss in each group 

(Figure S1B). We continuously measured voluntary running distance on monitored exercise wheels in young 

and aged mice over the course of influenza A infection and recovery, as a measure of muscle function. Mice 

adapted to the wheels over 14 days, after which the voluntary distance run on the wheel was consistent and 

similar between animals (Figure 1A), although on average it was lower in aged mice (Figure S2A). Once 

baseline running distances were established, mice were infected with influenza A virus, and then monitored 

continuously for up to 60 days. Both young and old mice almost stopped running after the influenza A virus 

infection, reaching a minimum at day 10 post infection (Figure 1A, B). However, by day 20, the distance run 

returned to pre-infection levels in young mice. In contrast, old mice failed to return to their pre-infection activity 

levels (Figure 1A, B). Similarly, while influenza A virus pneumonia induced a loss of forearm grip strength in 

both young and old mice (Figure S2B), aged mice failed to recover forearm grip strength 30 and 60 days after 

influenza A virus infection (Figure 1C).  
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Figure S1. Influenza A virus causes disproportionate mortality in old mice. Refers to Figure 1. 
(A) Young (4 months old; green lines) and old (20-24 months old; purple lines) mice were infected with either 
15 pfu (solid lines) or 25 pfu (dotted lines) of influenza A virus (A/WSN/33) (IAV). A Kaplan-Meier survival 
curve is shown (n = 9-14 mice per group). Log-rank (Mantel-Cox) tests were performed and p values are 
shown on graph. Each dot represents a single animal. 
(B) Young (4 months old; green bars) mice were infected with 25 pfu of IAV and old (20-24 months old; purple 
bars) mice were infected with 15 pfu influenza A virus (IAV). Percentage of starting total body weight is shown 
for day-4 and day-10 post-IAV infection (n=5-7 mice per group). Box plot center lines are median, box limits 
are upper and lower quartiles, whiskers are minimal and maximal values, a two-way ANOVA with Tukey post-
hoc corrections for comparison with more than three groups was used to determine statistical differences, and 
p values are shown on graph. Each dot represents a single animal. 
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Figure 1. Old mice fail to recover skeletal muscle function after influenza A infection.  
(A) Monitored running wheels were placed in cages and the voluntary distance run was measured for 14 days 
before animals were infected with influenza A virus (IAV). At Day 0, young (4 months old; green lines) mice 
were infected with 25 pfu of IAV and aged (20-24 months old; purple lines) mice were infected with 15 pfu IAV. 
Voluntary wheel running was recorded for 30 days and the 8 PM to 6 AM average wheel rotation/mouse, 
normalized to the 10-day average control is shown (n=12 mice per group). A graph of the distance run is 
shown with means ± S.D. See also Figure S1 and S2. 
(B) Three-day average voluntary wheel running distance per cage normalized to the 10-day average control is 
shown for young mice (4 months old; green bars) and aged mice (20-24 months old; purple bars). The average 
distance run for Day -3 to -1 prior to infection with influenza A virus (IAV) (25 pfu for young mice, 15 pfu for old 
mice), day 9-11 post infection, and day 28 to 30 post infection is shown (n=12 mice per group). Box plot center 
lines are median, box limits are upper and lower quartiles, whiskers are minimal and maximal values, a two-
way ANOVA with Tukey post-hoc corrections for comparison with more than three groups was used to 
determine statistical differences, and p values are shown on graph. Each dot represents a single animal. 
(C) Young (4 months old; green bars) and aged (20-24 months old; purple bars) mice were infected with IAV at 
Day 0 (25 pfu for young mice, 15 pfu for old mice). Forelimb grip strength was measured at the indicated times 
(n=6-12 mice per group). Box plot center lines are median, box limits are upper and lower quartiles, whiskers 
are minimal and maximal values, a two-way ANOVA with Tukey post-hoc corrections for comparison with more 
than three groups was used to determine statistical differences, and p values are shown on graph. Each dot 
represents a single animal. 
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Figure S2. Old mice fail to recover skeletal muscle function after influenza A infection (refers to Figure 
1). 
(A) Young (4 months old; green bars) and old (20-24 months old; purple bars) mice were allowed voluntary 
access to a running wheel in their home cage. Average running distance from 8 pm-6 am was collected over 
10 consecutive nights (n=12 mice per group). Box plot center lines are median, box limits are upper and lower 
quartiles, whiskers are minimal and maximal values, unpaired t test, and p values are shown on graph. Each 
dot represents a single animal. 
(B) Young (4 months old; green bars) and old (20-24 months old; purple bars) mice were infected with IAV (25 
pfu for young mice, 15 pfu for old mice). Forelimb grip strength was measured (n=4-10 mice per group). Box 
plot center lines are median, box limits are upper and lower quartiles, whiskers are minimal and maximal 
values, a two-way ANOVA with Tukey post-hoc corrections for comparison with more than three groups was 
used to determine statistical differences, and p values are shown on graph. Each dot represents a single 
animal. 
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Despite the markedly reduced dose of virus and similar mortality, aged mice still had worse lung injury as 

measured by bronchoalveolar lavage protein content 10 days after infection (Figure 2A, B) and increased 

levels IL-6 in bronchoalveolar lavage fluid (Figure 2C) and in the plasma compared to young mice (Figure 2D). 

The soleus muscle wet weight decreased similarly in both young and old mice (Figure 2E), however, the loss 

of wet weight in the extensor digitorum longus (EDL) muscle was more pronounced in aged mice (Figure 2F). 

Average soleus cross-sectional area was reduced in both young and aged mice after influenza A virus-induced 

pneumonia, but aged mice had significantly reduced fiber volume before influenza A infection (Figure 2G). 

Similarly, the left-shift of the distribution of the cross-sectional area measurements after influenza A virus 

infection was less pronounced in aged mice because of a generally lower initial muscle volume (Figure S3). 

We previously reported that systemic increase in IL-6 level is a direct cause of muscle atrophy after influenza A 

infection through induction of the atrophy-promoting E3 ubiquitin ligase, Atrogin-1 (Fbxo32) (Radigan et al., 

2019). The maximal induction of Atrogin-1 in the skeletal muscle was similar in young and aged animals 

(Figure 2H,I).  
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Figure 2. Influenza A virus infection induces muscle loss in both aged and young mice. 
For all data young (4 months old; green bars) and old (20-24 months old; purple bars) mice were infected with 
Influenza A virus (25 pfu for young mice, 15 pfu for aged mice). Mice were harvested for analysis at 0, 4 and 
10 days post-infection. A two-way ANOVA with Tukey post-hoc corrections for comparison with more than 
three groups was used to determine statistical differences, p values are shown on graph. Box plot center lines 
are median, box limits are upper and lower quartiles. Each dot represents an individual animal. 
(A) Total protein in bronchoalveolar lavage (BAL) fluid was measured by Bradford assay (n=4-12 mice). 
(B) Number of live cells in the BAL were counted using hemocytometer, dead cells were excluded using trypan 
blue (n=5-7 mice). 
(C) IL-6 levels in the serum were measured by ELISA (n=4-8 mice). 
(D) Soleus muscles were excised and soleus wet muscle weights were determined. Values are presented as a 
percent of naive age-matched controls (n=8-18 mice). 
(E) Extensor digitorum longus (EDL) muscles were excised and EDL wet muscle weights were measured. 
Values are presented as a percent of naive age-matched controls (n=5-7 mice). 
(F) Soleus cross-sectional areas were determined using transverse cross-sections immunostained for laminin. 
Values are normalized to naive age-matched controls (n=4-7 mice). 
(G) Quantification (top panel) and representative Western blot (bottom panel) of Atrogin-1 expression in the 
mouse tibia anterior muscle. Values are normalized to GAPDH (loading control) (n=5-11 mice). 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/833236doi: bioRxiv preprint 

https://doi.org/10.1101/833236
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11	

 
Figure S3. Aged mice have lower skeletal muscle fiber diameter at baseline. Young mice lose more 
muscle fiber cross sectional area after influenza A infection compared with old mice. 
(A) Young mice (4 months old) were infected with 25 pfu influenza A virus (IAV; green bars), mice instilled with 
PBS were used as a control (black bars). Mice were harvested for analysis 10 days later. Soleus muscles were 
excised, frozen and cryosectioned. Soleus cross-section area was determined using cross-sections 
immunostained for laminin. A histogram depicting the fiber size distribution in young mice is shown (n = 3 mice 
(naïve), 5 mice after influenza A infection). Bars represent means ± S.D. 
(B) Aged mice (20-24 months old) were infected with 15 pfu influenza A virus (IAV; purple bars). Mice instilled 
with PBS were used as a control (black bars). Mice were harvested for analysis 10 days later. Soleus muscles 
were excised, frozen and cryosectioned. Soleus cross-section areas were determined using cross-sections 
immunostained for laminin. A histogram depicting the fiber size distribution in old mice is shown (n = 4 mice 
(naïve), 5 mice after influenza A infection). Bars represent means ± S.D. 
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Satellite cells and fibroadipogenic progenitors fail to expand in aged mice after influenza A virus-

induced pneumonia. We used flow cytometry to simultaneously quantify muscle satellite cells (MuSC) and 

fibro-adipogenic progenitors (FAP) as well as lymphoid and myeloid immune cells during muscle repair. We 

identified MuSC as CD45–CD31–CD34+Sca-1–Itga7+, and FAP as CD45–CD31–CD34+Sca-1+Itga7+ (Figure 3A). 

