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Summary

An important challenge in pre-processing data from the 10x Genomics Chromium platform is distinguishing
barcodes associated with real cells from those binding background reads. Existing methods test barcodes
individually, and consequently do not leverage the strong cell-to-cell correlation present in most datasets. To
improve the power to identify real cells and rare subpopulations, we introduce CB2, a cluster-based approach

for distinguishing real cells from background barcodes.

The 10x Genomics Chromium (10x)! platform is a powerful and widely-used approach for
profiling genome-wide gene expression in individual cells. The technology utilizes gel beads,
each containing oligonucleotide indexes made up of bead-specific barcodes combined with
unique molecular identifiers (UMIs)? and oligo-dT tags to prime polyadenylated RNA. Single
cells of interest are combined with reagents in one channel of a microfluidic chip, and gel beads
in another, to form gel-beads in emulsion, or GEMs. Oligonucleotide indexes bind
polyadenylated RNA within each GEM reaction vesicle before gel beads are dissolved releasing

the bound oligos into solution for reverse transcription. By design, each resulting cDNA
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molecule contains a UMI and a GEM-specific barcode. Indexed cDNA is pooled for PCR
amplification and sequencing resulting in a data matrix of UMI counts for each barcode

(Supplementary Figure 1).

Ideally, each barcode will tag mRNA from an individual cell, but this is often not the case in
practice. In most datasets, approximately 90% of GEMs do not contain viable cells, but rather
contain ambient RNA excreted by cells in solution or as a product of cell lysis'. As a result, an
important challenge in pre-processing 10x data is distinguishing those barcodes corresponding to

real cells from those binding ambient, or background, RNA.

Early methods to address this challenge defined real cells as those barcodes with total read
counts exceeding some threshold'*. Such methods are suboptimal as they discard small cells as
well as those expressing relatively few genes. To address this, Lun et al., 2019* developed
EmptyDrops (ED), an approach to identify individual barcodes with distributions varying from a
background distribution. Similar to previous approaches, ED identifies an upper threshold and
defines real cells as those barcodes with counts above the threshold. As a second step, ED uses
all barcodes with counts below a lower threshold to estimate a background distribution of
ambient RNA against which remaining barcodes are tested. Those having expression profiles
significantly different from the background distribution are deemed real cells. The ED approach
is current state-of-the-art in the field. However, given that ED performs tests for each barcode
individually, it does not leverage the strong correlation observed between cells and,

consequently, compromises power in many datasets.


https://doi.org/10.1101/832535
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/832535; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

To increase the power for identifying real cells, we propose CB2, a cluster-based approach for
distinguishing real cells from background barcodes in 10x experiments. CB2 extends the ED
framework by introducing a clustering step that groups similar barcodes, then conducts a
statistical test to identify groups with expression distributions that vary from the background

(Figure 1, Supplementary Figure 2). CB2 is implemented in the R package scCB2.

CB2 was evaluated and compared with ED on simulated and case study data. In SIM 1A, counts
are generated as in Lun et al., 2019*. Briefly, given an input dataset, an inflection point dividing
low from high count barcodes is determined. Low count barcodes are pooled to estimate the
background distribution. Two thousand barcodes are then randomly sampled from the high count
barcodes to give real cells (referred to as G, cells*); a second set of 2000 high count barcodes is
sampled and then downsampled by 90% to give G, cells. We added a third set (G, 5) by
sampling 2000 barcodes from the high count range and downsampling by 50%. Supplementary
Figure 3 shows increased power of CB2 with well controlled false discovery rate (FDR) for the
6 datasets considered in Lun et al., 2019* as well as 4 additional datasets. SIM IB, also
considered by Lun et al., 20194, is similar to SIM 1A, but in SIM IB 10% of the genes in the real
cells are shuffled making the real cells more different from the background and therefore easier
to identify (Supplementary Figure 4). Supplementary Figure S shows the increased power of

CB2 is maintained.

