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Abstract

Genetic association studies of many heritable traits resulting from physiological testing often
have modest sample sizes due to the cost and invasiveness of the required phenotyping. This
reduces statistical power to discover multiple genetic associations. We present a strategy to
leverage pleiotropy between traits to both discover new loci and to provide mechanistic
hypotheses of the underlying pathophysiology, using obstructive sleep apnea (OSA) as an
exemplar. OSA is a common disorder diagnosed via overnight physiological testing

(polysomnography). Here, we leverage pleiotropy with relevant cellular and cardio-metabolic
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phenotypes and gene expression traits to map new risk loci in an underpowered OSA GWAS.
We identify several pleiotropic loci harboring suggestive associations to OSA and genome-wide
significant associations to other traits, and show that their OSA association replicates in
independent cohorts of diverse ancestries. By investigating pleiotropic loci, our strategy allows
proposing new hypotheses about OSA pathobiology across many physiological layers. For
example we find links between OSA, a measure of lung function (FEV,/FVC), and an eQTL of
desmoplakin (DSP) in lung tissue. We also link a previously known genome-wide significant
peak for OSA in the hexokinase (HK1) locus to hematocrit and other red blood cell related traits.
Thus, the analysis of pleiotropic associations has the potential to assemble diverse phenotypes
into a chain of mechanistic hypotheses that provide insight into the pathogenesis of complex

human diseases.

Introduction

Genome-wide association studies of human phenotypes ranging from gene expression to
human diseases are now routine. Cumulatively, the data indicate that complex traits are highly
polygenic, "# and genetic correlation between these traits indicates abundant pleiotropy. >°
Interpreting the plethora of results raises two major challenges: first, generating testable
mechanistic hypotheses about the underlying pathophysiology; and second, increasing
statistical power to identify associations in traits with small or moderate sample sizes.
Leveraging pleiotropy can help address both of these challenges. Previous work has
demonstrated that including many correlated traits in association studies increases power to
detect associations common to multiple traits. *° This approach is untried in genetic
investigations of obstructive sleep apnea (OSA). Here, we demonstrate that using shared

associations between correlated traits can identify effects in under-powered studies of
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obstructive sleep apnea (OSA), and that leveraging molecular and physiological

endophenotypes in this way also generates clear and testable biological hypotheses.

OSA is characterized by recurrent episodes of partial or complete obstruction of the pharyngeal
airway resulting in multiple physiological disturbances, including sympathetic nervous system
activation, increased energy cost of breathing, intermittent hypoxemia, and wide swings in
intrathoracic pressure. This disorder is highly prevalent in the general population, affecting more
than 15% of middle-aged adults, with increased prevalence observed with aging, obesity, and
cardiometabolic disease, and is more common in men.” OSA leads to sleep disruption,
particularly increased sleep fragmentation and decreased proportion of restorative stages of
sleep, resulting in daytime sleepiness, impaired quality of life and cognitive deficits. ® Moreover,
OSA is associated with increased rates of hypertension, incident heart disease, stroke,

9101112718 pagpite the large number

diabetes, depression certain cancers and overall mortality.
of epidemiological studies indicating that OSA is closely associated with these outcomes, there
appears to be subgroup differences in susceptibility, e.g., middle-aged individuals and men are
more likely to experience OSA-related cardiovascular disease in some studies than older
individuals and women, respectively. This underscores gaps in our knowledge of the
pathophysiological pathways linking OSA to other diseases. '*?' Pathophysiological pathways
linking OSA to other diseases and factors that influence individual differences in susceptibility
are poorly understood. While there are several effective treatments for OSA, including
continuous positive airway pressure (CPAP), there appears to be substantial variation in overall

clinical response and attenuation of cardiometabolic consequences, suggesting heterogeneity in

both the etiology of the disease and susceptibility to its physiological disturbances.
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Indices of OSA, including the apnea hypopnea index (AHI; the number of breathing pauses per
hour of sleep), apneic event duration, indices of overnight hypoxemia, habitual snoring, and
excessive daytime sleepiness, show substantial heritability in family studies. ?° Past studies
have identified only a handful of associations with a variety of OSA related traits. We have
previously described a GWAS of OSA traits measured by overnight polysomnography in multi-
ethnic cohorts totaling ~20,000 individuals. # In that study, we found two genome-wide
significant multiethnic associations: variants in a locus on 10922 were associated with indices of
average and minimum SpO. and percentage of sleep with SpO, < 90%, and variants in a locus
on 212 were associated with minimum oxygen saturation (SpO.). In another study we identified
a locus in 17p11 with a male specific effect on AHI. #® Furthermore, in an admixture mapping
study in Hispanic/Latino Americans, we identified a locus on 2937 associated with AHI and one

in a locus on 18g21 associated with AHI and SpO,< 90%.%*

The low number of genetic associations reported to date only explains a small fraction of OSA
trait heritability. This relative paucity of findings is driven primarily by modest sample sizes, a
reflection of the expense and difficulty of measuring physiological phenotypes by overnight
polysomnography. This also limits our ability to fine-map associations down to causal variants
and thus identify relevant genes. Overnight polysomnography is logistically difficult and
expensive, so data on hundreds of thousands of individuals — sample sizes at which GWAS
designs are well-powered to detect tens of loci and, aided by additional experiments, fine-map

2

some of them — have yet to be collected and may never be available. " Biological

interpretation of available genetic associations is further complicated by the observation that
most GWAS effects localize to enhancer regions and other regulatory elements and are often

distal to physiologically relevant genes. >
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Now that GWAS of massive sample sizes have been accumulated for various comorbid
conditions and endophenotypes related to OSA, we hypothesize that analysis of shared
associations across correlated traits can identify effects in under-powered studies of OSA and
generate clear and testable biological hypotheses. A number of computational methods
increase power for discovering genetic associations by capitalizing on pleiotropy between
disease phenotypes or between a disease and a molecular trait such as gene expression. One
common approach takes advantage of the genetic correlation among phenotypes. ®4’ This class
of methods gains substantial additional power by pooling association signals across traits.
However, such methods require large sample sizes and suffer from power loss when genetic
correlation is limited to a subset of loci. An alternative approach analyzes individual loci to detect
pleiotropic alleles, with no regard to overall genetic correlation.?®*****-%" Only a handful of
existing methods account for the possibility that the apparent pleiotropy is driven by the linkage
disequilibrium (LD) between two distinct causal variants each of which drives only one

4,31,32,34,36

phenotype.

In this study, we apply a joint likelihood mapping method (JLIM) to detect shared associations
between OSA and other related traits. JLIM has high specificity when rejecting apparent
pleiotropy driven by distinct causal variants in LD, and does not depend on estimates of genetic
correlation which necessitate large sample sizes. We have previously applied this approach to
identify shared associations between gene expression traits and autoimmune disease risk. *
However, JLIM’s rationale generalizes beyond gene expression to any potential intermediate
trait or biological marker that might also mediate OSA pathogenesis. Here, in a novel application

of JLIM, we reverse our strategy to ask whether highly significant associations with traits that
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plausibly influence OSA measures, also have pleiotropic effects on OSA parameters, as a way
to discover and simultaneously interpret new associations to sleep apnea traits in an

underpowered study.

