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Abstract  18 

Humans are remarkably capable of adapting their behaviour flexibly based on rapid situational 19 

changes: a capacity termed cognitive control. Intuitively, cognitive control is thought to be affected by 20 

the state of alertness, for example, when sleepy or drowsy, we feel less capable of adequately 21 

implementing effortful cognitive tasks. Although scientific investigations have focused on the effects 22 

of sleep deprivation and circadian time, little is known about how natural fluctuations in alertness in 23 

the regular awake state affect cognitive control. Here we combined a conflict task in the auditory 24 

domain with neurodynamics -EEG recordings- to test how neural and behavioural markers of conflict 25 

processing are affected by fluctuations in arousal. Using a novel computational method, we 26 

segregated alert and drowsy trials from a three hour testing session and observed that, although 27 

participants were generally slower, the typical slower responses to conflicting information, compared 28 

to non-conflicting information, was still intact, as well as the effect of previous trials (i.e. conflict 29 

adaptation). However, the behaviour was not matched by the typical neural markers of cognitive 30 

control -local medio-frontal theta-band power changes-, that participants showed during full alertness. 31 

Instead, a decrease in power of medio-frontal theta was accompanied by an increase in long-range 32 

information sharing (connectivity) between brain regions in the same frequency band. The results 33 

show the resilience of the human cognitive control system when affected by internal fluctuations of 34 

our arousal state and suggests a neural compensatory mechanism when the system is under 35 

physiological pressure due to diminished alertness.   36 
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Introduction  37 

Cognitive control is the capacity of making quick adjustments to cognitive resources in order to 38 

optimally solve the task at hand. One proposed mechanism involves allocating attention to task-39 

relevant information and ignoring non-relevant, sometimes conflictive, information (Desimone and 40 

Duncan, 1995; Miller and Cohen, 2001; Egner and Hirsch, 2005). The ability to deal with conflicting 41 

information is often studied using “conflict tasks”, which typically induce response (or stimulus) conflict 42 

by triggering an automatic response that has to be overcome to decide correctly (e.g. Stroop/Simon 43 

tasks). For example, when a Dutch person drives in England, they must override the automatic 44 

tendency to turn right on a roundabout, and go left instead. Experiencing these types of conflict has 45 

shown to increase the level of cognitive control on the next occasion, when encountering a similar 46 

conflicting situation. This process -termed conflict adaptation- seems necessary to smooth future 47 

decisions and avoid further mistakes (Gratton et al., 1992). Here we combine a behavioural conflict 48 

task with electroencephalography (EEG) to study the modulatory effect of arousal fluctuations on 49 

decision-making in the face of conflict. 50 

How levels of wakefulness modulate attentional processes and cognitive control is commonly studied 51 

in sleep deprivation and circadian cycle studies, but less often during normal waking fluctuations 52 

(Goupil and Bekinschtein, 2012). Both sleep deprivation and drops in circadian time lead to cognitive 53 

performance decrements (Wickens et al., 2015), but surprisingly, the performance modulation 54 

imposed by changes in wakefulness on complex tasks appears to be less severe than their effects 55 

on simple tasks (Harrison et al., 2000). Specifically, studies focusing on (cognitive/response) conflict 56 

have failed to indicate increased interference effects with sleep deprivation and circadian time 57 

(Sagaspe et al., 2006; Cain et al., 2011; Bratzke et al., 2012), but consistently show overall slower 58 

responses during increased sleepiness or lower arousal. However, Gevers et al. (2015) recently 59 

uncovered an interesting dissociation, although conflict effects on the current trial did not seem to 60 

change after a night of sleep deprivation, across trial conflict adaptation effects did. These results 61 

nicely converge with studies on the relationship between conflict awareness and conflict processing, 62 

as  conflict detection seems much less dependent on conflict experience than conflict adaptation (van 63 

Gaal et al., 2010; Jiang et al., 2015) , suggesting that conflict detection is more automatic -less 64 

effortful- than conflict adaptation.  65 

Fluctuations in cognitive control are shown to be associated with changes in activity patterns in the 66 

medial frontal cortex (MFC) and the dorsolateral prefrontal cortex (DLPFC) (Robbins, 1996; Swick et 67 

al., 2011; Gläscher et al., 2012; Cai et al., 2016). In EEG recordings, conflict-related processes are 68 

often measured by quantifying the power of theta-band neural oscillations (4-8 hertz) (Luu et al., 2004; 69 

Trujillo and Allen, 2007; Cohen et al., 2008; Cavanagh et al., 2010; Nigbur et al., 2012; Cohen and 70 

van Gaal, 2014). In combination with a recently validated method to automatically detect drowsiness 71 

periods from EEG (Jagannathan et al., 2018) we here use conflictive information to map behavioural 72 

and neural markers of cognitive control as they get modulated by ongoing fluctuations in arousal. 73 

 74 

 75 

Results 76 

While fully awake as well as while becoming drowsy, participants performed an auditory Simon task 77 

where they heard the words “left” or “right”, from either the left or right side in space.  Participants 78 

were instructed to respond according to the meaning of the sound (e.g. “left” requires left-hand 79 

response, Figure 1A). We hypothesised  an increase in reaction times to all stimuli- a typical marker 80 

of drowsiness- but expected that conflict detection mechanisms would remain relatively preserved (in 81 
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behaviour and theta oscillations), similar to studies showing preserved processing of conflicting 82 

information at reduced levels of stimulus awareness (van Gaal et al., 2010; Jiang et al., 2015, 2018). 83 