In young, but not in aged mice, we observed an expansion of MuSC and FAP after influenza A virus-induced 

pneumonia (Figure 3B-G). This suggests that muscle dysfunction induced by influenza A pneumonia is 

sufficient to induce regenerative cell populations in young mice, but that this response is impaired with age. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/833236doi: bioRxiv preprint 

https://doi.org/10.1101/833236
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

 

 
Figure 3. Expansion of muscle satellite cells and fibroadipogenic progenitors is reduced in aged 
compared with young mice after influenza A virus pneumonia. 
For all experiments, young (4 months old; green bars) and aged (20-24 months old; purple bars) mice were 
infected with Influenza A virus (25 pfu for young mice, 15 pfu for aged mice). Mice were harvested for analysis 
before the infection (Day 0) and 4 and 10 days after infection. A two-way ANOVA with Tukey post-hoc 
corrections for comparison with more than three groups was used to show statistical differences. Box plot 
center lines are median, box limits are upper and lower quartiles, whiskers are minimal and maximal values, p 
values are shown on the graph. Each dot represents an individual animal. 
(A) Representative gating strategy to identify muscle satellite cells (MuSC) and fibroadipogenic progenitors 
(FAP). 
(B) Enumeration of MuSC using flow cytometry. Values shown are per gram of tissue (n=6-11 mice).  
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(C) Young (top 2 panels; green) or aged mice (bottom 2 panels; purple) were injected with 2 mg EdU, 16 hours 
prior to day 0 or day 10. Representative contour plots showing percentage of EdU-positive MuSC are shown. 
Plots from EdU-injected mice are overlaid against plots of a separate, non-EdU-injected control mouse (shown 
in grey). 
(D) Box and whiskers plot showing percent EdU+ MuSC of total MuSC at day 0, and 10 (n=5-6 mice). 
(E) Enumeration of FAP using flow cytometry. Values shown are per gram of tissue (n=5-13 mice).  
(F) Young (top 2 panels; green) or aged mice (bottom 2 panels; purple) were injected with 2 mg EdU 16 hours 
prior to day 0 or day 10. Representative contour plots showing percentage of EdU-positive FAP are shown. 
Plots from EdU-injected mice are overlaid against plots of a separate, non-EdU-injected control mouse (shown 
in grey). 
(G) Box and whiskers plot showing percent EdU+ FAP of total FAP at day 0 and day 4 (n=3-5 mice). 
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Tissue-resident CX3CR1+ skeletal muscle macrophages expand and downregulate MHCII during 

recovery from influenza A virus-induced pneumonia. We measured myeloid and lymphoid populations in 

the skeletal muscle after influenza A infection using flow cytometry (Figure 4A and S4M). In young mice, we 

observed increases in the number of skeletal muscle macrophages (CD45+Ly6G-Siglec F-NK1.1-

CD11b+Ly6C-CD64+) after influenza A infection (Figure 4B). This increase in skeletal muscle macrophages 

was not observed in aged mice (Figure 4B). In contrast, we did not observe influenza A virus-induced 

increased numbers of neutrophils, eosinophils, natural killer cells, CD11b+ dendritic cells, Ly6C-high classical 

monocytes or Ly6C-low non-classical monocytes, CD4 and CD8 T cells, regulatory T cells,  or B cells in the 

skeletal muscle of either young or aged mice after influenza A infection (Figure S4). 

 

As we only observed a significant expansion in macrophages after influenza A infection in young but not aged 

mice, we focused our attention on these cells. In naïve mice, the majority of macrophages were represented by 

an MHCIIhigh population (Figure 4C). During recovery from influenza A infection, the majority of macrophages 

were MHCIIlow in young, but not in aged mice (Figure 4C-E). Furthermore, incorporation of EdU into MHCIIlow 

macrophages in response to pneumonia-induced muscle atrophy increased in young but not aged mice, 

indicating an age-dependent proliferation specific to this population (Figure 4F,G). Using reporter mice in which 

GFP is knocked into the Cx3cr1 gene (Cx3cr1GFP/+), we found that approximately 25-30% of skeletal muscle 

macrophages expressed Cx3cr1 in naïve mice (Figure S5), and both CX3CR1+ and CX3CR1- macrophages 

included populations that were MHCIIhigh and MHCIIlow (Figure 4H). To determine whether these skeletal 

muscle macrophage populations are maintained by local proliferation or are replenished by monocytes 

recruited from the circulation, we performed fate-mapping experiments using Cx3cr1ER-Cre mice crossed to a 

ZsGreenLSL reporter. We administered a single pulse of tamoxifen via oral gavage to Cx3cr1ER-Cre/ZsGreenLSL 

mice to permanently label all Cx3cr1-expressing cells with GFP, and analyzed number of GFP-positive cells in 

several myeloid populations over the course of 56 days (Figure 4I,J). Microglia, which are tissue-resident brain 

macrophages that are not replaced by circulating monocytes over the lifespan of mice and are characterized 

by constitutive expression of Cx3cr1 (Yona et al., 2013), were used as a positive control. Nearly 100% of 

microglia were labeled, and remained GFP-positive after the tamoxifen pulse over the course of the experiment 

(Figure 4J). Seven days after the tamoxifen pulse, 80% of Ly6C+ classical monocytes in the blood were GFP 
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positive (Figure 4J). Consistent with the short half-life of circulating monocytes, almost all of GFP-positive 

monocytes were replaced by GFP-negative monocytes 28 days after the tamoxifen pulse (Figure 4J) (Yona et 

al., 2013). Similarly, 28 days after the tamoxifen pulse nearly all Ly6C- non-classical monocytes, and CD11b+ 

dendritic cells were also replaced by GFP-negative cells (not shown). Consistent with our findings using 

Cx3cr1Gfp/WT mice, we found that ~30% of skeletal muscle macrophages were GFP-positive after the tamoxifen 

pulse (Figure 4J). The number of GFP-positive skeletal muscle macrophages remained stable 56 days after 

the tamoxifen pulse. As such, these cells represent a bona fide, long-lived tissue-resident macrophage 

population that do not require circulating monocytes to maintain their population with a half-life of at least 

several months. 

 

We used this system to determine whether the increase in skeletal muscle macrophages we observed after 

influenza A virus-induced pneumonia was attributable to the recruitment of monocyte-derived macrophages. 

We treated Cx3cr1ER-Cre/ZsGreenLSL with a pulse of tamoxifen, waited 28 days for GFP-labeled monocytes to 

disappear, infected the mice with influenza A virus and then harvested mice 7, 14 and 28 days after infection 

(Figure 4I). We did not observe any reduction in the percentage of GFP-positive macrophages, excluding the 

possibility that increase in skeletal muscle macrophages following influenza A infection represented an influx of 

circulating cells (Figure 4I and J). Further, the finding that the number of macrophages expanded after 

influenza A infection combined with the constant percentage of GFP+ cells suggests both CX3CR1-positive 

and CX3CR1-negative cells expand proportionately after influenza A infection (Figure 4B and J). CX3CR1 is 

required for the adhesion and migration of leukocytes, and in the microglia CX3CR1 is necessary for synaptic 

pruning during development (Paolicelli et al., 2011). We therefore sought to determine whether CX3CR1 is 

necessary for the expansion of macrophages and recovery of muscle function after influenza A infection. We 

treated mice deficient in Cx3cr1 (Cx3cr1Gfp/Gfp) with influenza A virus and performed flow cytometry on skeletal 

muscle during recovery. Mice deficient in Cx3cr1 showed increased numbers of skeletal muscle macrophages 

at baseline, perhaps reflecting a failure to populate the niche. However, Cx3cr1Gfp/Gfp mice showed no 

expansion of skeletal muscle macrophages, no change in the proportion of MHCIIlow macrophages, and no 

proliferation of MuSC or FAP after influenza A virus-induced pneumonia (Figure 4K-M). 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/833236doi: bioRxiv preprint 

https://doi.org/10.1101/833236
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 17	 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/833236doi: bioRxiv preprint 

https://doi.org/10.1101/833236
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 18	