We focus on a set of well powered intermediate traits which have previously been implicated in
the pathobiology of OSA. Given prior GWAS studies suggesting the involvement of inflammatory

—4
A, 3840

genes in OS case-control and cohort studies reporting high levels of inflammation,

A, *'*2 we included leukocyte and

including elevations in neutrophils and monocytes in OS
platelet related traits in our pleiotropic comparisons. Similarly, we also included red blood cell
related traits given prior GWAS implicating iron metabolism * and erythrocyte function. > We

43,44

will refer to these as clinical traits. In addition, OSA is associated with lung, obesity and

42,45-47

cardiovascular-related pathologies, and we have included clinical traits that reflect that,

together with gene expression traits in tissues implicated in such pathologies.

By linking different clinical and gene expression traits to OSA at specific loci, our analysis leads

to new hypotheses about OSA pathobiology across many physiological layers, in addition to

finding new associations.

Materials and Methods

OSA Cohorts

To study pleiotropic associations underlying the risk of OSA, we prepared two sets of cohorts:

the discovery cohorts to identify pleiotropic variants and independent replication cohorts to

validate their associations to OSA traits. For the discovery cohorts, we used individual-level
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genotype data in order to determine the significance of pleiotropy by permutation (JLIM). At the
replication stage, we do not carry out any pleiotropy analysis, we only check for genetic
association to OSA, so summary-level association statistics were sufficient. In addition, we
restricted the genetic ancestry of GWAS discovery cohorts to that of European ancestry, to
match GWAS of clinical traits. This was in order to avoid potential issues due to mismatch of LD
patterns in our pleiotropy analysis. In contrast, we did not require the replication cohorts to have

any specific ancestry. Thus, our replication cohorts included all available ethnicities.

The discovery cohorts included the subset of samples of European ancestry from the following
five cohorts: the Atherosclerosis Risk in Communities Study (ARIC),*® Osteoporotic Fractures in
Men (MrOS) Study,* Multi-Ethnic Study of Atherosclerosis (MESA),*® Cardiovascular Health
Study (CHS),®" and the Western Australian Sleep Health Study (WASHS).*? ARIC is a study that
investigates atherosclerosis and cardiovascular risk factors. It is one of the cohorts included in
the Sleep Heart Health Study, which collected polysomnography and genotype data.>® Genotype

data were obtained through dbGaP (phg000035.v1.p1). MESA is a population-based study

focused on cardiovascular risk factors, which included participants of four ethnicities: African-,
Asian-,European- and Hispanic/Latino-Americans ranging from ages of 45 to 86 years old. We
only included samples from European-Americans in the discovery cohort. Polysomnography
data measuring sleep related traits was later obtained from individuals who did not use
overnight oxygen, CPAP or an oral device for sleep apnea.>® MrOS is a multi-center prospective
epidemiological cohort assembled to examine osteoporosis, fractures and prostate cancer in
older males.*® An ancillary study (MrOS Sleep) measured sleep disturbances and related
outcomes.”® CHS is a cohort aimed to study coronary heart disease and stroke in individuals

aged 65 and older, and genotype data was obtained through dbGaP (lllumina CNV370 and IBC;


https://doi.org/10.1101/832162
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/832162; this version posted November 7, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

phg000135.v1.p1 and phg000077.v1.p1). WASHS is a clinic-based study designed to examine
OSA and its associated genetic risk factors in patients referred to a sleep clinic in Western
Australia. Not all individuals had measurements for the four OSA related traits of interest.
Details on genotyping, imputation and QC procedures have been previously reported %.See

Table S8 for details.

The replication cohorts were: the Hispanic Community Health Study/Study of Latinos
(HCHS/SOL),>"*® Starr County Health Studies (Starr),>® Cleveland Family Study (CFS)*° and
Framingham Heart Study (FHS),®' in addition to non-European samples of CHS and MESA.
HCHS/SOL is a population-based study to examine protective and risk factors for many health
conditions among Hispanic/Latinos living in four urban areas within the USA (Chicago IL, Miami
FL, San Diego CA and Bronx NY). Starr is a cohort collected to study risk factors for diabetes in
a population of Mexican-Americans in Texas, later phenotyped for sleep traits.®® CFS is a family-
based study, which recruited patients with OSA, their relatives, and neighborhood control
families to study the familial and genetic basis of sleep apnea (356 families of African American
or European American ancestry). We included only unrelated individuals from CFS. FHS is an
epidemiological cohort established to study cardiovascular disease risk factors, using follow-up
medical examinations every two years for the population of European Ancestry in Framingham,
MA. Data from the first Sleep Heart Health Study was obtained between 1994-1998. Genotype

data was obtained through dbGaP (Affymetrix 500k; phg000006.v7). See Table S9 for the

details of each cohort.

We examined the following four OSA related traits in the discovery and replication cohorts:

minimum and average oxygen saturation (SpO.), apnea-hypopnea index (AHI), and event
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duration. Briefly, the minimum and average SpO. were calculated from oximetry-based SpO.
measurements over the entire recorded sleep interval excluding occasional waking periods. AHI
was scored by counting the number of episodes of complete (apnea) or partial (hypopneas)
airflow reduction associated with > 3% desaturation per hour of sleep. The event duration was
measured for the average length of apneas and hypopneas, from the nadir of the first reduced
breath to the nadir following the last reduced breath (in seconds). The full description of
phenotyping protocols is present in the original study which first reported their genetic analysis
in the context of OSA.?*2* We rank-normalized all OSA traits, separately in each cohort, in order

to obtain normally distributed phenotypes.

Clinical Trait Data

For clinical traits, we used GWAS summary statistics calculated for various traits in the UK
Biobank,®*®* blood cell related phenotypes in a general UK population,®® and cardio-metabolic
phenotypes in individuals of European Ancestry.?® There is no sample overlap between clinical
trait GWAS data and our discovery or replication cohorts. The full list of clinical traits is shown in
Table S1. The GWAS summary statistics for UK Biobank traits and blood cell counts were
downloaded from their websites. The summary statistics of cardio-metabolic traits from®® were

obtained directly from the authors.

This research was approved by Partners in Healthcare IRB (protocol #2010P001765).

Identifying pleiotropic variants affecting both clinical traits and OSA
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We applied Joint Likelihood Mapping (JLIM version 2.0) %> to0 test whether the association

signals of two traits were driven by a shared genetic effect. We ran JLIM only on the loci in
which there was strong evidence of association to a clinical trait (genome-wide significant) and a
suggestive association to the OSA trait (p <0.01). In these loci, JLIM compares the likelihood of
observed association signals under the following three competing possibilities: the OSA trait has
no causal variant in the locus (“H,”), the same OSA causal variant is shared with the clinical trait
(“H,”) or the OSA causal variant is distinct from the clinical trait causal variant (“H,”) shown in
Figure S1. Briefly, JLIM calculates the ratio between the likelihood of the data under H,
compared to that under H, and evaluates the significance of this statistic by permuting the
phenotypes simulating the lack of causal effect under Hy. The false positives due to H, are
indirectly controlled by the conservative behavior of JLIM: the expected value of JLIM statistic is
lower under H, than under H,. JLIM assumes that only up to one causal variant is present for
each trait in a locus. However, simulations showed that the accuracy of JLIM remained robust in

the presence of multiple causal variants in a locus (Figure S7).