We expected the sharpest decline in performance and conflict processing when focusing on across 84 

trial conflict adaptation mechanisms (Jiang et al., 2015).  85 

 86 

Figure 1. Experimental paradigm and alertness level classification. (A) Schematic representation of the 87 
experimental design. Participants were instructed to report the semantics (“left” or “right”) of an auditory stimulus 88 
via a button press with their left or right hand, respectively, and to ignore the spatial location at which the auditory 89 
stimulus was presented. Sound content of the auditory stimuli could be congruent or incongruent with its location 90 
of presentation (50% congruent/incongruent trials). (B) Schematic representation of the experimental sessions. 91 
In the awake session participants were instructed to stay awake with their eyes closed whilst performing the 92 
task with the back of the chair set up straight and the lights on. Immediately after, in the drowsy session, the 93 
task was performed while participants were allowed to fall asleep with their chair reclined to a comfortable 94 
position and the lights off. (C) Automatic classification of alertness levels. Pre-trial periods (-1500 to 0 ms) were 95 
used for defining the awake (purple) and drowsy (green) conditions. Pre-trials containing 100% and >50% of 96 
alpha oscillations were classified as awake. Similarly, pre-trials containing <50% of alpha oscillations, EEG 97 
flattening and ripples were classified as drowsy (see Methods for details). (D) Upper panel. Automatic 98 
classification of alertness during a drowsy session (representative participant, occipital electrode). The 99 
frequency profile depicts changes in the power level in different bands during the pre-trial period, and the bars 100 
on top represent pre-trials classified as awake (purple) or drowsy (green). Lower panel. The variability in the 101 
reaction times (lower panel) closely follows the changes in the frequency profile (upper panel) from alpha (higher 102 
RT variability in green) to theta (lower RT variability in purple) obtained using the pre-trial information.  103 
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Behavioural results. 104 

First, we analysed the reaction times (RT) differences between alertness conditions (awake, drowsy), 105 

previous trial congruency (congruent, incongruent) and current trial congruency (congruent, 106 

incongruent). As expected, a repeated-measures (RM) ANOVA revealed that RTs were slower for 107 

drowsy than alert trials (F1,32=26.58; p<0.001; 𝜂𝑝
2=0.454) and that there was a clear conflict effect, 108 

revealed by slower RTs to incongruent vs congruent trials (F1,32=47.03; p<0.001; 𝜂𝑝
2=0.595). We also 109 

observed the typical conflict adaptation effect, indicated by a smaller conflict effect when the previous 110 

trial was incongruent than congruent (interaction previous x current trial congruency: F1,32=29.88; 111 

p<0.001; 𝜂𝑝
2=0.483). In the next series of analyses, we focus on the effects for the awake and drowsy 112 

conditions separately. 113 

Within the awake condition, RTs were slower for incongruent trials compared to congruent trials (main 114 

effect of congruency: F1,32=59.16; p<0.001; 𝜂𝑝
2=0.649) and there was also a conflict adaptation effect 115 

(interaction previous x current trial congruency: F1,32=27.974; p<0.001; 𝜂𝑝
2=0.466, Figure 2A left). The 116 

effects were positive for the majority of the participants for both the conflict (30 out of 33 participants) 117 

and the conflict adaptation effect (26 out of 33 participants; Figure 2A middle). Similar effects were 118 

observed when  participants were drowsy, since both a conflict (F1,32=9.642; p=0.004; 𝜂𝑝
2=0.232) and 119 

conflict adaptation effect were observed (F1,32=7.318; p=0.011; 𝜂𝑝
2=0.186, Figure 2B left). Again, the 120 

effects were positive for the majority of the participants for both the conflict (26 out of 33 participants) 121 

and conflict adaptation (22 out of 33 participants; Figure 2B middle). 122 

A (RM) ANOVA performed on error rates across arousal levels revealed that participants made more 123 

errors during drowsy than during awake (main effect of alertness: F1,32=18.29; p<0.001; 𝜂𝑝
2=0.364), 124 

however, conflict (F1,32=2.357; p=0.135; 𝜂
𝑝
2=0.06; BF10=1.24) and conflict adaptation (F1,32=0.862; 125 

p=0.360; 𝜂
𝑝
2=0.364; BF10=4.14) effects on error rate were not reliable. On the other hand, when the 126 

analyses were performed separately by arousal level, the awake state showed a conflict effect 127 

(F1,32=24.152; p<0.001; 𝜂
𝑝
2=0.43) and conflict adaptation F1,32=8.567; p=0.006; 𝜂

𝑝
2=0.211, Figure 2C) 128 

but the drowsy condition did not (conflict: F1,32=1.41; p=0.243; 𝜂
𝑝
2=0.042; BF=5.149; conflict 129 

adaptation: F1,32=1.88; p=0.180; 𝜂
𝑝
2=0.055; BF=13.685, Figure 2D).  130 
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 131 

Figure 2. Behavioral results in awake and drowsy. Conflict and conflict adaptation effects for the awake (A) 132 
and drowsy (B) conditions in reaction times at the group and individual level. Effects of conflict and conflict 133 
adaptation in error rates in the awake (C) and drowsy (D) condition.  134 

 135 

Midfrontal theta-band oscillations and source reconstruction. 136 

Upon establishing that conflict and conflict adaptation effects are present in both awake and drowsy 137 

states, we proceed to test whether medial frontal (MF) conflict detection processes, typically reflected 138 

in short-lived oscillatory dynamics in the theta-band (Nigbur et al., 2012; Cohen and Donner, 2013; 139 

Cohen and van Gaal, 2014; Jiang et al., 2015), were present during awake and drowsy states as well. 140 

In order to determine the time-frequency cluster for assessing conflict and conflict adaptation effects, 141 

we first analysed the overall conflict effect, irrespective of alertness condition or previous trial 142 

congruency (I-C, averaged over awake and drowsy sessions). Replicating previous studies (Nigbur 143 

et al., 2012; Jiang et al., 2015), current trial conflict induced increased theta-band power at MF 144 

electrodes (cluster p=0.028; frequency range: 4Hz–8Hz, time range: 250ms–625ms, see encircled 145 

region in black, solid line, in Figure 3A). The area within this time-frequency (T-F) cluster was used 146 

for follow-up analyses. Next, we tested whether these conflict-related theta-band dynamics in this 147 

cluster were modulated by alertness and previous trial congruency, which was indeed the case. A RM 148 

