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During navigation, responses in primary visual cortex (V1) are modulated by the animal’s
position. Here, we show that this modulation is present across multiple higher visual cor-
tical areas but largely absent in geniculate inputs to V1. Spatial modulation is stronger
during active navigation than during passive viewing. Moreover, navigation activates dif-
ferent neurons than classical drifting gratings, and promotes the reliability of neural re-

sponses in parietal and medial cortical areas.

There is increasing evidence that the activity
of the primary visual cortex (V1) is influenced
by navigational signals!-3. During navigation,
indeed, the responses of V1 neurons to iden-
tical visual stimuli are strongly modulated by
the animal’s spatial position#. It is not known,
however, how this modulation varies along
the visual pathway. Is it present upstream of
V1, as has been suggested>? Is it stronger
downstream of V1, e.g. in parietal visual areas
where selectivity for position is well estab-
lished®-127 And does it require active naviga-
tion, a condition that enhances spatial repre-
sentations in hippocampus3-15?

To characterize the influence of spatial posi-
tion on visual responses, we used a virtual re-
ality (VR) corridor with two visually match-
ing segments* (Fig. 1). We used two-photon
microscopy to record calcium activity of LGN
boutons in layer 4 of area V1 (Fig. 1a, and
Suppl. S1a-d), of V1 neurons (Fig. 1b), and of
neurons in higher visual areas (Fig. 1c). Mice
were head-fixed and ran on a treadmill to
traverse a virtual corridor made of two con-
secutive 40 cm segments that contained the
same visual textures* (Fig. 1d). A purely vis-
ual neuron would respond similarly in these

matching segments, while a neuron modu-
lated by spatial position would respond more
strongly in one segment.

Spatial position powerfully modulated the
visual responses of V1 neurons4, but barely
affected those of LGN afferents (Fig. 1e, f, h, i).
LGN boutons gave similar responses in the
two segments of the corridor (Fig. 1e), indi-
cating that spatial position had little effect on
the LGN responses. By contrast, and as previ-
ously reported4, V1 neurons tended to re-
spond more strongly at a single location in the
corridor (Fig. 1f). To quantify the degree of
spatial modulation, we defined a spatial mod-
ulation index (SMI) as the normalized differ-
ence of responses at the two visually match-
ing positions (preferred minus non-pre-
ferred, divided by their sum; the preferred
position was defined by held-out data). The
median SMI across sessions for responsive
LGN boutons was barely above zero, at 0.07 +
0.05 (n = 19 sessions), markedly smaller than
the median for responsive V1 neurons, which
was 0.41 £ 0.17 (n = 32 sessions; LGN SMI sig-
nificantly smaller than V1: p = 10-¢ left-tailed
two-sampled t-test, Fig. 1h, i).
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Fig. 1: Spatial position modulates visual activity in visual cortex but not in thalamic LGN.

a. Merged confocal images of somata in V1 (Nissl staining; blue) and of LGN axonal projections expressing GCaMP (GFP; green). GCaMP
expression is densest in layer IV (L4). b. Example retinotopic map of the cortical surface with recording sessions targeting (fully or
partly) V1 (black squares, field of view: 500um x 500 um). Black contours show borders between areas. c. Same retinotopic map as in
b. with recording sessions targeting (fully or partly) higher visual areas (black squares, field of view: 500um x 500 pum). d. Head-re-
strained mice traversed a virtual corridor by running on a Styrofoam wheel without a specific task. The corridor had two landmarks
that repeated after 40 cm, creating visually matching segments. e. LGN response profiles as a function of position chosen from the
25t 50t and 75t percentile of the metric defined in h (top) and response profiles across the population (bottom). Response profiles
are obtained from even trials and are normalized and ordered by the position of the maximum response estimated from odd trials.
Only response profiles with variance explained > 5% are included (1,140 of 3,182 synapses). Dotted lines are predictions assuming
identical responses in the visually matching segments. f. Same as in e. for response profiles of V1 neurons (4,602 of 16,238 V1 neurons
with variance explained > 5%). g. Same as in e. and f. for response profiles of neurons across all 6 higher visual areas (4,381 of 18,142
neurons with variance explained > 5%). h. Cumulative distribution of the spatial modulation index across visual areas (SMl) in even
trials: SMI = 1 means single-peaked response; SMI = 0 means double-peaked response. Black: LGN, Gray: V1; Purple: mean cumulative
distribution across higher visual areas (HVAs). Only neurons with responses within the visually-matching segments are included (LGN:
840/1,140, V1: 2,602/ 4,602, higher visual areas: 2,384/4,381) i. Violin plots showing the SMI distribution and median SMI (white
vertical line) for each visual area (median £ m.a.d. LGN: 0.07 £ 0.11; V1: 0.44 + 0.31; LM: 0.37 £ 0.25; AL: 0.32 £ 0.28; RL: 0.44 + 0.31;
A:0.38 £0.34; AM: 0.27 + 0.26; PM: 0.32 + 0.32). Same color code for LGN, V1 and higher visual areas as in h.