To run JLIM, we used the genetic association statistics of OSA traits calculated over all SNPs in
a 200kb analysis window around the focal SNP (the lead SNP in the clinical trait). We derived
these statistics from our discovery cohorts by combining association signals of each cohort
using an inverse-variance weighted meta-analysis approach. The association statistics were
calculated in individual cohorts by linear regression adjusting for age, sex, BMI and the top three
principal components. The principal components were calculated from genome-wide genotype
data in each cohort separately. We used mean imputation for missing covariate values. Multi-

allelic SNPs and variants with minor allele frequencies (MAF) below 0.05 were excluded from


https://doi.org/10.1101/832162
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/832162; this version posted November 7, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

the analysis. We only used variants present in all of the discovery cohorts. We only ran JLIM in

the discovery cohorts.

We used the same pipeline to generate permuted association statistics for JLIM. OSA
phenotypes were randomly shuffled in each cohort separately. For each permutation, the
association statistics were calculated in the same way including all the covariates. Then, the
cohort-level association statistics calculated on permuted data were combined across cohorts
by meta-analysis. This permutation procedure was repeated for up to 100,000 times, adaptively,

to estimate JLIM p-values.

Replication of OSA associations in independent samples

We validated the OSA associations identified in the discovery cohorts by replicating them in out-
of-sample multi-ethnic replication cohorts (Table S9). There was no sample overlap between our
discovery and replication cohorts. We combined the p-values of associations across the six
replication cohorts by applying an inverse variance-weighted meta-analysis technique. We
defined the p-value of association < 0.05 as nominal evidence of replication and the p-value <
0.05/65 as a more stringent Bonferroni-corrected replication cutoff, given that 65 loci were

uncovered for their pleiotropic associations to OSA in the first analysis (Table 1, Table S3).

Identifying pleiotropic variants affecting both gene expressions and OSA

We used cis-expression quantitative trait loci (eQTLs) from the Gene-Tissue Expression project

(GTEx release v7) ®” and BLUEPRINT epigenome project (release 20151109), ®® to examine

pleiotropy between the variation in gene expression levels and OSA phenotypes. Among the
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GTEXx datasets, we only considered liver (N = 133), spleen (N = 116), skeletal muscle (N = 420)
and lung (N = 333) tissues for our analysis, based on the potential relevance of these tissues to
OSA and their sample sizes. Again, we included only samples of European ancestry for this
analysis. Genetic ancestry was identified by the first two axes in principal component analysis
(Figure S9,510). The GTEXx post-QC genotype data were obtained from dbGAP (phs000424.v7)
along with the sample covariates. The post-QC normalized RNA levels were downloaded from
the GTEx portal. For the analysis of immune-cell eQTLs, we used BLUEPRINT datasets which
consisted of genotypes of participants and expression profiles of CD14" monocytes (N = 194),
neutrophils (N = 196) and CD4"* T cells (N = 169). The RNA transcripts of BLUEPRINT samples
were derived from unstimulated primary cells collected from healthy individuals of European
ancestry. The genotype data of BLUEPRINT participants were downloaded from the European
Genome-phenome archive (EGA; EGAC00001000135). The QCed and normalized gene

expression levels were obtained from the BLUEPRINT project.

We focused this analysis on the 65 loci with putative pleiotropic associations between OSA and
clinical traits (Table S3). Using GTEx and BLUEPRINT eQTLs, we scanned for pleiotropy
between eQTLs and clinical or OSA traits. We considered all protein-coding genes whose
transcription start sites (TSS) were less than 1Mb away from the focal SNP of a clinical trait. The
protein-coding genes were defined by Ensembl annotation (release 92). The genes with eQTL
association p-value > 0.01 at the focal SNP were excluded due to weak evidence of association
to gene expression. Multiallelic SNPs and variants with MAF < 0.05, were excluded from the
analysis. The default parameters were used for JLIM. The number of permutations to estimate
the p-value of JLIM statistic were adaptively increased up to 100,000 starting from the minimum

of 1,000.
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Since JLIM requires permutation of eQTL associations to generate the null distribution of its
statistic, we re-calculated the eQTL association statistics from the original data and generated
permutation statistics from the same pipeline by randomly shuffling the phenotypes. Specifically,
for each tested gene, we used normalized gene expression values as a phenotype and ran a
linear regression for each SNP in a 200kb JLIM analysis window surrounding the focal SNP.
Similarly as in the original study, when we calculated the eQTL association statistics for GTEx
tissues, we included the top three principal components (PC), 15 PEER factors,®® sex and
platform (lllumina HiSeq 2000 or HiSeq X) as covariates. For BLUEPRINT, we generated the
eQTL association statistics including the covariates of the top three PCs, age and sex. The

same set of covariates were also used to generate permutation data for JLIM.

Simulated datasets

To compare the accuracy of JLIM to other methods, we simulated genetic loci with pleiotropic
associations under different scenarios with unbalanced sample sizes. For one of two traits, we
simulated a well-powered GWAS of a quantitative trait with sample sizes of 100,000, 150,000
and 200,000. For the other trait, we simulated an under-powered GWAS with much smaller
sample sizes of 5,000, 10,000 and 15,000. To generate datasets of realistic LD backgrounds,
we used real genotypes of 80 randomly picked loci across the genome. The genotype data of
15,000 individuals were obtained by subsampling from six cohorts of European Ancestry
(MESA, ARIC, MrOS, CHS, CFS, FHS and WASHS) and further down-sampled to a target
cohort size as needed. Each locus was 200 kb in length. Chromosome 6 and the sex
chromosomes were excluded from our simulations due to the difference in LD patterns from the

rest of genome. We removed multiallelic sites and variants with MAF < 0.05.
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In each of these simulated loci, the SNP in the midpoint of the genomic segment was chosen as
the causal variant for the well-powered trait (focal SNP). We fixed the true genetic effect 7 of
the focal SNP to be large enough to explain 0.05% of the variance in the trait. This value was
chosen to represent typical effect sizes of genome-wide significant association peaks in a well-
powered study. In GWAS of sample sizes of 100,000, 150,000 and 200,000, the median p-
values of association at such a focal SNP are 1.5x 102, 4.7 x 10" and 1.5 x 10%,
respectively. JLIM only requires GWAS summary statistics for the well-powered trait. Therefore
in each locus, we generated summary statistics by sampling the association statistics Z of the

locus from the following multivariate normal distribution "

Z~N(JN 2B,%),

where N; is the GWAS sample size, m is the number of markers in the locus, X is the mxm LD
matrix, and B is the m-dimensional vector of true causal effects (on standardized genotype

values) at all SNPs in the locus. g was set to gF at the focal SNP and to 0 at all other SNPs.

