

DNA replication protein Cdc45 directly interacts with PCNA via its PIP box in *Leishmania donovani* and the Cdc45 PIP box is essential for cell survival

1 Aarti Yadav¹, Varshni Sharma¹, Jyoti Pal¹, Pallavi Gulati¹, Manisha Goel², Udit
2 Chandra^{1§}, Neha Bansal^{1§§} and Swati Saha^{1*}

3

4

5 ¹Department of Microbiology, University of Delhi South Campus, Benito Juarez Rd,
6 New Delhi 110021, India.

7 ²Department of Biophysics, University of Delhi South Campus, Benito Juarez Rd,
8 New Delhi 110021, India.

9 [§]Present address: Cactus Communications, Mumbai 400093

10 ^{§§}Present address: Department of Biotechnology, Lodhi Rd, New Delhi 110003

11

12

13

14

15

16

17 * To whom correspondence should be addressed:

18 Tel: +91-9911156268

19 Fax: +91-11-24115270

20 E-mail: ss5gp@yahoo.co.in

21

22

23

24

25

26 Running Title: *Leishmania donovani* Cdc45 PIP motif is essential for cell survival

27 Keywords: DNA replication, cell cycle, Cdc45, proliferating cell nuclear antigen (PCNA),

28 *Leishmania*, trypanosome, protozoan, PIP box.

29 **Abstract:**

30 DNA replication protein **Cdc45** is an integral part of the eukaryotic replicative helicase
31 whose other components are the **Mcm2-7** core, and **GINS**. We identified a PIP box motif in
32 *Leishmania donovani* Cdc45. This motif is typically linked to interaction with the
33 eukaryotic clamp **proliferating cell nuclear antigen** (PCNA). The homotrimeric PCNA can
34 potentially bind upto three different proteins simultaneously via a loop region present in
35 each monomer. Multiple binding partners have been identified from among the replication
36 machinery in other eukaryotes, and the concerted /sequential binding of these partners are
37 central to the fidelity of the replication process. Though conserved in Cdc45 across
38 *Leishmania* species and *Trypanosoma cruzi*, the PIP box is absent in *Trypanosoma brucei*
39 Cdc45. Here we investigate the possibility of Cdc45-PCNA interaction and the role of such
40 an interaction in the *in vivo* context. Having confirmed the importance of Cdc45 in
41 *Leishmania* DNA replication we establish that Cdc45 and PCNA interact stably in whole
42 cell extracts, interacting with each other directly *in vitro* also. The interaction is mediated
43 via the Cdc45 PIP box. This PIP box is essential for *Leishmania* survival. The importance
44 of the Cdc45 PIP box is also examined in *Schizosaccharomyces pombe*, and it is found to
45 be essential for cell survival in this organism also. Our results implicate a role for the
46 *Leishmania* Cdc45 PIP box in recruiting or stabilizing PCNA on chromatin. The Cdc45-
47 PCNA interaction might help tether PCNA and associated replicative DNA polymerase to
48 the DNA template, thus facilitating replication fork elongation. Though multiple
49 replication proteins have been identified to associate with PCNA in other eukaryotes, this is
50 the first report demonstrating a direct interaction between Cdc45 and PCNA, and while our
51 analysis suggests the interaction may not occur in human cells, it indicates that it is not
52 confined to trypanosomatids.

53

54 **Author Summary:**

55 Leishmanias are manifested in three forms: cutaneous, sub-cutaneous and visceral. The
56 prevalent form in the Indian subcontinent is visceral Leishmaniasis (VL), which is fatal if
57 not treated on time. While there are drugs for treatment, the hunt for additional drugs
58 continues due to emerging drug resistance patterns. The parasite is transmitted by the bite
59 of the sandfly, whereupon it establishes itself within cells of the host immune system
60 (macrophages) and reproduces by binary fission. The replication of its genome is essential
61 for parasite survival. Eukaryotic DNA replication is generally conserved across species.
62 This study targets Cdc45, a protein that helps unwind the DNA double helix to enable
63 copying of the two strands into two daughter strands. The new chains of DNA are
64 synthesized by DNA polymerases, and a trimeric protein, proliferating cell nuclear antigen
65 (PCNA), helps clamp the polymerases onto the template. In this study we find Cdc45 to
66 interact with PCNA, and have identified the motif in Cdc45 via which it does so. Our
67 results suggest this interaction is seen in some other eukaryotes as well. Based on the
68 results of our experiments we propose that Cdc45 may help moor PCNA-polymerase
69 complexes to template DNA.

70

71

72

73

74

75

76

77

78

79 **Introduction**

80 Leishmaniases afflict 12 million people across 88 countries, and are mainly
81 manifested as cutaneous, sub-cutaneous and visceral leishmaniasis. Visceral Leishmaniasis
82 remains a threat due to emerging drug resistance as well as due to risks associated with dual
83 HIV-*Leishmania* infections, and is deadly if not treated in a timely manner. In the Indian
84 subcontinent visceral Leishmaniasis is caused by *Leishmania donovani*. The parasite is
85 digenetic, shuttling between the insect host (sandfly) and the mammalian host. It
86 reproduces asexually by binary fission in both hosts and DNA replication is central to the
87 process.

88 The conserved process of eukaryotic DNA replication is marked by the licensing of
89 origins in late mitosis/G1 followed by the firing of these origins in S phase. The licensing
90 of origins is coupled to the formation of pre-replication complexes (pre-RCs) at or very
91 near origins (reviewed in [1,2]). The assembly of pre-RCs begins with the binding of the
92 origin recognition complex ORC (comprising Orc1-6) to DNA, followed by the sequential
93 recruitment of Cdc6, and two copies of Cdt1-MCM (MCM: Mcm2-7 heterohexameric
94 complex). The association of the MCM double hexamer “licenses” origins to fire. As cells
95 enter S phase Mcm4 and Mcm6 are phosphorylated by Dbf4-dependent kinase (DDK),
96 leading ultimately to the association of Cdc45 and the heterotetrameric GINS (go-ichi-ni-
97 san) along with other factors like Mcm10 [3,4], that help convert the inactive double
98 hexamer MCM complex into the active replicative helicase comprising Cdc45, a single
99 MCM hexamer and GINS: the CMG complex (**Cdc45-Mcm2-7-GINS**; [5,6]). Thus, two
100 CMG complexes are formed at each licensed origin, and when the origin fires they move in
101 opposite directions. EM and cross-linking studies with *Drosophila* CMG coupled with
102 crystal structure analysis of human Cdc45 reveal that Cdc45 interacts with Mcm2-7 at the
103 Mcm2/5 interface, while GINS interacts with Mcm2-7 at the Mcm3/5 interface. Cdc45 and

104 GINS also interact with each other in this complex. As the Mcm2/5 interface forms the gate
105 of the annular Mcm2-7 hexamer that closes once the Mcm2-7 ring has encircled the DNA
106 template, it is concluded that Cdc45 safeguards the closed gate, thus ensuring the template
107 DNA remains within the ring to enable translocation of the helicase during the elongation
108 phase of replication [7-9]. This forms the basis for the activation of MCM helicase activity
109 by Cdc45-GINS. The replisome that advances with the replication fork comprises a host of
110 proteins including the CMG complex but not the ORC, with data from EM studies
111 identifying a core replisome consisting of 20 subunits [10-13].

112 With orthologs of several of the conserved eukaryotic replication proteins being
113 identified in trypanosomatids, DNA replication in trypanosomes seems to broadly resemble
114 that of other eukaryotes. However, that trypanosomatids diverged from other eukaryotes
115 very early on is reflected in the fact that some of the conserved replication proteins are
116 absent [14-16]. While most of the components of the replication elongation machinery
117 including Mcm2-7, Cdc45, GINS, the DNA polymerases, and PCNA are present [14,17-
118 21], the same is not the case with components of the pre-replication complex. Thus, while
119 Orc1 and Orc4 are present, Orcs 2, 3, 5 and 6 have not been found, neither has Cdt1 [22-
120 24]. Furthermore, there is evidence of a divergent origin recognition complex (ORC) in *T.*
121 *brucei* that comprises Orc1, Orc4, Orc1B (an Orc1-like protein), and two other proteins
122 Tb7980 and Tb3120 that share very little sequence homology with the conserved Orc
123 proteins [14,19]. The *Trypanosoma brucei* CMG complex has been found to exhibit
124 helicase activity *in vitro*, and knockdown of individual components of the *T. brucei* CMG
125 complex results in defects in DNA replication and cell proliferation [19].

126 As the Cdc45 protein is highly conserved in sequence among trypanosomatids the
127 *Leishmania* Cdc45 is expected to behave similarly. However, sequence analysis revealed
128 that the *Leishmania* Cdc45 protein possesses a PIP box, a motif that is usually involved in

129 interactions with proliferating cell nuclear antigen (PCNA). This motif is not evident in
130 *Trypanosoma brucei* Cdc45. The present study was undertaken with the aim of addressing
131 the functional role of this PIP motif, if any, in relation to DNA replication and cell survival.

132 **Results:**

133 ***Depletion of Leishmania donovani Cdc45 leads to severe growth, cell cycle and DNA***
134 ***replication defects***

135 The *Leishmania donovani* 1S *cdc45* gene was cloned as described in
136 Supplementary Methods, and the gene sequenced (GenBank Accession no. MN612783).
137 Previous studies in *T. brucei* have shown that Cdc45 is nuclear in G1 and S phase but is
138 cytosolic after G2, and it was proposed that this nuclear export contributed to the
139 prevention of DNA re-replication in the same cell cycle [19]. As Clustal Omega analysis
140 [25] revealed *Leishmania donovani* Cdc45 to share ~ 43% identity and ~ 60% similarity
141 with Cdc45 from *T. brucei* and *T. cruzi* (S1 Fig) we initiated our study with examining the
142 possibility of a similar mechanism of replication regulation existing in *Leishmania*. The
143 gene encoding LdCdc45 lies on chromosome 33, and in the aneuploid *Leishmania*
144 *donovani* 1S genome this chromosome is trisomic [26]. To analyze subcellular
145 localization of the Cdc45 protein we tagged one of the genomic alleles with *eGFP* using
146 homologous recombination as described in Supplementary Methods, and verified the
147 authenticity of the recombinants by PCRs across the replacement junctions (S2a Fig). After
148 confirming expression of full length Cdc45-eGFP by western blot analysis (S2b Fig),
149 Cdc45-eGFP expression within these cells was examined by indirect immunofluorescence
150 with anti-eGFP antibodies, using kinetoplast morphology and segregation pattern as cell
151 cycle stage indicator [27]. LdCdc45 behaved differently from TbCdc45, remaining nuclear
152 throughout the cell cycle and thus ruling out the possibility of nuclear export being a mode
153 of replication regulation (S2c Fig).

154 The effects of Cdc45 depletion on cell growth and cell cycle progression were
155 investigated by creating genomic knockouts as *Leishmania* cells lack canonical RNAi
156 machinery. The process of making knockout lines was complicated by the fact that there
157 must be three genomic alleles as the gene lies on a trisomic chromosome. Accordingly, we
158 attempted to sequentially knock out all three alleles by homologous recombination, as
159 described in Supplementary Methods. In the first round of homologous recombination we
160 created two individual heterozygous knockout lines where one allele was replaced by
161 either the hygromycin resistance cassette or the neomycin resistance cassette (*cdc45*^{-/+}
162 ::hyg and *cdc45*^{-/+} ::neo respectively; Figs. 1a and 1b). A second allele in the *cdc45*^{-/+}
163 ::hyg line was next replaced with the neomycin resistance cassette to create a double
164 heterozygous knockout line *cdc45*^{-/-} (Fig. 1c). While all attempts to create a true *cdc45*-
165 null failed we were able to successfully create a *cdc45*-null in a Cdc45⁺ background
166 (Cdc45-FLAG expressed ectopically from a plasmid in *cdc45*^{-/+} cells, described in
167 Supplementary Methods; Fig. 1d). All the lines were authenticated by PCRs across the
168 deletion junctions at both ends (Figs. 1a-1d).

