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Abstract

Humans are remarkably capable of adapting their behaviour flexibly based on rapid situational
changes: a capacity termed cognitive control. Intuitively, cognitive control is thought to be affected by
the state of alertness, for example, when sleepy or drowsy, we feel less capable of adequately
implementing effortful cognitive tasks. Although scientific investigations have focused on the effects
of sleep deprivation and circadian time, little is known about how natural fluctuations in alertness in
the regular awake state affect cognitive control. Here we combined a conflict task in the auditory
domain with neurodynamics -EEG recordings- to test how neural and behavioural markers of conflict
processing are affected by fluctuations in arousal. Using a novel computational method, we
segregated alert and drowsy trials from a three hour testing session and observed that, although
participants were generally slower, the typical slower responses to conflicting information, compared
to non-conflicting information, was still intact, as well as the effect of previous trials (i.e. conflict
adaptation). However, the behaviour was not matched by the typical neural markers of cognitive
control -local medio-frontal theta-band power changes-, that participants showed during full alertness.
Instead, a decrease in power of medio-frontal theta was accompanied by an increase in long-range
information sharing (connectivity) between brain regions in the same frequency band. The results
show the resilience of the human cognitive control system when affected by internal fluctuations of
our arousal state and suggests a neural compensatory mechanism when the system is under
physiological pressure due to diminished alertness.
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Introduction

Cognitive control is the capacity of making quick adjustments to cognitive resources in order to
optimally solve the task at hand. One proposed mechanism involves allocating attention to task-
relevant information and ignoring non-relevant, sometimes conflictive, information (Desimone and
Duncan, 1995; Miller and Cohen, 2001; Egner and Hirsch, 2005). The ability to deal with conflicting
information is often studied using “conflict tasks”, which typically induce response (or stimulus) conflict
by triggering an automatic response that has to be overcome to decide correctly (e.g. Stroop/Simon
tasks). For example, when a Dutch person drives in England, they must override the automatic
tendency to turn right on a roundabout, and go left instead. Experiencing these types of conflict has
shown to increase the level of cognitive control on the next occasion, when encountering a similar
conflicting situation. This process -termed conflict adaptation- seems necessary to smooth future
decisions and avoid further mistakes (Gratton et al., 1992). Here we combine a behavioural conflict
task with electroencephalography (EEG) to study the modulatory effect of arousal fluctuations on
decision-making in the face of conflict.

How levels of wakefulness modulate attentional processes and cognitive control is commonly studied
in sleep deprivation and circadian cycle studies, but less often during normal waking fluctuations
(Goupil and Bekinschtein, 2012). Both sleep deprivation and drops in circadian time lead to cognitive
performance decrements (Wickens et al., 2015), but surprisingly, the performance modulation
imposed by changes in wakefulness on complex tasks appears to be less severe than their effects
on simple tasks (Harrison et al., 2000). Specifically, studies focusing on (cognitive/response) conflict
have failed to indicate increased interference effects with sleep deprivation and circadian time
(Sagaspe et al., 2006; Cain et al., 2011; Bratzke et al., 2012), but consistently show overall slower
responses during increased sleepiness or lower arousal. However, Gevers et al. (2015) recently
uncovered an interesting dissociation, although conflict effects on the current trial did not seem to
change after a night of sleep deprivation, across trial conflict adaptation effects did. These results
nicely converge with studies on the relationship between conflict awareness and conflict processing,
as conflict detection seems much less dependent on conflict experience than conflict adaptation (van
Gaal et al., 2010; Jiang et al., 2015) , suggesting that conflict detection is more automatic -less
effortful- than conflict adaptation.

Fluctuations in cognitive control are shown to be associated with changes in activity patterns in the
medial frontal cortex (MFC) and the dorsolateral prefrontal cortex (DLPFC) (Robbins, 1996; Swick et
al., 2011; Glascher et al., 2012; Cai et al., 2016). In EEG recordings, conflict-related processes are
often measured by quantifying the power of theta-band neural oscillations (4-8 hertz) (Luu et al., 2004;
Trujillo and Allen, 2007; Cohen et al., 2008; Cavanagh et al., 2010; Nigbur et al., 2012; Cohen and
van Gaal, 2014). In combination with a recently validated method to automatically detect drowsiness
periods from EEG (Jagannathan et al., 2018) we here use conflictive information to map behavioural
and neural markers of cognitive control as they get modulated by ongoing fluctuations in arousal.

Results

While fully awake as well as while becoming drowsy, participants performed an auditory Simon task
where they heard the words “left” or “right”, from either the left or right side in space. Participants
were instructed to respond according to the meaning of the sound (e.g. “left” requires left-hand
response, Figure 1A). We hypothesised an increase in reaction times to all stimuli- a typical marker
of drowsiness- but expected that conflict detection mechanisms would remain relatively preserved (in
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behaviour and theta oscillations), similar to studies showing preserved processing of conflicting
information at reduced levels of stimulus awareness (van Gaal et al., 2010; Jiang et al., 2015, 2018).
We expected the sharpest decline in performance and conflict processing when focusing on across
trial conflict adaptation mechanisms (Jiang et al., 2015).