The p-values of association were calculated from Z = (Zy, ..., 2j, .., 2,,) " as follows:

pj =2 x®(—|Z;),

where Z} is the association statistic at SNP j, and @ is the standard normal cumulative
distribution function. Because of sampling noise, in a minority of simulations, all SNPs in the
locus failed to pass the genome-wide significance threshold. When this happened, we re-

simulated the locus until it reached the target threshold. This was done to mimic our data
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analysis, where we only included loci in which the clinical trait association p-value was genome-

wide significant.

For underpowered GWAS datasets, we simulated loci with no causal effect (H,), the same
causal effect at the focal SNP (H,) or a causal effect at a distinct variant from the focal SNP
(H,). For simulations of Hy, we assumed that all SNPs had the causal effect size of 0. For
simulations of H; and H,, the true causal effect size was fixed to ¥, but the causal variant was
chosen to be the focal SNP in case H; or to be a distinct SNP in case of H,. The distinct SNPs
were chosen from an LD window relative to the focal SNP, selecting one in each of the following
LD ranges: low ( |r] < 0.3 ), intermediate ( 0.3 < |r| < 0.6 ) and high (0.6 < |r| < 0.8). Since
JLIM requires individual-level genotype data, for the underpowered trait, we simulated
phenotypes for all individuals and calculated the association statistics by linear regression,
instead of sampling the summary statistics from a multivariate normal distribution. The
genotypes were generated by down-sampling from a total of 15,000 samples to the target cohort
size. For H,, we simulated baseline phenotype values by sampling from the standard normal
distribution. For H; and H,, we added the genetic effect 57 to the baseline phenotypes,
depending on the genotypes of the simulated causal SNP. The simulated causal effect size of
BF is expected to produce median association p-values of p=0.11, 0.025, and 0.0062 , with
GWAS sample sizes of 5,000, 10,000 and 15,000, respectively. Each parameter set was

simulated 100 times per locus.

Next, we examined the robustness of our method when the true effect sizes were only weakly
correlated between two traits. Here, we assumed that the causal effect sizes between two traits

were coupled and the degree of this coupling was governed by the correlation coefficient p; ,.
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Specifically, we modeled the causal effect sizes ( (1) (2)) at the focal SNP F for the two traits

as distributed according to the following bivariate normal distribution:

(€] 2

F 0 01 P1,20107

@ |~V (0)’ 2 )
" P1,20102 )

where o7 and o7 are the variance of per-SNP effect sizes for trait 1 and 2, respectively. We
assumed that o2 = h?/fM; and o7 = h3/fM,. Here, h? and h5 are the heritability of each trait,
both set to 0.5. M, , M, are the numbers of independent causal SNPs in the genome for each
trait, both set to 1,000,000 in our simulation, and f is the fraction of SNPs expected to be causal
in each trait, set to 0.01 in our simulation. We considered the correlation coefficient p, , to be 0,
0.35 or 0.7. In such a scenario, given a fixed value of ﬁ(l) the conditional distribution of ﬁ(z)

follows the normal distribution such that:

B | BV~ (p 2B, a2 (1 - plz))

Using this conditional normal distribution, we kept the effect size of the focal SNP for the well-
powered trait ,8;1) to be the constant g¥, explaining 0.05% of trait vFariation, and sampled the
causal effect size ﬁ(z) of the underpowered trait to differ from, but be correlated to that of the

well-powered trait.

Last, we also evaluated the accuracy of our method under the presence of additional causal

variants that were not shared across two traits. Here, we randomly selected two additional SNPs


https://doi.org/10.1101/832162
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/832162; this version posted November 7, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

for each trait in a locus. The effect sizes of these four extra non-pleiotropic variants were
sampled from a normal distribution with variance of o7 /5 and o2 /5 for each corresponding trait.
We simulated the effect sizes of focal SNP for the well-powered trait and main causal SNP for

the under-powered trait in the same manner as the previous set of simulations.

Simulated benchmark of coloc and eCAVIAR

We ran coloc (version 3.1)*" with summary statistics of GWAS for clinical and OSA traits as
inputs. The sample sizes of tested GWAS cohorts were provided along with allele frequencies
and p-values of association at all SNPs. We used the default prior settings, where the frequency
of causal SNPs (p; and p,) was set to 10™ for both traits, and the frequency of colocalization
(p12) was set to 10°. The pleiotropic variants were identified based on the posterior probability

of colocalization (PP4).

We ran eCAVIAR (version 2.2)** with summary statistics of both traits and reference LD matrix.
The default parameter setting was used. As a prior, eCAVIAR assumes that each variant in the
locus analyzed is causal for a particular trait with a probability of 0.01, independently of other
variants and phenotypes. It then computes the posterior probability of each variant being causal
for both traits. By default, eCAVIAR considered up to two causal variants per trait in each locus.
We used the top posterior probability that an identical SNP is causal for both traits (called “the

maximum CLPP score”) to find the pleiotropic variants.

Since the posterior probabilities of coloc and eCAVIAR were measured in relative scales, we

needed to calibrate the cutoffs of these scores before comparing their accuracies with JLIM. For
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this, we used null simulations of no causal effect for underpowered trait (H,) to find the score
cutoffs corresponding to the 1% false positive rate. To calculate precision, we mixed a randomly
sampled subset of positive cases with all of our negative cases at a specified ratio. This step

was iterated for 500 rounds, and then the average precision was reported.

Results

Creating a framework to identify associations in underpowered GWAS through pleiotropy

We used JLIM ** to identify pleiotropic loci, where a genetic effect drives association to two
traits. First, we selected genome-wide significant loci (association p <5 x 10°®) in our well-
powered trait (here, a clinical trait), and from these we selected the subset where the lead
(focal) SNP also shows nominal association to OSA traits (p <0.01). We then used JLIM to
directly evaluate if the association to the two traits was consistent with the same underlying
effect, indicating a pleiotropic effect. This two-step strategy allowed us to distinguish between
cases where there was association only in the clinical trait; where there was a shared
association in both traits; and if there was distinct associations in both traits stemming from

different underlying effects (Figure S1).

Simulations

We first assessed our strategy in simulated data, varying sample size, LD and the presence of

multiple conditionally independent associations in a locus. For reference, we also compared

JLIM results to those from two other popular pleiotropy detection methods, which unlike JLIM
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are Bayesian: coloc *' and eCAVIAR. * We simulated statistics for pairs of traits where the
same variant is causal (positive cases), and where two different variants in LD are driving each
of the associations at a locus (negative cases), and assessed the capacity of each method to
discriminate between them. All three methods directly contrast the likelihood of true pleiotropy to
that of the alternative driven by two distinct causal variants, although coloc does not explicitly

account for the effect of LD in summary statistics.

We used genotypes from European ancestry samples as a reference from which we simulated
quantitative traits in 5,000; 10,000; and 15,000 samples as surrogates for the OSA GWAS. To
simulate summary statistics from a well powered GWAS (representing our clinical traits), we
sampled values from a multivariate normal (MVN) distribution using the local LD matrix as a
variance-covariance parameter 0 with clinical trait samples sizes of 100,000; 150,000; and
200,000 samples. We found that coloc was the most sensitive method (Figure 1A), though this
came at a substantial false positive rate and drop in precision (Figure 1B and C). Overall, we
found that JLIM has high specificity at discriminating pleiotropic associations from cases where
two distinct variants in LD drive associations in the same locus in different traits (Figure S1). We
explored a range of other parameters, including sample size for each trait, the correlation
between effect sizes in both traits, the LD between causal variants in negative cases, and the

level of allelic heterogeneity in the loci, detailed in supplemental section (Figures S2-S7).