169 The extent of expression of *cdc45* in *cdc45*^{-/+}::hyg and *cdc45*^{-/-} cells was
170 determined by real time PCR analyses of RNA isolated from logarithmically growing
171 promastigotes. When *cdc45* expression in the knockout cells relative to in wild type cells
172 was quantitated using the $2^{-\Delta\Delta C_T}$ method [28] it was
173 found that while expression in *cdc45*^{-/+}::hyg cells was ~ 0.7 fold that seen in wild type
174 cells, expression in *cdc45*^{-/-} cells was only ~ 0.2 fold that seen in wild type cells (Fig. 2a)
175 - suggesting that the three alleles may not be equivalently expressed. Analysis of the
176 growth patterns of the single allele knockouts *cdc45*^{-/+}::hyg and *cdc45*^{-/+} ::neo revealed
177 that both these lines grew similarly, growing slower than control cells and never reaching
178 the same cell density as controls, but reaching stationary phase at around the same time as

179 control cells (Fig. 2b left panel). The double allele knockout *cdc45*^{-/-} cells grew even
180 slower, reaching stationary phase a day later (Fig. 2b right panel). The slower growth of
181 *cdc45*^{-/-} cells was linked to an increase in generation time to ~16.55 h as compared to
182 ~9.43 h in case of control cells (Fig. 2c).

183 To assess the effect of Cdc45 depletion on cell cycle progression we synchronized
184 cells with hydroxyurea at G1/S, released the cells into S phase, and monitored their
185 progress across S and G2/M and thereafter back into G1 by flow cytometry analysis at
186 various time-points. The patterns observed were distinctive (Fig. 2d). *cdc45*^{+/+} ::hyg cells
187 entered S phase smoothly and reached mid-S phase at rates comparable to control cells,
188 thereafter slowing down and beginning to re-enter G1 ~ two hours later than control cells.
189 *cdc45*^{-/-} cells showed a more acute phenotype, with cells entering and reaching mid-S
190 phase later than usual, in general navigating S and G2/M phases much slower, and
191 beginning to re-enter G1 phase ~ four hours later than control cells. Analysis of *cdc45*^{-/-}
192 cells by pulse-labeling with EdU at different time-points after release from HU-induced
193 block and evaluating the EdU uptake (described in Methods), confirmed that depletion of
194 Cdc45 leads to aberrant DNA replication patterns, with the process of DNA synthesis
195 being more protracted (Fig. 2e).

196 ***Defective phenotypes associated with Cdc45 depletion are rescued by ectopic expression
197 of Cdc45***

198 To confirm that the defective phenotypes observed were due to Cdc45 depletion
199 we expressed Cdc45-FLAG in *cdc45*^{-/-} cells ectopically (described in Supplementary
200 Methods; western blot analysis of whole cell extracts of transfectant cells in Fig. 3a) and
201 analyzed the growth and cell cycle patterns of these cells. We found that episomal
202 expression of Cdc45-FLAG in *cdc45*^{-/-} cells permitted the cells to grow at rates similar to
203 wild type cells (Fig. 3b), and promoted normal cell cycle progression, with cells traversing

204 S phase and G2/M and re-entering G1 phase in timely manner (Fig. 3c). These data lead us
205 to conclude that the phenotypes of *cdc45*^{-/-} cells are due to Cdc45 depletion.

206 Survival of the *cdc45*^{-/-} parasites within host macrophages was examined by
207 infecting macrophages with metacyclic parasites, and analyzing the number of intracellular
208 parasites right after infection as well as 24 hours and 48 hours later. We observed that
209 while *cdc45*^{-/-} promastigotes were able to infect macrophages to similar extent as control
210 parasites, they were subsequently unable to propagate to the same extent. The ectopic
211 expression of Cdc45-FLAG in *cdc45*^{-/-} parasites partially rescued these defects (Fig. 3d).
212 The reasons for a partial rescue are not clear; it is possible that the levels/extent of ectopic
213 expression in the intracellular parasites varies from one to the other, leading to variable
214 propagation rates.

215 ***Analysis of LdCdc45 structure***

216 Multiple sequence alignment of LdCdc45 with Cdc45 of other eukaryotes revealed
217 that LdCdc45 shares 18-23% identity and 30-40% similarity with Cdc45 of the model
218 eukaryotes (S3 Fig). Additionally, LdCdc45 harbors two exclusive stretches of ~ 50 and 40
219 amino acid residues near the C-terminal end. When analyzing the amino acid sequence of
220 LdCdc45 the presence of a PIP box (QRKLVEF) was detected between residues 500-506.
221 This PIP box was conserved in all *Leishmania* species and was found in *T. cruzi* also, but
222 not in *T. brucei* (S1 Fig). The PIP (**P**CNA-**I**nteracting **P**eptide) box is a short motif: **Q** x x
223 **L/V/I** x x **F/Y** **F/Y** (where x is any amino acid) found in several proteins that interact with
224 proliferating cell nuclear antigen (PCNA). PCNA, the eukaryotic ortholog of the bacterial
225 β -clamp protein, is a homotrimeric protein forming an annular structure with pseudo-
226 hexameric symmetry that enables it to encircle the DNA template and slide along. The
227 PCNA monomer consists of two globular domains connected by a flexible interdomain
228 connector loop (IDCL). These monomers are arranged in such a way that the inner cavity

229 of the trimeric ring has a positively charged surface comprising of α helices for association
230 with DNA, while the outer surface of the ring comprises largely of β sheets. As it tethers
231 the eukaryotic DNA polymerases to the DNA template it increases their processivity, and
232 thus it plays a major role in both, DNA replication as well as DNA repair. Though not yet
233 identified to interact with Cdc45 in any species, PCNA interacts with multiple other
234 components of the DNA replication and DNA repair machinery (reviewed in [29]). With
235 the identification of a PIP motif in LdCdc45, we analyzed the sequences of Cdc45 proteins
236 of other eukaryotes. Cdc45 of *Schizosaccharomyces pombe*, *Drosophila melanogaster* and
237 *Homo sapiens* were found to harbor PIP motifs, but not *Saccharomyces cerevisiae* Cdc45
238 (S3 Fig).

239 The CMG complex is an eleven subunit complex comprising Cdc45, Mcm2-7
240 heterohexamer and GINS heterotetramer (subunits: Sld5, Psf1, Psf2 and Psf3). The
241 structure of the CMG complex was deciphered by single particle electron microscopy
242 (EM) studies carried out using the recombinant *Drosophila* proteins [7], which revealed
243 Cdc45 and GINS to both interact with Mcm2-7 on one side of the heterohexamer, with
244 Cdc45 and GINS also interacting with each other in this complex. When the crystal
245 structure of human Cdc45 (at 2.1 Å) was subsequently published [9] the protein was found
246 to harbor twenty α -helices and eleven β -strands, designated α 1-20 and β 1-11. We identified
247 the PIP box (residues 308 to 314) to localize to the α 12 helix (Fig. 4a and 4b upper left
248 panel). Docking of the human Cdc45 crystal structure with the cryo-EM structure of the
249 *Drosophila* CMG complex revealed that the α 10-14 bundle was wedged between the
250 Mcm2 and Mcm5 subunits [9]. As the Mcm2/5 interface forms the gate whose opening
251 allows the heterohexamer to encircle the DNA template, the wedging of Cdc45 at this
252 interface ensures this gate remains shut thereafter, allowing the core helicase to move
253 along. The location of the PIP box in this Complex Interaction Domain (CID) that interacts

254 with Mcm2/Mcm5 (Fig. 4b upper left panel) limits the possibility of the human Cdc45 PIP
255 box being involved in interactions with PCNA *in vivo*, at least when Cdc45 exists as part
256 of the CMG complex.

257 To determine the location of the PIP box in LdCdc45 the 3D structure of LdCdc45
258 was acquired by modeling using Phyre 2.0 ([30]; details in Methods) and the modeled
259 structure was analyzed using PyMOL, an interface that allowed the Cdc45 protein
260 structures to be superimposed to deduce structural alignments. A view of the
261 superimposed models of LdCdc45 and human Cdc45 (5DGO) revealed that while the
262 overall structure of LdCdc45 is similar to that of human Cdc45 a few structural
263 variations exist (Fig. 4b upper right and lower panels). Some regions of LdCdc45 were
264 excluded from the obtained model (marked by arrowheads in Fig. 4b upper right panel).
265 It was observed that while the α 12 helix of the CID was conserved in LdCdc45, the PIP
266 box of LdCdc45 did not localize to it. Rather, it was placed on the opposite face of Cdc45
267 with respect to the CID, suggesting its availability for interactions with PCNA.

268 ***Cdc45 interacts with PCNA in whole cell extracts and in vitro via the PIP box***

269 As the LdCdc45 PIP box appeared to be favourably positioned for interaction with
270 PCNA we examined the possibility of the protein interacting with PCNA in whole cell
271 extracts. Thus, PCNA was immunoprecipitated from cell extracts of asynchronously
272 growing *Leishmania* promastigotes that were expressing Cdc45-FLAG, and the
273 immunoprecipitates were analyzed by western blotting for co-immunoprecipitating Cdc45-
274 FLAG using FLAG antibodies. The data presented in Fig. 5a demonstrated that Cdc45 and
275 PCNA interacted stably in *Leishmania* whole cell extracts.

276 To ascertain if the Cdc45-PCNA interaction was direct we incubated the two
277 recombinant proteins expressed in *E.coli* in appropriate buffer (described in Methods) and
278 pulled down the His-tagged PCNA using cobalt beads. As evident from Fig. 5b

279 (Coomassie stain as well as western blot analysis using anti-MBP antibodies), the MBP-
280 Cdc45 Δ 1-480 protein was also pulled down along with PCNA. The role of the PIP box in
281 mediating the Cdc45-PCNA interaction was assessed by creating a PIP box mutant where
282 the QRKLVEF sequence was altered to ARKAVEA, and expressing the mutant protein in
283 *Leishmania* promastigotes as well as in *E.coli* (Supplementary Methods). Circular
284 dichroism analysis of the recombinant MBP-Cdc45-PIP Δ 1-480 protein showed that there
285 were no gross structural differences between the wild type and mutant MBP-Cdc45 Δ 1-480
286 proteins (S4a Fig). PCNA immunoprecipitates from whole cell extracts of transfected cells
287 expressing Cdc45-PIP-FLAG did not carry Cdc45-PIP-FLAG (Fig. 5c), and MBP-Cdc45-
288 PIP Δ 1-480 was not pulled down along with PCNA in direct pull-downs between the
289 recombinant proteins (Fig. 5d, Coomassie stain and western blot analysis), signifying the
290 Cdc45-PCNA interaction to be mediated via the PIP box.

291 To determine if the PIP mutations disrupted the association of Cdc45 with Mcm2-7,
292 LdCdc45-FLAG and LdCdc45-PIP-FLAG immunoprecipitates were analyzed for co-
293 immunoprecipitating Mcm2-7 complex using anti-Mcm4 antibodies already available in the
294 lab [20]. It was observed that Mcm4 co-immunoprecipitated with Cdc45-FLAG and
295 Cdc45-PIP-FLAG to more or less equivalent extent (S4b Fig).