A Experimental design B Experimental sessions
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Figure 1. Experimental paradigm and alertness level classification. (A) Schematic representation of the
experimental design. Participants were instructed to report the semantics (“left” or “right”) of an auditory stimulus
via a button press with their left or right hand, respectively, and to ignore the spatial location at which the auditory
stimulus was presented. Sound content of the auditory stimuli could be congruent or incongruent with its location
of presentation (50% congruent/incongruent trials). (B) Schematic representation of the experimental sessions.
In the awake session participants were instructed to stay awake with their eyes closed whilst performing the
task with the back of the chair set up straight and the lights on. Immediately after, in the drowsy session, the
task was performed while participants were allowed to fall asleep with their chair reclined to a comfortable
position and the lights off. (C) Automatic classification of alertness levels. Pre-trial periods (-1500 to 0 ms) were
used for defining the awake (purple) and drowsy (green) conditions. Pre-trials containing 100% and >50% of
alpha oscillations were classified as awake. Similarly, pre-trials containing <50% of alpha oscillations, EEG
flattening and ripples were classified as drowsy (see Methods for details). (D) Upper panel. Automatic
classification of alertness during a drowsy session (representative participant, occipital electrode). The
frequency profile depicts changes in the power level in different bands during the pre-trial period, and the bars
on top represent pre-trials classified as awake (purple) or drowsy (green). Lower panel. The variability in the
reaction times (lower panel) closely follows the changes in the frequency profile (upper panel) from alpha (higher
RT variability in green) to theta (lower RT variability in purple) obtained using the pre-trial information.
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Behavioural results.

First, we analysed the reaction times (RT) differences between alertness conditions (awake, drowsy),
previous trial congruency (congruent, incongruent) and current trial congruency (congruent,
incongruent). As expected, a repeated-measures (RM) ANOVA revealed that RTs were slower for
drowsy than alert trials (F132=26.58; p<0.001; n;=0.454) and that there was a clear conflict effect,
revealed by slower RTs to incongruent vs congruent trials (F1,32=47.03; p<0.001; 77;2;=0-595)- We also
observed the typical conflict adaptation effect, indicated by a smaller conflict effect when the previous
trial was incongruent than congruent (interaction previous x current trial congruency: Fi3,=29.88;
p<0.001; 175:0.483). In the next series of analyses, we focus on the effects for the awake and drowsy
conditions separately.

Within the awake condition, RTs were slower for incongruent trials compared to congruent trials (main
effect of congruency: F13,=59.16; p<0.001; n,2,=0.649) and there was also a conflict adaptation effect
(interaction previous x current trial congruency: F13,=27.974; p<0.001, nf,=0.466, Figure 2A left). The
effects were positive for the majority of the participants for both the conflict (30 out of 33 participants)
and the conflict adaptation effect (26 out of 33 participants; Figure 2A middle). Similar effects were
observed when participants were drowsy, since both a conflict (F132=9.642; p=0.004; U§=0-232) and
conflict adaptation effect were observed (F1,3.=7.318; p=0.011,; n§=0.186, Figure 2B left). Again, the
effects were positive for the majority of the participants for both the conflict (26 out of 33 participants)
and conflict adaptation (22 out of 33 participants; Figure 2B middle).

A (RM) ANOVA performed on error rates across arousal levels revealed that participants made more
errors during drowsy than during awake (main effect of alertness: F1,3,=18.29; p<0.001; n§,=0.364),
however, conflict (F13.=2.357; p=0.135; n§=0.06; BF10=1.24) and conflict adaptation (F1,3,=0.862;
p=0.360; n;=0.364; BF10=4.14) effects on error rate were not reliable. On the other hand, when the

analyses were performed separately by arousal level, the awake state showed a conflict effect
(F132=24.152; p<0.001; n;=0.43) and conflict adaptation F;3,=8.567; p=0.006; n;=0.211, Figure 2C)

but the drowsy condition did not (conflict: Fi3=1.41; p=0.243; n;=0.042; BF=5.149; conflict
adaptation: F1,3,=1.88; p=0.180; 17;:0.055; BF=13.685, Figure 2D).
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Figure 2. Behavioral results in awake and drowsy. Conflict and conflict adaptation effects for the awake (A)
and drowsy (B) conditions in reaction times at the group and individual level. Effects of conflict and conflict
adaptation in error rates in the awake (C) and drowsy (D) condition.

Midfrontal theta-band oscillations and source reconstruction.

Upon establishing that conflict and conflict adaptation effects are present in both awake and drowsy
states, we proceed to test whether medial frontal (MF) conflict detection processes, typically reflected
in short-lived oscillatory dynamics in the theta-band (Nigbur et al., 2012; Cohen and Donner, 2013;
Cohen and van Gaal, 2014; Jiang et al., 2015), were present during awake and drowsy states as well.
In order to determine the time-frequency cluster for assessing conflict and conflict adaptation effects,
we first analysed the overall conflict effect, irrespective of alertness condition or previous trial
congruency (I-C, averaged over awake and drowsy sessions). Replicating previous studies (Nigbur
et al., 2012; Jiang et al., 2015), current trial conflict induced increased theta-band power at MF
electrodes (cluster p=0.028; frequency range: 4Hz-8Hz, time range: 250ms—625ms, see encircled
region in black, solid line, in Figure 3A). The area within this time-frequency (T-F) cluster was used
for follow-up analyses. Next, we tested whether these conflict-related theta-band dynamics in this
cluster were modulated by alertness and previous trial congruency, which was indeed the case. A RM
ANOVA revealed stronger MF theta for awake than drowsy trials (main effect of alertness: F13,=51.64;
p<0.001; n§=0.618) and typical conflict adaptation effects (F1,32=5.70; p=0.023; 77;2;=0-151)- We unpack
below the results for awake and drowsy conditions separately.