Identifying pleiotropic associations between clinical traits and sleep apnea-related traits
Based on clinical relevance 7' and heritability, ° we focused on four OSA-related traits
measured in five European-ancestry cohorts: the apnea-hypopnea index (AHI), % average
respiratory event duration, * minimum and average oxygen saturation (SpO,). ?* We used

summary statistics from the remaining multiethnic cohorts in our replication effort.
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We assembled a collection of GWAS summary statistics for a total of 55 candidate intermediate
traits from across these physiological areas: erythroid, leukocyte and platelet counts and
function, from a study combining the UK Biobank and INTERVAL datasets (170,000 individuals
of European ancestry); ®° cardiovascular, metabolic and respiratory traits from the UK Biobank

64,72

(380-450,000 European ancestry participants), and cardio-metabolic traits (36,000 European
ancestry participants). °® We then compared associations in each of these clinical traits to our
OSA traits (6,781 European ancestry participants; Table S8), to identify potential associations in

the latter. A complete list of clinical traits we considered is presented in Table S1

We tested for directional causal effects of the selected clinical traits on our OSA related traits
using Mendelian Randomization (MR).”® Due to the low sample sizes in OSA traits, no
comparison reached statistical significance after multiple test correction (Table S11). After
excluding the extended MHC region and the sex chromosomes, we identified 3,191 genome-
wide significant associations (p < 5 x 10°®) in the 55 clinical traits, of which 221 had a
corresponding suggestive OSA association at the lead SNP (p < 0.01; Table S2). We then
explicitly tested for evidence of pleiotropy between clinical and OSA traits using JLIM. We found
evidence that in 65/221 of these regions the OSA and clinical trait associations are consistent
with a shared, pleiotropic underlying causal variant (false discovery rate (FDR) < 0.05; Table 1,
Table S3). FDR values were computed based on the JLIM p-values obtained, using the total

number of trait comparisons tested (Table S2).

To independently validate our 65 putative OSA trait associations from the discovery stage, we
compiled summary statistics for the same traits in 15,594 individuals of Asian, African American,

European and Hispanic ancestries (Table S9). These individuals do not overlap with those from
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the cohorts used in our JLIM analysis. We do not attempt to replicate pleiotropic associations;
we only replicate the OSA association statistics. JLIM relies on local LD patterns being
preserved between clinical and OSA trait cohorts, so we cannot use multi-ethnic data in our
discovery analysis. We found that 2/65 variants in Table S3 show significant association with
the same OSA trait as the initial observation, after Bonferroni correction for the number of tests
performed (which we consider more appropriate than FDR for out-of-sample testing). The
variant in SNP rs17476364 (Figure 2A) links every single one of the red blood cell related
clinical traits analyzed with average SpO.. It is an intronic variant in the hexokinase 1 (HKT)
region in chromosome 10, and has been previously reported, as it reached genome-wide
significance in association to minimum and average Sp0,.?* The variant in SNP rs2277339 is a
missense coding variant in DNA primase subunit 1 (PRIM1) in chromosome 12. It links both
plateletcrit and mean corpuscular volume to AHI. In the UK biobank, it has documented
significant associations to height, waist to hip-ratio, age at menopause and multiple red blood
cell related traits.”* A further 10 variants, shown in Table 1, were below nominal association p

values < 0.05 in the replication set, but did not survive multiple test correction.

We performed sensitivity analyses to assess whether our discovery analysis was generating
false positive associations due to our selection criteria, or our replication data was generating
false negatives due to low statistical power. We randomly selected 100,000 SNPs (excluding the
HLA region and sex chromosomes) from our initial OSA GWAS in individuals of European
ancestry, giving us 400,000 association statistics across four OSA traits. We found that 4,162 of
these would have been selected for our JLIM analysis, in line with expectation for our in-sample
threshold of association p <0.01. Out of these, 223 had a significant out-of-sample nominal

replication (association p < 0.05). In comparison, our pleiotropy analysis results are 3.5-fold
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enriched at this threshold (12/65 hits), suggesting the presence of true associations to sleep

traits (one-sided Fisher exact p = 0.00019; Figure 2).

JLIM has higher statistical power to detect pleiotropy when the underlying association to OSA is
stronger, raising a concern that loci with stronger OSA associations in the discovery set are
driving the out-of-sample replication rate and are overrepresented among loci with significant
evidence of pleiotropy. To address this, we compare the out-of-sample nominal replication after
correcting for OSA associations in the discovery sample The rate of nominal replication
remained significantly higher among the 65 pleiotropic associations compared to random
controls when we controlled for the bias due to the difference in strength of association to OSA
(Combined Fisher exact p =0.00434, 3.23-fold enrichment; Table S10). In fact, the 156/221
associations that did not show significant evidence of pleiotropy were also slightly enriched for
nominal replication relative to the set of randomly selected variants (one-sided Fisher exact p =
0.076, 1.7-fold enrichment; Figure 2). This suggests that the FDR cutoff we applied to our JLIM
results is conservative, and additional pleiotropic effects — and therefore true OSA associations
—remain to be discovered. In both cases where we could clearly replicate an OSA association in

our multiethnic cohort data, we detected pleiotropy with multiple erythrocyte traits.

Incorporating gene expression to construct molecular hypotheses of sleep apnea physiology
Non-coding regions with evidence of gene regulatory activity carry a large proportion of
heritability in most traits analyzed in large GWAS. ® We reasoned that some OSA causal
variants would reside in such regulatory regions, and thus act on gene regulation. We therefore
sought shared associations between gene expression traits and the clinical traits for which we
identified a pleiotropic association in the 65 loci in Table 1 and Table S3. To do so, we compiled

expression quantitative trait loci (eQTL) data for protein-coding genes expressed in lung, liver,
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spleen and skeletal muscle from individuals with European ancestry from the GTEx Project, ¢

and monocyte, T cell and neutrophil populations in individuals from BLUEPRINT. "® We chose
these tissues for potential relevance to OSA pathology: the lung is involved in OSA-related

hypoxemia; ****

previous GWAS associations have implicated the neuromuscular junction in
overnight SpO; levels; % the spleen and liver are known to mediate filtration of erythrocytes and
iron homeostasis; and leukocytes are key modulators of inflammation. We calculate FDR based

on JLIM p-values over the 167 comparisons shown in Table S4, where we include these eQTL

analyses.