296 When Simon *et al* [9] docked the human Cdc45 crystal structure in the CMG EM
297 map they identified the GINS-binding surface of Cdc45 to be composite, comprising the
298 α 2, α 3, α 9, α 16, β 2 and β 6 regions. All of these regions were conserved in the LdCdc45
299 structure we obtained in modeling studies, and the PIP box did not localize to any of these
300 regions (Figure 4a upper right and lower panels). Therefore, the PIP mutations were not
301 expected to negatively impact Cdc45-GINS interactions either. This was experimentally
302 examined by direct pull-downs between the recombinant Cdc45 and Psf1 (GINS subunit
303 interacting with Cdc45) proteins as no antibodies to GINS subunits were available. For this,

304 the *Leishmania donovani* *psf1* gene was cloned as described in Supplementary Methods,
305 and sequenced (GenBank Accession no. MN612784). The recombinant Psf1 was used in
306 the pull-down reactions, and as seen in western blot analysis, MBP-Cdc45Δ1-480 and
307 MBP-Cdc45-PIPΔ1-480 associated with Psf1 to comparable degrees (S4c Fig). Taken
308 together, these data illustrated that the PIP mutations did not perturb the integrity of the
309 CMG complex.

310 ***Cdc45 PIP box is essential for Leishmania cell survival***

311 The physiological importance of the Cdc45-PCNA interaction and the Cdc45 PIP
312 box *in vivo* was assessed by analyzing the growth and cell cycle patterns of *cdc45*^{-/-/+}
313 parasites expressing Cdc45-PIP-FLAG episomally. Expression of Cdc45-PIP-FLAG was
314 confirmed by western blot analysis (Fig. 6a). It was observed that the ectopic expression of
315 Cdc45-PIP-FLAG did not rescue the growth and cell cycle defects associated with Cdc45
316 depletion in *cdc45*^{-/-/+} cells (Figs. 6b and 6c, compare *cdc45*^{-/-/+}::Cdc45-PIP with *cdc45*^{-/-}
317 /+::Cdc45). Furthermore, all attempts to create *cdc45*-nulls using *cdc45*^{-/-/+}::Cdc45-PIP
318 cells as the background strain failed, although we were able to create nulls using *cdc45*^{-/-}
319 /+::Cdc45 cells as the background strain in parallel. These data underscore the importance
320 of the PIP box of Cdc45 in mediating *Leishmania* cell survival.

321 To examine the *in vivo* impact of the Cdc45-PCNA interaction, chromatin-bound
322 protein fractions of *cdc45*^{-/-/+}::Cdc45 and *cdc45*^{-/-/+}::Cdc45-PIP cells were analyzed for
323 PCNA binding. The soluble and chromatin-bound protein fractions isolated from
324 logarithmically growing promastigotes (described in Methods) were analyzed for the
325 quality of chromatin fractionation by western blot analysis using anti-H4acetylK4
326 antibodies [31], and the same blots were then probed for PCNA. The data presented in
327 Figs. 7a and 7d revealed that the amount of chromatin-bound PCNA in *cdc45*^{-/-/+}::Cdc45-
328 PIP cells was approximately half that detected in *cdc45*^{-/-/+}::Cdc45 cells. The amount of

329 chromatin-associated PCNA in promastigotes that had been incubated in hydroxyurea for 8
330 hours was comparable between both parasite types (Figs. 7b and 7d), in keeping with the
331 fact that the cells were non-replicating at this stage. Upon examining chromatin-bound
332 protein fractions of cells two hours after release from hydroxyurea-induced block we
333 observed that while the amount of chromatin-bound PCNA was significantly higher in both
334 cell types (in keeping with the fact that both cell types had now entered S phase, with
335 *cdc45*^{-/+}::Cdc45 cells advancing more than *cdc45*^{-/+}::Cdc45-PIP cells), the amount of
336 chromatin-bound PCNA was significantly higher in *cdc45*^{-/+}::Cdc45 cells (Fig. 7c and 7d).
337 These data suggest that the Cdc45-PCNA interaction that is mediated by the PIP motif of
338 Cdc45 may play a role in recruiting PCNA-polymerase complexes to the advancing
339 replication fork, or may stabilize the association of PCNA-polymerase complexes with
340 template DNA during active DNA replication. The amount of chromatin-bound Cdc45 and
341 Mcm2-7 (determined using Mcm4 as marker) was not affected by the PIP mutations (Fig.
342 7c), suggesting that CMG complex loading on template DNA was unaffected.

343 In view of the data in Figs. 7a-7d we examined the possibility of chromatin-bound
344 PCNA being degraded more rapidly in absence of interaction with Cdc45. Considering that
345 most intracellular proteins are degraded by the ubiquitin proteasome pathway (UPP) where
346 proteins destined for degradation are marked by covalent tagging with ubiquitin, we
347 examined PCNA immunoprecipitates of extracts isolated from *cdc45*^{-/+}::Cdc45 and *cdc45*⁻
348 ^{-/+}::Cdc45-PIP cells to see if PCNA was differentially tagged with poly-Ub in these two
349 cell types. For this, HU-synchronized cells were incubated with MG132 (a peptide
350 aldehyde that inhibits serine and cysteine proteases of the 26S proteasome; 20 μ M), which
351 was added to the culture 3 hours before release from hydroxyurea-induced block as well as
352 at the time of release from block. Cell lysates were isolated after 8 hours in hydroxyurea as
353 well as 2 hours after release from HU-induced block. When PCNA immunoprecipitates

354 from these cell extracts were analyzed for ubiquitinated PCNA using anti-Ub antibodies
355 (Santa Cruz Biotechnologies, a kind gift from Dr. Alo Nag and Dr. Sagar Sengupta), it was
356 observed that the extent of PCNA polyubiquitination was comparable in
357 immunoprecipitates of *cdc45*^{-/-/+}::Cdc45 and *cdc45*^{-/-/+}::Cdc45-PIP (Fig. 7e), at both time
358 points examined. This suggests that the Cdc45-PCNA interaction does not modulate PCNA
359 degradation. Considering the data from Figs. 7a-7e, we conclude that the Cdc45-PCNA
360 interaction either helps recruit PCNA-polymerase complexes to template DNA, or
361 stabilizes the interaction of PCNA-polymerase complexes with template DNA, without
362 playing any direct role in PCNA degradation.

363 ***Cdc45 PIP box is essential for survival of Schizosaccharomyces pombe***

364 As indicated in S3 Fig, *Drosophila* and *S. pombe* Cdc45 proteins also carry PIP
365 boxes. The location of the PIP box of *Drosophila* Cdc45 in the α 20 helix near the C-
366 terminus of the protein, away from the Complex Interaction Domain (CID) which is
367 responsible for the interaction of Cdc45 with the Mcm2/5 subunits, supports the possibility
368 of interactions with PCNA (S5 Fig; *Drosophila* Cdc45 image derived from the electron
369 microscopy structure, PDB ID: 6RAW [32]). When the *S. pombe* Cdc45 was modeled
370 against the human Cdc45 crystal structure the PIP box of *S. pombe* Cdc45 was found to lie
371 away from the CID, in the extension of the α 16 helix (Fig. 8a). Considering this fact, we
372 investigated the importance of the Cdc45 PIP motif in *S. pombe* by carrying out
373 complementation assays using the *S. pombe* *sna41^{goal}* strain, a kind gift from Prof. Hisao
374 Masai. This strain is a *cdc45*^{ts} mutant that grows at 25°C, but not at 37°C (unlike wild type
375 *S. pombe* which thrives at 37°C; [33,34]).

376 To carry out complementation experiments the *Leishmania* Cdc45-FLAG (wild
377 type and PIP mutant) and SpCdc45 (wild type, non-tagged) proteins were expressed in

378 *sna41^{goal}* at 25°C (described in Supplementary Methods; Fig. 8b shows western blot
379 analysis of expression of Cdc45-FLAG and Cdc45-PIP-FLAG in two clones of each type).
380 The ability of the *Leishmania* Cdc45-FLAG proteins to overcome the growth defects of the
381 *sna1^{goal}* cells was examined by streaking out the clones on EMM2 agar plates with
382 necessary supplements, and incubating the plates at 25°C, 30°C and 37°C. It was observed
383 that while SpCdc45 was able to rescue the growth defects of *sna1^{goal}* cells at 37°C, neither
384 LdCdc45-FLAG nor LdCdc45-PIP-FLAG could do so (Fig. 8c). While it is unclear why
385 the wild type LdCdc45-FLAG is unable to complement the *cdc45^{ts}* mutation in *sna1^{goal}*
386 cells, it is possibly linked to the fact that the *Leishmania* GINS subunits have a somewhat
387 different structure from those of *S. pombe*. Therefore, LdCdc45 may not be able to interact
388 with *S. pombe* GINS in a productive manner, and an active CMG complex involving
389 LdCdc45 may not form in *S. pombe*.

390 Hence, to analyze the importance of the Cdc45-PIP motif in *S. pombe* we created an
391 *S. pombe* Cdc45-PIP mutant protein. The SpCdc45 PIP sequence QEWLHNFY was
392 mutated to AEWAHNAY and the mutant protein expressed with a C-terminal His tag in
393 *sna1^{goal}* cells (western blot analysis of SpCdc45-PIP seen in Fig. 8d). When
394 complementation analysis was carried out as earlier at 25°C, 30°C and 37°C, it was found
395 that while wild type SpCdc45 complemented the inherent growth defects of *sna1^{goal}* the
396 SpCdc45-PIP mutant protein did not (Fig. 8e). These data lead us to conclude that the
397 Cdc45 PIP motif is essential not only for survival and propagation of *Leishmania* but for
398 the survival and propagation of *S. pombe* as well.

399 **Discussion:**

400 Cdc45 (cell division cycle 45), originally identified in genetic screens for yeast
401 mutants defective in cell cycle progression [35], is now well established as a protein
402 required for DNA replication initiation as well as elongation of the DNA chains being

403 synthesized. As part of a complex with the heterohexameric MCM and heterotetrameric
404 GINS, it forms the replicative helicase that advances with the replication fork: the CMG
405 complex. The association of Cdc45 and GINS with Mcm2-7 is stabilized by Mcm10, which
406 has also been demonstrated to be essential for the activation of CMG helicase activity
407 [4,36]. Cdc45 is also involved in actively loading RPA, the ssDNA-binding protein, onto
408 the newly unwound DNA, thus allowing further association of the enzymatic machinery
409 required for replication initiation and elongation [37]. Using a tethered bead assay, the
410 *Saccharomyces cerevisiae* leading strand replisome has been visualized at single molecule
411 level and found to comprise twenty-four proteins including the eleven-subunit CMG
412 complex, DNA pol ε, PCNA, RFC clamp loader and RPA [38]. As DNA replication
413 commences, the replisome complexes advance along with the replication forks
414 bidirectionally, with the CMG unwinding the DNA ahead using energy derived from ATP
415 hydrolysis, to enable template-dependent DNA synthesis (reviewed in [2]). The role of
416 Cdc45 is conserved across eukaryotes, and the data presented in Figs. 1-3 demonstrates that
417 it plays a role in DNA replication in *Leishmania donovani* as well.