In the awake condition, MF theta-band power was stronger for incongruent than congruent trials
(conflict effect: F13,=11.38; p=0.002; n§:O.262), and this conflict effect was modulated by previous
trial congruency (conflict adaptation: F1,3,=8.47; p=0.007; n,= 0.209; Figure 3B). On the contrary, the
analyses in the drowsy state did not show a reliable conflict effect in MF theta-band oscillations
(F132=1.11; p=0.299; n§=0.001; BFo1=4.53, Figure 3D), nor conflict adaptation (F1,3,=2.19; p=0.148;
n§=0.064; BF01=3.84). In order to visualize the sources of the conflict-related MF theta oscillations
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observed at the scalp level, we performed source reconstruction analyses, across all conditions
(Figure 3A), for the awake (Figure 3B) and drowsy (Figure 3D) conflict effects separately. In line with
several fMRI and animal studies performed on awake participants, the conflict-related theta-band
signal seems to show hubs in the medial frontal and the dorsolateral prefrontal cortex (Van Veen et
al., 2001; Botvinick et al., 2004; Ullsperger et al., 2014) (Figure 3B), but to a lesser extent in the
drowsy condition (Figure 3C).

In addition to the MF theta cluster and in agreement with previous reports (van Gaal et al., 2010; Jiang
et al., 2015), an overall conflict effect was observed in the alpha-beta band (cluster p=0.008;
frequency range: 13Hz—29Hz, time range: 580ms—728ms, see encircled region in black, dashed line,
in Figure 3A). When trials were split, these results were reliable for the conflict effect in the awake
condition (F13.=8.41; p=0.007; 1;=0.208) but not for conflict adaptation (F132=3.24, p=0.081;
n§=0.092, BFo:=2.021), nor for the drowsy condition in general (conflict effect: F13,=0.05; p=0.488;
n§=0.002, BF0:=5.252; conflict adaptation: F1,3,=0.94; p=0.339; n§=0.039, BF0:=52.135).
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Figure 3. Univariate spectral analysis and sources of midfrontal theta-band oscillations in the awake
and drowsy conditions. Conflict effects in terms of time-frequency dynamics across alertness conditions (A),
and for the awake (B) and drowsy condition (D) separately, calculated over medial-frontal electrodes. (A) The
black delineated box is the theta-band time-frequency ROI where overall conflict (I-C) was significant over
conditions (cluster-based corrected, see Methods). Insets show topographical distributions of oscillatory power
within this T-F ROI. Black dots represent the midfrontal EEG electrodes selected for obtaining the conflict-
related theta-band power. A source-reconstruction analysis was performed on this time-frequency ROI (z-
score). Activations are depicted on unsmoothed brains; as reconstructed sources were only observed on the
surface of the cortex. Sources are for visualization purposes (no statistical testing performed). Group-level (B,
D) and individual conflict and conflict adaptation effects (C, E) for the awake (B, C) and drowsy (D, E) in dB
(average ROI power incongruent — average ROI power congruent).

Multivariate spectral decoding.

The hypothesis-driven analysis for the neural signatures focused on the MF theta-band revealed clear
conflict detection and conflict adaptation processes for the wake state, but not reliably for the drowsy
state. The change of wakefulness in the transition to sleep comes with big changes in neural
reconfiguration that might explain this loss of specificity of the neural markers. In order to determine
whether a different pattern of neural activity might be underlying the behavioral conflict effect in the
drowsy condition observed in behaviour, we performed a wide multivariate spectral decoding analysis
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to account for possible changes in space, time and frequency of the conflict related neural signatures.
To do so, we trained classifiers to: (1) distinguish between congruent vs. incongruent trials; (2)
distinguish spatial processing in trials where the auditory stimulus was presented from the left vs. the
right earbud (i.e. stimulus location); and (3) differentiate trials where the presented auditory stimulus
was “left” vs. “right” (i.e. stimulus content). Above-chance classification accuracies imply that relevant
information about the decoded stimulus feature is present in the neural data, meaning that some
processing of that feature occurred (Hebart and Baker, 2018).

Consistent with the univariate approach for analysing congruency, multivariate decoding showed that
information about stimulus congruency was reliably represented in neural data in the awake (Figure
4A), but not in the drowsy state (Figure 4B, p<0.05, cluster-corrected; frequency-range: 2-9 Hz, peak
frequency: 6Hz, time-range: 376-810 ms). Assessment of the qualitative difference in the theta-band
decoding (4-9 Hz) performance between the awake and drowsy states showed reliable temporal
clusters of increased classifier accuracy for the awake condition (p<0.05, cluster-corrected) in the
680-810 ms time-range (Figure 4A right panel).