To further evaluate CB2, we applied CB2 and ED to the ten datasets evaluated in the simulation
study as well as one additional dataset considered in the ED case study and compared the number

of cells identified in common as well as those uniquely identified by each approach.
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Supplementary Table 1 shows that CB2 finds 24% more cells on average (range 4%-81%). Of
the extra cells identified, 88% on average (range 44%-100%) add to existing subpopulations. The
remaining 12% (range 0%-56%) make up novel subpopulations. As an example, Figure 2 and
Supplementary Figure 6 show results from the Alzheimer data® where CB2 identifies 18%
more cells within excitatory neuron, inhibitory neuron, and oligodendrocyte sub-populations, and
also reveals a novel subpopulation consisting of 209 cells. The novel subpopulation uniquely
shows high expression of both oligodendrocyte and astrocyte marker genes, suggesting that this
group may be mixed phenotype glial cells® (Supplementary Figure 6). By increasing the
number of true cells identified, CB2 also improves the power to differentiate Alzheimer’s

patients from controls (Supplementary Figure 7).

Results from three additional datasets are shown in Supplementary Figures 8-10. Figure 2 and
Supplementary Figures 6-10 demonstrate that CB2 provides a powerful approach for
distinguishing real cells from background barcodes which will increase the number of cells
identified in existing cell subpopulations in most datasets and may facilitate the identification of

novel subpopulations.

The 10x Genomics Chromium platform provides unprecedented opportunity to address
biological questions, but efficient pre-processing is required to maximize the information
obtained in an experiment. Our approach allows investigators to maximize the number of cells

retained, and consequently to increase the power and precision of downstream analysis.
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Figure 1: Overview of CB2. (a) Projection of a hypothetical cell population containing three
sub-populations (red, green, and blue where intensity corresponds to read depth). CB2 takes as
input a gene by barcode matrix of UMI counts and returns a gene by cell matrix. (b) High-count
barcodes with counts above a pre-specified upper threshold are considered real cells; barcodes
with counts below a lower threshold are used to estimate a background distribution
(Supplementary Figure 2). The remaining barcodes are clustered and tight clusters are tested as
a group against the estimated background distribution; barcodes not in tight clusters are tested
individually (not shown). High-count barcodes and those identified by CB2 are retained for

downstream analysis.
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Figure 2: Results from the Alzheimer dataset. (a) t-SNE plot of cells identified by CB2 and ED.
High-count barcodes exceeding an upper threshold are identified as real cells by both methods
without a statistical test (dark pink); barcodes identified as cells by both methods following
statistical test are shown in pink. Cells identified uniquely by CB2 (yellow) and ED (black) are
also shown. CB2 identifies an increased number of cells in existing sub-populations (Subpopl —
Subpop4) and also identifies a novel subpopulation (Subpop5). (b) Distribution plots of the 100
genes having highest average expression in Subpop2 are shown for cells identified by both CB2
and ED (upper) and identified uniquely by CB2 (middle). The estimated background distribution
is also shown (lower). Cells uniquely identified by CB2 in Subpop?2 have a distribution similar
to other Subpop?2 cells and differ from the background. (¢) Heatmap of log transformed raw UMI
counts for the same 100 genes for barcodes identified by CB2 and ED (left) and barcodes
uniquely identified by CB2 (right). (d) t-SNE plots of cells colored by neuron marker genes
SYTI1, SNAP25, and GRINTI in all cells (upper) and those identified uniquely by CB2 (lower).
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ACCESSION CODES
The Alzheimer case study dataset was downloaded from

https://www.synapse.org/#!Synapse:syn16780177°. The placenta dataset’ is available at

https://jmlab-gitlab.cruk.cam.ac.uk/publications/EmptyDrops2017-DataFiles. All other datasets in

this study are available at the 10x Genomics website (https://support.10xgenomics.com/single-

cell-gene-expression/datasets) (Supplementary Table 2). The R package R/scCB?2 is available at

https://github.com/zijianni/scCB2, and will be submitted to Bioconductor®. All simulation codes

and a case study data analysis script are available at https://github.com/zijianni/codes-for-CB2-

paper.
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ONLINE METHODS

Versions: For cell identification with R/scCB2 0.99.12 and R/DropletUtils 1.5.4*°, the latest
version of R'” was used: 3.7-devel (2019-07-17 r76847). Other packages are not yet compatible
or not stable with the R developers version and so for scran 1.12.1"", Seurat 3.1.0'%!3, and

geplot2 3.2.1%, R 3.6.0 (2019-04-24 r76423) was used.