Spatial modulation was broadly similar speed, reward events, pupil size and eye posi-

across higher visual areas, and not signifi-
cantly larger than in V1 (Fig. 1g-i, Suppl. Fig.
1g, h). We measured activity in six visual ar-
eas that surround V1 (LM, AL, RL, A, AM, and
PM), and found strong modulation by spatial
position (Fig. 1g). Pooling across these areas,
the median SMI across sessions was 0.40 *
0.13 (p = 10-19, right-tailed Wilcoxon signed
rank test, Fig. 1h) and not significantly differ-
ent from V1 (two-sample t-test: p = 0.65).
Spatial modulation was present in each of the
six areas (Suppl. Fig. 1g), and could not be ex-
plained by other factors such as running

tion (Suppl. Fig. 2).

We observed some differences in spatial
modulation between cortical areas, but these
differences were small and might be ex-
plained by biases in retinotopy!6-18 (Fig. 1i,
Suppl. Fig. 1). In V1, neurons with central re-
ceptive fields showed stronger spatial modu-
lation than neurons with peripheral receptive
fields (Suppl. Fig 1, e, f.) A similar effect was
seen across higher areas, with lower SMI in
areas biased towards the periphery (AM, PM)
than in areas biased towards the central vis-
ual field (LM, RL) (Fig. 1i, Suppl. Table 1a).
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Fig. 2: Active navigation enhances modulation by spatial position in visual areas.

a. Response profiles of LGN boutons in Virtual Reality that also met the conditions for running replay (at least 10 running trials per
recording session), estimated as in Figure le. b. Response profiles of LGN boutons during running replay, ordered by the position of
their maximum response estimated from odd trials in Virtual Reality (same order and normalization as in a). c. Median spatial modu-

lation index per recording session in Virtual Reality versus running replay for LGN (each circle corresponds to a single session; p values
from paired-sample right-tailed t-test). d. Same as c for stationary replay. e-h. Same as in a-d for V1 neurons. h-k. Same as in a-d for

neurons in higher visual areas.

We next asked if spatial modulation requires
active navigation. During passive viewing,
only a fraction of hippocampal place cells
maintain their fields relative to active naviga-
tion13-15, [f the spatial modulation seen in vis-
ual cortex mirrors that observed in hippo-
campus, it should also decrease during pas-
sive viewing. To test this prediction, after re-
cordings in the normal virtual environment
settings (‘VR mode’), we played back the

same video regardless of the mouse’s move-
ments (‘replay mode’).

Many cortical neurons, particularly in in
higher visual areas, showed weaker modula-
tion by spatial position during replay than in
VR (Fig. 2). We focused at first on replay ses-
sions when the mouse was running (at least
10 trials with running speed > 1 cm/s, ‘run-
ning replay’). In this condition, LGN de-
creased baseline activity but did not change
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spatial modulation: overall median SMI
across sessions did not significantly differ
from that in VR mode (Fig. 2a-c, n = 18 ses-
sions, p = 0.12, paired-sample right-tailed t-
test). By contrast, replay was associated with
a small reduction of SMI in area V1 (Fig. 2e-g,
n = 31 sessions, p = 0.015) and a large reduc-
tion in SMI in higher visual areas (Fig. 2i-k, n
=41 sessions, p = 10-%). This decrease in spa-
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tial modulation during replay was not associ-
ated with firing rate differences, because
mean firing-rates remained unchanged
(Suppl. Fig. 3, Suppl. Table 1b). Moreover, the
cortical decrease in SMI was even more pro-
nounced when the animal was still (‘station-
ary replay’, Fig. 2d, Suppl. Fig. 4, V1: n = 24
sessions, p = 0.01; higher visual areas: n = 33
sessions, p = 10-¢).
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Fig. 3: Navigation and drifting gratings activate different neurons in visual areas

a. Example neuron traces in Virtual Reality and during presentation of vertical drifting gratings for four example areas (V1, AL, A and
PM). b. Comparison of mean firing rate in Virtual Reality vs. responses to the drifting gratings for the same areas as in a. Each dot is a
neuron, except in regions of high density, where color indicates density (color bar). (r and p: Pearson correlation coefficient with p-
value) c. We measured the relative preference for gratings vs. Virtual Reality through a selectivity index. The index obtained from odd
trials vs. even trials was highly consistent for the four areas as in a, b. (r: Pearson correlation coefficient; p<10° in all areas, Suppl.