Figure 4. Tissue-resident skeletal muscle macrophages expand and downregulate MHCII expression 
after influenza A pneumonia in young, but not in aged mice.  
(A) Gating strategy to identify myeloid cell populations in skeletal muscle tissue using flow cytometry. 
(B) Young (4 months old; green bars) and aged (20-24 months old; purple bars) mice were infected with 
influenza A virus (25 pfu for young mice, 15 pfu for aged mice). Graph shows number of macrophages per 
gram of tissue, before infection (Day 0) and 4 and 10 post-infection (n=9-14 mice). 
(C) Representative flow cytometry showing MHCII staining in young (top 2 panels) or aged (bottom 2 panels) 
muscle macrophages before and 10 days after IAV infection. 
(D) Young (4 months old; green bars) and aged (20-24 months old; purple bars) mice were infected with 
influenza A virus (25 pfu for young mice, 15 pfu for aged mice). Graph shows number of MHCIIhigh 
macrophages in skeletal muscle per gram of tissue before infection (Day 0) and 4 and 10 days after influenza 
A infection (n=9-14 mice). 
(E) Young (4 months old; green bars) and aged (20-24 months old; purple bars) mice were infected with 
influenza A virus (25 pfu for young mice, 15 pfu for aged mice). Graph shows number of MHCIIlow 
macrophages in skeletal muscle per gram of tissue before infection (Day 0) and 4 and 10 days after influenza 
A infection (n=9-14 mice). 
(F) Young (4 months old; green bars) and aged (20-24 months old; purple bars) mice were infected with 
influenza A virus (25 pfu for young mice, 15 pfu for aged mice). Graph shows percentage of EdU+ MHCIIhigh 
macrophages, of total MHCIIhigh macrophages, in skeletal muscle before infection (Day 0) and 10 days after 
influenza A infection (n=3-4 mice). 
(G) Young (4 months old; green bars) and aged (20-24 months old; purple bars) mice were infected with 
influenza A virus (25 pfu for young mice, 15 pfu for aged mice). Graph shows percentage of EdU+ MHCIIlow 
macrophages, of total MHCIIlow macrophages, in skeletal muscle before infection (Day 0) and 10 days after 
influenza A infection (n=3-4 mice). 
(H) Representative plot of macrophages from Cx3cr1Gfp/WT mice showing heterogeneous expression of MHCII 
and CX3CR1 (GFP). 
(I) Cx3cr1ERCre/zsGreen mice were administered tamoxifen (10 mg via oral gavage, twice, 24 hours apart). 
Mice were harvested 7, 28, 35, 42 and 56 days after the tamoxifen pulse. A separate cohort of mice was 
infected with 25 pfu IAV 28 days after the tamoxifen pulse and harvested 7, 14 and 28 days later. 
Representative flow cytometry plots of macrophage GFP expression at each of these time points are shown. 
(J) Refers to the schematic in (I). Cx3cr1ERCre/zsGreen mice were administered a pulse of tamoxifen (10 mg via 
oral gavage, twice, 24 hours apart) at Day 0. The percentage of GFP+ cells from the indicated cell populations 
is shown. Some mice were infected with 25 pfu IAV 28 days after the tamoxifen pulse and harvested 7, 14 and 
28 days later. Black symbols indicate naïve mice. Red symbols indicate influenza A virus infected mice.  
(K) Young wild type mice (4 months old; green bars) and age-matched Cx3cr1Gfp/Gfp mice (grey bars) were 
infected with 25 pfu of IAV. Graph represents skeletal muscle macrophage number before infection (Day 0) 
and 7 days after influenza A infection. Values are expressed per gram of tissue (n=4-5 mice). 
(L) Young wild type mice (4 months old; green bars) and age-matched Cx3cr1Gfp/Gfp mice (grey bars) were 
infected with 25 pfu of IAV. Graph represents muscle satellite cell (MuSC) number before infection (Day 0) and 
7 days after influenza A infection. Values are expressed per gram of tissue (n=4-5 mice). 
(M) Young wild type mice (4 months old; green bars) and age-matched Cx3cr1Gfp/Gfp mice (grey bars) were 
infected with 25 pfu of IAV. Graph represents fibroadipogenic progenitors (FAP) number before infection (Day 
0) and 7 days after influenza A infection. Values are expressed per gram of tissue (n=4-5 mice).  
For all experiments, a two-way ANOVA with Tukey post-hoc corrections for comparison with more than three 
groups was used to show statistical differences, p values are shown on the graph. Each dot represents an 
individual animal. Also see Figure S4. 
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Figure S4. Influenza A pneumonia does not result in the recruitment of myeloid or lymphoid cell 
populations to the skeletal muscle. Refers to Figure 4. 
For all experiments, young (4 months old; green bars) and aged (20-24 months old; purple bars) mice were 
infected with influenza A virus (25 pfu for young mice, 15 pfu for aged mice) and analyzed before infection 
(Day 0) and 4 and/or 10 days after infection. A two-way ANOVA with Tukey post hoc corrections for 
comparison with more than three groups was used to show statistical differences, p values are shown on the 
graph. Box plot center lines are median, box limits are upper and lower quartiles, whiskers are minimal and 
maximal values, p values are shown on the graph. Each dot represents an individual animal. 
(A) Graph depicting total number of neutrophils. Values are expressed per gram of tissue (n=5-16 mice). 
(B) Graph representing EdU+ neutrophils. Values are expressed as a percentage of total neutrophils (n=3-4 
mice). 
(C) Graph depicting total number of eosinophils. Values are expressed per gram of tissue (n=7-10 mice). 
(D) Graph representing EdU+ eosinophils. Values are expressed as a percentage of total eosinophils (n=3-4 
mice). 
(E) Graph depicting total number of natural killer cells. Values are expressed per gram of tissue (n=7-19 mice). 
(F) Graph representing EdU+ natural killer cells. Values are expressed as a percentage of total natural killer 
cells (n=3-4 mice). 
(G) Graph depicting total number of Ly6C- monocytes. Values are expressed per gram of tissue (n=6-16 mice). 
(H) Graph representing EdU+ Ly6C- monocytes. Values are expressed as a percentage of total Ly6C- 
monocytes (n=3-4 mice). 
(I) Graph depicting total number of Ly6C+ monocytes. Values are expressed per gram of tissue (7-19 mice). 
(J) Graph representing EdU+ Ly6C+ monocytes. Values are expressed as a percentage of total Ly6C+ 
monocytes (n=3-4 mice). 
(K) Graph depicting total number of CD11b+ dendritic cells. Values are expressed per gram of tissue (n=7-16 
mice). 
(L) Graph representing EdU+ dendritic cells. Values are expressed as a percentage of total dendritic cells (n=3-
4 mice). 
(M) Gating strategy used for flow cytometric analysis of B and T cells.  
(N) Graph shows number of CD4 T cells in skeletal muscle per gram of tissue before infection (Day 0) and 4 
and 10 days after influenza A infection (n=5-11 mice). 
(O) Graph shows percentage of EdU+ CD4 T cells, of total CD4 T cells, in skeletal muscle before infection (Day 
0) and 10 days after influenza A infection (n=4-6 mice). 
(P) Graph shows number of CD4 Treg cells in skeletal muscle per gram of tissue before infection (Day 0) and 4 
and 10 days after influenza A infection (n=5-11 mice). 
(Q) Graph shows percentage of EdU+ CD4 Treg cells, of total CD4 Treg cells, in skeletal muscle before 
infection (Day 0) and 10 days after influenza A infection (n=4-6 mice). 
(R) Graph shows number of CD8 T cells in skeletal muscle per gram of tissue before infection (Day 0) and 4 
and 10 days after influenza A infection (n=5-11 mice). 
(S) Graph shows percentage of EdU+ CD8 T cells, of total CD8 T cells, in skeletal muscle before infection (Day 
0) and 10 days after influenza A infection (n=4-6 mice). 
(T) Graph shows number of B cells in skeletal muscle per gram of tissue before infection (Day 0) and 4 and 10 
days after influenza A infection (n=5-11 mice). 
(U) Graph shows percentage of EdU+ B cells, of total B cells, in skeletal muscle before infection (Day 0) and 10 
days after influenza A infection (n=4-6 mice). 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2019. ; https://doi.org/10.1101/833236doi: bioRxiv preprint 

https://doi.org/10.1101/833236
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 21	

