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During navigation, responses in primary visual cortex (V1) are modulated by the animal’s 

position. Here, we show that this modulation is present across multiple higher visual cor-

tical areas but largely absent in geniculate inputs to V1. Spatial modulation is stronger 

during active navigation than during passive viewing. Moreover, navigation activates dif-

ferent neurons than classical drifting gratings, and promotes the reliability of neural re-

sponses in parietal and medial cortical areas.  

There is increasing evidence that the activity 

of the primary visual cortex (V1) is influenced 

by navigational signals1–3. During navigation, 

indeed, the responses of V1 neurons to iden-

tical visual stimuli are strongly modulated by 

the animal’s spatial position4. It is not known, 

however, how this modulation varies along 

the visual pathway. Is it present upstream of 

V1, as has been suggested5? Is it stronger 

downstream of V1, e.g. in parietal visual areas 

where selectivity for position is well estab-

lished6–12? And does it require active naviga-

tion, a condition that enhances spatial repre-

sentations in hippocampus13–15? 

To characterize the influence of spatial posi-

tion on visual responses, we used a virtual re-

ality (VR) corridor with two visually match-

ing segments4 (Fig. 1). We used two-photon 

microscopy to record calcium activity of LGN 

boutons in layer 4 of area V1 (Fig. 1a, and 

Suppl. S1a-d), of V1 neurons (Fig. 1b), and of 

neurons in higher visual areas (Fig. 1c). Mice 

were head-fixed and ran on a treadmill to 

traverse a virtual corridor made of two con-

secutive 40 cm segments that contained the 

same visual textures4 (Fig. 1d).  A purely vis-

ual neuron would respond similarly in these 

matching segments, while a neuron modu-

lated by spatial position would respond more 

strongly in one segment.  

Spatial position powerfully modulated the 

visual responses of V1 neurons4, but barely 

affected those of LGN afferents (Fig. 1e, f, h, i). 

LGN boutons gave similar responses in the 

two segments of the corridor (Fig. 1e), indi-

cating that spatial position had little effect on 

the LGN responses. By contrast, and as previ-

ously reported4, V1 neurons tended to re-

spond more strongly at a single location in the 

corridor (Fig. 1f). To quantify the degree of 

spatial modulation, we defined a spatial mod-

ulation index (SMI) as the normalized differ-

ence of responses at the two visually match-

ing positions (preferred minus non–pre-

ferred, divided by their sum; the preferred 

position was defined by held-out data). The 

median SMI across sessions for responsive 

LGN boutons was barely above zero, at 0.07 ± 

0.05 (n = 19 sessions), markedly smaller than 

the median for responsive V1 neurons, which 

was 0.41 ± 0.17 (n = 32 sessions; LGN SMI sig-

nificantly smaller than V1: p = 10-6 ,left-tailed 

two-sampled t-test, Fig. 1h, i).  
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Fig. 1: Spatial position modulates visual activity in visual cortex but not in thalamic LGN.  
a. Merged confocal images of somata in V1 (Nissl staining; blue) and of LGN axonal projections expressing GCaMP (GFP; green). GCaMP 
expression is densest in layer IV (L4). b. Example retinotopic map of the cortical surface with recording sessions targeting (fully or 
partly) V1 (black squares, field of view: 500µm x 500 µm). Black contours show borders between areas. c. Same retinotopic map as in 
b. with recording sessions targeting (fully or partly) higher visual areas (black squares, field of view: 500µm x 500 µm). d. Head-re-
strained mice traversed a virtual corridor by running on a Styrofoam wheel without a specific task. The corridor had two landmarks 
that repeated after 40 cm, creating visually matching segments. e. LGN response profiles as a function of position chosen from the 
25th, 50th and 75th percentile of the metric defined in h (top) and response profiles across the population (bottom). Response profiles 
are obtained from even trials and are normalized and ordered by the position of the maximum response estimated from odd trials. 
Only response profiles with variance explained ≥ 5% are included (1,140 of 3,182 synapses). Dotted lines are predictions assuming 
identical responses in the visually matching segments. f. Same as in e. for response profiles of V1 neurons (4,602 of 16,238 V1 neurons 
with variance explained ≥ 5%). g. Same as in e. and f. for response profiles of neurons across all 6 higher visual areas (4,381 of 18,142 
neurons with variance explained ≥ 5%). h. Cumulative distribution of the spatial modulation index across visual areas (SMI) in even 
trials: SMI = 1 means single-peaked response; SMI = 0 means double-peaked response. Black: LGN, Gray: V1; Purple: mean cumulative 
distribution across higher visual areas (HVAs). Only neurons with responses within the visually-matching segments are included (LGN: 
840/1,140, V1: 2,602/ 4,602, higher visual areas: 2,384/4,381) i. Violin plots showing the SMI distribution and median SMI (white 
vertical line) for each visual area (median ± m.a.d. LGN: 0.07 ± 0.11; V1: 0.44 ± 0.31; LM: 0.37 ± 0.25; AL: 0.32 ± 0.28; RL: 0.44 ± 0.31; 
A: 0.38 ± 0.34; AM: 0.27 ± 0.26; PM: 0.32 ± 0.32). Same color code for LGN, V1 and higher visual areas as in h.  