Table 1f)

Having observed many neurons across visual
areas that are modulated by spatial position,
we next asked how these neurons would re-
spond to typical laboratory stimuli: drifting
gratings (Fig. 3). In a subset of experiments,
after recording activity in VR mode and in re-
play mode, we presented vertical drifting
gratings centered on the average receptive

field of the imaged neurons. We chose vertical
gratings because they move horizontally, like
most features that appear on the screens dur-
ing navigation in VR. We presented the grat-
ings at different spatial and temporal fre-
quencies to accommodate the preferences of
different visual areas for these parameters1°-
24 (Suppl. Fig. 5).
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Surprisingly, many neurons fired either in VR
or in response to drifting gratings, but not in
both (Fig. 3 a, b and Suppl. Fig. 6 a, b). Most
visual areas contained neurons that fired ro-
bustly in one condition or the other (Fig. 3a).
To compare responses in the two conditions,
we first considered a neuron’s mean firing
rate. Mean firing rates in VR or in responses
to gratings were independent in areas V1, RL,
AM (Spearman correlation coefficient p~0
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and non-significant p > 0.01), and anticorre-
lated in areas LM and A (p<0, p<10-5; Suppl.
Table 1d). Similar results were seen regard-
less of whether the animal ran during presen-
tation of the gratings (Suppl. Fig. 6a, b). We
defined a selectivity index as the peak re-
sponse to the gratings minus response at the
preferred position in VR, divided by their
sum. This measure was robust: it was highly
correlated in even vs. odd trials (Fig 3¢, Suppl.
Table 1f).
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Figure 4: Active navigation enhanced response reliability in parietal and medial areas A, AM, PM.

a. Example neuron traces in Virtual Reality and drifting gratings across a series of trials for each cortical area (dotted line: trial onset).
b. Response profiles in Virtual Reality for the example cells in a. Each trace corresponds to a single cross-validation fold (5-folds in
total) c. Example linear kernels for the cells in a. 5-fold cross-validation was used to estimate one kernel per grating. Traces for V1, LM,
AL and RL correspond to single-fold kernels for the preferred stimulus. d. Distributions of difference in response reliability to drifting
gratings or in Virtual Reality estimated for each cortical area. Gray: all recorded responses; blue: responses with reliability higher than

5%. Arrow: mean difference in reliability for the distribution in blue.

In parietal and medial visual areas A, AM, and
PM, responses during active navigation were
more reliable than responses to gratings (Fig.
4 and Suppl. 6¢, d). We calculated the reliabil-
ity of neuronal responses based on variance
explained (Fig 4, Suppl. Fig. 6e, f). For VR, we
estimated variance explained from cross-val-
idated predictions of responses based on spa-
tial position (Fig 4b). For gratings, we esti-

mated variance explained from cross-vali-
dated predictions of responses based on the
visual stimuli presented (allowing one re-
sponse per stimulus, Fig 4c). Parietal areas A,
AM and medial area PM responded more reli-
ably during active navigation than when
viewing gratings (Fig 4d), regardless of run-
ning (Suppl. 6¢, d; note the smaller sample for
PM during running). Moreover, the Spearman
correlation between reliability in VR and in
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responses to gratings was less than 0.1 in
these areas, and non-significant for areas A
and PM (Suppl. table 1e). Areas A, AM and PM
are therefore more strongly engaged by ac-
tive navigation, consistent with the view that
they sit higher along the visual processing hi-
erarchy?2526,

Together, these results show that the spatial
modulation observed?-* in V1 is not inherited
from LGN inputs, but rather arises in cortex
and persists across higher visual areas. We
found that LGN input to V1 is minimally influ-
enced by navigational signals, and the little
modulation that we did see might perhaps
arise within cortex, from presynaptic modu-
lation?8. Instead, all cortical visual areas con-
tained neurons that were influenced by navi-
gational signals and that gave stronger re-
sponses during active behavior than during
passive viewing. Notably, many neurons with
reliable firing rates in VR failed to respond to
drifting gratings, and vice versa. This result
extends the finding that cortical neurons can
respond very differently to different stim-
uli2?. Most neurons in parietal areas A and AM
responded reliably only during active behav-
ior, consistent with a central role of parietal
cortex during navigation®7.308-12_ Medial area
PM also preferred active navigation, in agree-
ment with anatomical?® and functional?431
evidence suggesting that it may play a role in
navigation. Our results illustrate how active
navigation can shape responses along the vis-
ual pathway: it enhances the reliability of re-
sponses and the modulation by navigational
signals in cortex, while exerting negligible ef-
fect on visual thalamus.
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Suppl. Fig. 1: Imaging responses across the visual pathway during navigation