 
Figure S5. Identification of a CX3CR1+ population of tissue resident skeletal muscle macrophages. 
(A) Heterozygous mice in which GFP is knocked in to the Cx3cr1 gene (B6.129P2(Cg)-Cx3cr1tm1Litt/J (Jackson 
labs 005582)), referred to in the text as Cx3cr1Gfp/+ were infected with the influenza A virus (25pfu) or sham 
infected with PBS and harvested 10 days later for analysis using flow cytometry. 
(B) Representative flow cytometry panels show GFP+ (CX3CR1+) macrophages in red, overlaid over WT 
mouse macrophages in blue. Numbers represent percent of cells expressing GFP. 
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Transcriptomic profiling identifies downregulation of phagocytic and proteostatic pathways and 

upregulation of inflammatory pathways in tissue-resident skeletal muscle macrophages from aged 

compared with young mice. To identify possible mechanisms responsible for the lack of a reparative 

response in aged tissue-resident skeletal macrophages during recovery from influenza A virus-induced 

pneumonia, we performed transcriptomic profiling (RNA-seq) of flow cytometry-sorted skeletal muscle 

macrophages. Out of 1407 differentially expressed genes (FDR q < 0.05), 582 were upregulated in aged 

compared with young animals and 825 were downregulated (Figure 5A). Macrophages from naïve aged 

animals demonstrated decreased expression of genes involved lipid storage and metabolism (Ldlrap1, Lrp1, 

Fabp4, Nr1h3), macrophage activation and cytokine production (Nlrp3, Sphk1, Msr1, Il10), and extracellular 

matrix remodeling (Spp1, Mmp13, Mmp14, Thbs1, Chil3). (Figure 5A and Supplementary table S1 and S2, list 

of DEGs and corresponding GO processes). In addition, macrophages from aged animals demonstrated 

decreased expression of the genes involved in response to unfolded protein and cellular stress, particularly 

molecular chaperones (Dnaja2, Dnajb4, Dnajb11, Hspa9, Hsp90b1, Hspbap1), as well as several molecules 

involved in positive regulation of phagocytosis (C5ar1, Msr1). In contrast, macrophages from young naïve 

animals were characterized by decreased expression of the genes involved in negative regulation of cell 

migration (Sema4a, Sema6d, Plxna3, Sema4c, Sema6a) and antigen processing and presentation (Cd74, H2-

Ab1, H2-Eb1, H2-Aa). We also performed transcriptomic profiling of flow cytometry sorted skeletal muscle 

macrophages from young and aged mice 60 days after IAV pneumonia. Of 1054 differentially expressed genes 

(FDR q < 0.05) 673 genes were upregulated in skeletal muscle macrophages from aged mice and were 

enriched for the genes involved in inflammation (Il6, Tnf, Il10, Il1a, Il1b, Tnfsf14) and proteostatic stress 

(Hspa9, Hspa5, Hspb8, Hspbap1, Dnaja4, Dnajb4, Dnaja2) (Figure 5B and Supplementary table S3 and S4, 

list of DEGs and corresponding GO processes). These transcriptomic data suggested impaired phagocytosis 

and increased inflammatory response in skeletal muscle macrophages from old mice. Consistent with these 

observations, we found that flow cytometry sorted tissue-resident skeletal muscle macrophages from old mice 

exhibited reduced uptake of fluorescently labeled polystyrene beads when compared with those from young 

animals (Figure 5C, D).  
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Figure 5. Tissue-resident macrophages from skeletal muscle from aged mice show impaired 
phagocytosis. 
(A) Skeletal muscle macrophages were flow cytometry sorted from naïve young (4 months old) and aged (20-
24 months old) mice and analyzed using RNA-seq (n = 5 mice per group). Differentially-expressed genes (FDR 
q<0.05) between young (green dots) and aged (purple dots) mice are shown with representative genes and 
GO biological processes (See Tables S1-S2 for complete list of genes and GO processes). 
(B) Young (4 months old) and aged (20-24 months old) mice were infected with Influenza A virus (25 pfu for 
young mice, 15 pfu for aged mice) and harvested 60 days later. Skeletal muscle macrophages were flow 
cytometry sorted and analyzed using RNA-seq (n=5 mice per group). Differentially-expressed genes (FDR 
q<0.05) between young (green dots) and aged mice (purple dots) are shown with representative genes and 
GO biological processes (See Tables S3-S4 for complete list of genes and GO processes). 
(C) Single cell suspensions prepared from skeletal muscle of young (4 months old) and aged (20-24 months 
old) mice were incubated with antibodies to detect myeloid cells and serum opsonized Fluoresbrite 
microspheres. Uptake of the fluorescently labeled microspheres by macrophages was measured using flow 
cytometry. Non-opsonized beads were used as a negative control. Representative contour plots are shown, 
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numbers indicate percentage from the parent population (gated on macrophages, see Figure 4A for gating 
strategy).  
(D) Refers to (C). Graph showing average percent of phagocytosed microspheres per macrophage (n=7-8 
mice). A two-way ANOVA with Tukey post hoc corrections for comparison with more than three groups was 
used to show statistical differences. Box plot center lines are median, box limits are upper and lower quartiles, 
whiskers are minimal and maximal values, p values are shown on the graph. p values are shown on the graph. 
Each dot represents an individual animal.  
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The phagocytic receptor Mertk is necessary for skeletal muscle repair after influenza A-induced 

pneumonia. MERTK is a member of the TAM family (Tyro3/Axl/Mer) tyrosine kinases that is expressed on 

macrophages, and is involved in recognizing and clearing apoptotic cells through phagocytosis (Lemke, 2013). 

We found that the level of mRNA encoding Mertk and its phosphatidylserine binding co-receptor Gas6 were 

reduced in flow cytometry-sorted macrophages from aged compared with young mice (Figure 6A). Accordingly, 

we infected Mertk-/- and wild type mice with influenza A virus and measured skeletal muscle injury and 

recovery post-infection. Wild-type and Mertk-/- mice developed comparable levels of systemic IL-6 and Atrogin-

1 expression in the skeletal muscle (Figure 6B, C), suggesting a similar level of muscle injury. However, 

measurements of voluntary distance run on a monitored exercise wheel showed that after an initial transient 

recovery, Mertk-/- mice failed to maintain their pre-infection levels of activity after pneumonia (Figure 6D, E). 

Additionally, we found increased accumulation of age-related lipofuscin granules in the muscle of young Merkt-

/- mice compared to young wild type mice, similar accumulation of lipofuscin granules was observed in aged 

mice (Figure 6J, K and Figure S6). Like in Cx3cr1 knockout mice, we observed increased numbers of skeletal 

muscle macrophages in Mertk-/- mice at baseline. However, the number of skeletal muscle macrophages in 

Mertk-/- mice did not increase during recovery from influenza A virus-induced pneumonia (Figure 6F) and there 

was no increase in the proportion of macrophages that were MHCIIlow (Figure 6G), similar to aged mice. 

Consistent with these findings, Mertk-/- mice lacked expansion of MuSC and FAP during recovery from 

influenza A-induced pneumonia (Figure 6H, I). Thus, these data support a requirement for functional 

