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Summary 

 

An important challenge in pre-processing data from the 10x Genomics Chromium platform is distinguishing 

barcodes associated with real cells from those binding background reads.  Existing methods test barcodes 

individually, and consequently do not leverage the strong cell-to-cell correlation present in most datasets. To 

improve the power to identify real cells and rare subpopulations, we introduce CB2, a cluster-based approach 

for distinguishing real cells from background barcodes.  

 

The 10x Genomics Chromium (10x)1 platform is a powerful and widely-used approach for 

profiling genome-wide gene expression in individual cells.  The technology utilizes gel beads, 

each containing oligonucleotide indexes made up of bead-specific barcodes combined with 

unique molecular identifiers (UMIs)2 and oligo-dT tags to prime polyadenylated RNA. Single 

cells of interest are combined with reagents in one channel of a microfluidic chip, and gel beads 

in another, to form gel-beads in emulsion, or GEMs.  Oligonucleotide indexes bind 

polyadenylated RNA within each GEM reaction vesicle before gel beads are dissolved releasing 

the bound oligos into solution for reverse transcription. By design, each resulting cDNA 
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molecule contains a UMI and a GEM-specific barcode.  Indexed cDNA is pooled for PCR 

amplification and sequencing resulting in a data matrix of UMI counts for each barcode 

(Supplementary Figure 1).  

 

Ideally, each barcode will tag mRNA from an individual cell, but this is often not the case in 

practice. In most datasets, approximately 90% of GEMs do not contain viable cells, but rather 

contain ambient RNA excreted by cells in solution or as a product of cell lysis1. As a result, an 

important challenge in pre-processing 10x data is distinguishing those barcodes corresponding to 

real cells from those binding ambient, or background, RNA.   

 

Early methods to address this challenge defined real cells as those barcodes with total read 

counts exceeding some threshold1,3. Such methods are suboptimal as they discard small cells as 

well as those expressing relatively few genes. To address this, Lun et al., 20194 developed 

EmptyDrops (ED), an approach to identify individual barcodes with distributions varying from a 

background distribution. Similar to previous approaches, ED identifies an upper threshold and 

defines real cells as those barcodes with counts above the threshold. As a second step, ED uses 

all barcodes with counts below a lower threshold to estimate a background distribution of 

ambient RNA against which remaining barcodes are tested. Those having expression profiles 

significantly different from the background distribution are deemed real cells. The ED approach 

is current state-of-the-art in the field. However, given that ED performs tests for each barcode 

individually, it does not leverage the strong correlation observed between cells and, 

consequently, compromises power in many datasets.  
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To increase the power for identifying real cells, we propose CB2, a cluster-based approach for 

distinguishing real cells from background barcodes in 10x experiments. CB2 extends the ED 

framework by introducing a clustering step that groups similar barcodes, then conducts a 

statistical test to identify groups with expression distributions that vary from the background 

(Figure 1, Supplementary Figure 2). CB2 is implemented in the R package scCB2. 

 

CB2 was evaluated and compared with ED on simulated and case study data. In SIM IA, counts 

are generated as in Lun et al., 20194. Briefly, given an input dataset, an inflection point dividing 

low from high count barcodes is determined. Low count barcodes are pooled to estimate the 

background distribution. Two thousand barcodes are then randomly sampled from the high count 

barcodes to give real cells (referred to as 𝐺" cells4); a second set of 2000 high count barcodes is 

sampled and then downsampled by 90% to give 𝐺# cells.  We added a third set (𝐺".%) by 

sampling 2000 barcodes from the high count range and downsampling by 50%. Supplementary 

Figure 3 shows increased power of CB2 with well controlled false discovery rate (FDR) for the 

6 datasets considered in Lun et al., 20194 as well as 4 additional datasets.  SIM IB, also 

considered by Lun et al., 20194,  is similar to SIM IA, but in SIM IB 10% of the genes in the real 

cells are shuffled making the real cells more different from the background and therefore easier 

to identify (Supplementary Figure 4). Supplementary Figure 5 shows the increased power of 

CB2 is maintained.  