a. Two-photon imaging of cell bodies in visual cortex across multiple days: example retinotopic map with single-session fields of view
(black squares). Combination of Fig 1b and c. b. Schematics of the volumetric imaging performed in visual cortex (total of 4 planes set
40 um apart). c. Example image showing viral expression of GCaMP (green) in the visual thalamus of the right hemisphere (stained
with Nissl in blue). Inset: zoomed-in image showing GCaMP expression in LGN and the surrounding nuclei. The LGN border (gray con-
tour) was determined using SHARP-Track32. d. Schematics of the volumetric imaging of LGN boutons performed for motion-correction
in the vertical dimension3? (total of 8 planes set 1.8 um apart). e. Response profile patterns obtained from even trials (ordered and
normalized based on odd trials) for portions of V1 with average receptive fields in the center (‘V1 center’; <40 deg azimuth angle; left)
orin the periphery (‘V1 periphery’; right). f. Cumulative distribution of the spatial modulation index in even trials for ‘V1 center’ (purple)
or ‘V1 periphery’ (orange); dotted line: Distribution of LGN boutons (same as in 1h). g. Response profile patterns obtained from even
trials (ordered and normalized based on odd trials) for all probed higher visual areas. Only response profiles with variance explained >
5% are included (LM: 629/1503 AL: 443/1774 RL: 866/5192 A: 997/4126 AM: 982/3278 PM: 519/2509) h. Cumulative distribution of
the spatial modulation index in even trials for each higher visual area (purple). Dotted line: LGN, Gray: V1 (same as in 1h).
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We constructed three models to predict the activity of individual neurons from successively larger sets of predictor variables* a, b.
Measured spatial modulation index for each visual area versus predictions of the simplest model (‘purely visual model’). The ‘purely
visual model’ considers only the repetitions of the visual scenes, trial onset and offset, and as expected, fails to predict the SMls
estimated from the data. Each point represents a neuron. ¢, d. Measured spatial modulation index for each cortical visual area versus
predictions of the ‘non-spatial’ model. The ‘non-spatial’ model also includes the contribution by behavioral factors that can differ
within and across trials: speed, reward times, pupil size, and eye position. Adding these factors improves predictions compared to the
‘purely visual’ model but fails to match the measured SMls. Therefore, the joint contribution of all task-related and visual factors is not
sufficient to explain the observed spatial modulation e, f. Measured spatial modulation index for each visual area versus predictions
of the ‘spatial’ model. The spatial model allows the peaks in the visually matching segments to vary independently. It provides a much
better match to the data.
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Suppl. Fig. 3: Comparison of firing rates in Virtual Reality and replay conditions

a. Comparison of the mean firing rate between Virtual Reality and running replay for all probed visual areas, split into 10 percentile
bins. b. Same as in a. for stationary replay. Mean firing rates were similar between Virtual Reality and running replay, but decreased
significantly during stationary replay in many areas, consistent with the well-established influence of running speed on visual re-
sponses3#3>, (paired-sample right-tailed t-test: running replay: LGN: p = 0.003; p > 0.05 in all cortical areas; stationary replay: LGN: 10°
65,Vv1: 1024, LM: 0.93, AL: 0.15, RL: 0.06, A: 0.56, AM: 0.03, PM: 10°%),
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a. Response profiles of LGN boutons in Virtual Reality that also met the conditions for stationary replay (at least 10 running trials per
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Suppl. Fig. 5: Navigation activates different neurons than gratings regardless of running

a. Density scatter plots of mean firing rate in Virtual Reality vs presentation of drifting gratings during periods when animals are
stationary. Each panel corresponds to a cortical visual area (p, p: Spearman correlation coefficient with p value; n: total number of
neurons) b. Same as in a. for periods during drifting gratings when animals are running. c. Histograms of difference in response
reliability in Virtual Reality to grating-stationary . Each panel corresponds to a single cortical visual area. Gray: all recorded responses;
blue: responses with reliability higher than 5%. Arrow: mean difference in reliability for the distribution in purple. d. Same as in c. for
grating-running. e, f. To measure response reliability we used a measure of variance explained (inset). For drifting gratings we used
ridge regression to obtain linear filters for each stimulus. For Virtual Reality, we used a local smoothing method. Predictions were five-
fold cross-validated and response reliability was defined as the mean variance explained across folds.
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Suppl. Table 1: Comparison of different measures across visual areas.