ANOVA revealed stronger MF theta for awake than drowsy trials (main effect of alertness: F1,32=51.64; 149 

p<0.001; 𝜂𝑝
2=0.618) and typical conflict adaptation effects (F1,32=5.70; p=0.023; 𝜂𝑝

2=0.151). We unpack 150 

below the results for awake and drowsy conditions separately.   151 

In the awake condition, MF theta-band power was stronger for incongruent than congruent trials 152 

(conflict effect: F1,32=11.38; p=0.002; 𝜂𝑝
2=0.262), and this conflict effect was modulated by previous 153 

trial congruency (conflict adaptation: F1,32=8.47; p=0.007; 𝜂𝑝
2= 0.209; Figure 3B). On the contrary, the 154 

analyses in the drowsy state did not show a reliable conflict effect in MF theta-band oscillations 155 

(F1,32=1.11; p=0.299; 𝜂𝑝
2=0.001; BF01=4.53, Figure 3D), nor conflict adaptation (F1,32=2.19; p=0.148; 156 

𝜂𝑝
2=0.064; BF01=3.84). In order to visualize the sources of the conflict-related MF theta oscillations 157 
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observed at the scalp level, we performed source reconstruction analyses, across all conditions 158 

(Figure 3A), for the awake (Figure 3B) and drowsy (Figure 3D) conflict effects separately. In line with 159 

several fMRI and animal studies performed on awake  participants, the conflict-related theta-band 160 

signal seems to show hubs in the medial frontal and the dorsolateral prefrontal cortex (Van Veen et 161 

al., 2001; Botvinick et al., 2004; Ullsperger et al., 2014) (Figure 3B), but to a lesser extent in the 162 

drowsy condition (Figure 3C).  163 

In addition to the MF theta cluster and in agreement with previous reports (van Gaal et al., 2010; Jiang 164 

et al., 2015), an overall conflict effect was observed in the alpha-beta band (cluster p=0.008; 165 

frequency range: 13Hz–29Hz, time range: 580ms–728ms, see encircled region in black, dashed line, 166 

in Figure 3A). When trials were split, these results were reliable for the conflict effect in the awake 167 

condition (F1,32=8.41; p=0.007; 𝜂𝑝
2=0.208) but not for conflict adaptation (F1,32=3.24, p=0.081; 168 

𝜂𝑝
2=0.092, BF01=2.021), nor for the drowsy condition in general (conflict effect: F1,32=0.05; p=0.488; 169 

𝜂𝑝
2=0.002, BF01=5.252; conflict adaptation: F1,32=0.94; p=0.339; 𝜂𝑝

2=0.039, BF01=52.135).  170 

 171 

 172 

Figure 3. Univariate spectral analysis and sources of midfrontal theta-band oscillations in the awake 173 
and drowsy conditions. Conflict effects in terms of time-frequency dynamics across alertness conditions (A), 174 
and for the awake (B) and drowsy condition (D) separately, calculated over medial-frontal electrodes. (A) The 175 
black delineated box is the theta-band time-frequency ROI where overall conflict (I-C) was significant over 176 
conditions (cluster-based corrected, see Methods). Insets show topographical distributions of oscillatory power 177 
within this T-F ROI. Black dots represent the midfrontal EEG electrodes selected for obtaining the conflict-178 
related theta-band power. A source-reconstruction analysis was performed on this time-frequency ROI (z-179 
score). Activations are depicted on unsmoothed brains; as reconstructed sources were only observed on the 180 
surface of the cortex. Sources are for visualization purposes (no statistical testing performed). Group-level (B, 181 
D) and individual conflict and conflict adaptation effects (C, E) for the awake (B, C) and drowsy (D, E) in dB 182 
(average ROI power incongruent – average ROI power congruent).  183 

 184 

Multivariate spectral decoding.  185 

The hypothesis-driven analysis for the neural signatures focused on the MF theta-band revealed clear 186 

conflict detection and conflict adaptation processes for the wake state, but not reliably for the drowsy 187 

state. The change of wakefulness in the transition to sleep comes with big changes in neural 188 

reconfiguration that might explain this loss of specificity of the neural markers. In order to determine 189 

whether a different pattern of neural activity might be underlying the behavioral conflict effect in the 190 

drowsy condition observed in behaviour, we performed a wide multivariate spectral decoding analysis 191 
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to account for possible changes in space, time and frequency of the conflict related neural signatures. 192 

To do so, we trained classifiers to: (1) distinguish between congruent vs. incongruent trials; (2) 193 

distinguish spatial processing in trials where the auditory stimulus was presented from the left vs. the 194 

right earbud (i.e. stimulus location); and (3) differentiate trials where the presented auditory stimulus 195 

was “left” vs. “right” (i.e. stimulus content). Above-chance classification accuracies imply that relevant 196 

information about the decoded stimulus feature is present in the neural data, meaning that some 197 

processing of that feature occurred (Hebart and Baker, 2018). 198 

Consistent with the univariate approach for analysing congruency, multivariate decoding showed that 199 

information about stimulus congruency was reliably represented in neural data in the awake (Figure 200 

4A), but not in the drowsy state (Figure 4B, p<0.05, cluster-corrected; frequency-range: 2-9 Hz, peak 201 

frequency: 6Hz, time-range: 376-810 ms). Assessment of the qualitative difference in the theta-band 202 

decoding (4-9 Hz) performance between the awake and drowsy states showed reliable temporal 203 

clusters of increased classifier accuracy for the awake condition (p<0.05, cluster-corrected) in the 204 