 

To further evaluate CB2, we applied CB2 and ED to the ten datasets evaluated in the simulation 

study as well as one additional dataset considered in the ED case study and compared the number 

of cells identified in common as well as those uniquely identified by each approach. 
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Supplementary Table 1 shows that CB2 finds 24% more cells on average (range 4%-81%). Of 

the extra cells identified, 88% on average (range 44%-100%) add to existing subpopulations. The 

remaining 12% (range 0%-56%) make up novel subpopulations. As an example, Figure 2 and 

Supplementary Figure 6 show results from the Alzheimer data5 where CB2 identifies 18% 

more cells within excitatory neuron, inhibitory neuron, and oligodendrocyte sub-populations, and 

also reveals a novel subpopulation consisting of 209 cells. The novel subpopulation uniquely 

shows high expression of both oligodendrocyte and astrocyte marker genes, suggesting that this 

group may be mixed phenotype glial cells6 (Supplementary Figure 6). By increasing the 

number of true cells identified, CB2 also improves the power to differentiate Alzheimer’s 

patients from controls (Supplementary Figure 7).   

 

Results from three additional datasets are shown in Supplementary Figures 8-10. Figure 2 and 

Supplementary Figures 6-10 demonstrate that CB2 provides a powerful approach for 

distinguishing real cells from background barcodes which will increase the number of cells 

identified in existing cell subpopulations in most datasets and may facilitate the identification of 

novel subpopulations.  

 

The 10x Genomics Chromium platform provides unprecedented opportunity to address 

biological questions, but efficient pre-processing is required to maximize the information 

obtained in an experiment. Our approach allows investigators to maximize the number of cells 

retained, and consequently to increase the power and precision of downstream analysis. 
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Figure 1: Overview of CB2. (a) Projection of a hypothetical cell population containing three 

sub-populations (red, green, and blue where intensity corresponds to read depth). CB2 takes as 

input a gene by barcode matrix of UMI counts and returns a gene by cell matrix. (b) High-count 

barcodes with counts above a pre-specified upper threshold are considered real cells; barcodes 

with counts below a lower threshold are used to estimate a background distribution 

(Supplementary Figure 2). The remaining barcodes are clustered and tight clusters are tested as 

a group against the estimated background distribution; barcodes not in tight clusters are tested 

individually (not shown). High-count barcodes and those identified by CB2 are retained for 

downstream analysis.  
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Figure 2: Results from the Alzheimer dataset. (a) t-SNE plot of cells identified by CB2 and ED. 

High-count barcodes exceeding an upper threshold are identified as real cells by both methods 

without a statistical test (dark pink); barcodes identified as cells by both methods following 

statistical test are shown in pink. Cells identified uniquely by CB2 (yellow) and ED (black) are 

also shown. CB2 identifies an increased number of cells in existing sub-populations (Subpop1 – 

Subpop4) and also identifies a novel subpopulation (Subpop5). (b) Distribution plots of the 100 

genes having highest average expression in Subpop2 are shown for cells identified by both CB2 

and ED (upper) and identified uniquely by CB2 (middle). The estimated background distribution 

is also shown (lower).  Cells uniquely identified by CB2 in Subpop2 have a distribution similar 

to other Subpop2 cells and differ from the background. (c) Heatmap of log transformed raw UMI 

counts for the same 100 genes for barcodes identified by CB2 and ED (left) and barcodes 

uniquely identified by CB2 (right). (d) t-SNE plots of cells colored by neuron marker genes 

SYT1, SNAP25, and GRIN1 in all cells (upper) and those identified uniquely by CB2 (lower).  
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ACCESSION CODES   

 The Alzheimer case study dataset was downloaded from 

https://www.synapse.org/#!Synapse:syn167801775. The placenta dataset7 is available at 

https://jmlab-gitlab.cruk.cam.ac.uk/publications/EmptyDrops2017-DataFiles. All other datasets in 

this study are available at the 10x Genomics website (https://support.10xgenomics.com/single-

cell-gene-expression/datasets) (Supplementary Table 2). The R package R/scCB2 is available at 

https://github.com/zijianni/scCB2, and will be submitted to Bioconductor8. All simulation codes 

and a case study data analysis script are available at https://github.com/zijianni/codes-for-CB2-

paper. 
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ONLINE METHODS 

Versions: For cell identification with R/scCB2 0.99.12 and R/DropletUtils 1.5.44,9, the latest 

version of R10 was used: 3.7-devel (2019-07-17 r76847). Other packages are not yet compatible 

or not stable with the R developers version and so for scran 1.12.111, Seurat 3.1.012,13, and 

ggplot2 3.2.114, R 3.6.0 (2019-04-24 r76423) was used. 