LGN V1 LM AL RL A AM PM
a. Spatial modulation index (SMI) 0.07 0.44 0.37 0.32 0.44 0.38 0.27 0.32
b. Running replay: Decrease in firing rate, p-value 0.003 1 0.98 1 1 0.99 0.90 0.84
c. stationary replay: Decrease in firing rate, p-value 10% | 10% | 0.93 0.15 0.06 0.56 | 0.03 107
d. Firing rate in Virtual Reality vs gratings: Spear- -0.02 | -0.31 0.09 -0.02 -0.12 | -0.05 0.18
man correlation coefficient p and p-value i 0.03 | 10% | 0.003 0.15 10 0.03 101t
e. Firing rate in Virtual Reality vs gratings: Spear- 0.19 0.21 0.10 0.12 0.04 0.09 0.04
man correlation coefficient p and p-value i 10% | 103 10* 101> 0.16 10° 0.15
f. Selectivity index in odd vs. even trials: Spearman 0.86 0.91 0.85 0.85 0.90 0.87 0.86
correlation coefficient p and p-value ) <101° | <101° | <1010 <10 | <100 | <10 | <1010
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Full Methods

All experimental procedures were conducted under personal and project licenses issued by the
Home Office, in accordance with the UK Animals (Scientific Procedures) Act 1986.

For calcium imaging experiments in visual cortex, we used double or triple transgenic mice ex-
pressing GCaMP6 in excitatory neurons (3 females, 1 male, implanted at 4-8 weeks). The triple
transgenics expressed GCaMP6 fast3¢ (Emx1- Cre;Camk2a-tTA;Ai93, 3 mice). The double trans-
genic expressed GCaMP6 slow3” (Camk2a-tTA;tetO-G6s, 1 mouse). For calcium imaging experi-
ments of LGN boutons, we used 3 C57BL/6 mice (3 females, implanted at 6-9 weeks).

For two-photon calcium imaging of activity in visual cortex, 4-10-week-old mice were im-
planted with an 8 mm circular chamber and a 4 mm craniotomy was performed over the left or
right visual cortex as previously described*. The craniotomy was performed by repeatedly ro-
tating a biopsy punch and it was shielded with a double coverslip (4 mm inner diameter; 5 mm
outer diameter).

For two-photon calcium imaging of activity of LGN boutons, 4-10-week-old mice were first im-
planted with an 8 mm head plate and a 4mm craniotomy was performed over the right hemi-
sphere, as described above. We next injected 253 nL (2.3 nL pulses with an inter-pulse interval
of 5 s, a total of 110 pulses) of the virus AAV9.CamKII.GCamp6f.WPRE.SV40 (5.0x1012 GC/ml)
into the visual thalamus. To target LGN in the right hemisphere, the pipette was directed at 2.6
mm below the brain surface, 2.3 mm posterior and 2.25mm lateral from bregma. To prevent
backflow, the pipette was kept in place for 5 min after the end of the injection.

Mice were perfused with 4% PFA and the brain was extracted and fixed for 24 hours at 4° C
in 4% PFA, then transferred to 30% sucrose in PBS at 4° C. The brain was mounted on a bench-
top microtome and sectioned at 60 um slice thickness. Free-floating sections were washed in
PBS, mounted on glass adhesion slides, stained with DAPI (Vector Laboratories, H-1500) and
cover with a glass-slip before being imaged.

Brain sections were initially imaged on a Zeiss AxioScan with a 4x/0.2-NA objective (Nikon
CFI Plan Apochromat Lambda) by stitching 3x3 fields of view (total image size: 6mm x 6 mm).
Images were obtained in two colors: green for GCaMP and blue for DAPL.