phagocytosis in recovery from influenza A pneumonia-induced skeletal muscle atrophy. 
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Figure 6. MERTK is necessary for recovery of skeletal muscle function after influenza A-induced 
pneumonia. 
(A) Skeletal muscle macrophages were isolated from naïve young (4 months: green bars) and aged (20-24 
months: purple bars) mice and RNA was analyzed for TAM family members via real-time qPCR with SYBR 
green (n=5 mice).  
(B) Young (4 months old: orange bars) Mertk-/- mice and age-matched wild type control mice (green bars) were 
infected with influenza A virus (25 pfu) and harvested before the infection (Day 0) and 7 days after the 
infection. IL-6 was measured by ELISA in the serum (n=4-6 mice).  
(C) Young (4 months old: orange bars) Mertk-/- mice and age-matched wild type control mice (green bars) were 
infected with influenza A virus (25 pfu) and harvested before the infection (Day 0) and 7 days after the 
infection. Quantification (top panel) and representative Western blot (bottom panel) of Atrogin-1 expression in 
the mouse tibialis anterior muscle. GAPDH was used as a loading control (n=3-6 mice).  
(D) Prior to being infected with influenza A virus, young (4 months) Mertk-/- mice (orange lines) and age-
matched wild type control mice (green lines) were exposed to voluntary wheel running for 14 days. They were 
then infected with 25 pfu of influenza A virus and voluntary wheel running was recorded for 50 days. The 8 pm 
to 6 am average wheel rotation/mouse, corrected to the initial 10-day average control is shown (n=15 mice per 
group). Graph shows distance run with means ± S.D. 
(E) Mice were treated as in (D). The 3-day average voluntary wheel running per cage is shown for day -3 to -1 
prior to influenza A virus, day 9-11 post infection, and day 43 to 45 post infection (n=15 mice per group). 
(F) Young (4 months old, orange bars) Mertk-/- mice and age-matched wild type control mice (green bars) were 
infected with Influenza A virus (25 pfu) and harvested before the infection (Day 0) and 7 days after the 
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infection. Skeletal muscle macrophages were enumerated using flow cytometry (n=4-8 mice). Values are 
expressed per gram of tissue. 
(G) Young (4 months old, orange bars) Mertk-/- mice and age-matched wild type control mice (green bars) were 
infected with Influenza A virus (25 pfu) and harvested before the infection (Day 0) and 7 days after the 
infection. MHCIIlow skeletal muscle macrophages were enumerated using flow cytometry (n=4-8 mice). Values 
are expressed as a percent of total macrophages. 
(H) Young (4 months old, orange bars) Mertk-/- mice and age-matched wild type control mice (green bars) were 
infected with Influenza A virus (25 pfu) and harvested before the infection (Day 0) and 7 days after the 
infection. Skeletal muscle satellite cells (MuSC) were enumerated using flow cytometry (n=4-8 mice). Values 
are expressed per gram of tissue. 
(I) Young (4 months old, orange bars) Mertk-/- mice and age-matched wild type control mice (green bars) were 
infected with influenza A virus (25 pfu) and harvested before the infection (Day 0) and 7 days after the 
infection. Skeletal muscle fibroadipogenic progenitor cells (FAP) were enumerated using flow cytometry (n=4-8 
mice). Values are expressed per gram of tissue.  
(J) Representative images of autofluorescent lipofuscin accumulation (identified by arrows) in unstained 
muscle tissue from naïve young (4 months old) mice, aged (20-24 months old) and young Mertk-/- (4 months 
old) mice. Bar is equal to 10 µm. 
(K) Graph depicting number of lipofuscin granules per fiber cross section counted manually in Image J. Five 
mice per group (an average of 3 fields of view per mouse). 
For all experiments, a two-way ANOVA with Tukey post hoc corrections for comparison with more than three 
groups was used to show statistical differences. Box plot center lines are median, box limits are upper and 
lower quartiles, whiskers are minimal and maximal values, p values are shown on the graph. Each dot 
represents an individual animal. 
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Figure S6. Impaired phagocytosis results in increased lipofuscin accumulation.Soleus muscles were 
harvested from naïve young mice (4 months), old mice (20-24 months) or young Mertk-/- mice (4 months), and 
stained for DAPI (blue). Autofluorescent lipofuscin granules (white). Scale bar=40 µm,  
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DISCUSSION 

Pneumonia is the most common infectious cause of death in the elderly, however, most elderly patients with 

access to modern healthcare survive pneumonia (Jain et al., 2015; Ortiz et al., 2013). In these survivors, 

skeletal muscle dysfunction is common and often persists for months or years after hospital discharge 

(Herridge et al., 2003). The elderly are at increased risk for the development of prolonged skeletal muscle 

dysfunction after pneumonia, however, the mechanisms that underlie this enhanced susceptibility have not 

been elucidated (Barreiro et al., 2015). In a murine model of influenza A pneumonia in which the dose of virus 

was titrated to result in similar mortality and weight loss, we found that young animals completely recovered 

skeletal muscle function after pneumonia, while aged animals did not. We used a combination of genetic 

lineage tracing, flow cytometry, transcriptomics and genetic loss of function approaches to show that a loss of 

phagocytic function in tissue-resident CX3CR1+skeletal muscle macrophages underlies the failure of skeletal 

muscle recovery in aged survivors of influenza A infection. 

 

While a subpopulation of macrophages expressing the fractalkine receptor CX3CR1 in the skeletal muscle has 

been previously reported, nothing was known regarding the function or ontogeny of these cells (Arnold et al., 

2015; Jin et al., 2018; Zhao et al., 2016). In young mice recovering from influenza A pneumonia, we observed 

expansion and downregulation of MHCII in skeletal muscle macrophages followed by muscle satellite cell 

proliferation. These findings were absent in mice deficient in Cx3cr1. Because macrophages are the only cell 

type in the skeletal muscle that expresses Cx3cr1 (Schaum et al., 2018), these findings genetically link 

CX3CR1-expressing skeletal muscle macrophages with muscle satellite cells (MuSC) proliferation after 

influenza A-induced pneumonia. Moreover, we used a lineage tracing system and flow cytometry to show that, 

both in the steady state and after influenza A pneumonia, these skeletal muscle macrophages represent a 

bona fide tissue-resident macrophage population maintained in the skeletal muscle via local proliferation 

independent of recruitment of monocytes or monocyte-derived macrophages. Further, we found no evidence of 

infiltration by other myeloid cell populations or lymphoid populations in response to influenza A pneumonia. 

While the precise function of CX3CR1 in the skeletal muscle is not known, it may guide macrophages to areas 

of muscle loss induced by influenza A infection. For example, signaling through CX3CR1 guides monocytes 

and macrophages to areas of injury or inflammation, and during brain development, CX3CR1 is necessary to 
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guide microglia to synapses where they are pruned from living neurons via a process referred to as 

“trogocytosis” (Paolicelli et al., 2011; Weinhard et al., 2018). 

 

We used transcriptomic profiling to compare tissue-resident skeletal muscle macrophages in young and aged 

mice under naïve conditions and during recovery from influenza A infection. These data suggested the 

hypothesis that skeletal muscle macrophages from aged mice lose phagocytic function, which was confirmed 

by reduced uptake of serum-opsonized polystyrene beads in flow cytometry-sorted skeletal muscle 

macrophages from aged compared with young mice, and the accumulation of lipofuscin granules in skeletal 

muscle of aged and Mertk-/- mice. MERTK is a member of the TAM family of scavenger receptors (Mertk, Axl 

and Tyro3), which are activated during injury by interactions with Protein S or Gas6 bound to Annexin V on the 

surface of apoptotic cells (Lemke, 2013). Ligation of MERTK in macrophages results in the induction of 

phagocytosis through protein kinase C and Rac-mediated regulation of the cytoskeleton and the activation of 

AKT, leading to cellular proliferation and survival (Lemke and Rothlin, 2008). In addition, the activation of 

MERTK results in its association with the type I interferon receptor (IFNAR) to induce the Jak1/Stat1-mediated 

activation of suppressor of cytokine signaling 1 and 3 (SOCS1 and SOC3) (Lemke, 2013). These transcription 

factors inhibit inflammatory mediators and reduce expression of MHC class II molecules on the cell surface 

(Dalpke et al., 2001). We found that during recovery from influenza A infection, Mertk-/- mice largely 

phenocopied aged mice, in that they failed to expand tissue-resident macrophages, downregulate MHCII on 

tissue-resident macrophages or expand MuSC. The physiologic importance of these findings was reflected in 

their failure to recover normal exercise after influenza A infection, phenocopying aged mice. These findings 

strengthen the causal association between tissue-resident skeletal muscle macrophage function and muscle 

satellite cell proliferation. Furthermore, our findings are consistent with previous reports that MERTK is 

necessary for cardiac repair after myocardial infarction (DeBerge et al., 2017; Zhang et al., 2019).  

 

Our findings fit into an emerging body of literature implicating impaired phagocytosis in tissue-resident 

macrophages with aging phenotypes. For example, Pluvinage performed a CRISPR screen to identify genes 

involved in microglia phagocytosis (Pluvinage et al., 2019). They found that CD22 was upregulated in aging 

microglia and impaired their phagocytic function. When they administered an antibody directed against CD22, 
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cognitive function in aged mice improved. Future studies will answer whether improving phagocytic function in 

the tissue-resident macrophages in the skeletal muscle will be sufficient to revert influenza A pneumonia-

induced muscle dysfunction in aged mice. Furthermore, our results support a role for tissue-resident 

macrophages in muscle progenitor cell proliferation. For example, co-culture of monocyte/macrophage 

populations with muscle progenitor cells induces their proliferation via the release of soluble factors in rodent 

and avian systems (Cantini and Carraro, 1995; Cantini et al., 2002; Chazaud et al., 2003; Merly et al., 1999; 

Saclier et al., 2013). In our model, however, we cannot determine whether impaired MuSC proliferation is 

related to the loss of paracrine signals induced in macrophages upon uptake of cellular debris or an inhibition 

of cellular proliferation by the debris that is not cleared by macrophages. 