418 Proliferating cell nuclear antigen is a highly conserved homotrimeric protein that
419 itself does not possess any enzymatic activity, yet regulates a multitude of cellular
420 processes involving DNA metabolism by virtue of its ability to interact with a vast number
421 of proteins, both in concerted and sequential manner. Among the repertoire of its direct
422 partners are included several components of the DNA replication machinery: replication
423 factor C (RFC), DNA pol α, DNA polymerase δ, DNA polymerase ε, the flap endonuclease
424 FEN1, DNA ligase I (reviewed in [29,39]). The front face of the “sliding clamp” forms the
425 interface for protein-protein interactions. A large number of the proteins which directly
426 interact with PCNA are typified by the presence of a conserved sequence called the PCNA-
427 interacting-peptide (PIP) motif through which they bind to PCNA, by the insertion of the

428 PIP box into a hydrophobic pocket beneath the flexible interdomain connecting loop
429 (IDCL) of PCNA (the region that connects the two globular domains of each PCNA
430 monomer). As each trimer has three such pockets, it allows for the simultaneous binding of
431 three different partner proteins. The identification of a PIP box in *Leishmania* Cdc45 led us
432 to investigate the possibility of Cdc45 being yet another of the many partners of PCNA.

433 Structural analysis of LdCdc45 revealed to us that the PIP box lay opposite to the
434 Cdc45/Mcm2-7 and Cdc45/GINS interfaces (Fig. 4), supporting the possibility of
435 interaction with PCNA. The data presented in Fig. 5 confirmed that Cdc45 and PCNA
436 interacted with each other not only in whole cell extracts, but directly *in vitro* also, and
437 furthermore, this interaction occurred through the Cdc45 PIP box. Our laboratory has
438 previously shown *Leishmania* Mcm4 to interact with PCNA in whole cell extracts,
439 however, no evidence of a direct interaction was found [20]. Based on the data in Figs. 5
440 and S4b, it appears that the interaction of Mcm4 with PCNA is in fact through Cdc45.
441 While a PIP motif was identified in LdMcm4 [20], subsequent alignment with the later
442 published ScMcm2-7 crystal structure [40] revealed the LdMcm4 PIP box to lie in the zinc
443 finger domain that is located at the inter-hexameric interface, signifying its involvement in
444 MCM double hexamer formation.

445 In pursuit of the possible *in vivo* role of the Cdc45-PCNA interaction we took into
446 consideration previous biochemical and structural studies (including single particle electron
447 cryo-microscopy studies) which have revealed that DNA pol ε (the leading strand DNA
448 polymerase) interacts directly with the CMG complex as it moves along the leading strand.
449 Studies from budding yeast have found the interaction of DNA pol ε with CMG to occur
450 primarily via the interaction of the non-catalytic Dpb2 subunit (PolE2 in humans) with Psf1
451 (of GINS) and Mcm5, and via the interaction of the non-catalytic C-terminal domain of the
452 Pol2 subunit (PolE1 in humans) with Mcm5 and Cdc45 [11,12,41-44]. While no direct

453 interaction between CMG and DNA pol δ (the lagging strand polymerase) has been
454 reported, CMG interacts with Pol α on the lagging strand indirectly through the adaptor
455 protein Ctf4 (chromosome transmission fidelity; first identified in yeast screens, [10,12].
456 Using *in vitro* replication assays with yeast proteins Yeeles *et al* [45] showed that while
457 DNA polymerase δ was important for initiating leading strand replication, replication
458 elongation was efficiently continued by DNA polymerase ϵ . Secondly, PCNA was critical
459 to maximal rates of leading strand DNA synthesis by DNA polymerase ϵ . The authors
460 proposed that while the CMG - Pol ϵ interaction may be responsible for hitching Pol ϵ to
461 the advancing replication fork, the PCNA -Pol ϵ interaction increased the processivity of
462 the polymerase during DNA synthesis *per se*, thus increasing the replication rate
463 considerably. Thus, the unwinding of the DNA duplex by CMG remains tightly coupled to
464 the synthesis of DNA by Pol ϵ . Based on experimental results presented in Figure 7 of this
465 manuscript we hypothesize that the Cdc45-PCNA interaction may further stabilize the
466 interaction of DNA pol ϵ with CMG, thus anchoring the polymerase more firmly with the
467 advancing leading strand replisome and maximizing efficiency of DNA synthesis (Fig. 9).

468 The Cdc45 PIP box was found to be essential for *Leishmania* cell survival, as the
469 Cdc45-PIP mutant protein did not rescue the severe defects associated with Cdc45
470 depletion (Fig. 6) and ectopic expression of Cdc45-PIP protein did not support knockout of
471 the third genomic allele in *cdc45*^{-/-} cells. Complementation assays revealed that the *S.*
472 *pombe* Cdc45 PIP box was also essential for cell survival (Fig. 8), implicating the
473 importance of a PIP-mediated Cdc45-PCNA interaction in *S. pombe* also. Separate detailed
474 investigations are necessary to ascertain if Cdc45 and PCNA interact in *S. pombe* and
475 *Drosophila*. The findings presented in this paper underscore the fact that there are diverse
476 facets in modes of DNA replication among eukaryotes even though the process is broadly

477 conserved across them, also pointing to the relevance of studying this process in non-
478 conventional eukaryotes like *Leishmania*.

479 **Materials and Methods**

480 ***Leishmania cultures and manipulations***

481 *Leishmania donovani* 1S promastigotes were cultured as earlier [22] in medium M199
482 (Lonza, Switzerland) supplemented with fetal bovine serum (10%; Invitrogen), hemin and
483 adenine (Sigma Aldrich, USA). Isolation of whole cell extracts, analysis of growth patterns
484 and generation time, synchronization regimes and flow cytometry analysis methods,
485 transfections of *Leishmania* promastigotes, and creation and maintenance of clonal lines
486 were done as described in Supplementary Methods (Supporting Information).

487 ***Schizosaccharomyces pombe cultures and manipulations***

488 *S. pombe* cultures (wild type or *sna4l^{goal}* mutant strain; kind gifts from Dr. Nimisha
489 Sharma and Prof. Hisao Masai respectively) were grown and maintained at 25°C on solid
490 YES medium, or EMM2 supplemented with adenine, uracil, leucine, lysine and histidine
491 (225 mg/l each). *S. pombe* transformations and complementation assays were done as
492 described in Supplementary Methods (Supporting Information).

493 **Real time PCR analysis**

494 The PureLink RNA mini kit (Invitrogen, USA), iScript cDNA synthesis kit and iTaq
495 Universal SYBR green supermix (both from Bio-Rad Laboratories, USA) were used for
496 isolation of total RNA, cDNA synthesis and real time PCR analyses respectively. *cdc45*
497 expression was analyzed by primers Cdc45-RT-F and Cdc45-RT-R (5'-
498 CTGCGCCTTCAGCGTCTG-3' and 5'-TGTAGTCTTCAACGACAGG-3' respectively),
499 and tubulin expression was analyzed by primers Tub-RT-F1 and Tub-RT-R2 (5'-
500 CTTCAAGTGCGGCATCAACTA-3' and 5'-TTAGTACTCCTCGACGTCCTC-3'
501 respectively). The reactions were run in the CFX96 Real Time System (Bio-Rad

502 Laboratories, USA) and *cdc45* expression analyzed in knockout cells in relation to wild type
503 cells using the $2^{-\Delta\Delta C_T}$ method as earlier [46]. The experiment was done three times, with
504 reactions being set up in triplicate in each experiment. Bars represent average values of the
505 three experiments. Error bars represent standard deviation. Student's t-test (two-tailed) was
506 applied to determine the significance of the data.

507 ***EdU labeling analysis***

508 EdU labeling analysis was performed as described [46]. Briefly, promastigotes
509 were incubated in 5 mM hydroxyurea for 8 hours, released into drug-free M199, and cell
510 aliquots removed at different time intervals thereafter for 15 minute pulses with 5-ethynyl-
511 2-deoxyuridine (EdU). EdU uptake was detected with the help of the Click-iT EdU
512 Imaging Kit (Invitrogen) followed by imaging of cells using a LeicaTCS SP5 confocal
513 microscope with a 100X objective.

514 ***Macrophage infection experiment***

515 J774A.1 cells were infected with *Leishmania* metacyclics as described [46]. Three
516 biological replicates of the experiment were set up and the mean values of the three
517 experiments are presented in a bar chart, with standard deviation being depicted by error
518 bars. The significance of the data obtained was analyzed by applying Student's t-test (two-
519 tailed).

520 ***Homology modelling and structural analysis***

521 The structures of *Leishmania* and *Schizosaccharomyces pombe* Cdc45 were built
522 using Phyre2 via homology modeling in normal mode (<http://www.sbg.bio.ic.ac.uk/phyre2>)
523 and were visualized and further analyzed using PyMOL (<http://pymol.org>). In both cases,
524 the two most reliable 3D models that were obtained were against *Saccharomyces cerevisiae*
525 Cdc45 (PDB ID: 3JC6 [47]) and human Cdc45 (PDB ID: 5DGO [9]). As the coverage and
526 percent identity were in similar range (*Leishmania* Cdc45: 82% coverage with 25% identity

527 against 3JC6, 77% coverage with 23% identity against 5DGO; *Schizosaccharomyces*
528 *pombe* Cdc45: 99% coverage with 38% identity against 3JC6, 99% coverage with 32%
529 identity against 5DGO), and the 5DGO was a crystal structure determined at a higher
530 resolution than the 3JC6 electron microscopy structure (2.1 Å versus 3.7 Å), the 3D
531 models obtained against human Cdc45 was considered for further analysis. An additional
532 factor that was considered was that human Cdc45 has a PIP motif, while ScCdc45 does not.

533 ***Chromatin binding analyses***

534 Isolation of soluble and DNA-associated protein fractions from promastigotes was
535 carried out as detailed earlier [31]. The fractions (S1, S2: soluble fractions; S3, S4: DNA-
536 associated fractions) were analyzed by probing them in western blots.

537 ***Immunoprecipitations and pulldowns***

538 Whole cell lysates were isolated from logarithmically growing transfectant
539 *Leishmania* promastigotes (2×10^9 cells) expressing either Cdc45-FLAG or Cdc45-PIP-
540 FLAG from plasmids pXG/Cdc45-FLAG and pXG/Cdc45-PIP-FLAG respectively, and
541 two-thirds of the isolated lysates were used for immunoprecipitation analysis. For PCNA
542 immunoprecipitations, the anti-PCNA antibodies (10 µl; raised in rabbit previously in the
543 lab [21]) were first bound to protein A sepharose beads (40 µl protein A sepharose/CL6B
544 sepharose 1:1 slurry mix) by incubation on ice for one hour with periodic mixing. This was
545 followed by washing of the beads with 1XPBS-0.1%TX-100 to remove unbound antibody
546 fraction, and adding the cell lysates that had been treated with 50U of DNaseI.
547 Immunoprecipitation was allowed to proceed overnight at 4°C, followed by washing the
548 beads extensively before adding SDS sample buffer and boiling. The entire mix was
549 analyzed in western blotting. Antibodies used to probe PCNA immunoprecipitates included
550 anti-FLAG (mouse monoclonal, Sigma, 1:1000 dil), anti-PCNA (rabbit; 1:2500 dil), anti-Ub
551 (mouse monoclonal, Santa Cruz Biotechnology, 1:1000) and anti-IgG (rabbit, Jackson

552 Laboratories, 1:10000 dil) antibodies. For immunoprecipitating FLAG-tagged proteins, the
553 cell lysates were incubated with M2-agarose beads (Sigma; 40 µl M2-agarose /CL6B
554 sepharose 1:1 slurry mix) overnight at 4°C, before washing and analysis.