We were able to identify shared associations between eQTL and clinical traits in 34/65 loci
(Table 2, Table S5). This includes several notable examples, including a locus on chromosome
1, where eQTL for both PSENZ2 (presenilin 2) and COQB8A (coenzyme Q8A) levels in neutrophils
are pleiotropic with the percentage of neutrophils in white blood cells, which in turn is pleiotropic
with AHI. Another example is a locus on chromosome 6 where we find that a known eQTL for
desmoplakin expression in lung tissue is pleiotropic with a measure of lung function (FEV,/FVC,
the ratio of forced expired volume per second to forced vital capacity), which in turn is pleiotropic
with an association with AHI (Figure 3). Thus, in these and other loci we can attribute
associations to gene expression in specific cell types, clinical and sleep apnea traits to the same
genetic variant, and thus construct specific biological hypotheses of the pathophysiology

underlying OSA.

We also looked for pleiotropy between gene expression traits and OSA in the three loci
harboring known genome-wide significant OSA associations in the discovery sample (Table S6).
In each locus, we compared OSA trait summary statistics to eQTLs for genes within 1Mb from

the most associated variant, where the OSA focal variant had an eQTL association p-value <
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0.01 (Table 3). Given the low number of comparisons, we calculated the FDR values by pooling
results from these three loci with the set of clinical to eQTL comparisons in Table S4. We
replicated a previously found pleiotropic effect in a locus on chromosome 17, > where minimum
oxygen saturation (SpO.) co-localizes with expression of the epsilon subunit of the nicotinic
receptor (CHRNE), in various tissues, including lung, neutrophils, monocytes and muscle

(Figure 4).

Discussion

In our comparison of clinical (respiratory, cardiometabolic, inflammatory) traits to OSA related
traits, the strongest finding lies in an intronic region of hexokinase 1 (HK1) and is associated
with average overnight oxygen saturation level (SpO,). This locus is pleiotropic with all red blood
cell related traits tested (Figure 2A) and corresponds to one of the most significant genome wide
associations we had previously reported from this data. 2 Prior to this analysis, two alternative
hypotheses for the etiology of this signal had been proposed: that HK1 acted by modulating
inflammation, or that it affected OSA by altering erythrocyte function. Our results provide
evidence that is consistent with the erythrocyte related pathway. Mutations in HK7 have been
implicated in anemia, together with severe hemolysis and marked decreases in red blood
cells.”” As discussed previously,? it is possible that HK1 affects the Rapoport-Luebering shunt
through glycolytic pathway intermediates, which in turn mediates oxygen carrying in mature
erythrocytes. Factors that influence arterial oxygen levels can lead to a more severe OSA
phenotype (i.e., lower average levels of oxygen saturation predispose to greater hypoxemia with
each breathing obstruction). Lowered oxygen carrying capacity and thus more tissue hypoxia

could also contribute to breathing instability (and thus apneas) via Hypoxia-Inducible Factor-1
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(HIF-1) and enhanced carotid body sensitivity and chemoreflex activation, or through long-term

respiratory facilitation and plasticity. ">

The analysis of pleiotropy can be used to concatenate more than one phenotype to create
candidate “causal chains,” which by linking eQTLs to well-powered traits to sleep apnea related
traits can hint at promising biological targets. Among the most significant results for this
multicomponent model is desmoplakin (DSP), a gene whose expression in lung tissue is
affected by an eQTL that co-localizes with a lung function phenotype (FEV/FVC) which itself
co-localizes with AHI. This same co-localizing SNP (rs2076295) has been implicated both in
Interstitial Lung Disease (ILD) and DSP gene expression a separate study. % It is also the lead
SNP in FEV,/FVC trait at that locus in the UK biobank GWAS used in our analysis. Desmoplakin
is a key component of desmosomes, which have a role in cell-cell adhesion, suggesting a role in
epithelial integrity in lung pathology, which, in turn, could have a downstream effect on OSA.
OSA is highly prevalent in ILD as well as associated with subclinical markers of ILD. While prior
research suggested that OSA may have been causally related to interstitial lung injury, the

current data suggest a common causal pathway.

We also found that PSENZ2 (presenilin 2) and COQ8A (coenzyme Q8A) eQTLs in neutrophils
colocalize with associations to the neutrophil percentage of white cells and AHI. Previous
studies suggest that sleep disturbances can trigger increased hematopoiesis of neutrophils in
the bone marrow. *° Patients with OSA often present with elevated levels of circulating
neutrophils, which may contribute to the pathogenesis of OSA through effects on upper airway
and respiratory muscle inflammation, and possibly by effects on brain centers influencing
breathing and sleep-wake organization. Other data implicate inflammation as a downstream

consequence of OSA-related hypoxemia and sleep fragmentation that mediates increased
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cardiovascular risk.*' The association with PSEN2 is also particularly interesting given that
mutations of this gene result in increased production of amyloid-beta proteins, elevations of
which are a hallmark of Alzheimer’s disease, which is associated with OSA.%' While these
findings suggest a mechanistic link across sleep, neutrophils, cognition and cardio-respiratory
disease, we did not specifically test respiratory, brain or cardiovascular traits for genetic

associations at this locus.

Another interesting result is an eQTL in the epsilon subunit of the nicotinic acetylcholine
receptor CHRNE that co-localizes with a genome-wide significant association in minimum
oxygen saturation. This receptor is present at neuromuscular junctions and mutations in this
subunit are known to cause congenital myasthenic syndrome in humans that can result in

progressive respiratory impairment. %

From a methodological perspective, the analysis of pleiotropy has become an important tool in
the analysis of complex trait genetics. Most complex traits are highly polygenic, implying that
many variants associated with a single trait will also be associated with other traits or will be in
LD with such variants. Different computational methods are required for different applications
and for different genetic architectures. If the goal is to increase power to detect an association
and the genetic correlation is broadly dispersed over many loci, methods explicitly capitalizing
on the broad genetic correlation are capable of producing large power gains. ®*’ This family of
methods remains inaccessible for small GWAS studies, where estimates of genetic correlation
from small samples are too noisy to be useful. We tested the genetic correlation between the
four OSA traits and the clinical traits, and no genetic correlation estimate reached statistical

significance after multiple test correction (Table S7).
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In cases where genetic correlation varies across the genome, power can still be increased with
the help of other methods that leverage pleiotropy to reduce multiple testing burden.®
Development of another group of approaches was motivated by the need to link genetic
associations to genes via eQTL data *"***® but, as shown here, these methods can be easily
adapted to the analysis of other traits. Because of the abundance of association signals,
especially for cellular and molecular traits, distinguishing between true pleiotropy due to the
same underlying causal variants and different causal variants in LD is important for all the
applications. Therefore, in our study of OSA we elected a method that explicitly models LD
structure in the locus. The drawback of this choice is the need to restrict the discovery sample to
a demographically homogeneous subset while using the available multi-ethnic cohort for

replication.

Pleiotropy does not necessarily imply a causal relationship between phenotypes. Nonetheless,
as we demonstrate here, a shared genetic basis between OSA and organismal, cellular and
molecular traits can reveal new aspects of the underlying biology. This will likely be of benefit for
other clinically relevant traits that are difficult to study at the scale required for GWAS. Traits that
are burdensome or expensive to phenotype, rare diseases that are hard to sample and
diseases that affect under-represented populations could all lead to underpowered genetic
studies, which are unlikely to get dramatically higher sample sizes in the near future. Therefore,
there is an unmet need to optimize the signals we can extract from small GWAS and the

strategy presented here should help in achieving this goal.