To obtain higher magnification images of GCaMP expression in LGN or of LGN boutons in V1
we performed confocal microscopy on a Zeiss LSM 880 with Airyscan with a 10x/0.3-NA ob-
jective (Zeiss EC Plan-Neofluar). We imaged GCaMP using an excitation wavelength of 488nm
and DAPI using 405nm, and averaged across 16 frames. We imaged LGN using tiling with 15%
overlap.
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Two-photon imaging was performed with a standard multiphoton imaging system (Bergamo II;
Thorlabs Inc.) controlled by Scanlmage438. A 970 nm or 920 nm laser beam, emitted by a Ti:Sap-
phire Laser (Chameleon Vision, Coherent), was targeted onto L2/3 neurons or L4 LGN boutons
through a 16x water-immersion objective (0.8 NA, Nikon). Fluorescence signal was transmitted
by a dichroic beam splitter and amplified by photomultiplier tubes (GaAsP, Hamamatsu). The
emission light path between the focal plane and the objective was shielded with a custom-made
plastic cone, to prevent contamination from the monitors’ light. Multiple-plane imaging was en-
abled by a piezo focusing device (P-725.4CA PIFOC, Physik Instrumente), and an electro-optical
modulator (M350-80LA, Conoptics Inc.) which allowed adjustment of the laser power with
depth.

For experiments monitoring activity in visual cortex, we imaged 4 planes set apart by 40 pm.
Images of 512x512 pixels, corresponding to a field of view of 500x500 pm, were acquired at a
frame rate of 30 Hz (7.5 Hz per plane). For experiments monitoring activity of LGN boutons, we
imaged 7-10 planes set apart by 1.8 pum. Images of 256x256 pixels, corresponding to a field of
view of 100x100 um, were acquired at a frame rate of 58.8 Hz.

To obtain retinotopic maps we used wide-field calcium imaging, as previously described*.
Briefly, we used a standard epi-illumination imaging system3240 together with an SCMOS camera
(pco.edge, PCO AG). A 14°-wide vertical window containing a vertical grating (spatial frequency
0.15 cycles/°), swept#142 the horizontal position of the window over 135° of azimuth angle, at a
frequency of 2 Hz. To obtain maps for preferred azimuth we combined responses to the 2 stimuli
moving in opposite direction4l.

We presented 20 vertical drifting sinusoidal gratings moving in the nasal to temporal direction
at 4 spatial frequencies (0.02, 0.04, 0.08 and 0.16 cycles/deg) and 5 temporal frequencies (0.5,
1, 2,4 and 8 Hz). Stimulus presentations lasted 4 s, were followed by a 3 s blank period, and were
repeated 10 times. On each repeat, the 20 stimuli and a blank were presented in pseudorandom
order. Stimulus contrast was 100% and stimulus diameter was 40 deg. Within each session, stim-
ulus position was adjusted to match the center of the receptive fields obtained from the neuropil.

To obtain neuropil receptive fields, on each recording session we presented sparse uncorrelated
noise for 5 min. The screen was divided into a grid of squares of 4 x 4 degrees size. Each square
was turned on and off randomly at a 10 Hz rate. At each moment in time, 2% of the squares were
on. To compute the neuropil receptive fields, the field of view was segmented into 5x5 patches
(100 pm x 100 pm surface per patch). For each patch, we first averaged the raw fluorescence
across the patch’s pixels. We then computed the stimulus-triggered average of the averaged raw
fluorescence trace. The response was further smoothed in space and its peak was defined as the
patch’s receptive field center.

Animals were head-restrained in the center of three LCD monitors (Ilyama ProLite E1980SD
19") or three 10-inch LCD screens (LP097QX1-SPAV 9.7", XiongYi Technology Co., Ltd.) placed
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at 90deg angle to each other. The distance from each screen was 19cm for the LCD monitors, or
11cm for the LCD screen, so that visual scenes covered the visual field by 135 deg in azimuth and
42 deg in elevation.

The Virtual Reality environment was a corridor with two visually matching segments (Saleem
2018). Briefly, the corridor was 8cm wide and 100 cm long. A vertical grating or a plaid, 8 cm
wide each, alternated in the sequence grating-plaid-grating-plaid at 20, 40, 60 and 80 cm from
the start of the corridor.

In Virtual Reality mode, animals traversed the virtual environment by walking on a polystyrene
wheel (15 cm wide, 18 cm diameter) which allowed movement along a single dimension (for-
wards or backwards). Running speed was measured online with a rotary encoder (2400
pulses/rotation, Kiibler, Germany) and was used to control the update of visual scenes. Upon
reaching the 100t cm of the corridor, animals were presented with a gray screen for an inter-
trial period of 3 to 5 s, after which they were teleported back to the beginning of the corridor for
the next trial. The duration of each trial depended on how long it took the animal to reach the
end of the corridor, typically less than 8 s. Trials in which animals did not reach the end of the
corridor within 30 s were timed-out and excluded from further analysis. A typical session con-
sisted of more than 50 trials.