Spatial modulation was broadly similar 

across higher visual areas, and not signifi-

cantly larger than in V1 (Fig. 1g-i, Suppl. Fig. 

1g, h). We measured activity in six visual ar-

eas that surround V1 (LM, AL, RL, A, AM, and 

PM), and found strong modulation by spatial 

position (Fig. 1g). Pooling across these areas, 

the median SMI across sessions was 0.40 ± 

0.13 (p = 10-10, right-tailed Wilcoxon signed 

rank test, Fig. 1h) and not significantly differ-

ent from V1 (two-sample t-test: p = 0.65). 

Spatial modulation was present in each of the 

six areas (Suppl. Fig. 1g), and could not be ex-

plained by other factors such as running 

speed, reward events, pupil size and eye posi-

tion (Suppl. Fig. 2).  

We observed some differences in spatial 

modulation between cortical areas, but these 

differences were small and might be ex-

plained by biases in retinotopy16–18 (Fig. 1i, 

Suppl. Fig. 1). In V1, neurons with central re-

ceptive fields showed stronger spatial modu-

lation than neurons with peripheral receptive 

fields (Suppl. Fig 1, e, f.) A similar effect was 

seen across higher areas, with lower SMI in 

areas biased towards the periphery (AM, PM) 

than in areas biased towards the central vis-

ual field (LM, RL) (Fig. 1i, Suppl. Table 1a).  
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Fig. 2: Active navigation enhances modulation by spatial position in visual areas.  
a. Response profiles of LGN boutons in Virtual Reality that also met the conditions for running replay (at least 10 running trials per 

recording session), estimated as in Figure 1e. b. Response profiles of LGN boutons during running replay, ordered by the position of 

their maximum response estimated from odd trials in Virtual Reality (same order and normalization as in a). c. Median spatial modu-

lation index per recording session in Virtual Reality versus running replay for LGN (each circle corresponds to a single session; p values 

from paired-sample right-tailed t-test). d. Same as c for stationary replay. e-h. Same as in a-d for V1 neurons. h-k. Same as in a-d for 

neurons in higher visual areas. 

We next asked if spatial modulation requires 

active navigation. During passive viewing, 

only a fraction of hippocampal place cells 

maintain their fields relative to active naviga-

tion13–15. If the spatial modulation seen in vis-

ual cortex mirrors that observed in hippo-

campus, it should also decrease during pas-

sive viewing. To test this prediction, after re-

cordings in the normal virtual environment 

settings (‘VR mode’), we played back the 

same video regardless of the mouse’s move-

ments (‘replay mode’). 

Many cortical neurons, particularly in in 

higher visual areas, showed weaker modula-

tion by spatial position during replay than in 

VR (Fig. 2). We focused at first on replay ses-

sions when the mouse was running (at least 

10 trials with running speed > 1 cm/s, ‘run-

ning replay’). In this condition, LGN de-

creased baseline activity but did not change 
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spatial modulation: overall median SMI 

across sessions did not significantly differ 

from that in VR mode (Fig. 2a-c, n = 18 ses-

sions, p = 0.12, paired-sample right-tailed t-

test). By contrast, replay was associated with 

a small reduction of SMI in area V1 (Fig. 2e-g, 

n = 31 sessions, p = 0.015) and a large reduc-

tion in SMI in higher visual areas (Fig. 2i-k, n 

= 41 sessions, p = 10-6). This decrease in spa-

tial modulation during replay was not associ-

ated with firing rate differences, because 

mean firing-rates remained unchanged 

(Suppl. Fig. 3, Suppl. Table 1b). Moreover, the 

cortical decrease in SMI was even more pro-

nounced when the animal was still (‘station-

ary replay’, Fig. 2d, Suppl. Fig. 4, V1: n = 24 

sessions, p = 0.01; higher visual areas: n = 33 

sessions, p = 10-6).  

 

Fig. 3: Navigation and drifting gratings activate different neurons in visual areas  
a. Example neuron traces in Virtual Reality and during presentation of vertical drifting gratings for four example areas (V1, AL, A and 

PM). b. Comparison of mean firing rate in Virtual Reality vs. responses to the drifting gratings for the same areas as in a. Each dot is a 

neuron, except in regions of high density, where color indicates density (color bar). (r and p: Pearson correlation coefficient with p-

value) c. We measured the relative preference for gratings vs. Virtual Reality through a selectivity index. The index obtained from odd 

trials vs. even trials was highly consistent for the four areas as in a, b. (r: Pearson correlation coefficient; p<10-10 in all areas, Suppl. 