Supplemental Data
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Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California

Diabetes Endocrinology Research Center.

The Osteoporotic Fractures in Men (MrOS) Study is supported by NIH funding. The following
institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis
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TR000128. The NHLBI provides funding for the MrOS Sleep ancillary study "Outcomes of Sleep
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gene associations and bone strength phenotype in MrOS’ under the grant number RO1
AR051124. The NIAMS provides funding for the MrOS ancillary study ‘GWAS in MrOS and
SOF’ under the grant number RC2 AR058973. The investigators website can be found at

http://mrosdata.sfcc-cpmc.net.

This CHS research was supported by NHLBI contracts HHSN268201200036C,
HHSN268200800007C, HHSN268201800001C, NO1HC55222, NO1HC85079, NO1HC85080,
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Southern California Diabetes Endocrinology Research Center. The content is solely the
responsibility of the authors and does not necessarily represent the official views of the National

Institutes of Health.
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are those of the authors and do not necessarily represent the views of the National Heart, Lung,
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This study makes use of data generated by the BLUEPRINT Consortium. A full list of the
investigators who contributed to the generation of the data is available from www.blueprint-
epigenome.eu. Funding for the project was provided by the European Union's Seventh

Framework Programme (FP7/2007-2013) under grant agreement no 282510 BLUEPRINT.

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the
Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA,
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Web Resources

JLIM 2.0: http://genetics.bwh.harvard.edu/wiki/sunyaevlab/jlim2.0 and

https://github.com/cotsapaslab/jlim/

GWAS summary statistics in the UK Biobank: http://data.broadinstitute.org/alkesgroup/UKBB/

GWAS summary statistics of blood cell traits: http://www.bloodcellgenetics.org/
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GTEXx portal (post-QC normalized gene expression levels): http://gtexportal.org/home/
Post-QC normalized gene expression levels for BLUEPRINT:

ftp://ftp.ebi.ac.uk/pub/databases/blueprint/blueprint_Epivar/Pheno_Matrix/
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Figures

Figure 1. JLIM has higher precision than competing methods.

Examples of simulated data with increasing LD between the causal SNPs for the clinical and
OSA traits. For each method (coloc, JLIM and eCAVIAR). The threshold of detection for each
method was selected such that 1% of null simulations (H,) are accepted as positives. For each
set, negative and positive cases were simulated 100 times in 80 loci. The positive cases (H; in
Figure S1) have the same SNP causing an effect on the clinical trait (N;=150,000) and the OSA
trait (N.=10,000). As for the negative cases (H, in Figure S1), we randomly selected a causal
SNP for the OSA trait within an LD window in a specified range. This SNP would have low (0.0 <
Ir1<0.3), medium (0.3 <Ir1<0.6) and high (0.6 <Ir|<0.8) linkage to the causal SNP in the
clinical trait. All causal SNPs had the same effect on the traits. We show A the sensitivity
(fraction of true positives detected), B the false positive rate (fraction of false negatives among
all negatives, also equal to 1-specificity) and C the precision (fraction of true positives among all
cases detected) under a simulation where 1% of cases are positive. LD in negative cases does

not affect sensitivity, given that it is computed from positive cases exclusively.
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Figure 2. Pleiotropy at HK1 locus and fractions of loci that replicate out of sample.

A) Putatively pleiotropic locus linking a clinical trait (hematocrit) with an OSA trait (average
Sp0Os,). The JLIM p-value which tests for pleiotropy between both traits at the locus is p=0.008.
This SpO, association replicates out of sample (p = 8.61 = 1075.). B) Plots showing the
fractions of randomly selected and putative pleiotropic loci with OSA associations that replicated
in the multiethnic cohorts (out of sample). All loci included passed a discovery sample
(European ancestry) 0.01 p-value threshold. JLIM significant loci (FDR<0.05) were more likely to
have significant out of sample OSA association p-values than randomly selected cohorts

(OR=4.00 Fisher exact p=0.00019).
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Fig 3. Candidate causal chains linking a clinical trait (red), an OSA related trait (blue) and
an eQTL (yellow).

A) A candidate association in chromosome 1 with putative pleiotropic associations between the
clinical trait neutrophil percentage of white cells (red), AHI (blue) and expression of PSEN2
(presenilin 2) in neutrophils (yellow). Gene expression and the appropriate gene in the locus are
shown in yellow. Pairwise comparisons of —logo(p-values) between associated traits are shown
on the right with matching colors in axis labels. B) A candidate association in chromosome 6
with putative pleiotropic associations between the clinical trait FEV,/FVC (red), AHI (blue) and

expression of DSP (desmoplakin) in lung (yellow).
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Fig 4. Pleiotropic locus linking gene expression and an OSA related trait.

A locus in chromosome 17 has associations between minimum oxygen saturation (blue) and
expression of CHRNE (cholinergic receptor nicotinic epsilon subunit) in lung (yellow). Gene
expression trait p-values and the appropriate gene in the locus are shown in yellow. Pairwise
comparisons of —logio(p-values) between associated traits are shown on the right with matching

colors in axis labels. The JLIM p-value which tests for pleiotropy between both traits at the locus
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Table 1. Loci with significant pleiotropic associations between a clinical trait and an OSA trait with nominally significant

replication.
OSA .
SNP Coordinate Clinical phenotype Clinical p-value | JLIM p-value OSA phenotype Replication
phenotype p-value p-value
. Hematocrit 7.65 x10™>° 0.008
r$17476364 "1 | chr10.71094504 Reticulocyte count 1.90 x10°%° 0.008 As\/aetﬁgigz 0.000156 8.61 x10°
Red blood cell count 1.75x10™* 0.008
Plateletcrit 1.13x10™"° 0.009
rs2277339 t | chr12.57146069 Moan corpuscular volume 707 X107 0011 AHI 0.00642 0.000629
rs11187838 | chr10.96038686 Systolic B.P 9.10 x10* 0.015 Average 02 0.00516 0.00419
saturation
High light scatter reticulocyte 3.15 x10° 0.002
count
(s34211119 | chr2.6072031g | '19h light scatter reticulocyte 4.81 x10° 0.002 Event Duration 0.00283 0.00423
percentage of red cells
Immatgre fraction of 0.48 x10™"3 0.002
reticulocytes
Mean platelet volume 7.18 x107° 0.007
14:103566835 °hr14'12356683 Platelet count 4.80 x10™ 0.008 AHI 0.00724 0.00511
Platelet distribution width 2.40 x10%° 0.006
rs17010961 | chr4.86723103 Systolic B.P 7.90 x10%* 0.00078 Ag’aetru""rgﬁgz 2.74 x10° 0.00744
Reticulocyte fraction of red cells 6.68 x10™" 0.009
rs4711750 | chr6.43757082 | Hidh light scatter reticulocyte 5.42 x10™" 0.01 AHI 0.00529 0.0111
percentage of red cells
Myeloid white cell count 6.71 x10” 0.009
Hematocrit 7.65x10™° 0.00013 Minimum 02
rs17476364 * | chr10.71094504 Red blood cell count 1.75x10°° 0.00013 S'a'tu;tion 6.81 x107 0.0206
Reticulocyte count 1.90 x10™° 0.00013
rs2595105 | chr4.111552761 Basal metabolic rate 7.00 x10° 0.004 Ms'g'tt‘;:’i‘ogz 0.00481 0.0356
rs11172113 | chr12.57527283 FEV1/FVC 8.90 x10% 0.012 As\/aetﬁgigz 0.00469 0.0405
rs9825482 chr3.188448320 | Sum eosinophil basophil counts 3.62x10"° 0.002 AHI 0.000202 0.0450
Eosinophil peggﬁgtage of white 756 x10™'° 0.003
rs542618547* | chr3.188446663 Eosinophil count 1.03x10™" 0.002 AHI 0.000193 0.0453
Eosinophil percentage of 7,55 x10™" 0.003