 

Voluntary wheel running in mice is an intuitive and compelling measure of the skeletal muscle dysfunction that 

impairs mobility in survivors of pneumonia. More importantly, our molecular findings are consistent with studies 

of muscle biopsies from patients with myopathy after critical illness. In these biopsies, investigators observed 

MuSC proliferation in the absence of inflammatory cell infiltration (Dos Santos et al., 2016). This differs from 

many murine models used to study muscle recovery, most of which involve direct injury to the muscle including 

trauma, freezing or cardiotoxin injection. In all of these injuries, inflammatory cells are recruited to the injured 

muscle including neutrophils, monocytes, monocyte-derived macrophages, regulatory T cells (Tregs) and other 

T cell populations, among others (Arnold et al., 2007; Heredia et al., 2013; Kuswanto et al., 2016; Teixeira et 

al., 2003; Varga et al., 2016; Zhang et al., 2014). Inflammatory cell recruitment in those models precluded the 

specific study of tissue-resident skeletal muscle macrophages. For example, two independent groups reported 

that deletion of monocyte-derived macrophages recruited in response to cardiotoxin-induced injury resulted in 

impaired satellite cell proliferation. In both of these studies, the strategies used to deplete monocyte-derived 

macrophages (CD11b-DTR and an antibody to M-CSF) would target both those monocyte-derived 

macrophages and the skeletal muscle tissue-resident macrophages we identified in this study (Arnold et al., 

2007; Segawa et al., 2008). While Tregs have been reported to be important for skeletal muscle recovery after 

cardiotoxin injury (Kuswanto et al., 2016), we found that Treg number was reduced in both young and aged 

mice after influenza A infection. Nevertheless, Treg proliferation was higher in young compared with old mice 

and it is possible that factors released from resident tissue Tregs are important for recovery. 
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Our study has some limitations. First, we found that muscle loss after influenza A infection was sufficiently 

severe to induce myonuclear loss and the accretion of myonuclei in influenza A virus-infected mice (Mitchell 

and Pavlath, 2004) (Snijders et al., 2014) (McCarthy et al., 2011) (Egner et al., 2016), but we were unable to 

definitively determine the fate of the lost myonuclei in this model. Second, while Mertk-/- mice recapitulated the 

lack of cellular responses in aged animals, they transiently regained muscle function after injury. This may be 

explained by the high basal levels of MuSC in Mertk-/- relative to wild type mice, which allows short term, but 

unsustainable recovery of muscle function. Third, while we observed expansion of fibroadipogenic progenitors 

(FAP) during recovery from muscle injury in young, aged and Mertk-deficient mice, their role in muscle 

recovery is not certain. FAP cells have been described as important facilitators of MuSC behaviors, supporting 

their myogenic differentiation (Fiore et al., 2016), yet FAP cell persistence has been shown to have a 

detrimental effect on muscle tissue by contributing to fibrosis (Gonzalez et al., 2017) and ectopic fat 

accumulation (Uezumi et al., 2010). Thus, if tissue-resident macrophages contribute to FAP clearance, as has 

been reported for inflammatory, monocyte-derived macrophages (Lemos et al., 2015) some of the effects of 

aging or Mertk loss in macrophages might be attributed to the persistence of these cells. Finally, while the 

expression of Cx3cr1 in the skeletal muscle is limited to macrophages, Cx3cr1 is also expressed on monocytes 

and LYVE1-expressing macrophages associated with the vasculature and nerve fibers (Lim et al., 2018; 

Schaum et al., 2018). We therefore cannot completely exclude off target effects related to global deletion of 

Cx3cr1 in our system. 

 

The skeletal muscle represents approximately 40% of the total body mass (Janssen et al., 2000), and 

maintaining its function is critical for posture, breathing, locomotion, nutrient storage, and overall well-being. As 

a result, age-related sarcopenia is a major driver of frailty (Janssen et al., 2000; Topinkova, 2008). Our findings 

highlight the importance of impaired repair in the persistent, sometimes life-long loss of muscle function that 

develops in elderly survivors of pneumonia. Specifically, we suggest that a loss of phagocytic function in 

tissue-resident skeletal muscle macrophages during aging impairs their ability to promote muscle satellite cell 

proliferation necessary for skeletal muscle recovery. Given the prevalence of influenza A and other respiratory 

viral infections, it is likely that our findings have broad implications for elderly survivors of pneumonia.  
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

CD45 clone 30-F11 PE-Cy7 BD Biosciences 552848; RRID: 5114808 

CD31 clone MEC 13.3 PE-CF594 BD Biosciences 563616; RRID: 5163928 

CD34 clone RAM34 FITC BD Biosciences 553733; RRID: 6019764 

CD34 clone RAM34 AlexaFluor700 eBiosciences 56-0341-82; RRID: 4289831 

Sca-1 clone D7 BV421 Biolegend 108128; RRID: B254500 

Int-a7 clone 3C12 APC Miltenyi 130-102-717; RRID: 5190509033 

PDGF-Ra clone APA5 PE Biolegend 135906; RRID: B203475 

CD64 clone X54-5/7.1 PE Biolegend 139304; RRID: B191540 

Ly6G clone 1A8 AlexaFluor700 BD Biosciences 561236; RRID: 6252780 

SiglecF clone E50-2440 PE-CF594 BD Biosciences 562757; RRID: 7128860 

NK1.1 clone PK136 BUV395 BD Biosciences 564144; RRID: 8155628 

CD11b clone M1/70 FITC BD Biosciences 561688; RRID: 5357544 

CD11b clone M1/70 APC Biolegend 101212; RRID: B247959 

MHCII M5/114.15.2 eFluor450 eBiosciences 48-5321-82; RRID: 4289694 

Ly6C clone HK1.4 APC/Cy7 Biolegend 128018; RRID: B232708 

CD19 clone 1D3 PE-CF594 BD Biosciences 562329; RRID: 5336548 

CD3e clone 145-2C11 FITC BD Biosciences 553061; RRID: E00061-1634  

CD3e clone 145-2C11 APC/Cy7 Biolegend 100300; RRID: B239433 

CD4 clone RM4-5 eFluor450 eBiosciences 48-0042; RRID: 4281988 

CD8 clone 53-6.7 BUV395 BD Biosciences 563786; RRID: 7096603 

CD25 clone PC61.5 APC eBiosciences 17-0251-82; RRID: 4300565 

FoxP3 clone FJK-16s PE eBiosciences 12-5773-82; RRID: 4279536 

Fbx32 (Atrogin1) abcam ab168372; RRID: GR322135-8 

GAPDH Cell Signaling D16H11; RRID:  

laminin Sigma L9393; RRID: 015M4881V 

Alexa Fluor 568 secondary antibody  Life Technologies A-11011; RRID: 2088068 
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Chemicals, Peptides and Recombinant Proteins  
AutoMACS buffer Miltenyi 130-091-221 

BD Pharm Lyse BD Biosciences 555899 

eFluor 506 viability dye Thermo Fisher 65-0866-18 

123count eBeads eBioscience 01-1234 

Anti-mouse CD16/CD32 Invitrogen 14-0141-85 

Fluoresbrite YG 1.0 micron microspheres PolySciences, Inc 16662 

RNAse free DNAse Set QIAGEN 79254 
 
Critical Commercial Assays 

Skeletal Muscle Dissociation Kit Miltenyi 130-098-305 

Mouse IL-6 ELISA kit Life Technologies KMC0061C 

FoxP3 Staining buffer set eBiosciences 00-5523 

Click-iT Plus EdU assay kit Invitrogen C10632 

Arcturus PicoPure RNA isolation kit Thermo Fisher KIT0204 

iScript cDNA synthesis kit Bio-Rad 1725034 

iTaq SYBR one step rtPCR kit Bio-Rad 1725151 

 
Deposited Data 
 
Experimental Models: Organisms/Strains 
C57Bl/6 9-11 weeks/18months NIA NIH 

 

B6.129P2(Cg)-Cx3cr1tm1Litt/J The Jackson Laboratory Stock #005582 

B6.129P2(C)-Cx3cr1tm2.1(cre/ERT2)Jung/J The Jackson Laboratory Stock #020940 

B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J The Jackson Laboratory Stock #007906 

B6;129-Mertktm1Grl/J The Jackson Laboratory Stock #011122 

 
 
Oligonucleotides 
Gapdh FW IDT GCA CAG TCA AGG CCG AGA AT 

Gapdh RV IDT GCC TTC TCC ATG GTG GTG AA 

MerTK FW IDT CGT CTG TCC TAA CCG TAC CT 

MerTK RV IDT GTA CTG TTG AGG ATA TGG ACT 

Axl FW  IDT GGT CCC CCT GAG AAC GTT AG 
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Axl RV  IDT CAT AAG TAC CTC GGG GGT GT 

Tyro3 FW IDT AGT GGA ACG GTC TGA TGC TG 

Tyro3 RV IDT AGA ATG GCA CAC CTT CGA CA  

Gas6 FW IDT ATG GGT GCA TGA GGA GTT GG 

Gas6 RV IDT TGT TCG GGT GTA GTT GAG CC 

Software and Algorithms 

FlowJo V10.1 TreeStar, FlowJo, Ashland, 
Oregon 

https://www.flowjo.com/solutio
ns/flowjo/downloads 

GraphPad Prism 7.02 GraphPad Software, California https://www.graphpad.com/sci
entific-software/prism/ 

bcl2fastq 2.17.1.14 Illumina, California 

https://support.illumina.com/se
quencing/sequencing_software
/bcl2fastq-conversion-
software.html 