680-810 ms time-range (Figure 4A right panel). 205 

Although the previous analysis revealed that conflict could only be decoded from neural data in the 206 

awake state, interestingly, the sound identity and location of the auditory stimuli could be decoded 207 

from neural data for both the awake (identity: p<0.001, cluster-corrected, time-range: 240-1200 ms; 208 

location: p<0.05, cluster-corrected, time-range: 120-920 ms) and drowsy states (identity: p<0.05, 209 

cluster-corrected, time-range: 250-1200 ms; location: p<0.05, cluster-corrected, time-range: 88-300 210 

ms, Figure 4A and Figure 4C). The above chance performance of the classifiers for low-level stimulus 211 

features suggests that location and sound identity were still processed, even during a decreased level 212 

of alertness, however, no reliable decoding was found for conflict effects. 213 

 214 
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Figure 4. Multivariate spectral decoding of stimuli components in the awake and drowsy condition. 215 
Classifier accuracies are depicted across time-frequency charts (2-30 Hz) for the awake and drowsy condition 216 
separately, and for the difference between awake and drowsy conditions in the theta-band. Classifier accuracy 217 
was thresholded (cluster-based correction, p<0.05) and significant clusters are outlined with a solid black line. 218 
In the difference plots on the right, significant differences from chance are highlighted by a black solid line at 219 
the bottom of the figures. The dotted lines in the left and middle panel reflect the frequency band used for 220 
statistical testing between awake and drowsy states (rightest panels). (A) Classifier accuracies for stimulus 221 
congruency (“conflict”). Information about congruency was only present in the awake condition. (B) Classifier 222 
accuracies for stimulus location (“location”). Location of the auditory stimulus could be decoded in both 223 
conditions, meaning that information about this stimulus feature is present in both awake and drowsy neural 224 
frequency signals. (C) Classifier accuracies for stimulus sound identities (“content”). Sound identities of the 225 
auditory stimulus could be decoded in both alertness conditions. Differences between awake and drowsy were 226 
observed for stimulus congruency and identity but not for stimulus location. 227 

 228 

Distributed theta-band information sharing 229 

The fact that a multivariate method analysing the pattern across time, space and frequency did not 230 

capture a neural signature of conflict observed behaviourally, suggest a more drastic reconfiguration 231 

of the neural processes underlying conflict detection during drowsiness. We reasoned that the neural 232 

signatures of conflict may involve changes in connectivity in a wide network of brain regions instead 233 

of relatively local power changes. Thus, we hypothesized that a neural metric specifically indexing 234 

neural information integration (wSMI; King et al., 2013; Sitt et al., 2014; Imperatori et al., 2019) could 235 

in principle capture the conflict effect during drowsiness. We performed this analysis as a possible 236 

post-hoc hypothesis for the reconfiguration of the underlying networks supporting cognitive control. 237 

The wSMI can be calculated at different time-scales and here we used a tau of 32 ms (~4-9 Hz), and 238 

therefore this measure captures non-linear information integration in the theta-band domain. Indeed, 239 

a RM ANOVA revealed a reliable main effect of alertness (F1,32=56.10; p<0.001, 𝜂𝑝
2=0.637) and an 240 

interaction between congruency and alertness for long-distance wSMI in the theta-band (F1,32=5.50; 241 

p=0.025; 𝜂𝑝
2=0.182, Figure 5A). Post hoc effects showed higher wSMI for incongruent than congruent 242 

trials only in the drowsy state (t32=2.456; p=0.034; awake: t32=0.305; p=0.761; Tukey corrected for 243 

multiple comparisons). Individual differences in theta-band wSMI for each participant in the awake 244 

(right) and drowsy (left) conditions are shown in Figure 5B. 245 

Brain-behaviour relationships 246 

We further investigated, in an exploratory manner, the statistical dependencies between information 247 

integration in the theta-band, information sharing (wSMI) and the strength of the behavioural conflict 248 

effect. Separate multiple regressions were performed on the awake and drowsy states, using as 249 

regressors the MF theta-power ROI differences (I-C) and the distributed theta-wSMI differences (I-C) 250 

(Figure 5C). The conflict effect (RT difference: I-C) was used as the predicted variable. In the drowsy 251 

condition model (R2=0.20; F2,30=3.68; p=0.037), distributed theta-wSMI predicted the conflict effect in 252 

RT (β=-0.39; p=0.028), while MF theta was not a reliable predictor (β=0.14; p=0.665). On the other 253 

hand, in the awake condition model (R2=0.02; F2,30=; p=0.613), none of the regressors predicted the 254 

conflict effect significantly (MF theta: β=0.12; p=0.514; distributed theta-wSMI: β=0.09; p=0.609). This 255 

relationship was also described in terms of a simple Pearson’s correlation, showing a significant 256 

correlation between RT difference and wSMI difference for the drowsy (r= -0.42; p=0.015) but not for 257 

the awake condition (r=0.08; p=0.65) (Fig 5D). These results show that the distributed information, 258 
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but possibly not the local spectral power in the same neural signal (theta-band), underlies the 259 

behavioural conflict effect observed in the drowsy state.  260 

 261 

Figure 5. Long-distance theta-band information sharing during conflict in awake and drowsy. (A) Long-262 
distance wSMI in the theta-band during the conflict effect. Each arc represents a functional connection between 263 
a pair of electrodes, and the height of the arc represents the value of the wSMI difference for that pair 264 
(incongruent - congruent; awake condition in green and drowsy condition in magenta). Theta-band wSMI was 265 
calculated between each midfrontal ROI electrode (shown in Figure 2) and every other electrode outside the 266 
ROI. wSMI values within the midfrontal ROI were discarded from the analyses since we aimed at evaluated 267 
information integration between distant electrode pairs. (B) Individual differences in theta-band wSMI for each 268 
participant in the awake (right) and drowsy (left) conditions. (C) Beta coefficients for two separate multiple 269 
regressions using RT difference (I-C) as predicted variable and theta power difference (I-C) and wSMI difference 270 
(I-C) as regressors (D) Pearson’s correlation for awake and drowsy conditions between RT differences and 271 
wSMI difference. 272 

 273 

Discussion  274 

In this article we explored the impact of changes in our arousal state during conflict detection and 275 

conflict adaptation processes. We found the expected behavioural manifestations of decreased 276 

alertness, namely higher variance and variability in RTs and slower RTs when people were drowsy 277 

as compared to actively awake (Lal and Craig, 2001; Huang et al., 2009; Goupil and Bekinschtein, 278 