Although the previous analysis revealed that conflict could only be decoded from neural data in the
awake state, interestingly, the sound identity and location of the auditory stimuli could be decoded
from neural data for both the awake (identity: p<0.001, cluster-corrected, time-range: 240-1200 ms;
location: p<0.05, cluster-corrected, time-range: 120-920 ms) and drowsy states (identity: p<0.05,
cluster-corrected, time-range: 250-1200 ms; location: p<0.05, cluster-corrected, time-range: 88-300
ms, Figure 4A and Figure 4C). The above chance performance of the classifiers for low-level stimulus
features suggests that location and sound identity were still processed, even during a decreased level
of alertness, however, no reliable decoding was found for conflict effects.
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Figure 4. Multivariate spectral decoding of stimuli components in the awake and drowsy condition.
Classifier accuracies are depicted across time-frequency charts (2-30 Hz) for the awake and drowsy condition
separately, and for the difference between awake and drowsy conditions in the theta-band. Classifier accuracy
was thresholded (cluster-based correction, p<0.05) and significant clusters are outlined with a solid black line.
In the difference plots on the right, significant differences from chance are highlighted by a black solid line at
the bottom of the figures. The dotted lines in the left and middle panel reflect the frequency band used for
statistical testing between awake and drowsy states (rightest panels). (A) Classifier accuracies for stimulus
congruency (“conflict”). Information about congruency was only present in the awake condition. (B) Classifier
accuracies for stimulus location (“location”). Location of the auditory stimulus could be decoded in both
conditions, meaning that information about this stimulus feature is present in both awake and drowsy neural
frequency signals. (C) Classifier accuracies for stimulus sound identities (“content”). Sound identities of the
auditory stimulus could be decoded in both alertness conditions. Differences between awake and drowsy were
observed for stimulus congruency and identity but not for stimulus location.

Distributed theta-band information sharing

The fact that a multivariate method analysing the pattern across time, space and frequency did not
capture a neural signature of conflict observed behaviourally, suggest a more drastic reconfiguration
of the neural processes underlying conflict detection during drowsiness. We reasoned that the neural
signatures of conflict may involve changes in connectivity in a wide network of brain regions instead
of relatively local power changes. Thus, we hypothesized that a neural metric specifically indexing
neural information integration (WSMI; King et al., 2013; Sitt et al., 2014; Imperatori et al., 2019) could
in principle capture the conflict effect during drowsiness. We performed this analysis as a possible
post-hoc hypothesis for the reconfiguration of the underlying networks supporting cognitive control.
The wSMI can be calculated at different time-scales and here we used a tau of 32 ms (~4-9 Hz), and
therefore this measure captures non-linear information integration in the theta-band domain. Indeed,
a RM ANOVA revealed a reliable main effect of alertness (F1,32,=56.10; p<0.001, n§=0.637) and an
interaction between congruency and alertness for long-distance wSMI in the theta-band (F1,32=5.50;
p=0.025; n5=0.182, Figure 5A). Post hoc effects showed higher wSMI for incongruent than congruent
trials only in the drowsy state (t3»=2.456; p=0.034; awake: t3,=0.305; p=0.761; Tukey corrected for
multiple comparisons). Individual differences in theta-band wSMI for each participant in the awake
(right) and drowsy (left) conditions are shown in Figure 5B.

Brain-behaviour relationships

We further investigated, in an exploratory manner, the statistical dependencies between information
integration in the theta-band, information sharing (wSMI) and the strength of the behavioural conflict
effect. Separate multiple regressions were performed on the awake and drowsy states, using as
regressors the MF theta-power ROI differences (I-C) and the distributed theta-wSMI differences (I-C)
(Figure 5C). The conflict effect (RT difference: I-C) was used as the predicted variable. In the drowsy
condition model (R?=0.20; F,30=3.68; p=0.037), distributed theta-wSMI predicted the conflict effect in
RT (B=-0.39; p=0.028), while MF theta was not a reliable predictor (=0.14; p=0.665). On the other
hand, in the awake condition model (R?=0.02; F,,30=; p=0.613), none of the regressors predicted the
conflict effect significantly (MF theta: 3=0.12; p=0.514; distributed theta-wSMI: 3=0.09; p=0.609). This
relationship was also described in terms of a simple Pearson’s correlation, showing a significant
correlation between RT difference and wSMI difference for the drowsy (r=-0.42; p=0.015) but not for
the awake condition (r=0.08; p=0.65) (Fig 5D). These results show that the distributed information,
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but possibly not the local spectral power in the same neural signal (theta-band), underlies the
behavioural conflict effect observed in the drowsy state.

A Information sharing results B Individual information sharing

Awake Drowsy
N 0.23
T o~ 30
Q awake E
< 022 —— drowsy ‘ 3 20
; +\+ - - g I 5€ | 3€
2 ’ < 8 10 :
0.21 Awake Drowsy
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Figure 5. Long-distance theta-band information sharing during conflict in awake and drowsy. (A) Long-
distance wSMI in the theta-band during the conflict effect. Each arc represents a functional connection between
a pair of electrodes, and the height of the arc represents the value of the wSMI difference for that pair
(incongruent - congruent; awake condition in green and drowsy condition in magenta). Theta-band wSMI was
calculated between each midfrontal ROI electrode (shown in Figure 2) and every other electrode outside the
ROI. wSMI values within the midfrontal ROl were discarded from the analyses since we aimed at evaluated
information integration between distant electrode pairs. (B) Individual differences in theta-band wSMI for each
participant in the awake (right) and drowsy (left) conditions. (C) Beta coefficients for two separate multiple
regressions using RT difference (I-C) as predicted variable and theta power difference (I-C) and wSMI difference
(I-C) as regressors (D) Pearson’s correlation for awake and drowsy conditions between RT differences and
wSMI difference.