CB2. As CB2 relies on ED, we briefly review the ED approach before detailing the clustering
test introduced in CB2. ED expects as input a G X B feature-by-barcode matrix with G features
(for simplicity, we refer to features as genes) and B barcodes. Barcodes having zero counts for
all genes are filtered out and the remaining barcodes are divided into three groups based on the
sum of gene expression (UMI) counts within a barcode. The background group, B,, contains all
barcodes with counts less than or equal to a pre-defined lower threshold (defaults to 100); the
high-count barcodes, B,, contain barcodes with counts exceeding an upper threshold (defaults to

knee point); the remaining barcodes (B;) are tested (Supplementary Figure 2).

ED assumes that counts from a background barcode are distributed as Dirichlet-Multinomial

with probability vector pg, estimated by averaging the counts in B, and applying the Good-
Turing algorithm'* to ensure that all probabilities are non-zero, denoted as pg, . For a barcode

b € By, ED tests p, = pg, against the alternative p,, # pp, using the log-likelihood under pg as
the test statistic. A Monte-Carlo p-value is calculated via simulating Dirichlet-Multinomial
barcodes of size |b| under pg and calculating the proportion of simulated barcodes having a test
statistic more extreme than (or equal to) b’s. The false discovery rate is controlled using the

Benjamini-Hochberg procedure'.
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CB2 follows ED by filtering out genes with zero counts and dividing the remaining barcodes into
three groups. However, instead of testing all barcodes from B; individually, CB2 first clusters
barcodes and then tests tight clusters to identify those that differ from the background. CB2
proceeds as follows:

1. Barcodes grouped by size. CB2 orders barcodes in B; by total counts

By = {by, ... s ||} s.t.|Xp,| < [Xp,,, |

where X}, denotes the count vector of barcode b, |X},| denotes the total UMI count of
barcode b, and |B;| denotes the number of barcodes in B;. Groups of size S (defaults to
1000 in R/scCB?2) are constructed consisting of barcodes ranging in size from smallest to
largest:

By, = {bp Ty bs}, By, = {b5+1, Ty bzs}: o, Big = {b(K—l)S+1' sy b|31|}

where K = % is rounded up if not an integer. If | B, x| < 2, barcodes in B g are merged

with those in By x_1). Sorting barcodes by size reduces bias in the clustering and testing

steps that follow.

2. Barcodes clustered within group: Barcodes within each group B; ; are clustered
using hierarchical clustering with pairwise Pearson correlation as the similarity
metric. A cluster is considered tight if the average within-cluster pairwise Pearson
correlation exceeds a data-driven threshold. Tight clusters are retained for further
analysis as described in step 3, below. To determine thresholds, ten tight clusters of
varying size are simulated by generating 100 samples from a Multinomial distribution
with parameters (N, p) where N ranges from 100 to 1000 in increments of size 100.

This range is chosen as we found little variation in thresholds for barcode sizes
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exceeding 1000; p is set to either pg or Pg, , whichever has larger Shannon
entropy'” as the distribution with larger entropy is less affected by outliers. For each
simulated cluster C, the threshold . is defined by its average pairwise Pearson
correlation. A cluster is considered tight if the average within-cluster pairwise

Pearson correlation exceeds k. for the simulated cluster of closest size.