2012; Bareham et al., 2014; Comsa et al., 2019). Further, we observed reliable conflict effects with 279 

increased drowsiness. However, against our hypothesised loss of conflict adaptation, we observed 280 

these effects despite participants’ decreased alertness (Figure 2). The effects of conflict (current trial) 281 

and conflict adaptation (trial-by-trial) seemed reliable independently of the states of alertness (see 282 

Figure 2 for individual participant’s data), suggesting a spared capacity to resolve conflict arising from 283 

the incongruity between the meaning and the side of the world where the word was presented. This 284 

is in contrast to the lack of detrimental effects of decreasing arousal on cognitive control at the 285 

behavioural level that has been proposed (Sagaspe et al., 2006; Cain et al., 2011; Bratzke et al., 286 
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2012), although there are contrasting views (Gevers et al., 2015). These arousal modulations on the 287 

capacity of executive control have been found primarily for fatigue and sleep deprivation. However, 288 

we show here that normal fluctuations of arousal in well-rested participants yield no strong detrimental 289 

effects in the resolution of conflict. In short, humans still experience conflict while drowsy, and even if 290 

they react slower, they respond to incongruity in the comparable way as when fully awake and 291 

attentive. 292 

Although conflict processing was relatively maintained in behavioural terms, its neural signatures 293 

changed. The principles of neural reorganization are a much debated topic in neuroscience (Dahmen 294 

and King, 2007; Shine et al., 2019) but there is agreement that there is flexibility of the brain networks 295 

to maintain or preserve psychological function in the face of insult, and internal or external modulatory 296 

factors (Siuda-Krzywicka et al., 2016; Singh et al., 2018). Here we found a dissociation due to the 297 

change in arousal between the behaviour and its classic neural markers, the classic conflict-induced 298 

theta-band power changes were no longer reliable during low alertness. Furthermore, multivariate 299 

whole-brain analyses showed convergent results with stronger neural signal in alert compared to the 300 

drowsy state. This suggests that the changes exerted by the diminished arousal elicited a 301 

reconfiguration of the brain networks putatively responsible for the neural resolution of the conflict, 302 

resulting in the disappearance of the theta power difference in the conflict contrast.  303 

The networks implicated in cognitive control are not only supported by correlations with brain activity, 304 

but also by causal interventions. In rodents a dissociation has been proposed between prefrontal 305 

cortices in the causal support of control functions, in which the dorso-medial prefrontal cortex seems 306 

to be implicated in memory for motor responses; this includes response selection and the temporal 307 

processing of information, whereas ventral regions of the medial prefrontal cortex seem implicated in 308 

interrelated ‘supervisory’ attentional functions, including attention to stimulus features and task 309 

contingencies (or action–outcome rules), attentional set-shifting, and behavioural flexibility (Dalley et 310 

al., 2004). In humans, causal evidence is sparse due to a scarcity of patients with specific (frontal) 311 

lesions. However, the impairment of simple cognitive control and trial-by-trial influence is shown in a 312 

small but well-structured study in which dorsal anterior cingulate cortex (dACC) damage disrupted the 313 

ability to make an adaptive choice between actions (but not stimuli) following a win on the previous 314 

trial. Moreover, orbitofrontal (OFC) damage similarly disrupted choices between stimuli, but not 315 

actions (Camille et al., 2011). Furthermore, in a large (n=344) correlational study Gläscher et al. 316 

(2012) found that impairments in cognitive control (response inhibition, conflict monitoring, and 317 

switching) was associated with dorsolateral prefrontal cortex and anterior cingulate cortex lesions. 318 

These medial prefrontal areas that have been proposed as the origin of the theta power modulation 319 

in conflict tasks are thus causally implicated in cognitive control and lend further support for the search 320 

of other correlates that would capture the conflict effect during an arousal challenge. 321 

An important methodological aspect of the study entails the design for single subject power. We 322 

expected to see a strong conflict effect in this version of the Simon Task in the group analyses (Vu et 323 

al., 2003), since we collected several hundreds of trials per condition in each participant for both 324 

alertness states (awake and drowsy).  Moreover, the systematic effects at the single-participant level 325 

due to fast-paced high-number of trials as wakefulness decreased from around 3 hours of testing, 326 

captured the true effect of the group. Each participant included in the analyses provided all conditions, 327 

awake and drowsy.  328 

The cognitive processes leading up to conflict experience involve the extraction of meaning (“left” or 329 

“right”) and the location from where the stimulus came from. Thus, if the two factors are congruent 330 

(“left” coming from the left side of space) conflict is supposed to be absent and participant’s response 331 
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fast, but when the word comes from the other side of the space (“left” presented in the right side of 332 

space) conflict arises and the response slows down, reflecting further processes necessary to resolve 333 

conflict. We hypothesised that the specific perceptual and semantic component of location and 334 

content, respectively, would be decodable in the spectral domain as the participants responded 335 

correctly to the stimuli. Both content and location showed above chance decoding patterns in the 336 

theta-band as well as other frequency bands -depending on the contrast- in both awake and drowsy 337 

states. This highlights the capacity of the brain to process the semantic and spatial components of 338 

the task in parallel under internal modulatory stress (lower arousal). In order to capture the integration 339 

between these two components by cognitive control networks, we looked for decodability of conflict 340 

in the spectral domain (stimulus congruency). The patterns showed the expected theta-band power 341 

difference (restricted to theta) only in the alert state.  342 

We knew that there is strong evidence that neural aspects of conflict are found in brain signals, hence 343 

we turn to information sharing under three premises. First, a neural measure of information sharing 344 

could in principle capture directly the information integration between stimulus content and stimulus 345 

location necessary for generating the conflict effect in our task. Second, the dynamic nature of neural 346 

information integration (Imperatori et al., 2019) may be able to capture the reconfiguration of neural 347 

networks during the transition from an alert to a drowsy state of mind. Finally, as the reorganization 348 

of networks could be reflected in the need for larger information capacity of the brain when challenged 349 