Discussion

In this article we explored the impact of changes in our arousal state during conflict detection and
conflict adaptation processes. We found the expected behavioural manifestations of decreased
alertness, namely higher variance and variability in RTs and slower RTs when people were drowsy
as compared to actively awake (Lal and Craig, 2001; Huang et al., 2009; Goupil and Bekinschtein,
2012; Bareham et al., 2014; Comsa et al., 2019). Further, we observed reliable conflict effects with
increased drowsiness. However, against our hypothesised loss of conflict adaptation, we observed
these effects despite participants’ decreased alertness (Figure 2). The effects of conflict (current trial)
and conflict adaptation (trial-by-trial) seemed reliable independently of the states of alertness (see
Figure 2 for individual participant’s data), suggesting a spared capacity to resolve conflict arising from
the incongruity between the meaning and the side of the world where the word was presented. This
is in contrast to the lack of detrimental effects of decreasing arousal on cognitive control at the
behavioural level that has been proposed (Sagaspe et al., 2006; Cain et al., 2011; Bratzke et al.,
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2012), although there are contrasting views (Gevers et al., 2015). These arousal modulations on the
capacity of executive control have been found primarily for fatigue and sleep deprivation. However,
we show here that normal fluctuations of arousal in well-rested participants yield no strong detrimental
effects in the resolution of conflict. In short, humans still experience conflict while drowsy, and even if
they react slower, they respond to incongruity in the comparable way as when fully awake and
attentive.

Although conflict processing was relatively maintained in behavioural terms, its neural signatures
changed. The principles of neural reorganization are a much debated topic in neuroscience (Dahmen
and King, 2007; Shine et al., 2019) but there is agreement that there is flexibility of the brain networks
to maintain or preserve psychological function in the face of insult, and internal or external modulatory
factors (Siuda-Krzywicka et al., 2016; Singh et al., 2018). Here we found a dissociation due to the
change in arousal between the behaviour and its classic neural markers, the classic conflict-induced
theta-band power changes were no longer reliable during low alertness. Furthermore, multivariate
whole-brain analyses showed convergent results with stronger neural signal in alert compared to the
drowsy state. This suggests that the changes exerted by the diminished arousal elicited a
reconfiguration of the brain networks putatively responsible for the neural resolution of the conflict,
resulting in the disappearance of the theta power difference in the conflict contrast.

The networks implicated in cognitive control are not only supported by correlations with brain activity,
but also by causal interventions. In rodents a dissociation has been proposed between prefrontal
cortices in the causal support of control functions, in which the dorso-medial prefrontal cortex seems
to be implicated in memory for motor responses; this includes response selection and the temporal
processing of information, whereas ventral regions of the medial prefrontal cortex seem implicated in
interrelated ‘supervisory’ attentional functions, including attention to stimulus features and task
contingencies (or action—outcome rules), attentional set-shifting, and behavioural flexibility (Dalley et
al., 2004). In humans, causal evidence is sparse due to a scarcity of patients with specific (frontal)
lesions. However, the impairment of simple cognitive control and trial-by-trial influence is shown in a
small but well-structured study in which dorsal anterior cingulate cortex (AACC) damage disrupted the
ability to make an adaptive choice between actions (but not stimuli) following a win on the previous
trial. Moreover, orbitofrontal (OFC) damage similarly disrupted choices between stimuli, but not
actions (Camille et al., 2011). Furthermore, in a large (n=344) correlational study Glascher et al.
(2012) found that impairments in cognitive control (response inhibition, conflict monitoring, and
switching) was associated with dorsolateral prefrontal cortex and anterior cingulate cortex lesions.
These medial prefrontal areas that have been proposed as the origin of the theta power modulation
in conflict tasks are thus causally implicated in cognitive control and lend further support for the search
of other correlates that would capture the conflict effect during an arousal challenge.

An important methodological aspect of the study entails the design for single subject power. We
expected to see a strong conflict effect in this version of the Simon Task in the group analyses (Vu et
al., 2003), since we collected several hundreds of trials per condition in each participant for both
alertness states (awake and drowsy). Moreover, the systematic effects at the single-participant level
due to fast-paced high-number of trials as wakefulness decreased from around 3 hours of testing,
captured the true effect of the group. Each participant included in the analyses provided all conditions,
awake and drowsy.

The cognitive processes leading up to conflict experience involve the extraction of meaning (“left” or
“right”) and the location from where the stimulus came from. Thus, if the two factors are congruent
(“left” coming from the left side of space) conflict is supposed to be absent and participant’s response
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fast, but when the word comes from the other side of the space (“left” presented in the right side of
space) conflict arises and the response slows down, reflecting further processes necessary to resolve
conflict. We hypothesised that the specific perceptual and semantic component of location and
content, respectively, would be decodable in the spectral domain as the participants responded
correctly to the stimuli. Both content and location showed above chance decoding patterns in the
theta-band as well as other frequency bands -depending on the contrast- in both awake and drowsy
states. This highlights the capacity of the brain to process the semantic and spatial components of
the task in parallel under internal modulatory stress (lower arousal). In order to capture the integration
between these two components by cognitive control networks, we looked for decodability of conflict
in the spectral domain (stimulus congruency). The patterns showed the expected theta-band power
difference (restricted to theta) only in the alert state.