Table 1f) 

Having observed many neurons across visual 

areas that are modulated by spatial position, 

we next asked how these neurons would re-

spond to typical laboratory stimuli: drifting 

gratings (Fig. 3). In a subset of experiments, 

after recording activity in VR mode and in re-

play mode, we presented vertical drifting 

gratings centered on the average receptive 

field of the imaged neurons. We chose vertical 

gratings because they move horizontally, like 

most features that appear on the screens dur-

ing navigation in VR. We presented the grat-

ings at different spatial and temporal fre-

quencies to accommodate the preferences of 

different visual areas for these parameters19–

24 (Suppl. Fig. 5).  
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Surprisingly, many neurons fired either in VR 

or in response to drifting gratings, but not in 

both (Fig. 3 a, b and Suppl. Fig. 6 a, b). Most 

visual areas contained neurons that fired ro-

bustly in one condition or the other (Fig. 3a). 

To compare responses in the two conditions, 

we first considered a neuron’s mean firing 

rate. Mean firing rates in VR or in responses 

to gratings were independent in areas V1, RL, 

AM (Spearman correlation coefficient ρ~0 

and non-significant p > 0.01), and anticorre-

lated in areas LM and A (ρ<0, p<10-5; Suppl. 

Table 1d). Similar results were seen regard-

less of whether the animal ran during presen-

tation of the gratings (Suppl. Fig. 6a, b). We 

defined a selectivity index as the peak re-

sponse to the gratings minus response at the 

preferred position in VR, divided by their 

sum. This measure was robust: it was highly 

correlated in even vs. odd trials (Fig 3c, Suppl. 

Table 1f). 

 

Figure 4: Active navigation enhanced response reliability in parietal and medial areas A, AM, PM.  
a. Example neuron traces in Virtual Reality and drifting gratings across a series of trials for each cortical area (dotted line: trial onset). 
b. Response profiles in Virtual Reality for the example cells in a. Each trace corresponds to a single cross-validation fold (5-folds in 
total) c. Example linear kernels for the cells in a. 5-fold cross-validation was used to estimate one kernel per grating. Traces for V1, LM, 
AL and RL correspond to single-fold kernels for the preferred stimulus. d. Distributions of difference in response reliability to drifting 
gratings or in Virtual Reality estimated for each cortical area. Gray: all recorded responses; blue: responses with reliability higher than 
5%. Arrow: mean difference in reliability for the distribution in blue. 

In parietal and medial visual areas A, AM, and 

PM, responses during active navigation were 

more reliable than responses to gratings (Fig. 

4 and Suppl. 6c, d). We calculated the reliabil-

ity of neuronal responses based on variance 

explained (Fig 4, Suppl. Fig. 6e, f). For VR, we 

estimated variance explained from cross-val-

idated predictions of responses based on spa-

tial position (Fig 4b). For gratings, we esti-

mated variance explained from cross-vali-

dated predictions of responses based on the 

visual stimuli presented (allowing one re-

sponse per stimulus, Fig 4c). Parietal areas A, 

AM and medial area PM responded more reli-

ably during active navigation than when 

viewing gratings (Fig 4d), regardless of run-

ning (Suppl. 6c, d; note the smaller sample for 

PM during running). Moreover, the Spearman 

correlation between reliability in VR and in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2019. ; https://doi.org/10.1101/832915doi: bioRxiv preprint 

https://doi.org/10.1101/832915
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

responses to gratings was less than 0.1 in 

these areas, and non-significant for areas A 

and PM (Suppl. table 1e). Areas A, AM and PM 

are therefore more strongly engaged by ac-

tive navigation, consistent with the view that 

they sit higher along the visual processing hi-

erarchy25,26. 

Together, these results show that the spatial 

modulation observed2-4 in V1 is not inherited 

from LGN inputs, but rather arises in cortex 

and persists across higher visual areas. We 

found that LGN input to V1 is minimally influ-

enced by navigational signals, and the little 

modulation that we did see might perhaps 

arise within cortex, from presynaptic modu-

lation28. Instead, all cortical visual areas con-

tained neurons that were influenced by navi-

gational signals and that gave stronger re-

sponses during active behavior than during 

passive viewing. Notably, many neurons with 

reliable firing rates in VR failed to respond to 

drifting gratings, and vice versa. This result 

extends the finding that cortical neurons can 

respond very differently to different stim-

uli29. Most neurons in parietal areas A and AM 

responded reliably only during active behav-

ior, consistent with a central role of parietal 

cortex during navigation6,7,30,8–12. Medial area 

PM also preferred active navigation, in agree-

ment with anatomical25 and functional24,31 

evidence suggesting that it may play a role in 

navigation. Our results illustrate how active 

navigation can shape responses along the vis-

ual pathway: it enhances the reliability of re-

sponses and the modulation by navigational 

signals in cortex, while exerting negligible ef-

fect on visual thalamus.  
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Suppl. Fig. 1: Imaging responses across the visual pathway during navigation 
a. Two-photon imaging of cell bodies in visual cortex across multiple days: example retinotopic map with single-session fields of view 

(black squares). Combination of Fig 1b and c. b. Schematics of the volumetric imaging performed in visual cortex (total of 4 planes set 