 

CB2. As CB2 relies on ED, we briefly review the ED approach before detailing the clustering 

test introduced in CB2. ED expects as input a 𝐺 × 𝐵 feature-by-barcode matrix with 𝐺 features 

(for simplicity, we refer to features as genes) and 𝐵 barcodes. Barcodes having zero counts for 

all genes are filtered out and the remaining barcodes are divided into three groups based on the 

sum of gene expression (UMI) counts within a barcode. The background group, 𝐵(, contains all 

barcodes with counts less than or equal to a pre-defined lower threshold (defaults to 100); the 

high-count barcodes, 𝐵#, contain barcodes with counts exceeding an upper threshold (defaults to 

knee point); the remaining barcodes (𝐵") are tested (Supplementary Figure 2).  

 

ED assumes that counts from a background barcode are distributed as Dirichlet-Multinomial 

with probability vector 𝑝*+ estimated by averaging the counts in 𝐵( and applying the Good-

Turing algorithm15 to ensure that all probabilities are non-zero, denoted as 𝑝̂*+. For a barcode 

𝑏 ∈ 𝐵", ED tests 𝑝/ = 𝑝*+ against the alternative 𝑝/ ≠ 𝑝*+ using the log-likelihood under 𝑝̂*+ as 

the test statistic. A Monte-Carlo p-value is calculated via simulating Dirichlet-Multinomial 

barcodes of size |𝑏| under 𝑝̂*+ and calculating the proportion of simulated barcodes having a test 

statistic more extreme than (or equal to) 𝑏’s. The false discovery rate is controlled using the 

Benjamini-Hochberg procedure16.  
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CB2 follows ED by filtering out genes with zero counts and dividing the remaining barcodes into 

three groups. However, instead of testing all barcodes from 𝐵" individually, CB2 first clusters 

barcodes and then tests tight clusters to identify those that differ from the background.  CB2 

proceeds as follows: 

1. Barcodes grouped by size. CB2 orders barcodes in 𝐵" by total counts 

𝐵" = 3𝑏", … , 𝑏|*6|7}			𝑠. 𝑡. 7𝑋/=7 ≤ |𝑋/=?6	| 

where 𝑋/ denotes the count vector of barcode 𝑏, |𝑋/| denotes the total UMI count of 

barcode 𝑏, and |𝐵"| denotes the number of barcodes in 𝐵". Groups of size S (defaults to 

1000 in R/scCB2) are constructed consisting of barcodes ranging in size from smallest to 

largest: 

 𝐵"" = {𝑏", … , 𝑏A}, 𝐵"# = {𝑏AB", … , 𝑏#A},⋯ , 𝐵"D = 3𝑏(DF")AB", … , 𝑏|*6|H  

where 𝐾 = |*6|
A
	 is rounded up if not an integer. If |𝐵"D| <

A
#
, barcodes in 𝐵"D are merged 

with those in 𝐵"(DF").	 Sorting barcodes by size reduces bias in the clustering and testing 

steps that follow.  

 

2. Barcodes clustered within group: Barcodes within each group 𝐵"K are clustered 

using hierarchical clustering with pairwise Pearson correlation as the similarity 

metric. A cluster is considered tight if the average within-cluster pairwise Pearson 

correlation exceeds a data-driven threshold. Tight clusters are retained for further 

analysis as described in step 3, below. To determine thresholds, ten tight clusters of 

varying size are simulated by generating 100 samples from a Multinomial distribution 

with parameters (𝑁, 𝑝) where N ranges from 100 to 1000 in increments of size 100. 

This range is chosen as we found little variation in thresholds for barcode sizes 
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exceeding 1000;  𝑝 is set to either 𝑝̂*+	or 𝑝̂*M , whichever has larger Shannon 

entropy17 as the distribution with larger entropy is less affected by outliers. For each 

simulated cluster 𝐶, the threshold 𝜅P  is defined by its average pairwise Pearson 

correlation. A cluster is considered tight if the average within-cluster pairwise 

Pearson correlation exceeds 𝜅P  for the simulated cluster of closest size. 