(by drowsiness), the measure chosen can be conceptually framed as deriving from a computational 350 

principle. Although cortical reorganization with age and after insult have been extensively studied, the 351 

cognitive flexibility, or “cognitive fragmentation” resulted from an internally generated change –352 

drowsiness- has hardly been captured (Goupil and Bekinschtein, 2012). These methods of tackling 353 

the system as it changes could be conceptually regarded as causal if the processes at play are 354 

regarded as partially independent. The case of drowsiness as a causal model to study neural 355 

mechanism of cognitive control and decision making at large may prove to be very useful in the 356 

exploration of how cognition is fragmented or remain resilient under (reversible) perturbations of 357 

wakefulness (Kouider et al., 2014; Comsa et al., 2018).   358 

One possible explanation for the call for wider networks to resolve conflict during drowsiness would 359 

be the need for involvement of extended neural resources to solve the same task, as seen previously 360 

in older adults when they are matched in performance to younger adults (Reuter-Lorenz and Cappell, 361 

2008; Spreng et al., 2017). Convergent evidence is drawn from cognitive control studies, where the 362 

frontoparietal control networks are further recruited with higher cognitive load (Liang et al., 2016; 363 

Fransson et al., 2018), tasks possibly reflecting the higher need for neural resources. In other words, 364 

the brain’s capacity for plasticity allows for the expansion of conflict networks in cases where another 365 

element in the system (e.g. drowsiness) draws resources away (internal challenge) from the neural 366 

systems typically underlying cognitive control.  367 

 368 

 369 

 370 

 371 

 372 

 373 
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Methods 374 

 375 

Participants 376 

Thirty-three healthy human participants (18 female) aged 18 to 30 (M=23.1, SD=2.8), recruited from 377 

the University of Cambridge (Cambridge, United Kingdom), participated in this experiment for 378 

monetary compensation. All participants had normal or corrected-to-normal vision and had no history 379 

of head injury or physical and mental illness. This study was approved by the local ethics committee 380 

of the University of Cambridge and written informed consent was obtained from all participants after 381 

explanation of the experimental protocol. 382 

Experimental task 383 

Participants performed an auditory version of the Stroop task (Stroop, 1935). Recorded samples of a 384 

native speaker saying “left” or “right” were presented to participants’ left or right ear through ear buds, 385 

resulting in four types of stimuli (i.e. “left” in left ear, “left” in right ear, “right” in right ear, “right” in left 386 

ear). Stimuli were congruent when the word meaning corresponded to its physical location (e.g. left 387 

in left ear) and incongruent otherwise (e.g. “left” in right ear). All four types of stimuli were presented 388 

equally often, but in a random order. Participants were asked to report the location depicted by the 389 

voice (i.e. word meaning; the words left or right), while ignoring its physical location (i.e. left or right 390 

ear) by pressing one of two buttons on a response box. There was no practice block and no feedback 391 

on performance throughout the task. The time between a response and the following stimulus varied 392 

randomly between 2 and 2.5 seconds. The inter stimulus interval was fixed to 2 seconds in the 393 

absence of a response within that time frame. As a result, the inter stimulus interval could vary from 394 

2 seconds (response absent) to 4.49 seconds (maximum response latency of 1.99 seconds + 395 

maximum response stimulus interval of 2.5). 396 

Procedure 397 

Participants were instructed to get a normal night’s rest on the night previous to testing. Testing 398 

started between 9 am and 5 pm and lasted approximately 3 hours. Upon arrival at the testing room, 399 

participants were sat down in a comfortable adjustable chair in an electrically shielded room. 400 

Participants were fitted with an EGI electrolyte 129-channel cap (Electrical Geodesics, Inc. systems) 401 

after receiving the task instructions and subsequently signing the informed consent. Task instructions 402 

were to respond as fast and accurate as possible, to keep bodily movements to a minimum and to 403 

keep the eyes closed throughout the experiment. Participants were asked to report their answers with 404 

their thumbs (i.e. left thumb for the word ‘left’ and vice versa) on two buttons of a four-button response 405 

box that rested on their lap or abdomen. In the first part of the session, participants were instructed 406 

to stay awake with their eyes closed whilst performing the task. The back of the chair was set up 407 

straight and the lights in the room were on. This part of the experiment lasted for 500 trials and lasted 408 

for approximately 25 minutes. Right afterwards, the task was performed while participants were 409 

allowed to fall asleep. The chair was reclined to a comfortable position, the lights were turned off and 410 

participants were offered a pillow and blanket. Participants were told that the experimenter would 411 

wake them up by making a sound (i.e. knocking on desk or wall) if they missed 5 consecutive trials. 412 

This part of the experiment lasted for 2000 trials and lasted for approximately 1.5 hours. At the end 413 

of the session, participants were sat upright and the EEG cap was removed. Stimuli were presented 414 

using PsychToolbox software on a Mac computer and data were acquired using NetStation software 415 

(Electrical Geodesics, Inc. Systems) on another Mac computer. 416 
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Behavioral data analysis  417 

The first trial of every block, incorrect or missed trials, trials following incorrect responses and trials 418 

with an RT<200 ms were excluded from behavioral analyses. Conflict on trial n has been found to 419 

cause increased error rates (ERs) and prolonged reaction times (RTs), as compared to when no 420 

conflict is present. This current trial effect of conflict can be modulated by previously experienced 421 

conflict on trial n-1, a phenomenon called conflict adaptation. In order to investigate whether current 422 

trial conflict effects and the modulation thereof by previous conflict were present, we performed 423 

repeated measures (RM) ANOVA on ERs and RTs between alertness (awake, drowsy), current trial 424 

congruency (congruent, incongruent) and previous trial congruency (congruent, incongruent). 425 