We knew that there is strong evidence that neural aspects of conflict are found in brain signals, hence
we turn to information sharing under three premises. First, a neural measure of information sharing
could in principle capture directly the information integration between stimulus content and stimulus
location necessary for generating the conflict effect in our task. Second, the dynamic nature of neural
information integration (Imperatori et al., 2019) may be able to capture the reconfiguration of neural
networks during the transition from an alert to a drowsy state of mind. Finally, as the reorganization
of networks could be reflected in the need for larger information capacity of the brain when challenged
(by drowsiness), the measure chosen can be conceptually framed as deriving from a computational
principle. Although cortical reorganization with age and after insult have been extensively studied, the
cognitive flexibility, or “cognitive fragmentation” resulted from an internally generated change —
drowsiness- has hardly been captured (Goupil and Bekinschtein, 2012). These methods of tackling
the system as it changes could be conceptually regarded as causal if the processes at play are
regarded as partially independent. The case of drowsiness as a causal model to study neural
mechanism of cognitive control and decision making at large may prove to be very useful in the
exploration of how cognition is fragmented or remain resilient under (reversible) perturbations of
wakefulness (Kouider et al., 2014; Comsa et al., 2018).

One possible explanation for the call for wider networks to resolve conflict during drowsiness would
be the need for involvement of extended neural resources to solve the same task, as seen previously
in older adults when they are matched in performance to younger adults (Reuter-Lorenz and Cappell,
2008; Spreng et al., 2017). Convergent evidence is drawn from cognitive control studies, where the
frontoparietal control networks are further recruited with higher cognitive load (Liang et al., 2016;
Fransson et al., 2018), tasks possibly reflecting the higher need for neural resources. In other words,
the brain’s capacity for plasticity allows for the expansion of conflict networks in cases where another
element in the system (e.g. drowsiness) draws resources away (internal challenge) from the neural
systems typically underlying cognitive control.


https://doi.org/10.1101/831727
http://creativecommons.org/licenses/by-nc-nd/4.0/

374

375

376

377
378
379
380
381
382

383

384
385
386
387
388
389
390
391
392
393
394
395
396

397

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

bioRxiv preprint doi: https://doi.org/10.1101/831727; this version posted November 5, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Methods

Participants

Thirty-three healthy human participants (18 female) aged 18 to 30 (M=23.1, SD=2.8), recruited from
the University of Cambridge (Cambridge, United Kingdom), participated in this experiment for
monetary compensation. All participants had normal or corrected-to-normal vision and had no history
of head injury or physical and mental illness. This study was approved by the local ethics committee
of the University of Cambridge and written informed consent was obtained from all participants after
explanation of the experimental protocol.

Experimental task

Participants performed an auditory version of the Stroop task (Stroop, 1935). Recorded samples of a
native speaker saying “left” or “right” were presented to participants’ left or right ear through ear buds,
resulting in four types of stimuli (i.e. “left” in left ear, “left” in right ear, “right” in right ear, “right” in left
ear). Stimuli were congruent when the word meaning corresponded to its physical location (e.g. left
in left ear) and incongruent otherwise (e.g. “left” in right ear). All four types of stimuli were presented
equally often, but in a random order. Participants were asked to report the location depicted by the
voice (i.e. word meaning; the words left or right), while ignoring its physical location (i.e. left or right
ear) by pressing one of two buttons on a response box. There was no practice block and no feedback
on performance throughout the task. The time between a response and the following stimulus varied
randomly between 2 and 2.5 seconds. The inter stimulus interval was fixed to 2 seconds in the
absence of a response within that time frame. As a result, the inter stimulus interval could vary from
2 seconds (response absent) to 4.49 seconds (maximum response latency of 1.99 seconds +
maximum response stimulus interval of 2.5).

Procedure

Participants were instructed to get a normal night’s rest on the night previous to testing. Testing
started between 9 am and 5 pm and lasted approximately 3 hours. Upon arrival at the testing room,
participants were sat down in a comfortable adjustable chair in an electrically shielded room.
Participants were fitted with an EGI electrolyte 129-channel cap (Electrical Geodesics, Inc. systems)
after receiving the task instructions and subsequently signing the informed consent. Task instructions
were to respond as fast and accurate as possible, to keep bodily movements to a minimum and to
keep the eyes closed throughout the experiment. Participants were asked to report their answers with
their thumbs (i.e. left thumb for the word ‘left’ and vice versa) on two buttons of a four-button response
box that rested on their lap or abdomen. In the first part of the session, participants were instructed
to stay awake with their eyes closed whilst performing the task. The back of the chair was set up
straight and the lights in the room were on. This part of the experiment lasted for 500 trials and lasted
for approximately 25 minutes. Right afterwards, the task was performed while participants were
allowed to fall asleep. The chair was reclined to a comfortable position, the lights were turned off and
participants were offered a pillow and blanket. Participants were told that the experimenter would
wake them up by making a sound (i.e. knocking on desk or wall) if they missed 5 consecutive trials.
This part of the experiment lasted for 2000 trials and lasted for approximately 1.5 hours. At the end
of the session, participants were sat upright and the EEG cap was removed. Stimuli were presented
using PsychToolbox software on a Mac computer and data were acquired using NetStation software
(Electrical Geodesics, Inc. Systems) on another Mac computer.
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Behavioral data analysis

The first trial of every block, incorrect or missed trials, trials following incorrect responses and trials
with an RT<200 ms were excluded from behavioral analyses. Conflict on trial n has been found to
cause increased error rates (ERs) and prolonged reaction times (RTs), as compared to when no
conflict is present. This current trial effect of conflict can be modulated by previously experienced
conflict on trial n-1, a phenomenon called conflict adaptation. In order to investigate whether current
trial conflict effects and the modulation thereof by previous conflict were present, we performed
repeated measures (RM) ANOVA on ERs and RTs between alertness (awake, drowsy), current trial
congruency (congruent, incongruent) and previous trial congruency (congruent, incongruent).
Additional post-hoc (RM) NOVA, awake and drowsy conditions separately were performed. In case
of null-findings, we applied a Bayesian repeated measures ANOVA with similar factors, to verify if
there is actual support of the null-hypothesis. We also performed such Bayesian ANOVAs for any
null-findings in our EEG data.