40 µm apart). c. Example image showing viral expression of GCaMP (green) in the visual thalamus of the right hemisphere (stained 

with Nissl in blue). Inset: zoomed-in image showing GCaMP expression in LGN and the surrounding nuclei. The LGN border (gray con-

tour) was determined using SHARP-Track32. d. Schematics of the volumetric imaging of LGN boutons performed for motion-correction 

in the vertical dimension33 (total of 8 planes set 1.8 µm apart). e. Response profile patterns obtained from even trials (ordered and 

normalized based on odd trials) for portions of V1 with average receptive fields in the center (‘V1 center’; <40 deg azimuth angle; left) 

or in the periphery (‘V1 periphery’; right). f. Cumulative distribution of the spatial modulation index in even trials for ‘V1 center’ (purple) 

or ‘V1 periphery’ (orange); dotted line: Distribution of LGN boutons (same as in 1h). g. Response profile patterns obtained from even 

trials (ordered and normalized based on odd trials) for all probed higher visual areas. Only response profiles with variance explained ≥ 

5% are included (LM: 629/1503 AL: 443/1774 RL: 866/5192 A: 997/4126 AM: 982/3278 PM: 519/2509) h. Cumulative distribution of 

the spatial modulation index in even trials for each higher visual area (purple). Dotted line: LGN, Gray: V1 (same as in 1h).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2019. ; https://doi.org/10.1101/832915doi: bioRxiv preprint 

https://doi.org/10.1101/832915
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

 

Suppl. Fig. 2: Spatial modulation is not explained by other behavioral and visual factors. 
We constructed three models to predict the activity of individual neurons from successively larger sets of predictor variables4 a, b. 
Measured spatial modulation index for each visual area versus predictions of the simplest model (‘purely visual model’). The ‘purely 
visual model’ considers only the repetitions of the visual scenes, trial onset and offset, and as expected, fails to predict the SMIs 
estimated from the data. Each point represents a neuron. c, d. Measured spatial modulation index for each cortical visual area versus 
predictions of the ‘non-spatial’ model. The ‘non-spatial’ model also includes the contribution by behavioral factors that can differ 
within and across trials: speed, reward times, pupil size, and eye position. Adding these factors improves predictions compared to the 
‘purely visual’ model but fails to match the measured SMIs. Therefore, the joint contribution of all task-related and visual factors is not 
sufficient to explain the observed spatial modulation e, f. Measured spatial modulation index for each visual area versus predictions 
of the ‘spatial’ model. The spatial model allows the peaks in the visually matching segments to vary independently. It provides a much 
better match to the data.  

 

Suppl. Fig. 3: Comparison of firing rates in Virtual Reality and replay conditions 
a. Comparison of the mean firing rate between Virtual Reality and running replay for all probed visual areas, split into 10 percentile 
bins. b. Same as in a. for stationary replay. Mean firing rates were similar between Virtual Reality and running replay, but decreased 
significantly during stationary replay in many areas, consistent with the well-established influence of running speed on visual re-
sponses34,35.   (paired-sample right-tailed t-test: running replay: LGN: p = 0.003; p > 0.05 in all cortical areas; stationary replay: LGN: 10-

65, V1: 10-24, LM: 0.93, AL: 0.15, RL: 0.06, A: 0.56, AM: 0.03, PM: 10-09).  
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Suppl. Fig. 4: Spatial modulation decreases when animals are still during replay 
a. Response profiles of LGN boutons in Virtual Reality that also met the conditions for stationary replay (at least 10 running trials per 

recording session), estimated as in Figure 1e. b. Response profiles of LGN boutons during stationary replay, ordered by the position of 

their maximum response estimated from odd trials in Virtual Reality (same order and normalization as in a). c,d. Same as in a,b for V1 

neurons. e,f. Same as in a,b for neurons in higher visual areas. 

 

Suppl. Fig. 5: Preferred spatial or temporal frequencies across visual areas.  
a. Preferred spatial frequency across the population of each visual cortical area. Each row corresponds to a neuron’s average response 
(2s time window after stimulus onset) to each spatial frequency at it’s preferred temporal frequency. Responses are sorted based on 
each neuron’s preferred spatial frequency. b. As in a. but for temporal frequencies at each neuron’s preferred spatial frequency.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2019. ; https://doi.org/10.1101/832915doi: bioRxiv preprint 

https://doi.org/10.1101/832915
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

 

Suppl. Fig. 5: Navigation activates different neurons than gratings regardless of running  
a. Density scatter plots of mean firing rate in Virtual Reality vs presentation of drifting gratings during periods when animals are 
stationary. Each panel corresponds to a cortical visual area (ρ, p: Spearman correlation coefficient with p value; n: total number of 
neurons) b. Same as in a. for periods during drifting gratings when animals are running. c. Histograms of difference in response 
reliability in Virtual Reality to grating-stationary . Each panel corresponds to a single cortical visual area. Gray: all recorded responses; 
blue: responses with reliability higher than 5%. Arrow: mean difference in reliability for the distribution in purple. d. Same as in c. for 
grating-running. e, f. To measure response reliability we used a measure of variance explained (inset). For drifting gratings we used 
ridge regression to obtain linear filters for each stimulus. For Virtual Reality, we used a local smoothing method. Predictions were five-
fold cross-validated and response reliability was defined as the mean variance explained across folds.   
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Suppl. Table 1: Comparison of different measures across visual areas. 