Additional post-hoc (RM) NOVA, awake and drowsy conditions separately were performed. In case 426 

of null-findings, we applied a Bayesian repeated measures ANOVA with similar factors, to verify if 427 

there is actual support of the null-hypothesis. We also performed such Bayesian ANOVAs for any 428 

null-findings in our EEG data. 429 

Wakefulness classification 430 

The automatic classification of alertness levels involved classifying periods of the experimental 431 

session into ‘awake’ and ‘drowsy’. The pre-trial period (-1500 to 0ms) before each tone was used in 432 

classifying the corresponding trial as awake or drowsy. Pre-trial epochs were analysed using the 433 

micro-measures algorithm (Jagannathan et al., 2018) and each trial was classified was ‘alert’, ‘drowsy 434 

(mild)’, ‘drowsy (severe)’. To select true alert trials, we used only trials from the alert blocks and 435 

removed all those marked as ‘severe drowsy’ (purple in Figure 1C). Similarly, ‘drowsy (mild)’ and 436 

‘drowsy (severe)’ from the drowsy blocks were selected as true drowsy trials (green in Figure 1C). 437 

Thus, the total number of trials across the 33 participants was 26045 for the ‘awake’ and 33306 for 438 

the ‘drowsy’ conditions.  439 

EEG recordings and pre-processing. 440 

EEG signals were recorded with 128-channel HydroCel Sensors using a GES300 Electrical Geodesic 441 

amplifier at a sampling rate of 500 Hz using the NetStation software. During recording and analyses, 442 

the electrodes’ average was used as the reference electrode. Two bipolar derivations were designed 443 

to monitor vertical and horizontal ocular movements. Following Chennu et al (2014), data from 92 444 

channels over the scalp surface were retained for further analysis. Channels on the neck, cheeks and 445 

forehead, which reflected more movement-related noise than signal, were excluded. Continuous EEG 446 

data was epoched from -1500 to 2000 ms around stimulus onset. Eye movement contamination 447 

(blinks were rare as eyes were closed, vertical and horizontal saccades or slow movements were also 448 

infrequent), muscle artefacts (i.e. cardiac and neck movements) were removed from data before 449 

further processing using an independent component analysis (ICA) (Delorme and Makeig 2004). All 450 

conditions yielded at least 96% of artefact-free trials. Trials (-2500 to 0 ms) that contained voltage 451 

fluctuations exceeding ± 200 μV, transients exceeding ± 100 μV were removed. No low-pass or high-452 

pass filtering was performed during the pre-processing stage. The EEGLAB MATLAB toolbox was 453 

used for data pre-processing and pruning (Delorme and Makeig 2004).  454 

EEG time-frequency analysis 455 

Epochs were grouped based on current and previous trial congruency, creating four trial conditions. 456 

Then, EEG-traces were decomposed into time-frequency charts from 2 Hz to 30 Hz in 15 linearly 457 

spaced steps (2 Hz per bin). The power spectrum of the EEG-signal (as obtained by the fast Fourier 458 

transform) was multiplied by the power spectra of complex Morlet wavelets (𝑒𝑖2𝑡𝑓𝑒−𝑡2/(22)) with 459 
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logarithmically spaced cycle sizes ranging from 3 to 12. The inverse Fourier transform was then used 460 

to acquire the complex signal, which was converted to frequency-band specific power by squaring the 461 

result of the convolution of the complex and real parts of the signal (𝑟𝑒𝑎𝑙[𝑧(𝑡)]2 + 𝑖𝑚𝑎𝑔[𝑧(𝑡)]2). The 462 

resulting time-frequency data were then averaged per subject and trial type. Finally, time-frequency 463 

traces were transformed to decibels (dB) and normalized to a baseline of -400ms to -100 ms before 464 

stimulus onset, according to: 𝑑𝐵 = 10 ∗ 𝑙𝑜𝑔10
𝑝𝑜𝑤𝑒𝑟

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 (Cohen and van Gaal, 2014). 465 

We tested the hypothesis that midfrontal theta-power would increase following the presentation of 466 

conflicting stimuli according to previous literature (Nigbur et al., 2012; Cohen and Ridderinkhof, 2013; 467 

Pastötter et al., 2013; Cohen and van Gaal, 2014). Therefore, we selected electrodes in a fronto-468 

central spatial region of interest (ROI) to run our analyses (Figure 2). In order to find a time-frequency 469 

ROI for subsequent analyses in the spectral and information-theory domain, data from within the 470 

spatial ROI were averaged across the awake and drowsy experimental sessions for congruent and 471 

incongruent trials, separately. Next, current trial conflict was calculated (I-C) for all participants. 472 

To test for significant time-frequency ROI in which overall conflict was present (Figure 2a), a cluster-473 

based nonparametric statistical test implemented in FieldTrip (Maris and Oostenveld, 2007) was used. 474 

In brief, time-frequency charts (-200 to 1200 ms) were compared in pairs of experimental conditions 475 

(incongruent vs. congruent). For each such pairwise comparison, epochs in each condition were 476 

averaged subject-wise. These averages were passed to the analysis procedure of FieldTrip, the 477 

details of which are described elsewhere (Maris and Oostenveld, 2007). In short, this procedure 478 

compared corresponding temporal points in the subject-wise averages using independent samples t-479 

tests for between-subject comparisons. Although this step was parametric, FieldTrip uses a 480 

nonparametric clustering method to address the multiple comparisons problem. t values of adjacent 481 

temporal points whose P values were lower than 0.05 were clustered together by summating their t 482 

values, and the largest such cluster was retained. This whole procedure, i.e., calculation of t values 483 

at each temporal point followed by clustering of adjacent t values, was then repeated 1000 times, with 484 

recombination and randomized resampling of the subject-wise averages before each repetition. This 485 

Monte Carlo method generated a nonparametric estimate of the p-value representing the statistical 486 

significance of the originally identified cluster. The cluster-level t value was calculated as the sum of 487 

the individual t values at the points within the cluster. 488 

Then, time-frequency power was extracted from this ROI for each participant and used as input for 489 