Wakefulness classification

The automatic classification of alertness levels involved classifying periods of the experimental
session into ‘awake’ and ‘drowsy’. The pre-trial period (-1500 to O0ms) before each tone was used in
classifying the corresponding trial as awake or drowsy. Pre-trial epochs were analysed using the
micro-measures algorithm (Jagannathan et al., 2018) and each trial was classified was ‘alert’, ‘drowsy
(mild)’, ‘drowsy (severe). To select true alert trials, we used only trials from the alert blocks and
removed all those marked as ‘severe drowsy’ (purple in Figure 1C). Similarly, ‘drowsy (mild) and
‘drowsy (severe)’ from the drowsy blocks were selected as true drowsy trials (green in Figure 1C).
Thus, the total number of trials across the 33 participants was 26045 for the ‘awake’ and 33306 for
the ‘drowsy’ conditions.

EEG recordings and pre-processing.

EEG signals were recorded with 128-channel HydroCel Sensors using a GES300 Electrical Geodesic
amplifier at a sampling rate of 500 Hz using the NetStation software. During recording and analyses,
the electrodes’ average was used as the reference electrode. Two bipolar derivations were designed
to monitor vertical and horizontal ocular movements. Following Chennu et al (2014), data from 92
channels over the scalp surface were retained for further analysis. Channels on the neck, cheeks and
forehead, which reflected more movement-related noise than signal, were excluded. Continuous EEG
data was epoched from -1500 to 2000 ms around stimulus onset. Eye movement contamination
(blinks were rare as eyes were closed, vertical and horizontal saccades or slow movements were also
infrequent), muscle artefacts (i.e. cardiac and neck movements) were removed from data before
further processing using an independent component analysis (ICA) (Delorme and Makeig 2004). All
conditions yielded at least 96% of artefact-free trials. Trials (-2500 to 0 ms) that contained voltage
fluctuations exceeding + 200 pV, transients exceeding £ 100 pyV were removed. No low-pass or high-
pass filtering was performed during the pre-processing stage. The EEGLAB MATLAB toolbox was
used for data pre-processing and pruning (Delorme and Makeig 2004).

EEG time-frequency analysis

Epochs were grouped based on current and previous trial congruency, creating four trial conditions.
Then, EEG-traces were decomposed into time-frequency charts from 2 Hz to 30 Hz in 15 linearly
spaced steps (2 Hz per bin). The power spectrum of the EEG-signal (as obtained by the fast Fourier

transform) was multiplied by the power spectra of complex Morlet wavelets (e2?e=t"/<)) with
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logarithmically spaced cycle sizes ranging from 3 to 12. The inverse Fourier transform was then used
to acquire the complex signal, which was converted to frequency-band specific power by squaring the
result of the convolution of the complex and real parts of the signal (real[z(t)]? + imag[z(t)]?). The
resulting time-frequency data were then averaged per subject and trial type. Finally, time-frequency
traces were transformed to decibels (dB) and normalized to a baseline of -400ms to -100 ms before
stimulus onset, according to: dB = 10 * log10 2= (Cohen and van Gaal, 2014).

baseline

We tested the hypothesis that midfrontal theta-power would increase following the presentation of
conflicting stimuli according to previous literature (Nigbur et al., 2012; Cohen and Ridderinkhof, 2013;
Pastotter et al., 2013; Cohen and van Gaal, 2014). Therefore, we selected electrodes in a fronto-
central spatial region of interest (ROI) to run our analyses (Figure 2). In order to find a time-frequency
ROI for subsequent analyses in the spectral and information-theory domain, data from within the
spatial ROl were averaged across the awake and drowsy experimental sessions for congruent and
incongruent trials, separately. Next, current trial conflict was calculated (I-C) for all participants.

To test for significant time-frequency ROI in which overall conflict was present (Figure 2a), a cluster-
based nonparametric statistical test implemented in FieldTrip (Maris and Oostenveld, 2007) was used.
In brief, time-frequency charts (-200 to 1200 ms) were compared in pairs of experimental conditions
(incongruent vs. congruent). For each such pairwise comparison, epochs in each condition were
averaged subject-wise. These averages were passed to the analysis procedure of FieldTrip, the
details of which are described elsewhere (Maris and Oostenveld, 2007). In short, this procedure
compared corresponding temporal points in the subject-wise averages using independent samples t-
tests for between-subject comparisons. Although this step was parametric, FieldTrip uses a
nonparametric clustering method to address the multiple comparisons problem. t values of adjacent
temporal points whose P values were lower than 0.05 were clustered together by summating their t
values, and the largest such cluster was retained. This whole procedure, i.e., calculation of t values
at each temporal point followed by clustering of adjacent t values, was then repeated 1000 times, with
recombination and randomized resampling of the subject-wise averages before each repetition. This
Monte Carlo method generated a nonparametric estimate of the p-value representing the statistical
significance of the originally identified cluster. The cluster-level t value was calculated as the sum of
the individual t values at the points within the cluster.