 LGN V1 LM AL RL A AM PM 

a. Spatial modulation index (SMI) 0.07 0.44 0.37 0.32 0.44 0.38 0.27 0.32 

b. Running replay: Decrease in firing rate, p-value  0.003 1 0.98 1 1 0.99 0.90 0.84 

c. stationary replay: Decrease in firing rate, p-value 10-65 10-24 0.93 0.15 0.06 0.56 0.03 10-9 

d. Firing rate in Virtual Reality vs gratings: Spear-
man correlation coefficient ρ and p-value  

- 
-0.02 
0.03 

-0.31 
10-20 

0.09 
0.003 

-0.02 
0.15 

-0.12 
10-6 

-0.05 
0.03 

0.18 
10-11 

e. Firing rate in Virtual Reality vs gratings: Spear-
man correlation coefficient ρ and p-value  

- 
0.19 
10-88 

0.21 
10-13 

0.10 
10-4 

0.12 
10-15 

0.04 
0.16 

0.09 
10-5 

0.04 
0.15 

f. Selectivity index in odd vs. even trials: Spearman 
correlation coefficient ρ and p-value 

- 
0.86 

<10-10 

0.91 
<10-10 

0.85 
<10-10 

0.85 
<10-10 

0.90 
<10-10 

0.87 
<10-10 

0.86 
<10-10 
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Full Methods 

All experimental procedures were conducted under personal and project licenses issued by the 

Home Office, in accordance with the UK Animals (Scientific Procedures) Act 1986. 

For calcium imaging experiments in visual cortex, we used double or triple transgenic mice ex-

pressing GCaMP6 in excitatory neurons (3 females, 1 male, implanted at 4-8 weeks). The triple 

transgenics expressed GCaMP6 fast36 (Emx1- Cre;Camk2a-tTA;Ai93, 3 mice). The double trans-

genic expressed GCaMP6 slow37 (Camk2a-tTA;tetO-G6s, 1 mouse). For calcium imaging experi-

ments of LGN boutons, we used 3 C57BL/6 mice (3 females, implanted at 6-9 weeks). 

Surgical procedures 

For two-photon calcium imaging of activity in visual cortex, 4–10–week–old mice were im-

planted with an 8 mm circular chamber and a 4 mm craniotomy was performed over the left or 

right visual cortex as previously described4. The craniotomy was performed by repeatedly ro-

tating a biopsy punch and it was shielded with a double coverslip (4 mm inner diameter; 5 mm 

outer diameter). 

For two-photon calcium imaging of activity of LGN boutons, 4–10–week–old mice were first im-

planted with an 8 mm head plate and a 4mm craniotomy was performed over the right hemi-

sphere, as described above. We next injected 253 nL (2.3 nL pulses with an inter-pulse interval 

of 5 s, a total of 110 pulses) of the virus AAV9.CamkII.GCamp6f.WPRE.SV40 (5.0x1012 GC/ml) 

into the visual thalamus. To target LGN in the right hemisphere, the pipette was directed at 2.6 

mm below the brain surface, 2.3 mm posterior and 2.25mm lateral from bregma. To prevent 

backflow, the pipette was kept in place for 5 min after the end of the injection. 

Perfusion and Histology 

Mice were perfused with 4% PFA and the brain was extracted and fixed for 24 hours at 4o C 

in 4% PFA, then transferred to 30% sucrose in PBS at 4o C. The brain was mounted on a bench-

top microtome and sectioned at 60 µm slice thickness. Free-floating sections were washed in 

PBS, mounted on glass adhesion slides, stained with DAPI (Vector Laboratories, H-1500) and 

cover with a glass-slip before being imaged.  

Imaging of brain slices  

Brain sections were initially imaged on a Zeiss AxioScan with a 4x/0.2-NA objective (Nikon 

CFI Plan Apochromat Lambda) by stitching 3x3 fields of view (total image size: 6mm x 6 mm). 

Images were obtained in two colors: green for GCaMP and blue for DAPI.  