granulocytes
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Each row denotes one SNP and its corresponding associations to clinical and OSA traits. Each SNP may be associated with more
than one clinical trait. In SNPs marked with (*) redundant clinical traits were removed for clarity. Here we only show variants with
nominally significant replication p-values, the full table of 65 loci/sleep associations including non-significant replication p-values is
included in Table S3. Two variants had a significant out of sample replication p-value after Bonferroni correction (0.05/65) and are
marked with the symbol (1). AHI stands for Apnea-hypopnea index. Coordinates correspond to hg19. The clinical p-value column
refers to the association p-value of the SNP to the clinical phenotype. Clinical phenotypes and their corresponding datasets are listed
in table S1. The OSA phenotype p-value refers to the association p-value of the SNP to the OSA trait when including the five
European ancestry cohorts (sample sizes in Table S8). The replication p-value refers to the association p-value of the SNP to the
OSA trait when including all replication cohorts (sample sizes in Table S9). The JLIM p-value tests for pleiotropy between the clinical
and OSA phenotypes.
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Table 2. Candidate causal chains.
SNP Coordinate OSA OSA-clinical | Clinical eQTL-clinical Gene eQTL Tissue/Cell
phenotype | JLIM p-value | phenotype JLIM p-value p-value type
Neutrophil 5.00 x10® PSENZ2 (presenilin 2) 9.80 x10%® Neutrophils
rs6426558 | chr1.227175367 | AHI 0.014 percentage | g ;g0 COQBA (coenzyme Q8A) 3.07x10%¥ | Neutrophils
of white cells
3:13613990 chr9.136139907 :;’t‘ir;%in% 0.00077 IL6 5.00 x10°® %ARHU (BarH like homeobox | 4 g5 1529 | Neutrophils
rs2076295 | chr6.7563232 AHI 0.005 FEV1/FVC | 5.00x10° DSP (desmoplakin) 1.68 x10™ Lung
rs34233420 | chr17.38004929 | AHI 0.00273 tgg‘nﬁhocyte 2.00 x10° GSDMA (gasdermin A) 3.16x10™ | T-Cells
Event Platelet 3.00 x10°® rié’r:n '\&fﬁznghlafe” family | 6 55 x10® | T-Cells
rs11653357 | chr17.33923607 | 0. 0.015 distribution SLFN1Z  (schiafen  Tami
width 6.00 x10° Y| 6.63x10° | T-Cells
member 13)
rs1693551 | chrg.101675584 | ~Verage Oz | ¢ g4 Diastolic 0.0001 SNX31 (sorting nexin 31) 4.72x10° | Lung
saturation B.P.
Sum
rs66538782 | chr1.46596236 | CVent 0.008 neutrophil | ) 5501 TMEM69 — (transmembrane | 5 g4 16 | T.Cells
Duration eosinophil protein 69)
counts
Mean 0.00031 dzfnfgif]gcéf"tg‘i’mgngg) and BTB | 4 000283 | Neutrophils
rs2277339 | chr12.57146069 | AHI 0.011 corpuscular B4GALNT1 (bet§-1 4-N-acetvl-
volume 0.00044 . Y= 1 0.00134 Muscle
galactosaminyltransferase 1)
Mean L
rs7162943 | chr15.89615275 | AVerage Oz | ( 55446 platelet 0.00047 DET? (COPT ubiquitin ligase |, 5535 Lung
saturation partner)
volume
rs35259020 | chr9.136950919 | AHI 0.004 Reticulocyte | 4 40064 STKLD1 (serine/threonine |,  1q- Monocytes
count kinase like domain containing 1)
Red  cell | 0.00071 E:ﬁj:ke domg‘;rg;i/ttgirr‘:‘r’]”'q;’ 0.00482 Monocytes
rs14667194 | chr9.136934203 | AHI 0.00191 distribution BADS (bromodomain Contaigin
width 0.00077 3 9 | 0.000373 Spleen

These SNPs link an OSA trait, a clinical trait and gene expression, with each association passing an FDR 0.05 threshold. The full set
of putative causal chains is shown in Table S5. Here we only show chains with an eQTL-clinical JLIM p<0.001. AHI stands for Apnea-
hypopnea index. Coordinates correspond to hg19. The eQTL p-value refers to the association p-value of the SNP to the gene
expression trait of the gene indicated, measure in the tissue/cell type indicated. The OSA-clinical JLIM p-value refers to a pleiotropy
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test between the OSA and clinical traits, while the eQTL-clinical JLIM p-value corresponds to a test of pleiotropy between gene
expression and the clinical trait.

Table 3. Genome wide significant loci in OSA traits colocalizing with eQTL.

. OSA OSA p- .
SNP Coordinate phenotype value Gene Tissue/Cell type eQTL p-value JLIM p-value
Lung 6.63 x10™* 5.00 x10°®
CHRNE (cholinergic receptor Neutrophils 1.14 x10™"° 2.00 x10”
nicotinic epsilon subunit) Monocytes 3.98 x10™"" 4.00 x10”
Minimum . Muscle 3.64 x10° 5.00 x107
rs12150370 | Chr17-477763 Oz 3.37 x10 C170rf107 (chromosome 17 open Neutrophils 1.98 x10° 8.00 x10™
4 saturation reading frame 107) Lung 6.27 x10'° 0.006
INCA1.(|nh|b|t(.)r of CDK cyclin A1 Liver 0.000246 0.005
interacting protein 1)
ALOX15 (arachidonate 15- Monocytes 0.000122 0.018
lipoxygenase)
SRGN (serglycin) Monocytes 0.000469 0.00047
chr10.710933 | Average O, -8 TYSND1 (trypsin domain :
rs16926246 92 saturation 2.46 x10 containing 1) Neutrophils 0.00185 0.003
SUPV3L1 (Suv3 like RNA helicase) Liver 0.00376 0.01

SNPs shown are genome wide significant in the OSA trait and are pleiotropic to eQTL, where the JLIM p-value passed an 0.05 FDR
significance threshold, and the eQTL p-value passed a 0.01 nominal p-value threshold. The eQTL p-value refers to the association p-
value of the SNP to the gene expression trait of the gene indicated, measured in the tissue/cell type indicated. The JLIM p-value
refers to a pleiotropy test between the OSA and gene expression traits. Full corresponding set of comparisons tested with JLIM in
Table S6.
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