555 For direct pull-downs using PCNA, recombinant His-tagged PCNA was purified as
556 earlier [21]. Expression of the recombinant MBP-Cdc45Δ1-480 proteins (wild type and PIP
557 mutant) was induced at 37°C (using IPTG) in BL21 CodonPlus cells harbouring plasmids
558 pMAL/Cdc45Δ1-480 or pMAL/Cdc45-PIPΔ1-480. To carry out the pull-down, 25 pmoles
559 of purified PCNA (trimeric protein) were incubated with 130-145 µg of bacterial cell
560 extracts containing the overexpressed MBP-Cdc45Δ1-480 protein (wild type or mutant), in
561 1X PBS (total mix volume 500 µl) for 2 h at 4°C with gentle mixing using a nutator mixer.
562 50 µl cobalt beads (Talon metal affinity beads; BD Bioscience) that had been pre-blocked
563 with BSA for two hours (by incubation of beads in 400 µl 1X PBS containing 100 µg BSA,
564 followed by two washes to remove excess BSA) were then added to the pull-down reaction
565 mix. The reaction was further incubated at 4°C for 30 min with mixing. After removing the
566 unbound fraction by low speed centrifugation the beads were washed with 100 mM Tris.Cl
567 (pH 8), 750 mM NaCl and the bound proteins eluted using 100 mM Tris.Cl (pH 8), 300
568 mM NaCl, 250 mM imidazole. One-fifth of the elute fractions were analyzed by
569 Coomassie staining and one-hundredth were analyzed by western blotting. Direct pull-
570 down assays using Psf1 were similarly carried out after purifying the Strep-tagged Psf1 by
571 Strep-Tactin II chromatography and using Talon metal affinity beads for the pull-downs.

572
573 **Data availability:**

574 GenBank Accession numbers: MN612783 for Ld1S Cdc45; MN612784 for Ld1S Psf1.

575 **Acknowledgements:**

576 We thank Prof. Hisao Masai of the Tokyo Metropolitan Institute of Medical Science for
577 kindly providing us with the *sna1^{goa1}* strain. We thank Dr. Nimisha Sharma of the Guru

578 Gobind Singh Indraprastha University, Delhi, for providing us *S. pombe* cultures and
579 pART1 vector. We thank Dr. Aruna Naorem for the pLP-BLP vector. We thank Dr. Sagar
580 Sengupta and Prof. Alo Nag for kindly providing us anti-Ub antibodies. We thank Dr.
581 Vinay Nandicoori for allowing us the use of his laboratory facilities. DNA sequencing,
582 Flow cytometry analyses, and Confocal microscopy were done at the Central
583 Instrumentation Facility, University of Delhi South Campus.

584 **References:**

- 585 1. Costa A, Hood IV, Berger JM (2013) Mechanisms for initiating cellular DNA
586 replication. *Annu Rev Biochem* 82: 25-54.
- 587 2. Burgers PMJ, Kunkel TA (2017) Eukaryotic DNA Replication Fork. *Annu Rev Biochem*
588 86: 417-438.
- 589 3. Baxley RM, Bielinsky AK (2017) Mcm10: A Dynamic Scaffold at Eukaryotic
590 Replication Forks. *Genes (Basel)* 8.
- 591 4. Douglas ME, Ali FA, Costa A, Diffley JFX (2018) The mechanism of eukaryotic CMG
592 helicase activation. *Nature* 555: 265-268.
- 593 5. Deegan TD, Diffley JF (2016) MCM: one ring to rule them all. *Curr Opin Struct Biol* 37:
594 145-151.
- 595 6. Abid Ali F, Costa A (2016) The MCM Helicase Motor of the Eukaryotic Replisome. *J
596 Mol Biol* 428: 1822-1832.
- 597 7. Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, et al. (2011) The structural basis
598 for MCM2-7 helicase activation by GINS and Cdc45. *Nat Struct Mol Biol* 18: 471-
599 477.
- 600 8. Petojevic T, Pesavento JJ, Costa A, Liang J, Wang Z, et al. (2015) Cdc45 (cell division
601 cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing
602 leading strand engagement. *Proc Natl Acad Sci U S A* 112: E249-258.
- 603 9. Simon AC, Sannino V, Costanzo V, Pellegrini L (2016) Structure of human Cdc45 and
604 implications for CMG helicase function. *Nat Commun* 7: 11638.
- 605 10. Simon AC, Zhou JC, Perera RL, van Deursen F, Eyrin C, et al. (2014) A Ctf4 trimer
606 couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome.
607 *Nature* 510: 293-297.
- 608 11. Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT, et al. (2015) The architecture of a
609 eukaryotic replisome. *Nat Struct Mol Biol* 22: 976-982.

620 12. Li H, O'Donnell ME (2018) The Eukaryotic CMG Helicase at the Replication Fork:
621 Emerging Architecture Reveals an Unexpected Mechanism. *Bioessays* 40.

622

623 13. Kunkel TA, Burgers PMJ (2017) Arranging eukaryotic nuclear DNA polymerases for
624 replication: Specific interactions with accessory proteins arrange Pols alpha, delta,
625 and in the replisome for leading-strand and lagging-strand DNA replication.
626 *Bioessays* 39.

627

628 14. Tiengwe C, Marques CA, McCulloch R (2014) Nuclear DNA replication initiation in
629 kinetoplastid parasites: new insights into an ancient process. *Trends Parasitol* 30:
630 27-36.

631

632 15. da Silva MS, Pavani RS, Damasceno JD, Marques CA, McCulloch R, et al. (2017)
633 Nuclear DNA Replication in Trypanosomatids: There Are No Easy Methods for
634 Solving Difficult Problems. *Trends Parasitol* 33: 858-874.

635

636 16. Uzcanga G, Lara E, Gutierrez F, Beaty D, Beske T, et al. (2017) Nuclear DNA
637 replication and repair in parasites of the genus *Leishmania*: Exploiting differences
638 to develop innovative therapeutic approaches. *Crit Rev Microbiol* 43: 156-177.

639

640 17. Calderano SG, de Melo Godoy PD, da Cunha JP, Elias MC (2011) Trypanosome
641 prereplication machinery: a potential new target for an old problem. *Enzyme Res*
642 2011: 518258.

643

644 18. Kaufmann D, Gassen A, Maiser A, Leonhardt H, Janzen CJ (2012) Regulation and
645 spatial organization of PCNA in *Trypanosoma brucei*. *Biochem Biophys Res
646 Commun* 419: 698-702.

647

648 19. Dang HQ, Li Z (2011) The Cdc45.Mcm2-7.GINS protein complex in trypanosomes
649 regulates DNA replication and interacts with two Orc1-like proteins in the origin
650 recognition complex. *J Biol Chem* 286: 32424-32435.

651

652 20. Minocha N, Kumar D, Rajanala K, Saha S (2011) Characterization of *Leishmania*
653 donovani MCM4: expression patterns and interaction with PCNA. *PLoS One* 6:
654 e23107.

655

656 21. Kumar D, Minocha N, Rajanala K, Saha S (2009) The distribution pattern of
657 proliferating cell nuclear antigen in the nuclei of *Leishmania donovani*.
658 *Microbiology* 155: 3748-3757.

659

660 22. Kumar D, Mukherji A, Saha S (2008) Expression and subcellular localization of ORC1
661 in *Leishmania major*. *Biochem Biophys Res Commun* 375: 74-79.

662

663 23. Godoy PD, Nogueira-Junior LA, Paes LS, Cornejo A, Martins RM, et al. (2009)
664 Trypanosome prereplication machinery contains a single functional orc1/cdc6
665 protein, which is typical of archaea. *Eukaryot Cell* 8: 1592-1603.

666 24. Benmerzouga I, Concepcion-Acevedo J, Kim HS, Vandoros AV, Cross GA, et al.
667 (2013) *Trypanosoma brucei* Orc1 is essential for nuclear DNA replication and
668 affects both VSG silencing and VSG switching. *Mol Microbiol* 87: 196-210.

669

670 25. Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large
671 numbers of sequences. *Methods Mol Biol* 1079: 105-116.

672

673 26. Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J, et al. (2017) Modulation of
674 Aneuploidy in *Leishmania donovani* during Adaptation to Different In Vitro and In
675 Vivo Environments and Its Impact on Gene Expression. *MBio* 8.

676

677 27. Minocha N, Kumar D, Rajanala K, Saha S (2011) Kinetoplast morphology and
678 segregation pattern as a marker for cell cycle progression in *Leishmania donovani*. *J*
679 *Eukaryot Microbiol* 58: 249-253.

680

681 28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-
682 time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25: 402-408.

683

684 29. Choe KN, Moldovan GL (2017) Forging Ahead through Darkness: PCNA, Still the
685 Principal Conductor at the Replication Fork. *Mol Cell* 65: 380-392.

686

687 30. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web
688 portal for protein modeling, prediction and analysis. *Nat Protoc* 10: 845-858.

689

690 31. Kumar D, Saha S (2015) HAT3-mediated acetylation of PCNA precedes PCNA
691 monoubiquitination following exposure to UV radiation in *Leishmania donovani*.
692 *Nucleic Acids Res* 43: 5423-5441.

693

694 32. Eickhoff P, Kose HB, Martino F, Petojevic T, Abid Ali F, et al. (2019) Molecular Basis
695 for ATP-Hydrolysis-Driven DNA Translocation by the CMG Helicase of the
696 Eukaryotic Replisome. *Cell Rep* 28: 2673-2688 e2678.

697

698 33. Uchiyama M, Arai K, Masai H (2001) Sna41goa1, a novel mutation causing G1/S
699 arrest in fission yeast, is defective in a CDC45 homolog and interacts genetically
700 with polalpha. *Mol Genet Genomics* 265: 1039-1049.

701

702 34. Matsumoto S, Shimmoto M, Kakusho N, Yokoyama M, Kanoh Y, et al. (2010) Hsk1
703 kinase and Cdc45 regulate replication stress-induced checkpoint responses in fission
704 yeast. *Cell Cycle* 9: 4627-4637.

705

706 35. Hennessy KM, Lee A, Chen E, Botstein D (1991) A group of interacting yeast DNA
707 replication genes. *Genes Dev* 5: 958-969.

708

709 36. Looke M, Maloney MF, Bell SP (2017) Mcm10 regulates DNA replication elongation
710 by stimulating the CMG replicative helicase. *Genes Dev* 31: 291-305.

711

712 37. Szambowska A, Tessmer I, Prus P, Schlott B, Pospiech H, et al. (2017) Cdc45-induced
713 loading of human RPA onto single-stranded DNA. *Nucleic Acids Res* 45: 3217-
714 3230.

715

716 38. Lewis JS, Spenkelink LM, Schauer GD, Hill FR, Georgescu RE, et al. (2017) Single-
717 molecule visualization of *Saccharomyces cerevisiae* leading-strand synthesis reveals
718 dynamic interaction between MTC and the replisome. *Proc Natl Acad Sci U S A*
719 114: 10630-10635.

720

721 39. Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork.
722 Cell 129: 665-679.

723

724 40. Li N, Zhai Y, Zhang Y, Li W, Yang M, et al. (2015) Structure of the eukaryotic MCM
725 complex at 3.8 Å. Nature 524: 186-191.

726

727 41. Sengupta S, van Deursen F, de Piccoli G, Labib K (2013) Dpb2 integrates the leading-
728 strand DNA polymerase into the eukaryotic replisome. Curr Biol 23: 543-552.