To obtain higher magnification images of GCaMP expression in LGN or of LGN boutons in V1 

we performed confocal microscopy on a Zeiss LSM 880 with Airyscan with a 10x/0.3-NA ob-

jective (Zeiss EC Plan-Neofluar). We imaged GCaMP using an excitation wavelength of 488nm 

and DAPI using 405nm, and averaged across 16 frames. We imaged LGN using tiling with 15% 

overlap. 
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Two-photon imaging  

Two-photon imaging was performed with a standard multiphoton imaging system (Bergamo II; 

Thorlabs Inc.) controlled by ScanImage438. A 970 nm or 920 nm laser beam, emitted by a Ti:Sap-

phire Laser (Chameleon Vision, Coherent), was targeted onto L2/3 neurons or L4 LGN boutons 

through a 16x water-immersion objective (0.8 NA, Nikon). Fluorescence signal was transmitted 

by a dichroic beam splitter and amplified by photomultiplier tubes (GaAsP, Hamamatsu). The 

emission light path between the focal plane and the objective was shielded with a custom-made 

plastic cone, to prevent contamination from the monitors’ light. Multiple-plane imaging was en-

abled by a piezo focusing device (P-725.4CA PIFOC, Physik Instrumente), and an electro-optical 

modulator (M350-80LA, Conoptics Inc.) which allowed adjustment of the laser power with 

depth.  

For experiments monitoring activity in visual cortex, we imaged 4 planes set apart by 40 μm. 

Images of 512x512 pixels, corresponding to a field of view of 500x500 μm, were acquired at a 

frame rate of 30 Hz (7.5 Hz per plane). For experiments monitoring activity of LGN boutons, we 

imaged 7-10 planes set apart by 1.8 μm. Images of 256x256 pixels, corresponding to a field of 

view of 100x100 μm, were acquired at a frame rate of 58.8 Hz. 

Widefield calcium imaging  

To obtain retinotopic maps we used wide-field calcium imaging, as previously described4. 

Briefly, we used a standard epi-illumination imaging system39,40 together with an SCMOS camera 

(pco.edge, PCO AG). A 14o-wide vertical window containing a vertical grating (spatial frequency 

0.15 cycles/o), swept41,42 the horizontal position of the window over 135o of azimuth angle, at a 

frequency of 2 Hz. To obtain maps for preferred azimuth we combined responses to the 2 stimuli 

moving in opposite direction41. 

Two-dimensional visual stimuli 

We presented 20 vertical drifting sinusoidal gratings moving in the nasal to temporal direction 
at 4 spatial frequencies (0.02, 0.04, 0.08 and 0.16 cycles/deg) and 5 temporal frequencies (0.5, 
1, 2, 4 and 8 Hz). Stimulus presentations lasted 4 s, were followed by a 3 s blank period, and were 
repeated 10 times. On each repeat, the 20 stimuli and a blank were presented in pseudorandom 
order. Stimulus contrast was 100% and stimulus diameter was 40 deg. Within each session, stim-
ulus position was adjusted to match the center of the receptive fields obtained from the neuropil.  

To obtain neuropil receptive fields, on each recording session we presented sparse uncorrelated 
noise for 5 min. The screen was divided into a grid of squares of 4 x 4 degrees size. Each square 
was turned on and off randomly at a 10 Hz rate. At each moment in time, 2% of the squares were 
on. To compute the neuropil receptive fields, the field of view was segmented into 5x5 patches 
(100 µm x 100 µm surface per patch). For each patch, we first averaged the raw fluorescence 
across the patch’s pixels. We then computed the stimulus-triggered average of the averaged raw 
fluorescence trace. The response was further smoothed in space and its peak was defined as the 
patch’s receptive field center.  

Virtual Reality set-up 

Animals were head-restrained in the center of three LCD monitors (IIyama ProLite E1980SD 
19'') or three 10-inch LCD screens (LP097QX1-SPAV 9.7'', XiongYi Technology Co., Ltd.) placed 
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at 90deg angle to each other. The distance from each screen was 19cm for the LCD monitors, or 
11cm for the LCD screen, so that visual scenes covered the visual field by 135 deg in azimuth and 
42 deg in elevation.  
 
The Virtual Reality environment was a corridor with two visually matching segments (Saleem 
2018). Briefly, the corridor was 8cm wide and 100 cm long. A vertical grating or a plaid, 8 cm 
wide each, alternated in the sequence grating-plaid-grating-plaid at 20, 40, 60 and 80 cm from 
the start of the corridor.  

In Virtual Reality mode, animals traversed the virtual environment by walking on a polystyrene 
wheel (15 cm wide, 18 cm diameter) which allowed movement along a single dimension (for-
wards or backwards). Running speed was measured online with a rotary encoder (2400 
pulses/rotation, Kübler, Germany) and was used to control the update of visual scenes. Upon 
reaching the 100th cm of the corridor, animals were presented with a gray screen for an inter-
trial period of 3 to 5 s, after which they were teleported back to the beginning of the corridor for 
the next trial. The duration of each trial depended on how long it took the animal to reach the 
end of the corridor, typically less than 8 s. Trials in which animals did not reach the end of the 
corridor within 30 s were timed-out and excluded from further analysis. A typical session con-
sisted of more than 50 trials. 

In the passive viewing mode, mice were presented with a previous closed-loop session, while 
still free to run on the wheel. 