Then, time-frequency power was extracted from this ROI for each participant and used as input for
(RM) ANOVAs between alertness (awake, drowsy), current trial congruency (congruent, incongruent)
and previous trial congruency (congruent, incongruent). Subsequently, separate (RM) ANOVAs for
the awake and drowsy conditions were performed on the same ROI data for post-hoc inspection of
significant effects for conflict adaptation (current trial congruency vs previous trial congruency).

EEG source reconstruction

To visualize the brain origins of the univariate conflict effect, cortical sources of subject-wise averaged
time-frequency charts within the theta-band ROI (Figure 2) were reconstructed using Brainstorm
(Tadel et al., 2011). The forward model was calculated using the OpenMEEG Boundary Element
Method (Gramfort et al., 2010) on the cortical surface of a template MNI brain (colin27) with 1 mm
resolution. The inverse model was constrained using weighted minimum-norm estimation (Baillet et
al., 2001) to calculate source activation. To plot cortical maps, grand-averaged activation values were
baseline corrected by z-scoring the baseline period (-400 to -100 ms window) to each time point, and
spatially smoothed with a 5-mm kernel. This procedure was applied separately for the overall, awake
and drowsy conflict effect.
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EEG multivariate spectral decoding

In addition to the univariate approach, a multivariate spectral decoding model was applied on the
time-frequency data. This was done both because of the higher sensitivity of multivariate analyses,
and well as to inspect if and to what extent different stimulus features (i.e. location and sound content)
were processed in awake and drowsy conditions. The ADAM-toolbox was used on raw EEG data,
that was transformed to time-frequency using default methods but with similar settings epochs: -
200ms to 1200ms, 2Hz-30Hz) (Fahrenfort et al., 2018). Trials were classified according to current trial
stimulus content (i.e. sound location and sound content) resulting in 4 trial types. Note that this is
different from the univariate analyses, where trials were classified according to current and previous
trial conflict. As decoding algorithms are known to be time-consuming, data were resampled to 64Hz.
Next, a backward decoding algorithm, using either stimulus location, stimulus sound contents or
congruency as stimulus class, was applied according to a tenfold cross-validation scheme. A linear
discriminant analysis (LDA) was used to discriminate between stimulus classes (e.g. left versus right
ear bud location etc.) after which classification accuracy was computed as the area under the curve
(AUC), a measure derived from Signal Detection Theory. AUC scores were tested per time-point with
double-sided t-tests across participants against a 50% chance-level. These t-tests were corrected for
multiple comparisons over time, using cluster-based permutation tests (p<0.05, 1000 iterations). This
procedure yields time clusters of significant above-chance classifier accuracy, indicative of
information processing. Note that this procedure yields results that should be interpreted as fixed
effects (Allefeld et al., 2016), but is nonetheless standard in the scientific community.

Information sharing analysis: weighted symbolic mutual information (wSMI)

In order to quantify the information sharing between electrodes we computed the weighted symbolic
mutual information (WSMI) (King et al., 2013; Sitt et al., 2014; Imperatori et al., 2019). It assesses the
extent to which the two signals present joint non-random fluctuations, suggesting that they share
information. wSMI has three main advantages: (i) it allows for a rapid and robust estimation of the
signals' entropies; (ii) it provides an efficient way to detect non-linear coupling; and (iii) it discards the
spurious correlations between signals arising from common sources, favouring non-trivial pairs of
symbols. For each trial, wSMI is calculated between each pair of electrodes after the transformation
of the EEG signals into sequence of discrete symbols discrete symbols defined by the ordering of k
time samples separated by a temporal separation 1. The symbolic transformation depends on a fixed
symbol size (k = 3, that is, 3 samples represent a symbol) and a variable T between samples (temporal
distance between samples) which determines the frequency range in which wSMI is estimated. In our
case, we chose T = 32 to specifically isolate wSMI in theta-band. The frequency specificity f of wSMI
is related to k and 1 as:

f=1000/ (1 * k)

As per the above formula, with a kernel size k of 3, T values of 32 ms hence produced a sensitivity to
frequencies below 10 Hz with and spanning the theta-band (~4-9 Hz).

wSMI was estimated for each pair of transformed EEG signals by calculating the joint probability of
each pair of symbols. The joint probability matrix was multiplied by binary weights to reduce spurious
correlations between signals. The weights were set to zero for pairs of identical symbols, which could
be elicited by a uniqgue common source, and for opposite symbols, which could reflect the two sides
of a single electric dipole. wSMI is calculated using the following formula:
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wSMI(X,Y) =

(k') 2, 0, W) pey)! g(pﬁ)p&)

XEXYEY

where x and y are all symbols present in signals X and Y respectively, w(x,y) is the weight matrix and
p(x,y) is the joint probability of co-occurrence of symbol x in signal X and symbol y in signal Y. Finally,
p(x) and p(y) are the probabilities of those symbols in each signal and K! is the number of symbols -
used to normalize the mutual information (Ml) by the signal's maximal entropy. The time window in
which wSMI was calculated was determined based on the significant time window observed in the
spectral contrast of Figure 2a (380-660 ms).

Statistics

Statistical analyses were performed using MATLAB (2016a), Jamovi (Version 0.8.1.6) [Computer
Software] (Retrieved from https://www.jamovi.org) (open source), and JASP Team (2018; JASP;
version 0.8.4 software) statistical software.
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