729

730 42. Langston LD, Zhang D, Yurieva O, Georgescu RE, Finkelstein J, et al. (2014) CMG
731 helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for
732 eukaryotic leading-strand DNA replication. Proc Natl Acad Sci U S A 111: 15390-
733 15395.

734

735 43. Georgescu RE, Langston L, Yao NY, Yurieva O, Zhang D, et al. (2014) Mechanism of
736 asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol
737 Biol 21: 664-670.

738

739 44. Zhou JC, Janska A, Goswami P, Renault L, Abid Ali F, et al. (2017) CMG-Pol epsilon
740 dynamics suggests a mechanism for the establishment of leading-strand synthesis in
741 the eukaryotic replisome. Proc Natl Acad Sci U S A 114: 4141-4146.

742

743 45. Yeeles JTP, Janska A, Early A, Diffley JFX (2017) How the Eukaryotic Replisome
744 Achieves Rapid and Efficient DNA Replication. Mol Cell 65: 105-116.

745

746 46. Yadav A, Chandra U, Saha S (2016) Histone acetyltransferase HAT4 modulates
747 navigation across G2/M and re-entry into G1 in Leishmania donovani. Sci Rep 6:
748 27510.

749

750 47. Yuan Z, Bai L, Sun J, Georgescu R, Liu J, et al. (2016) Structure of the eukaryotic
751 replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct
752 Mol Biol 23: 217-224.

753

754

755 **Supporting Information Legends:**

756 **Supporting Information:**

757 Supporting Information carries Supplementary Methods describing manipulations of
758 *Leishmania* promastigotes, manipulations using *S. pombe*, cloning of *Leishmania donovani*
759 *cdc45* and *psfl* genes, cloning of *S. pombe* *cdc45* gene, tagging of *cdc45* with *eGFP*,
760 creating *cdc45* knockout and rescue lines, immunofluorescence analysis, and CD
761 spectroscopic analysis.

762

763 **Supporting Figures:**

764 **S1 Fig: Comparative analysis of *Leishmania donovani* Cdc45 sequence with Cdc45 of**
765 **other trypanosomatids.** Clustal Omega analysis of LdCdc45 with Cdc45 of other
766 trypanosomatids viewed using Jalview multiple alignment editor [7]. Black rectangles mark
767 PIP boxes. Colours are indicative of the physico-chemical properties of the amino acids.
768 Pink, aliphatic/hydrophobic; orange/ochre, aromatic; purple, glycine/proline; dark blue,
769 basic; green, hydrophilic; red, acidic; yellow, cysteine.

770 **S2 Fig: Cdc45 is constitutively nuclear in *Leishmani donovani*.** **a.** Tagging one *cdc45*
771 genomic allele with *eGFP*. Primers used in screening indicated by arrows. Agarose gels
772 depict screening across replacement junctions, with primer pairs marked below. Lanes 1 –
773 Ld1S, lanes 2 – replacement line. **b.** Western blot analysis of whole cell lysates probed with
774 anti-eGFP antibodies (already available in the lab). Lane 1 – Ld1S, lane 2 – replacement
775 line. **c.** Immunofluorescence analysis of Cdc45 at different cell cycle stages using
776 kinetoplast morphology and number as cell cycle stage marker. G1/early S: one nucleus,
777 one short or roundish kinetoplast; late S/early G2/M: one nucleus, one elongated
778 kinetoplast; G2/M: two nuclei, one kinetoplast; post-mitosis: two nuclei, two kinetoplasts.

779 **S3 Fig: Comparative analysis of *Leishmania donovani* Cdc45 sequence with Cdc45 of**
780 **other eukaryotic organisms.** Clustal Omega analysis viewed using Jalview multiple
781 alignment editor [7]. Black rectangles mark PIP boxes. Colours indicative of physico-
782 chemical properties of the residues. Pink, aliphatic/hydrophobic; orange/ochre, aromatic;
783 purple, glycine/proline; dark blue, basic; green, hydrophilic; red, acidic; yellow, cysteine.

784 **S4 Fig: The PIP mutations do not affect Cdc45-MCM or Cdc45-GINS interactions.**
785 **a.** CD spectra of MBP-Cdc45 Δ 1-480 and MBP-Cdc45-PIP Δ 1-480 are depicted as a
786 measure of mean residue ellipticity. **b.** Analysis of Cdc45-FLAG and Cdc45-PIP-FLAG
787 immunoprecipitates from lysates isolated from transfectant *cdc45* $^{+/+}$ cells. Western blot

788 analysis done using anti-Mcm4 antibodies (previously raised in the lab [5], 1:500) and anti-
789 FLAG antibodies (Sigma, 1:1000). **c.** Analysis of pull-down reaction between MBP-
790 Cdc45 Δ 1-480 and LdPsf1, and MBP-Cdc45-PIP Δ 1-480 and LdPsf1. Western blot analysis
791 done using anti-MBP (Sigma, 1:12000) and anti-His (Sigma, 1:5000).

792 **S5 Fig: Examining *Drosophila* Cdc45 for PIP box.** Left panel: Image of human Cdc45
793 derived from crystal structure PDB ID: 5DGO [8]. Navy blue region: α 12 helix. Red region: PIP
794 box, sequence below structure. Right panel: Image of *Drosophila* Cdc45 derived from
795 electron microscopy structure PDB ID: 6RAW [9]. Navy blue region: α 12 helix. Red region: PIP
796 box, sequence below structure.

797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

829 **Figure legends:**

830

831 **Fig. 1: Creation of *cdc45* genomic knockouts:** **a:** Replacement of one genomic allele with
832 *hyg*^r cassette. **b.** Replacement of one genomic allele with *neo*^r cassette. **c.** Replacement of
833 second genomic allele in *cdc45*^{-/+}::*hyg* with *neo*^r cassette. **d.** Replacement of third
834 genomic allele in *cdc45*^{-/+}::*cdc45* strain with *bsd*^r cassette. Line diagrams represent
835 schematics of knockout lines created. Primers used in screening indicated in line diagrams.
836 Agarose gels depict screening of knockout lines. Primer pairs used in each case are
837 indicated below the gel. Lanes 1- Ld1S, lanes 2- respective knockout line, M- DNA ladder
838 marker. OrcF-OrcR and PCNAF-PCNAR PCRs served as positive controls.

839 **Fig. 2: Depletion of Cdc45 causes growth and cell cycle aberrations.** **a.** Analysis of
840 *cdc45* expression in genomic knockout lines using real time PCR analysis. Tubulin served
841 as internal control. The average of data from three experiments is presented here. Error bars
842 represent standard deviation. Two-tailed student's t-test was applied: *** $p < 0.0005$.
843 **b.** Analysis of growth of Cdc45-depleted cells. Growth initiated from stationary phase
844 cells, at 1×10^6 cells/ml. Left panel: single allele replacement lines compared to control
845 cells. Right panel: double allele and single allele replacement lines compared to control
846 cells. In each case three experiments were set up in parallel and the graphs represent
847 average values, with error bars representing standard deviation. **c.** Determination of
848 generation time of double allele replacement cells *cdc45*^{-/+} in comparison with control
849 cells. Growth initiated at 1×10^6 cells/ml from exponentially growing promastigotes, and
850 cells diluted to 1×10^6 cells/ml every 24 hours. Average of three experiments plotted, and
851 error bars depict standard deviation. **d.** Flow cytometry analysis of Cdc45-depleted cells in
852 comparison with control cells. Cells were synchronized at G1/S by HU treatment and then
853 released into S phase. Time-points at which cells were sampled are indicated above each
854 column of histograms *e.g.* 3h R signifies 3 hours after release from HU. M1, M2 and M3

855 gates represent cells in G1, S and G2/M respectively. 30000 events were counted in each
856 case. The experiment was done thrice, and one data set is presented here. **e.** HU-treated
857 cells were released into S phase and 1 ml aliquots pulsed with EdU 3 hours, 4.5 hours, 6.5
858 hours and 10 hours after release (15 min pulses). Data presented in bar chart are average of
859 three experiments and error bars represent standard deviation. Two-tailed student's t-test
860 was applied: ** $p < 0.005$; *** $p < 0.0005$.

861 **Fig. 3: Ectopic expression of Cdc45 in *cdc45*^{-/-} cells allows the cells to overcome**
862 **defects associated with Cdc45 depletion. a.** Western blot analysis of cell extracts using
863 anti-FLAG antibody (Sigma, 1:1000 dil). *cdc45*^{-/-}/vector: *cdc45*^{-/-} harboring pXG-
864 FLAG(bleo) vector. *cdc45*^{-/-}/Cdc45-FL: *cdc45*^{-/-} harboring pXG-Cdc45-FLAG(bleo).
865 Loading control: tubulin. **b.** Analysis of growth pattern of rescue line in comparison with
866 *cdc45*^{-/-} cells and control cells. Growth initiated at 1x10⁶ cells/ml from stationary phase
867 cells. Graphs represent average values of three experiments, with error bars representing
868 standard deviation. **c.** Flow cytometry analysis of rescue line in comparison with
869 *cdc45*^{-/-} cells and control cells. 30000 events counted in every sampling. Sampling times
870 indicated above the histograms. Cells representing G1, S and G2/M phases indicated by
871 gates M1, M2, M3. Experiment done thrice, one data set depicted here. **d.** Analysis of cell
872 survival within host macrophages (the parasites exist in insect host as non-infective
873 procyclic promastigotes which later get differentiated into infective metacyclic
874 promastigotes. The metacyclics are released into the mammalian host bloodstream upon
875 insect bite where they establish residence in macrophages and multiply by binary fission).
876 Parasites were scored by Z-stack imaging of DAPI-stained infected macrophages using
877 confocal microscopy. Bar chart depicts averages of three experiments; error bars indicate
878 standard deviation. Two-tailed student's t-test was applied: ** $p < 0.005$; *** $p < 0.0005$; ns-
879 not significant.

880 **Fig. 4: Structural analysis of *Leishmania donovani* Cdc45.** **a.** Sequence alignment of
881 *Leishmania donovani* Cdc45 against human Cdc45 generated by Phyre2. Based on
882 structural analysis of human Cdc45 by Simon *et al* [9], α 10- α 14 are helices that form the
883 Mcm2/5 binding face. All other marked helices and β strands represent regions involved in
884 interaction with GINS **b.** Upper left panel: Human Cdc45 image derived from crystal
885 structure (PDB ID: 5DGO) as reported by Simon *et al* [9]. Navy blue regions: Complex
886 Interaction Domain (CID) that interfaces with Mcm2/5. Green regions: Domains that
887 interface with GINS complex. Red region: PIP box. Sequence of PIP box indicated below
888 structure. Upper right panel: Ribbon representation (magenta) of 3D model of *Leishmania*
889 *donovani* Cdc45 modelled using Phyre2 against human Cdc45 (PDB ID: 5DGO) as
890 template. Black arrowheads and associated numbers indicate amino acid stretches that
891 have been excluded by Phyre2 during modeling. Red arrowhead and associated numbers
892 indicates location of PIP box (also excluded during modeling). Sequence of PIP box
893 indicated below structure. Navy blue region indicates α 12 helix. Lower panel: View of
894 superimposed structures of LdCdc45 and 5DGO, using PyMOL. Though showing overall
895 structural similarity (RMSD value 2.2 \AA), the PIP motifs of the two structures do not
896 overlap.