Behavior and training 

Mice ran through the corridor with no specific task (n = 4 animals, 65 sessions recording cortical 

activity; n = 3 animals, 19 sessions recording activity of LGN boutons). Prior to recording ses-

sions, mice were placed in the virtual environment, typically for 3 days and for up to one week, 

until they were able to run for at least 80% of the time within a single session. 2 out of 7 mice 

ran without rewards. 5 out of 7 mice were motivated to run with rewards, by receiving ~2.5 μl 

of water (4 mice) or of 10% sucrose (1 mouse) with the use of a solenoid valve (161T010; Nep-

tune Research, USA). One animal received rewards at random positions along the corridor. The 

other 4 mice received rewards at the end of the corridor. 

Pupil tracking 

We tracked the eye of the animal using an infrared camera (DMK 21BU04.H, Imaging Source) 
and custom software, as previously described4. 

Pre-processing of imaging data 

Image registration in x and y, cell detection and spike deconvolution were performed with 
Suite2p43.  

For the LGN boutons data, we additionally used the method described in Ref. 33 to align image 
frames in z-direction (along depth). By using a stack of closely spaced planes (1.8 µm inter-plane 
distance), we were able to detect small boutons across multiple planes, which could have other-
wise moved outside a given plane due to brain movement in the z-direction. In brief, for each 
imaging stack, the algorithm estimates the optimal stack shift that maximizes the similarity of 
each plane to their corresponding target image (with target images across planes having been 
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aligned to each other in x and y direction). After, assigning the shifted planes to their correspond-
ing target image, a moving average across 2 to 3 neighboring planes is applied, resulting in a 
smooth image, and consequently in smooth calcium traces from boutons sampled from multiple, 
closely spaced planes.  
All ROIs (cell bodies or boutons) were detected from the aligned frames and were manually cu-
rated with the Suite2p GUI, as described in Ref 4. 

Analysis of responses in Virtual Reality 

To obtain response profiles as a function of position along the corridor, we first smoothed the 
deconvolved traces in time with a 250ms Gaussian window and considered only time points with 
running speeds greater than 1 cm/s. We then discretized the position of the animal in 1 cm bins 
(100 bins in total) and estimated the spike count and occupancy map for each neuron. Both maps 
were smoothed in space with a fixed Gaussian window of 5 cm. Finally, each neuron’s response 
profile was defined as the ratio of the smoothed spike count map over the smoothed occupancy 
map. We assessed the reliability of the response profiles based on a measure of variance ex-
plained and selected those with variance explained higher than 5%. To cross-validate the re-
sponse profile patterns in Virtual Reality, we divided each session’s trials in two halves (odd vs 
even) and obtained a pair of response profiles for each neuron. Odd trials were used as the train 
set, to determine the position at which cells preferred to fire maximally. Odd trials were subse-
quently excluded from further analysis. 

The same splitting into odd and even trials was used to estimate each cell’s spatial modulation 
index (SMI). For each cell, the position of the peak response was measured from the response 
profile averaged across odd trials (‘preferred position’). We then obtained the response, 𝑅𝑝., at 

the preferred position and the visually-identical position 40 cm away (‘non-preferred position’: 
𝑅𝑛), using the response profile averaged across even trials. Cells with maximal response close to 
the start or end of the corridor (0-15 cm or 85-100 cm) were excluded, because their preferred 
position fell outside the visually matching segments. SMI was defined as: 

𝑆𝑀𝐼 =  
𝑅𝑝. −  𝑅𝑛

𝑅𝑝. +  𝑅𝑛.
 

Therefore, a response with two equal peaks would have 𝑆𝑀𝐼 = 0, whereas a response with one 
peak would have 𝑆𝑀𝐼 = 1.  

To cross-validate the response profile patterns and to estimate SMIs in passive viewing, we used 
the same odd trials from Virtual Reality as a train set. Based on those we obtained response 
profile patterns and SMIs from all trials during passive viewing. To isolate periods when the an-
imal was stationary during passive viewing, we considered only time-points when the speed of 
the animal was less than 5cm/s. Response profiles during stationary viewing were estimated 
only if the animal was stationary in at least 10 trials within a session. To isolate periods when 
the animal was running during passive viewing, we considered only time-points when the speed 
of the animal was higher than 1 cm/s. Response profiles in running during replay were estimated 
only if the animal was stationary in at least 10 trials within a session.  

Response reliability was defined as the cross-validated fraction of variance in firing rate ex-

plained by the response profile. Response profiles were estimated based on 80% of the data 

(shuffled trials) and tested on the remaining 20%. (5-fold cross-validation). For each estimate, 

reliability was defined as: 
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Reliability = 1 −
∑ (𝑦(𝑡) − 𝑦′(𝑡))

2
𝑡

∑ (𝑦(𝑡) − 𝜇)2
𝑡

    (1) 

where 𝑦(𝑡) is the actual, smoothed firing rate of the neuron at time t, 𝑦′(𝑡) is the predicted fir-

ing rate for the same time bin based on the neuron’s response profile and 𝜇 is the mean firing 

rate of the training data. Only neurons with a reliability greater than 5% were considered for 

further analysis. 