(RM) ANOVAs between alertness (awake, drowsy), current trial congruency (congruent, incongruent) 490 

and previous trial congruency (congruent, incongruent). Subsequently, separate (RM) ANOVAs for 491 

the awake and drowsy conditions were performed on the same ROI data for post-hoc inspection of 492 

significant effects for conflict adaptation (current trial congruency vs previous trial congruency). 493 

EEG source reconstruction 494 

To visualize the brain origins of the univariate conflict effect, cortical sources of subject-wise averaged 495 

time-frequency charts within the theta-band ROI (Figure 2) were reconstructed using Brainstorm 496 

(Tadel et al., 2011). The forward model was calculated using the OpenMEEG Boundary Element 497 

Method (Gramfort et al., 2010) on the cortical surface of a template MNI brain (colin27) with 1 mm 498 

resolution. The inverse model was constrained using weighted minimum-norm estimation (Baillet et 499 

al., 2001) to calculate source activation. To plot cortical maps, grand-averaged activation values were 500 

baseline corrected by z-scoring the baseline period (−400 to -100 ms window) to each time point, and 501 

spatially smoothed with a 5-mm kernel. This procedure was applied separately for the overall, awake 502 

and drowsy conflict effect. 503 
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EEG multivariate spectral decoding 504 

In addition to the univariate approach, a multivariate spectral decoding model was applied on the 505 

time-frequency data. This was done both because of the higher sensitivity of multivariate analyses, 506 

and well as to inspect if and to what extent different stimulus features (i.e. location and sound content) 507 

were processed in awake and drowsy conditions. The ADAM-toolbox was used on raw EEG data, 508 

that was transformed to time-frequency using default methods but with similar settings epochs: -509 

200ms to 1200ms, 2Hz-30Hz) (Fahrenfort et al., 2018). Trials were classified according to current trial 510 

stimulus content (i.e. sound location and sound content) resulting in 4 trial types. Note that this is 511 

different from the univariate analyses, where trials were classified according to current and previous 512 

trial conflict. As decoding algorithms are known to be time-consuming, data were resampled to 64Hz. 513 

Next, a backward decoding algorithm, using either stimulus location, stimulus sound contents or 514 

congruency as stimulus class, was applied according to a tenfold cross-validation scheme. A linear 515 

discriminant analysis (LDA) was used to discriminate between stimulus classes (e.g. left versus right 516 

ear bud location etc.) after which classification accuracy was computed as the area under the curve 517 

(AUC), a measure derived from Signal Detection Theory. AUC scores were tested per time-point with 518 

double-sided t-tests across participants against a 50% chance-level. These t-tests were corrected for 519 

multiple comparisons over time, using cluster-based permutation tests (p<0.05, 1000 iterations). This 520 

procedure yields time clusters of significant above-chance classifier accuracy, indicative of 521 

information processing. Note that this procedure yields results that should be interpreted as fixed 522 

effects (Allefeld et al., 2016), but is nonetheless standard in the scientific community. 523 

Information sharing analysis: weighted symbolic mutual information (wSMI)  524 

In order to quantify the information sharing between electrodes we computed the weighted symbolic 525 

mutual information (wSMI) (King et al., 2013; Sitt et al., 2014; Imperatori et al., 2019). It assesses the 526 

extent to which the two signals present joint non-random fluctuations, suggesting that they share 527 

information. wSMI has three main advantages: (i) it allows for a rapid and robust estimation of the 528 

signals' entropies; (ii) it provides an efficient way to detect non-linear coupling; and (iii) it discards the 529 

spurious correlations between signals arising from common sources, favouring non-trivial pairs of 530 

symbols. For each trial, wSMI is calculated between each pair of electrodes after the transformation 531 

of the EEG signals into sequence of discrete symbols discrete symbols defined by the ordering of k 532 

time samples separated by a temporal separation τ. The symbolic transformation depends on a fixed 533 

symbol size (k = 3, that is, 3 samples represent a symbol) and a variable τ between samples (temporal 534 

distance between samples) which determines the frequency range in which wSMI is estimated. In our 535 

case, we chose τ = 32 to specifically isolate wSMI in theta-band. The frequency specificity f of wSMI 536 

is related to k and τ as: 537 

f = 1000 / (τ * k) 538 

As per the above formula, with a kernel size k of 3, τ values of 32 ms hence produced a sensitivity to 539 

frequencies below 10 Hz with and spanning the theta-band (~4-9 Hz).  540 

wSMI was estimated for each pair of transformed EEG signals by calculating the joint probability of 541 

each pair of symbols. The joint probability matrix was multiplied by binary weights to reduce spurious 542 

correlations between signals. The weights were set to zero for pairs of identical symbols, which could 543 

be elicited by a unique common source, and for opposite symbols, which could reflect the two sides 544 

of a single electric dipole. wSMI is calculated using the following formula: 545 
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𝑤𝑆𝑀𝐼(𝑋, 𝑌) =  
1

log(𝑘!)
∑ ∑ 𝑤(𝑥, 𝑦) 𝑝(𝑥, 𝑦) log (

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦 ∈𝑌𝑥 ∈𝑋

  546 

where x and y are all symbols present in signals X and Y respectively, w(x,y) is the weight matrix and 547 

p(x,y) is the joint probability of co-occurrence of symbol x in signal X and symbol y in signal Y. Finally, 548 

p(x) and p(y) are the probabilities of those symbols in each signal and K! is the number of symbols - 549 

used to normalize the mutual information (MI) by the signal's maximal entropy. The time window in 550 

which wSMI was calculated was determined based on the significant time window observed in the 551 

spectral contrast of Figure 2a (380-660 ms).  552 

Statistics 553 

Statistical analyses were performed using MATLAB (2016a), Jamovi (Version 0.8.1.6) [Computer 554 

Software] (Retrieved from https://www.jamovi.org) (open source), and JASP Team (2018; JASP; 555 

version 0.8.4 software) statistical software.  556 
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