Trimmomatic 0.36 
Usadel lab, RWTH Aachen 
University, Institute for Biology 
I 

http://www.usadellab.org/cms/
?page=trimmomatic 

STAR 2.6.0 Alexander Dobin, Cold Spring 
Harbor Laboratory 

https://github.com/alexdobin/S
TAR 

HTSeq 0.7.1 Genome Biology Unit, EMBL 
Heidelberg 

https://htseq.readthedocs.io/en
/release_0.10.0/ 

edgeR 3.20.9 Bioconductor 
https://bioconductor.org/packa
ges/release/bioc/html/edgeR.ht
ml 

GOrilla Eden et al., 2009 http://cbl-
gorilla.cs.technion.ac.il/ 

Other 

Dulbecco's modified Eagle's medium (DMEM) Fisher Scientific MT-10-013-
CM 

2-Mercaptoethanol Sigma-Aldrich M6250 
Bio-Rad protein assay dye reagent concentrate Bio-Rad Laboratories 500-0006 
 

CONTACT FOR REASGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will be fulfilled by the 
Lead Contacts: Jacob Sznajder (j-sznajder@northwestern.edu) and Alexander Misharin (a-
misharin@northwestern.edu).  

 
EPERIMENTAL MODEL AND SUBJECT DETAILS 
Mouse Models 
All mouse procedures were approved by the Institutional Animal Care and Use Committee at Northwestern 
University (Chicago, IL, USA). All strains including wild-type mice are bred and housed at a barrier- and specific 
pathogen–free facility at the Center for Comparative Medicine at Northwestern University. All experiments were 
performed with littermate controls. Number of animals per group was determined based on our previous 
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publications. Mice were housed at the Center for Comparative Medicine at Northwestern University, in 
microisolator cages, with standard 12 hr light/darkness cycle, ambient temperature 23°C and were provided 
standard rodent diet (Envigo/Teklad LM-485) and water ad libitum. Four and eighteen months-old C57BL/6J mice 
were obtained from Jackson laboratories or NIA colony. The C57BL/6J, Cx3cr1ER-Cre mice (Yona et al., 2013) and 
ZsGreen reporter (Madisen et al., 2010) mice were obtained from Jackson laboratories (Jax stocks 000664, 
020940 and 007906, correspondingly) as were Cx3cr1gfp/gfp mice (Jax stock 005582).  
 
METHODS DETAIL 
Influenza-A infection 
Murine-adapted, influenza A virus (A/WSN/33 [H1N1]) was provided by Robert Lamb, Ph.D., Sc.D., 
Northwestern University, Evanston, IL. Mice were anesthetized with isoflurane, their lungs were intubated 
orally with a 20-gauge Angiocath (Franklin Lanes, NJ), and then instilled with either sterile, phosphate-buffered 
saline (S) or mouse-adapted influenza A virus (IAV) as previously described (Radigan et al., 2019). Various 
doses in a range of 10-100pfu were tested to find an optimal sub-lethal dose matched to the age of the animal. 
Based on survival curves, we determined that 25 pfu was optimal for young animals, but a lower dose was 
required for aged animals, as a 25 pfu dose resulted in excessive mortality of old mice (Figure S1). We 
continuously observed mice infected with influenza A virus for signs of distress (slowed respiration, failure to 
respond to cage tapping, failure of grooming, huddling and fur ruffling). Mice that developed these symptoms 
were sacrificed and the death was recorded as an influenza A-induced mortality. Weight was measured prior to 
influenza infection and prior to harvest at 4 or 10 days post-infection, and recorded as percentage of weight 
loss from baseline (Radigan et al., 2019). 
 
Measurement of muscle dysfunction 
Immediately prior to muscle harvest, forelimb skeletal muscle strength was assessed using a digital grip 
strength meter (Columbus Instruments, Columbus, OH) as described (Radigan et al., 2019). Grip strength was 
measured in each animal six successive times, and the average of the highest four values for each mouse was 
used. The same operator performed all tests. The mice were then terminally anesthetized with Euthasol 
(pentobarbital sodium/phenytoin sodium). The soleus and extensor digitorum longus (EDL) muscles were 
excised and tendon was trimmed under a microscope to assure optimal accuracy for weight measurement. 
The muscles were then blotted dry and weighed. Muscles were either frozen in liquid nitrogen-cooled 
isopentane for cryosectioning or snap-frozen in liquid nitrogen for protein extraction. Alternatively muscles were 
minced for flow cytometric analysis as described below.  
 
Voluntary Wheel Running 
Mice, housed 3 per cage, were provided access to a trackable, low-profile saucer wheels (Med Associates, 
Inc., St. Albans, Vermont) 24 hours per day for 14-28 days to establish consistent running patterns. After 
establishing baseline, all mice were infected with IAV at an age-appropriate dose (Figure S1). Wheel rotations 
were gathered in one minute increments via wireless hub, and analyzed using wheel manager software (Med 
Associates, Inc., St. Albans, Vermont). Distances travelled per mouse per night (8 pm-6 am) were calculated 
for each night. Data were collected as the average of 3 mice per cage for 6 cages each, and running distance 
is expressed related to average nightly runs over 10 days pre-Influenza A.  
 
Immunohistochemistry and Fiber Size and Type Assessment 
Soleus and extensor digitorum longus (EDL) serial transverse cryosections (8 μm) were obtained from the 
Northwestern University Mouse Histology and Phenotyping Laboratory and mounted on glass slides. Sections 
were fixed in 4% formaldehyde, permeabilized, and blocked. Immunostaining was performed with laminin 
primary antibody (1:50 dilution; Sigma; Catalog: L9393) followed by Alexa Fluor 568-conjugated secondary 
antibody (1:200 dilution; Life Technologies; Catalog: A-11011). Images were acquired with a Zeiss LSM 510 
confocal microscope using a 40x objective (Northwestern University Center for Advanced Microscopy) and 
analyzed using Zeiss LSM5 Image Browser software. Fiber size was studied by measuring the fibers' minimal 
inner diameter (at least 100 fibers per muscle), defined as the minimum diameter from inner border to inner 
border, passing through the center of the muscle fiber. This parameter has been shown to be very insensitive 
to deviations from the “optimal” cross-sectioning profile, as compared with direct measure of fiber cross-
sectional area (Radigan et al., 2019). Cross-sectional area (CSA) was calculated using this diameter, and 
results were expressed as mean CSA ± S.E. 
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Bronchoalveolar lavage  
Saline fluid (0.8 ml) was lavaged then aspirated from the lungs of mice through tracheal angiocatheter. Cell 
counts were measured by Trypan blue exclusion and the automated Countess system. To measure the cell 
differential, 200 μl of BAL fluid was placed in Cytospin funnels and spun 2,000 rpm 5 min onto a glass slide. 
Cells were stained by Wright-Giemsa and manually counted and identified. 
 
IL-6 measurements 
IL-6 expression assays were performed using a kit from Life technologies (KMC0061C) according to the 
manufacturer’s instructions. Assays were performed on either BAL fluids (acquired as described above) or 
from 50 μl/well blood plasma drawn from posterior vena cava using a 23-gauge needle, centrifuged to remove 
cells, and stored at -80oC. Analysis for each mouse was done in triplicate, and a minimum of 5 mice were 
analyzed/condition.  
 