In the passive viewing mode, mice were presented with a previous closed-loop session, while
still free to run on the wheel.

Mice ran through the corridor with no specific task (n = 4 animals, 65 sessions recording cortical
activity; n = 3 animals, 19 sessions recording activity of LGN boutons). Prior to recording ses-
sions, mice were placed in the virtual environment, typically for 3 days and for up to one week,
until they were able to run for at least 80% of the time within a single session. 2 out of 7 mice
ran without rewards. 5 out of 7 mice were motivated to run with rewards, by receiving ~2.5 pl
of water (4 mice) or of 10% sucrose (1 mouse) with the use of a solenoid valve (161T010; Nep-
tune Research, USA). One animal received rewards at random positions along the corridor. The
other 4 mice received rewards at the end of the corridor.

We tracked the eye of the animal using an infrared camera (DMK 21BU04.H, Imaging Source)
and custom software, as previously described#.

Image registration in x and y, cell detection and spike deconvolution were performed with
Suite2p*3.

For the LGN boutons data, we additionally used the method described in Ref. 33 to align image
frames in z-direction (along depth). By using a stack of closely spaced planes (1.8 um inter-plane
distance), we were able to detect small boutons across multiple planes, which could have other-
wise moved outside a given plane due to brain movement in the z-direction. In brief, for each
imaging stack, the algorithm estimates the optimal stack shift that maximizes the similarity of
each plane to their corresponding target image (with target images across planes having been
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aligned to each other in x and y direction). After, assigning the shifted planes to their correspond-
ing target image, a moving average across 2 to 3 neighboring planes is applied, resulting in a
smooth image, and consequently in smooth calcium traces from boutons sampled from multiple,
closely spaced planes.

All ROIs (cell bodies or boutons) were detected from the aligned frames and were manually cu-
rated with the Suite2p GUI, as described in Ref 4.

To obtain response profiles as a function of position along the corridor, we first smoothed the
deconvolved traces in time with a 250ms Gaussian window and considered only time points with
running speeds greater than 1 cm/s. We then discretized the position of the animal in 1 cm bins
(100 bins in total) and estimated the spike count and occupancy map for each neuron. Both maps
were smoothed in space with a fixed Gaussian window of 5 cm. Finally, each neuron’s response
profile was defined as the ratio of the smoothed spike count map over the smoothed occupancy
map. We assessed the reliability of the response profiles based on a measure of variance ex-
plained and selected those with variance explained higher than 5%. To cross-validate the re-
sponse profile patterns in Virtual Reality, we divided each session’s trials in two halves (odd vs
even) and obtained a pair of response profiles for each neuron. Odd trials were used as the train
set, to determine the position at which cells preferred to fire maximally. Odd trials were subse-
quently excluded from further analysis.

The same splitting into odd and even trials was used to estimate each cell’s spatial modulation
index (SMI). For each cell, the position of the peak response was measured from the response
profile averaged across odd trials (‘preferred position’). We then obtained the response, R, at
the preferred position and the visually-identical position 40 cm away (‘non-preferred position’:
R, ), using the response profile averaged across even trials. Cells with maximal response close to
the start or end of the corridor (0-15 cm or 85-100 cm) were excluded, because their preferred
position fell outside the visually matching segments. SMI was defined as:

R, — R
Y e —_0
Ry + R,

Therefore, a response with two equal peaks would have SMI = 0, whereas a response with one
peak would have SMI = 1.

To cross-validate the response profile patterns and to estimate SMIs in passive viewing, we used
the same odd trials from Virtual Reality as a train set. Based on those we obtained response
profile patterns and SMIs from all trials during passive viewing. To isolate periods when the an-
imal was stationary during passive viewing, we considered only time-points when the speed of
the animal was less than 5cm/s. Response profiles during stationary viewing were estimated
only if the animal was stationary in at least 10 trials within a session. To isolate periods when
the animal was running during passive viewing, we considered only time-points when the speed
of the animal was higher than 1 cm/s. Response profiles in running during replay were estimated
only if the animal was stationary in at least 10 trials within a session.

Response reliability was defined as the cross-validated fraction of variance in firing rate ex-
plained by the response profile. Response profiles were estimated based on 80% of the data
(shuffled trials) and tested on the remaining 20%. (5-fold cross-validation). For each estimate,
reliability was defined as:
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Y (y(@®) - y'(©®)
5. (6) — p)?

where y(t) is the actual, smoothed firing rate of the neuron at time ¢, y'(t) is the predicted fir-
ing rate for the same time bin based on the neuron’s response profile and u is the mean firing
rate of the training data. Only neurons with a reliability greater than 5% were considered for
further analysis.