Analysis of responses to drifting gratings 

The deconvolved single-cell traces obtained from 4 planes were linearly interpolated to match 
the sampling rate of the imaging session (30 Hz). Single-cell activity was then baseline-corrected 
by subtracting the mean activity and averaged across the time-window when the stimulus was 
on (4s). To select for responsive cells, we compared the mean activity across repeats during the 
stimulation period to the mean activity during blank trials. We selected cells whose maximum 
activity during at least one stimulus type was two standard deviations higher than the mean 
activity during blank periods. We defined as the cell’s preferred spatial and temporal frequency 
the frequency at which the cell fired maximally.  

Reliability of responses to drifting gratings was estimated based on predictions obtained from 
ridge regression with a fixed ridge regression coefficient, λ = 0.01. For each spatial and temporal 
frequency pair, we defined a sparse column vector in time, whose values were zero except from 
the time points when the corresponding stimulus appeared on the screen. This vector was then 
shifted backward by 1 s and forward by 4 s in steps of 0.033 s, resulting in a stimulus matrix with 
151 columns. Stimulus matrices for each frequency pair and two blank conditions were pooled 
together, yielding the design matrix, with dimensions: (# of frames) × (151 shifts × 22 stimulus 
conditions, including blanks). We used this matrix to predict firing rates using five-fold cross-
validation, and to estimate response reliability from expression (1). 

Comparison of responses to Virtual Reality and to gratings 

To compare responses across conditions (Virtual Reality and drifting gratings) we estimated a 

selectivity index as: 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =  
𝑅𝐺𝑟𝑎𝑡𝑖𝑛𝑔𝑠 −  𝑅𝑉𝑅

𝑅𝐺𝑟𝑎𝑡𝑖𝑛𝑔𝑠 +  𝑅𝑉𝑅
 

Where 𝑅𝑉𝑅 is the peak amplitude of the response profile in Virtual Reality and 𝑅𝐺𝑟𝑎𝑡𝑖𝑛𝑔𝑠 is the mean re-

sponse to the 20 gratings (4 spatial, 5 temporal frequencies).  

To assess the robustness of this index, we computed it separately for odd and even trials.  

General linear models 

To assess the joint contribution of all visual and behavioral factors in Virtual Reality we fitted 
the V1 responses to three multilinear regression models similar to Ref. 4. The models had the 

form: 𝑦̂ = 𝑋𝛽,̂ where 𝑋 is an T-by-M matrix with T time points and M predictors and 𝑦̂ is the 

predicted calcium trace (T-by-1 array). Optimal coefficient estimates 𝛽̂ (M-by-1 array) that min-

imize the sum-squared error were obtained using: 𝛽̂ = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑦, where 𝜆 is the ridge-
regression coefficient. 
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The simplest model, the visual model, relied only on ‘trial onset’ (first 10cm in the maze), ‘trial 
offset’ (last 10 cm in the maze) and the repetition of visual scenes within the visually matching 
segments (from 10 to 90 cm in the maze). The basis functions for all predictors were square 
functions with width of 2 cm and height equal to unity. To model the repetition of visual scenes, 
a predictor within the visually matching segments comprised of two square functions placed 40 
cm apart. Thus, the visual model’s design matrix had 30 predictors plus a constant: 5 predictors 
for trial onset, 5 predictors for trial offset and 20 predictors within the visually matching seg-
ments.  

The second model, the non-spatial model was used to assess the influence of all the behavioral 
factors we measured: running speed, reward events, pupil size and the horizontal and vertical 
pupil position. These factors were added as predictors to the design matrix of the visual model, 
as follows: running speed was shifted backward and forward in time twice, in 500ms steps, thus 
contributing 5 continuous predictors; pupil size and horizontal and vertical pupil position con-
tributed 1 continuous predictor each; each reward event contributed one binary predictor at the 
time of the reward. The continuous predictors of running speed and pupil size were normalized 
between 0 and 1, whereas pupil position was normalized between -1 and 1 to account for move-
ments in opposite directions. 

The third model, the spatial model, allowed for an independent scaling of the two visually-match-

ing segments in the maze. For each predictor within the visually-matching segments, the two 

square functions were allowed to vary their height independently. The height of the two square 

functions was parameterized by a parameter α, such that the two functions had unit norm. An α 

= 0.5 corresponded to a purely visual representation with SMI close to 0, while 𝛼 = 1 or 𝛼 = 0 

would correspond to a response only in the first or second segment, and an SMI close to 1. 

To choose the best model, we used the ridge regression coefficient, λ that maximized the per-

centage of variance explained using five-fold cross-validation, searching the values 𝜆 =0.01, 

0.05, 0.1, 0.5 or 1. In the spatial model, we performed multiple ridge regression fits, searching 

for the optimal value of 𝛼 using a step size of 0.1, for each λ. 

The predictions obtained in the time domain were subsequently processed similarly as the orig-

inal deconvolved traces, to obtain predicted response profiles and SMIs. 
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