Flow Cytometry and Cell Sorting 
Mice were fully-perfused through the right ventricle with 20 ml of PBS, and hind-limb muscle was removed. 
Tissue was cut into small pieces with scissors, transferred into C-tubes (Miltenyi, Auburn, CA) and processed 
with a Skeletal Muscle Dissociation kit according to manufactures instructions (Miltenyi, Auburn CA). To 
achieve a single-cell suspension, 2 rounds of dissociation were performed using a GentleMACS dissociator 
(Miltenyi), followed by 3 rounds of filtration through Falcon 100-μm, 70-μm then 40-μm nylon mesh filter units 
(Thermo Fisher #352340, 352350 and 352360 respectively) into polypropylene 50ml Falcon tubes, followed by 
centrifugation at 1300rpm in an Eppendorf 5810R centrifuge for 15 minutes. Any remaining red blood cells 
were lysed by resuspending the pellet in 1ml/tube BD Pharm Lyse (BD Biosciences, San Jose, CA), and were 
transferred to flow tubes, pelleted by low speed centrifugation 5 minutes, and resuspended in 0.5ml/tube HBSS 
containing 0.5 μl/tube viability dye eFluor 506 (eBioscience, San Diego, CA). Cells were stained in viability dye 
for 15 minutes in the dark at room temperature, followed by 2X washes in 1ml MACS buffer (Miltenyi, Auburn, 
CA). After live/dead cell staining, pellets are resuspended in 150 μl/tube FcBlock Anti-mouse CD16/CD32 
(Invitrogen) for 30 minutes in the dark at 4oC to block non-specific binding. After blocking, cells were divided to 
three separate tubes at 50 μl each, then stained with a mixture of fluorochrome-conjugated antibodies in 50 
μl/tube, and incubated for an additional 30 minutes at 4oC in the dark. After antibody incubation, the cells were 
washed 2X in MACS buffer, and then fixed in 2% paraformaldehyde for 15 minutes at room temperature in the 
dark, washed 2X in HBSS, resuspended in 200 μl HBSS, then stored at 4oC overnight. Data were acquired on 
a BD LSR Fortessa II flow cytometer using BD FACSDiva software, and compensation and data analyses were 
performed using FlowJo software (TreeStar, Ashland, OR). Prior to cytometric analysis, 50 μl 123count 
eBeads (Invitrogen) were added to 200 μl each sample to allow accurate cell counts/gm of tissue. 
“Fluorescence minus one” controls were used when necessary. Cell populations were identified using 
sequential gating strategy (Figure 3A, 4A and 5A). For Foxp3 detection, a staining kit for intracellular antigens 
was used (eBiosciences, San Diego, CA). Cells were fixed and permeabilized according to directions, before 
incubation with Foxp3 antibody prior to analysis. Cell sorting was performed at Northwestern University 
RLHCCC Flow Cytometry core facility on SORP FACSAria III instrument (BD) with the same optical 
configuration as LSR II, using a 100-µm nozzle and 40 psi pressure. 
 
To measure proliferation, EdU was diluted in sterile saline from 100 mg/ml stock in DMSO, and injected 
intraperitoneally at 2 mg/mouse, 16 hours prior to tissue harvest (Misharin et al., 2017). Single-cell 
suspensions were divided in thirds, and stained with antibody panels as described in (Figure 3A, 4A and 5A) 
with FITC replaced in each panel. After surface antibody staining cells are fixed and undergo a Click-IT EdU 
detection reaction using an Alexa-Flour 488 picolyl azide, Click-IT Plus EdU Flow cytometry assay kit 
(Invitrogen).  
 
Quantitative RT-PCR 
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Ten thousand skeletal muscle macrophages were sorted on a FACSAria 6-Laser Sorter, into 200 μl PicoPure 
lysis buffer and stored at -80oC. RNA was harvested following manufactures directions for Arcturus PicoPure 
RNA isolation kit (Applied Biosystems, Foster City, CA). Total RNA was quantified using a NanoDrop 2000c 
(Thermo Scientific). cDNA was generated using iScript cDNA synthesis kit (Bio-Rad, Hercules CA) in a Bio-
Rad T100 thermal cycler, followed by qPCR with SYBRgreen (Bio-Rad, Hercules CA) and a Bio-Rad CFX 
Connect real-time system. The following primers were used:  
 
Gapdh (F-GCA CAG TCA AGG CCG AGA AT, R-GCC TTC TCC ATG GTG GTG AA) 
MerTK (F-CGT CTG TCC TAA CCG TAC CT, R-GTA CTG TTG AGG ATA TGG ACT)  
Axl (F-GGT CCC CCT GAG AAC GTT AG, R-CAT AAG TAC CTC GGG GGT GT) 
Tyro3 (F-AGT GGA ACG GTC TGA TGC TG, R-AGA ATG GCA CAC CTT CGA CA) 
Gas6 (F-ATG GGT GCA TGA GGA GTT GG, R-TGT TCG GGT GTA GTT GAG CC) 
 
Western Blot Analysis 
Quadriceps muscle tissue was homogenized with a Tissue Tearor (BioSpec Products, Inc) for 1 minute in ice-
cold lysis buffer (Nonidet P-40 1%, glycerol 10%, NaCl 137 mM, Tris-HCl pH 7.5 20 mM) containing protease 
(1 Complete Mini, EDTA-free tablet, Roche) and phosphatase (sodium fluoride 30 mM, β-glycerophospate 250 
mM, sodium orthovanadate 1mM) inhibitors. Samples were centrifuged at 15,000 rpm for 10 minutes at 4°C 
and the supernatant was collected. Protein concentrations were determined with Protein Assay Dye (Bio-Rad) 
in a 96 well plate measured against BSA protein standard dilutions at 595 nm with a Bio-Rad iMark microplate 
reader (Bio-Rad, Hercules CA). Equal amount of protein (40-80 total μg) were loaded on a 9% SDS-PAGE gel, 
and Western blot analysis was performed as described previously (Radigan et al., 2019). Incubation with 
primary antibodies was performed overnight at 4°C. Immunoblots were quantified by densitometry using Image 
J 1.46r (National Institutes of Health, Bethesda, MD) or Image Studio Software (LI-COR Inc., Lincoln, NE). The 
following antibodies were used: Rabbit Monoclonal to Fbx32 (Abcam; catalog: ab168372; 1:1000) or Rabbit 
monoclonal to GAPDH (D16H11) (Cell Signaling; catalog: 5174s; 1:1000). 
 
Transcriptome Profiling via mRNA-Seq 
Ten thousand skeletal muscle macrophages were sorted on a FACSARIA 6-Laser Sorter, into 200 μl PicoPure 
lysis buffer and stored at -80oC. RNA was harvested following manufactures directions for Arcturus PicoPure 
RNA isolation kit (Applied Biosystems, Foster City, CA). RNA quality was assessed with the 4200 TapeStation 
System (Agilent). Samples with an RNA integrity number (RIN) lower than 7 were discarded. RNA-seq libraries 
were prepared from 0.5 ng total RNA using the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input 
Mammalian kit. Libraries were quantified and assessed using the Qubit Fluorimeter (Invitrogen) and 4200 
TapeStation. Libraries were sequenced on NextSeq 500 instrument (Illumina) at 75 bp length, single end 
reads. The average reading depth across all experiments exceeded 6x106 per sample and over 94% of reads 
had a Q-score greater than 30. For RNA-seq analysis, reads were demultiplexed using bcl2fastq (version 
2.17.1.14). Read quality was assessed with FastQC. Low quality baseballs were trimmed using trimmomatic 
(version 0.36). Reads were then aligned to the Mus musculus reference genome (with mm10 assembly) using 
the STAR aligner (version 2.6.0). Counts tables were generated using HTSeq (version 0.6.1). Raw counts 
were processed in R (version 3.4.4) using edgeR (version 3.20.9) to generate normalized counts. Negative 
binomial likelihood with default setting followed by generalized linear models fitting was used to estimate 
differentially expressed genes. FDR q-values were used to correct for multiple comparisons and a value of 
0.05 was used as a threshold to indicate statistical significance (see online code). Gene Ontology analysis was 
performed using GOrilla on two unranked gene lists. The RNA-seq datasets are available at GEO: 
GSEXXXXXX. 
 
In Vitro Phagocytosis 
After enzymatic digestion 50 μl of the single cell suspensions were incubated with 35 μl of myeloid antibody 
cocktail with 15 μl/tube Fluoresbrite YG 1.0 micron microspheres (Polysciences Inc., Warrington, PA) that had 
been opsonized for 30 minutes at 37oC in by mixing 1 drop beads with 1ml 50% FBS/HBSS, followed by 2X 
wash/resuspension in HBSS 1 ml (non-opsonized beads were used as a negative control). Cell suspensions 
were allowed to uptake beads for 30 minutes at 37oC in the dark with shaking, followed by 2 washes in HBSS 
to remove any unbound beads, and fixation in 2% paraformaldehyde, followed by flow cytometry with a FITC 
negative myeloid cocktail to detect bead uptake in myeloid cell populations. 
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QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Statistical Analysis 
Differences between groups were determined according to ANOVA. When ANOVA indicated a significant 
difference, individual differences were examined using t tests with a Tukey correction for multiple comparisons, 
as indicated. All analyses were performed using GraphPad Prism, version 5.00 (GraphPad Software, San 
Diego CA). Data are shown as means ± SEMs. P < 0.05 was considered statistically significant in all tests.  
 
Supplementary table S1: List of differentially expressed genes between tissue-resident skeletal muscle 
macrophages from naïve young and old mice. 
Supplementary table S2: Gene ontologies for the differentially expressed genes between tissue-resident 
skeletal muscle macrophages from naïve young and old mice. 
Supplementary table S3: List of differentially expressed genes between tissue-resident skeletal muscle 
macrophages from young and old mice, 60 days after influenza A infection. 
Supplementary table S4: Gene ontologies for the differentially expressed genes between tissue-resident 
skeletal muscle macrophages from young and old mice, 60 days after influenza A infection. 
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