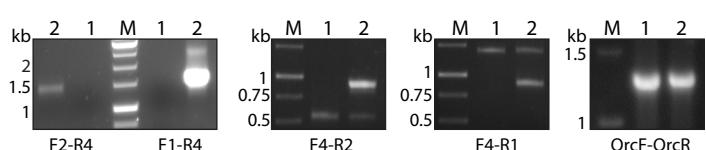
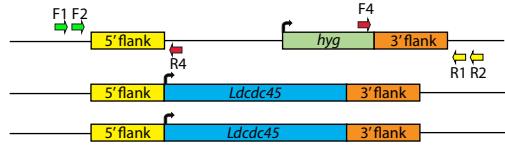
897 **Fig. 5: LdCdc45 interacts with PCNA via its PIP box.** **a** and **c.** Western blot analysis of
898 PCNA immunoprecipitates from lysates of cells expressing **a.** Cdc45-FLAG **c.** Cdc45-
899 FLAG or Cdc45-PIP-FLAG. Immunoblots were probed with anti-FLAG (Sigma, 1:1000
900 dil), anti-PCNA (raised earlier in the lab, 1:2500 dil) and anti-IgG (Jackson
901 ImmunoResearch, 1:10000 dil) antibodies. **b.** and **d.** Analysis of pull-down reactions using
902 **b.** PCNA and MBP-Cdc45 Δ 1-480 **d.** PCNA and MBP-Cdc45 Δ 1-480 or PCNA and MBP-
903 Cdc45-PIP Δ 1-480, by Coomassie staining and western blotting. Immunoblots were probed
904 with anti-MBP (Sigma, 1:12000 dil) and anti-PCNA (1:2500 dil) antibodies.

905 **Fig. 6: Cdc45-PIP box is essential for *Leishmania* cell survival. a.** Western blot analysis
906 of whole cell lysates isolated from transfectant $cdc45^{-/-}$ promastigotes expressing Cdc45-
907 FLAG or Cdc45-PIP-FLAG. **b.** Analysis of growth patterns of transfectant $cdc45^{-/-}$
908 promastigotes expressing Cdc45-FLAG or Cdc45-PIP-FLAG. Graph presents averages of
909 three experiments with error bars indicating standard deviation. **c.** Flow cytometry analysis
910 of transfectant $cdc45^{-/-}$ promastigotes expressing Cdc45-FLAG or Cdc45-PIP-FLAG. The
911 experiment was performed thrice, and the data from one experiment is presented here.
912 30000 events were analyzed at every sampling. Sampling times are indicated along the y
913 axes and cell types are indicated below the histogram columns.

914 **Fig. 7: Cdc45 helps recruit/stabilize PCNA-polymerase complexes on chromatin**
915 **during active DNA replication.** Analysis of soluble and chromatin-bound protein
916 fractions isolated from $cdc45^{-/-}::$ Cdc45 and $cdc45^{-/-}::$ Cdc45-PIP cells. Each experiment
917 was carried out twice. One data set for each is presented here. Reactions resolved on 12%
918 SDS-PAGE were probed with various antibodies as indicated. S1, S2 – soluble fractions;
919 S3, S4 – DNA-associated fractions. **a.** isolated from 5×10^7 logarithmically growing cells.
920 **b.** isolated from 5×10^7 HU treated cells **c.** isolated from 2×10^9 synchronized cells 2 hours
921 after release from block. **d.** ratio of chromatin-bound PCNA (S3+S4): histone H4 (S3+S4)
922 was determined at different time points (log, HU, 2hR) by quantification using ImageJ
923 software. **e.** Analysis of PCNA immunoprecipitates from whole cell extracts of $cdc45^{-/-}$
924 $::$ Cdc45 and $cdc45^{-/-}::$ Cdc45-PIP cells. Cells were treated with 5 mM HU for 8 hours,
925 with 20 μ M MG132 being added 5 hours into the treatment (upper half of figure). In case
926 of cells that were harvested 2 hours after release from HU-induced block, 20 μ M MG132
927 was also added to the cells at the time of release from HU (lower half of figure). The
928 immunoprecipitates were resolved on SDS-PAGE and analysed for ubiquitinated PCNA

929 using anti-Ub antibodies (Santa Cruz, 1:1000 dil). The blot was subsequently probed with
930 anti-PCNA antibody (1:2500 dil).

931 **Fig. 8: Cdc45-PIP box is essential for *S. pombe* cell survival:** **a.** Upper panel: Sequence
932 alignment of *Schizosaccharomyces pombe* Cdc45 against human Cdc45 generated by
933 Phyre2. Lower left panel: Human Cdc45 image derived from crystal structure (PDB ID:
934 5DGO; [9]). Navy blue region indicates α 12 helix, red region depicts PIP box, sequence of
935 PIP box indicated below structure. Lower right panel: Ribbon representation (pink) of 3D
936 model of *Schizosaccharomyces pombe* Cdc45 modelled with Phyre2 using human Cdc45
937 (PDB ID: 5DGO) as template. Black arrowheads and associated numbers indicate amino
938 acid stretches that have been excluded by Phyre2 during modeling. Navy blue region
939 indicates α 12 helix. Red region indicates PIP box. Sequence of PIP box indicated below
940 structure. **b.** Western blot analysis of whole cell lysates isolated from *sna1^{goa1}*
941 transformants expressing LdCdc45 (wild type or PIP mutant) proteins. Two clones of each
942 type were analyzed, using anti-FLAG antibodies (1:1000 dil). **c.** Complementation assays.
943 *sna1^{goa1}* transformants expressing LdCdc45 (wild type or PIP mutant) proteins were
944 streaked on EMM2 plates (with necessary supplements) and incubated at permissive and
945 non-permissive temperatures to assess functional complementation. Transformant
946 expressing SpCdc45 served as positive control for complementation. **d.** Western blot
947 analysis of whole cell lysates isolated from *sna1^{goa1}* transformants expressing SpCdc45
948 (non-tagged wild type or His-tagged PIP mutant) proteins. Two clones of SpCdc45-PIP
949 were analyzed, using anti-His antibodies (1:10000 dil). **e.** Complementation assays.
950 *sna1^{goa1}* transformants expressing SpCdc45 (wild type or PIP mutant) proteins were
951 streaked on EMM2 plates and incubated at permissive and non-permissive temperatures.



952 **Fig. 9: The role of Cdc45-PCNA interaction at the replication fork.** The active
953 replisome on the leading strand template includes several proteins such as the Cdc45-

954 MCM-GINS complex, DNA pol ϵ , and PCNA. Here, the heterotetrameric GINS is
955 represented as a single entity. DNA pol ϵ is depicted with only two subunits: PolE1 (bi-
956 lobed) and PolE2, as the other two subunits have not been identified in trypanosomatids.
957 No Ctf4 has yet been identified in trypanosomatids. The interaction of Cdc45 with PCNA,
958 the sliding clamp processivity factor of the replicative polymerases, may further stabilize
959 the polymerase on the advancing replisome machinery, thus enhancing the efficiency of
960 replication.

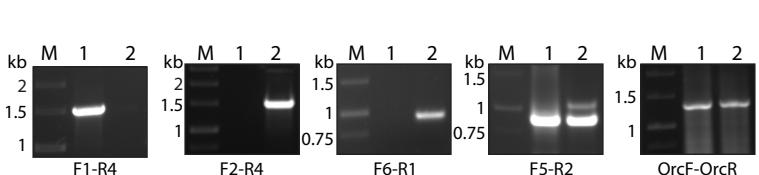
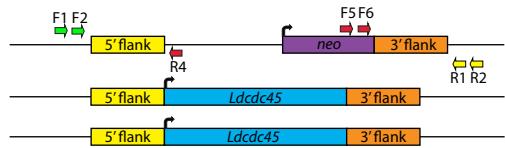
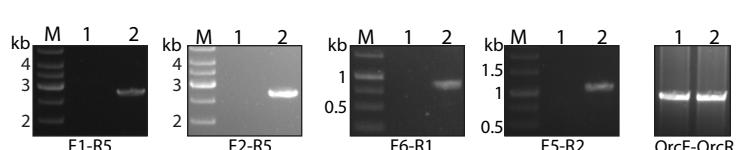
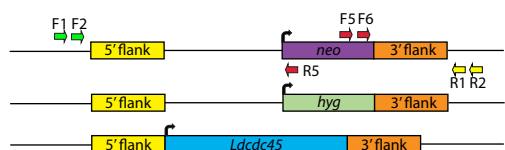


961
962

Figure 1



a. *cdc45*^{-/+}::*hyg*

b. *cdc45*^{-/+}::*neo*

c. *cdc45*^{-/-}

d. *cdc45*^{-/-}::*cdc45*

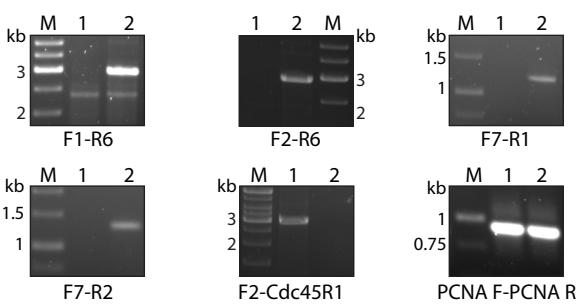
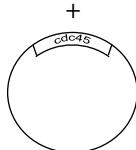
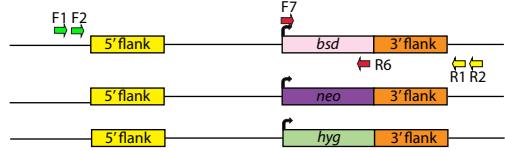