3. Tight clusters tested: For each tight cluster C, we conduct a Monte-Carlo test to
assess dissimilarity from the background. Pairwise Pearson correlations are calculated
between every barcode in C and pg,; the test statistic for cluster C, T, is defined to be
the median of these correlations. Similar to ED, to simulate background barcodes, we
sample barcodes X7, ..., Xy from a Multinomial (N; pg, ) where N is the size of the
barcode giving T,.. The Monte-Carlo p-value is:

Z]ivil {COT'XL,*‘O S Tc} + 1
Pc= M+ 1

where cory: o is the Pearson correlation between X, i and pg (M defaults to 1000 in

R/scCB2). Monte-Carlo p-values are calculated for each cluster followed by
Benjamini-Hochberg!® to control the FDR. All barcodes within a significant cluster

are identified as real cells.

4. Individual barcodes tested: Barcodes that were not included in a tight cluster in
Step 2 as well as those in a tight cluster that were not found to be significant in Step 3
are tested individually using ED. It is important to note that some of the barcodes

identified in this step do not overlap with identifications made when ED is applied to

10
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the full set of barcodes given differences in the rates of true cells to background

barcodes and differences in error rate control.

Simulations. Counts are generated as in Lun ef al. 2019*. As detailed there, each simulation
requires an input dataset. We constructed simulations from 10 datasets: Alzheimer®, PBMCS8K,
PBMC33K, mbrainlK, mbrain9K, PanT4K, MALT, PBMC4K, jurkat, and T293
(Supplementary Table 2). For each input dataset, the inflection point of the UMI count by
sorted barcode plot is used to divide lower count from higher count barcodes. The barcodes in
the lower count range are considered background. In SIM IA, two sets of 2000 barcodes
randomly sampled from the higher count range are considered real cells. The first set of 2000 is
referred to as large ( G;) cells; the second set is downsampled by 90% to give small (G,) cells.
We added a third set of medium (G 5) cells by sampling 2000 cells from the higher count range
and downsampling by 50%. The process for simulating data in SIM IB is identical to SIM 1A
except that in SIM IB, 10% of the genes in each simulated real cell are shuffled making the real
cells more different from the background barcodes and, consequently, making real cells easier to

identify. SIM IA is a more realistic simulation (Supplementary Figure 4).

Case studies. We evaluated the 10 datasets used in the simulation and also the placenta data
evaluated in Lun ef al. 2019*. These datasets vary in sequencing depth as well as in the extent of
differences between the real cell and background distributions (Supplementary Figure 4). CB2
and ED were applied to each dataset using default settings. For plots that compare identifications
between CB2 and ED, cells identified by either approach (or both) were combined and UMI

counts were normalized via scran. The Seurat pipeline was used to generate t-SNE plots from

11
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the top 4000 most highly variable genes and top 50 principal components. Expression heatmaps
show log transformed raw UMI counts. For heatmaps and distribution plots, mitochondrial and

ribosomal genes were removed.

Differential expression analysis in Alzheimer data. Cells identified by CB2, ED, or both were
combined into a single matrix and filtered similar to Mathys ef al.’. Specifically, cells with
mitochondrial gene expression making up 40% or more of the total UMI counts were removed,
genes detected in fewer than two cells were also excluded giving a matrix of 28208 genes and
74579 barcodes. Normalization was performed using scran. Cell types were annotated using
marker genes as in Mathys et al.> Differential expression (DE) tests between cells from
Alzheimer’s cases and controls were conducted using Wilcoxon rank-sum tests as in Mathys et

al’. Results were compared for known DE genes extracted from Mathys et al.>.

Implementation of CB2 and ED. For all simulation and case study analyses, CB2 and ED were

implemented using default parameters. A target FDR was set at 1%.

Existing subpopulations vs. novel subpopulations: The FindNeighbors and FindClusters
functions in Seurat were used with default settings to assign each cell to a cluster, referred to
here as a subpopulation. For each subpopulation, we calculated the percentage of cells identified
by both CB2 and ED as well as those identified uniquely by CB2. Subpopulations for which over
80% of the cells are uniquely identified by CB2 are referred to as novel subpopulations
(Supplementary Table 3 shows the number of novel subpopulations identified using 70%, 80%,

or 90% as thresholds).
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