 

3. Tight clusters tested: For each tight cluster 𝐶, we conduct a Monte-Carlo test to 

assess dissimilarity from the background. Pairwise Pearson correlations are calculated 

between every barcode in 𝐶 and 𝑝̂*+; the test statistic for cluster 𝐶, 𝑇R, is defined to be 

the median of these correlations. Similar to ED, to simulate background barcodes, we 

sample barcodes 𝑋"∗, … , 𝑋T∗  from a Multinomial (N;	𝑝̂*+) where N is the size of the 

barcode giving 𝑇R. The Monte-Carlo p-value is:  

𝑝P =
∑ 	3𝑐𝑜𝑟Y=∗,( ≤ 𝑇PH + 1T
\]"

𝑀 + 1  

where 𝑐𝑜𝑟Y=∗,( is the Pearson correlation between 𝑋\∗ and 𝑝̂*+(M defaults to 1000 in 

R/scCB2).  Monte-Carlo p-values  are calculated for each cluster followed by 

Benjamini-Hochberg16 to control the FDR. All barcodes within a significant cluster 

are identified as real cells. 

 

4. Individual barcodes tested: Barcodes that were not included in a tight cluster in 

Step 2 as well as those in a tight cluster that were not found to be significant in Step 3 

are tested individually using ED. It is important to note that some of the barcodes 

identified in this step do not overlap with identifications made when ED is applied to 
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the full set of barcodes given differences in the rates of true cells to background 

barcodes and differences in error rate control. 

 

Simulations. Counts are generated as in Lun et al. 20194. As detailed there, each simulation 

requires an input dataset. We constructed simulations from 10 datasets: Alzheimer5, PBMC8K, 

PBMC33K, mbrain1K, mbrain9K, PanT4K, MALT, PBMC4K, jurkat, and T293 

(Supplementary Table 2). For each input dataset, the inflection point of the UMI count by 

sorted barcode plot is used to divide lower count from higher count barcodes. The barcodes in 

the lower count range are considered background. In SIM IA, two sets of 2000 barcodes 

randomly sampled from the higher count range are considered real cells. The first set of 2000 is 

referred to as large (	𝐺") cells; the second set is downsampled by 90% to give small (𝐺#) cells.  

We added a third set of medium (𝐺".%) cells by sampling 2000 cells from the higher count range 

and downsampling by 50%. The process for simulating data in SIM IB is identical to SIM IA 

except that in SIM IB, 10% of the genes in each simulated real cell are shuffled making the real 

cells more different from the background barcodes and, consequently, making real cells easier to 

identify. SIM IA is a more realistic simulation (Supplementary Figure 4).  

 

Case studies. We evaluated the 10 datasets used in the simulation and also the placenta data 

evaluated in Lun et al. 20194. These datasets vary in sequencing depth as well as in the extent of 

differences between the real cell and background distributions (Supplementary Figure 4). CB2 

and ED were applied to each dataset using default settings. For plots that compare identifications 

between CB2 and ED, cells identified by either approach (or both) were combined and UMI 

counts were normalized via scran. The Seurat pipeline was used to generate t-SNE plots from 
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the top 4000 most highly variable genes and top 50 principal components. Expression heatmaps 

show log transformed raw UMI counts. For heatmaps and distribution plots, mitochondrial and 

ribosomal genes were removed. 

 

Differential expression analysis in Alzheimer data. Cells identified by CB2, ED, or both were 

combined into a single matrix and filtered similar to Mathys et al.5. Specifically, cells with 

mitochondrial gene expression making up 40% or more of the total UMI counts were removed; 

genes detected in fewer than two cells were also excluded giving a matrix of 28208 genes and 

74579 barcodes. Normalization was performed using scran. Cell types were annotated using 

marker genes as in Mathys et al.5  Differential expression (DE) tests between cells from 

Alzheimer’s cases and controls were conducted using Wilcoxon rank-sum tests as in Mathys et 

al.5. Results were compared for known DE genes extracted from Mathys et al.5. 

 

Implementation of CB2 and ED. For all simulation and case study analyses, CB2 and ED were 

implemented using default parameters. A target FDR was set at 1%. 

 

Existing subpopulations vs. novel subpopulations: The FindNeighbors and FindClusters 

functions in Seurat were used with default settings to assign each cell to a cluster, referred to 

here as a subpopulation. For each subpopulation, we calculated the percentage of cells identified 

by both CB2 and ED as well as those identified uniquely by CB2. Subpopulations for which over 

80% of the cells are uniquely identified by CB2 are referred to as novel subpopulations 

(Supplementary Table 3 shows the number of novel subpopulations identified using 70%, 80%, 

or 90% as thresholds). 
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