Reliability = 1 — (D)

The deconvolved single-cell traces obtained from 4 planes were linearly interpolated to match
the sampling rate of the imaging session (30 Hz). Single-cell activity was then baseline-corrected
by subtracting the mean activity and averaged across the time-window when the stimulus was
on (4s). To select for responsive cells, we compared the mean activity across repeats during the
stimulation period to the mean activity during blank trials. We selected cells whose maximum
activity during at least one stimulus type was two standard deviations higher than the mean
activity during blank periods. We defined as the cell’s preferred spatial and temporal frequency
the frequency at which the cell fired maximally.

Reliability of responses to drifting gratings was estimated based on predictions obtained from
ridge regression with a fixed ridge regression coefficient, A = 0.01. For each spatial and temporal
frequency pair, we defined a sparse column vector in time, whose values were zero except from
the time points when the corresponding stimulus appeared on the screen. This vector was then
shifted backward by 1 s and forward by 4 s in steps of 0.033 s, resulting in a stimulus matrix with
151 columns. Stimulus matrices for each frequency pair and two blank conditions were pooled
together, yielding the design matrix, with dimensions: (# of frames) x (151 shifts x 22 stimulus
conditions, including blanks). We used this matrix to predict firing rates using five-fold cross-
validation, and to estimate response reliability from expression (1).

To compare responses across conditions (Virtual Reality and drifting gratings) we estimated a
selectivity index as:

RGratings - RVR

selectivity index =
RGratings + RVR
Where Ry, is the peak amplitude of the response profile in Virtual Reality and Rgy4¢ings is the mean re-
sponse to the 20 gratings (4 spatial, 5 temporal frequencies).

To assess the robustness of this index, we computed it separately for odd and even trials.

To assess the joint contribution of all visual and behavioral factors in Virtual Reality we fitted
the V1 responses to three multilinear regression models similar to Ref. 4. The models had the
form: § = XB, where X is an T-by-M matrix with T time points and M predictors and ¥ is the
predicted calcium trace (T-by-1 array). Optimal coefficient estimates  (M-by-1 array) that min-
imize the sum-squared error were obtained using: f = (X”X + AI)~'XTy, where 1 is the ridge-
regression coefficient.
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The simplest model, the visual model, relied only on ‘trial onset’ (first 10cm in the maze), ‘trial
offset’ (last 10 cm in the maze) and the repetition of visual scenes within the visually matching
segments (from 10 to 90 cm in the maze). The basis functions for all predictors were square
functions with width of 2 cm and height equal to unity. To model the repetition of visual scenes,
a predictor within the visually matching segments comprised of two square functions placed 40
cm apart. Thus, the visual model’s design matrix had 30 predictors plus a constant: 5 predictors
for trial onset, 5 predictors for trial offset and 20 predictors within the visually matching seg-
ments.

The second model, the non-spatial model was used to assess the influence of all the behavioral
factors we measured: running speed, reward events, pupil size and the horizontal and vertical
pupil position. These factors were added as predictors to the design matrix of the visual model,
as follows: running speed was shifted backward and forward in time twice, in 500ms steps, thus
contributing 5 continuous predictors; pupil size and horizontal and vertical pupil position con-
tributed 1 continuous predictor each; each reward event contributed one binary predictor at the
time of the reward. The continuous predictors of running speed and pupil size were normalized
between 0 and 1, whereas pupil position was normalized between -1 and 1 to account for move-
ments in opposite directions.

The third model, the spatial model, allowed for an independent scaling of the two visually-match-
ing segments in the maze. For each predictor within the visually-matching segments, the two
square functions were allowed to vary their height independently. The height of the two square
functions was parameterized by a parameter a, such that the two functions had unit norm. An a
= 0.5 corresponded to a purely visual representation with SMI close to 0, whilea =1 ora =0
would correspond to a response only in the first or second segment, and an SMI close to 1.

To choose the best model, we used the ridge regression coefficient, A that maximized the per-
centage of variance explained using five-fold cross-validation, searching the values 1 =0.01,
0.05, 0.1, 0.5 or 1. In the spatial model, we performed multiple ridge regression fits, searching
for the optimal value of a using a step size of 0.1, for each A.

The predictions obtained in the time domain were subsequently processed similarly as the orig-
inal deconvolved traces, to obtain predicted response profiles and SMls.

18


https://doi.org/10.1101/832915
http://creativecommons.org/licenses/by-nc-nd/4.0/