Figure 2

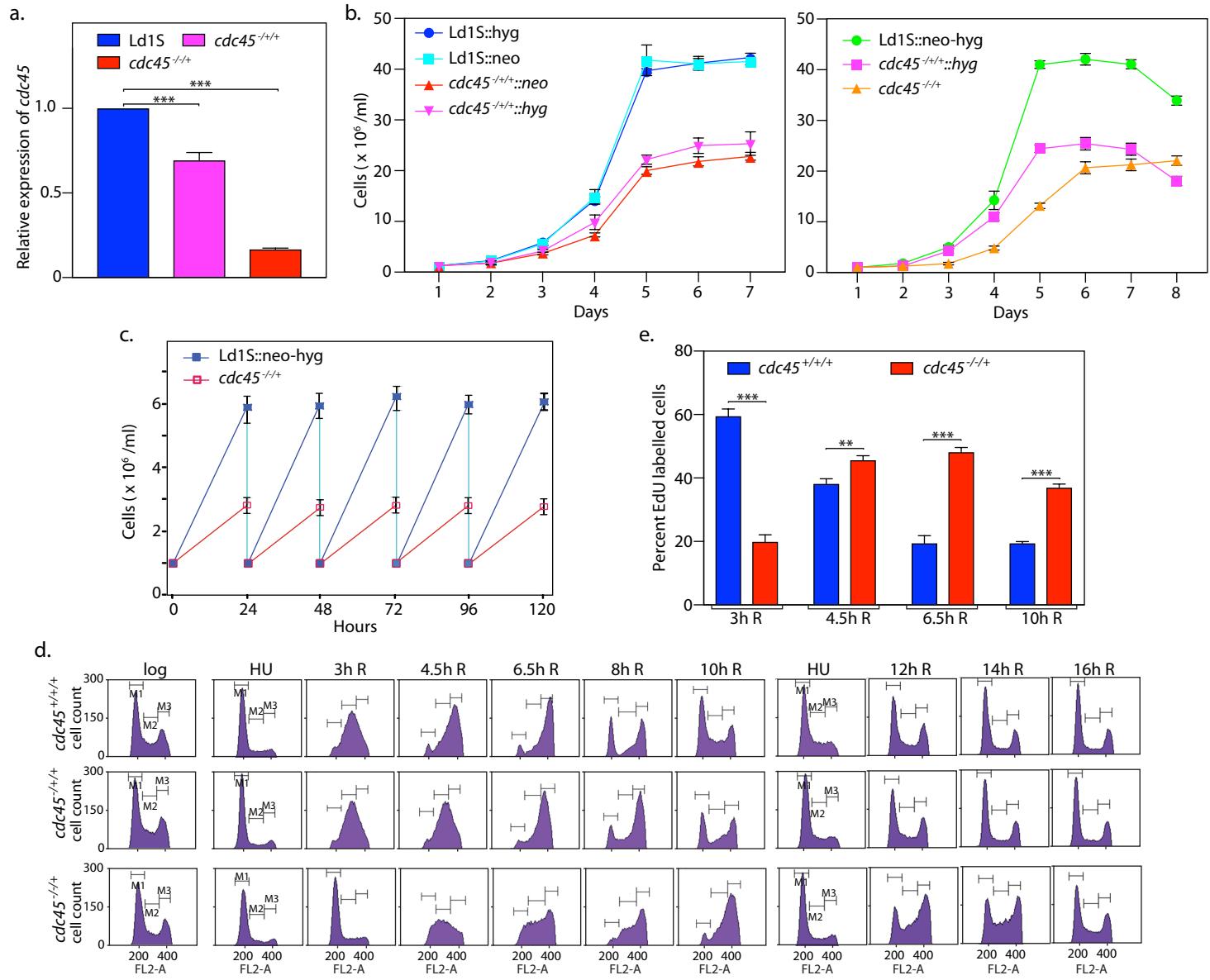


Figure 3

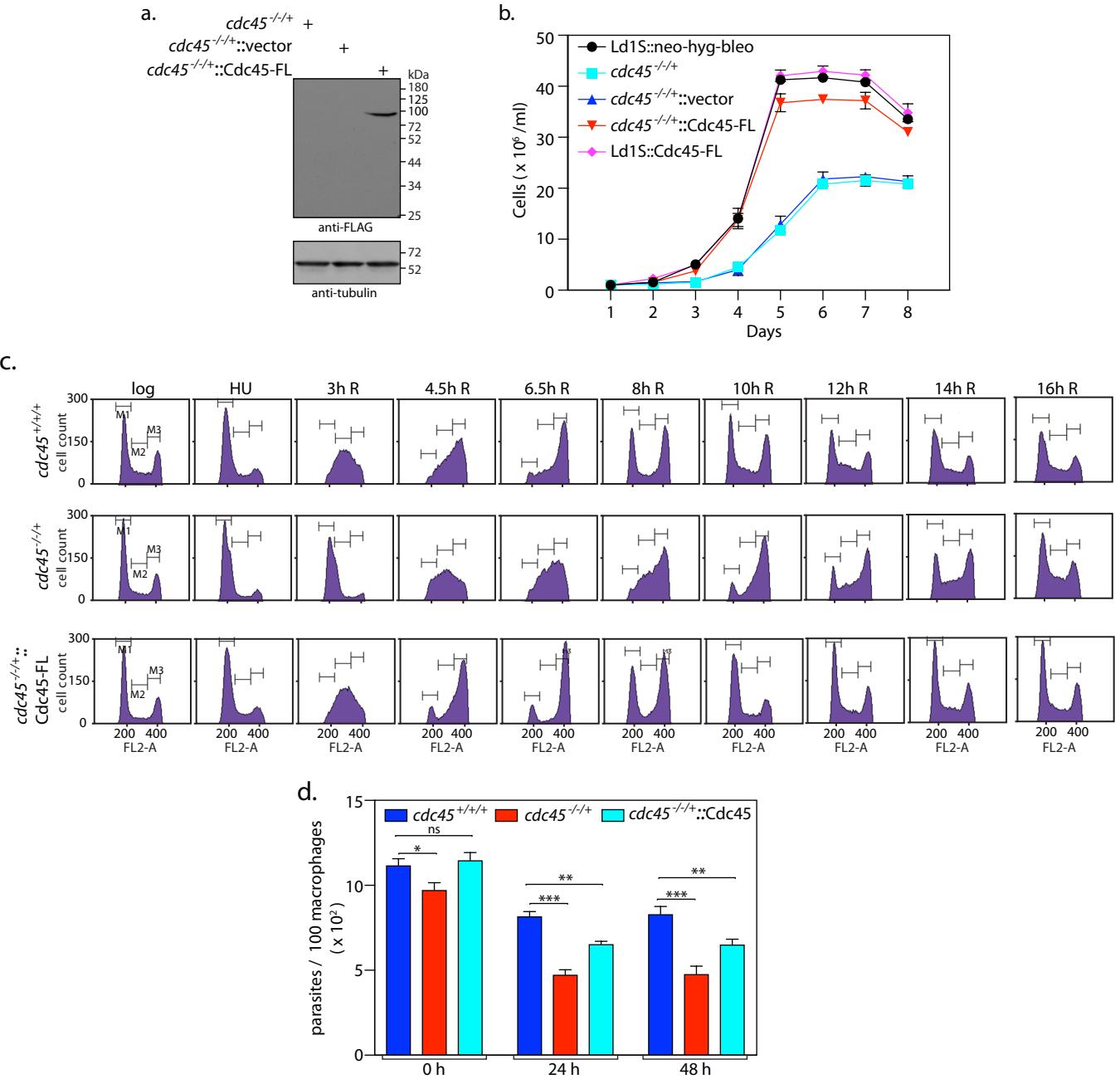


Figure 4

a.

LdCdc45 5DGO

1 MATASGAPEPWERISTYYASTRKNINVLVAPTA₂ADAAAASLSLT₃YMKVFLFPFQLHPT₄SYDELKWFIEQTNAQD₅SEREDDSSLRIDDLF₆ILVGLGAPVLL₇EDYFDFTR₈110

1 YEVVQSQRVLLFVASDVDALCACKILQALFQCDHVQYTLV₉RVSGWQ₁₀ELETAFL₁₁EHK₁₂EQFHYFILINC₁₃GANV₁₄D₁₅LDILQ₁₆PDE₁₇81

LdCdc45 5DGO

111 H₁-V₂IVL₃DAYRPFH₄LG₅GNL₆R₇REDGERC₈I₉WGS₁₀DR₁₁IQ₁₂V₁₃ED₁₄FFF₁₅R₁₆K₁₇Q₁₈RA₁₉EEA₂₀Q₂₁RRR₂₂H₂₃RR₂₄Q₂₅DM₂₆K₂₇R₂₈H₂₉E₃₀G₃₁H₃₂Q₃₃E₃₄N₃₅A₃₆D₃₇S₃₈G₃₉D₄₀E₄₁D₄₂A₄₃D₄₄219

82 D₁T₂I₃F₄F₅C₆D₇T₈H₉R₁₀P₁₁V₁₂N₁₃V₁₄N₁₅V₁₆Y₁₇N₁₈D₁₉T₂₀Q₂₁I₂₂K₂₃L₂₄I₂₅K₂₆Q₂₇D₂₈L₂₉E₃₀P₃₁AYE₃₂D₃₃212

LdCdc45 5DGO

220 L₁F₂D₃G₄E₅D₆D₇A₈T₉P₁₀S₁₁Q₁₂S₁₃Q₁₄D₁₅R₁₆S₁₇Q₁₈D₁₉R₂₀G₂₁D₂₂L₂₃Y₂₄L₂₅R₂₆L₂₇V₂₈D₂₉Y₃₀T₃₁Y₃₂L₃₃V₃₄E₃₅M₃₆A₃₇P₃₈L₃₉H₄₀E₄₁A₄₂V₄₃S₄₄L₄₅Q₄₆Q₄₇S₄₈V₄₉R₅₀R₅₁G₅₂I₅₃L₅₄Q₅₅S₅₆V₅₇R₅₈R₅₉G₆₀I₆₁L₆₂R₆₃D₆₄E₆₅F₆₆D₆₇R₆₈D₆₉E₇₀R₇₁D₇₂R₇₃D₇₄E₇₅R₇₆D₇₇R₇₈D₇₉R₈₀D₈₁R₈₂D₈₃R₈₄D₈₅R₈₆D₈₇R₈₈D₈₉R₉₀D₉₁R₉₂D₉₃R₉₄D₉₅R₉₆D₉₇R₉₈D₉₉R₁₀₀D₁₀₁R₁₀₂D₁₀₃R₁₀₄D₁₀₅R₁₀₆D₁₀₇R₁₀₈D₁₀₉R₁₁₀D₁₁₁R₁₁₂D₁₁₃R₁₁₄D₁₁₅R₁₁₆D₁₁₇R₁₁₈D₁₁₉R₁₂₀D₁₂₁R₁₂₂D₁₂₃R₁₂₄D₁₂₅R₁₂₆D₁₂₇R₁₂₈D₁₂₉R₁₃₀D₁₃₁R₁₃₂D₁₃₃R₁₃₄D₁₃₅R₁₃₆D₁₃₇R₁₃₈D₁₃₉R₁₄₀D₁₄₁R₁₄₂D₁₄₃R₁₄₄D₁₄₅R₁₄₆D₁₄₇R₁₄₈D₁₄₉R₁₅₀D₁₅₁R₁₅₂D₁₅₃R₁₅₄D₁₅₅R₁₅₆D₁₅₇R₁₅₈D₁₅₉R₁₆₀D₁₆₁R₁₆₂D₁₆₃R₁₆₄D₁₆₅R₁₆₆D₁₆₇R₁₆₈D₁₆₉R₁₇₀D₁₇₁R₁₇₂D₁₇₃R₁₇₄D₁₇₅R₁₇₆D₁₇₇R₁₇₈D₁₇₉R₁₈₀D₁₈₁R₁₈₂D₁₈₃R₁₈₄D₁₈₅R₁₈₆D₁₈₇R₁₈₈D₁₈₉R₁₉₀D₁₉₁R₁₉₂D₁₉₃R₁₉₄D₁₉₅R₁₉₆D₁₉₇R₁₉₈D₁₉₉R₂₀₀D₂₀₁R₂₀₂D₂₀₃R₂₀₄D₂₀₅R₂₀₆D₂₀₇R₂₀₈D₂₀₉R₂₁₀D₂₁₁R₂₁₂D₂₁₃R₂₁₄D₂₁₅R₂₁₆D₂₁₇R₂₁₈D₂₁₉R₂₂₀D₂₂₁R₂₂₂D₂₂₃R₂₂₄D₂₂₅R₂₂₆D₂₂₇R₂₂₈D₂₂₉R₂₃₀D₂₃₁R₂₃₂D₂₃₃R₂₃₄D₂₃₅R₂₃₆D₂₃₇R₂₃₈D₂₃₉R₂₄₀D₂₄₁R₂₄₂D₂₄₃R₂₄₄D₂₄₅R₂₄₆D₂₄₇R₂₄₈D₂₄₉R₂₅₀D₂₅₁R₂₅₂D₂₅₃R₂₅₄D₂₅₅R₂₅₆D₂₅₇R₂₅₈D₂₅₉R₂₆₀D₂₆₁R₂₆₂D₂₆₃R₂₆₄D₂₆₅R₂₆₆D₂₆₇R₂₆₈D₂₆₉R₂₇₀D₂₇₁R₂₇₂D₂₇₃R₂₇₄D₂₇₅R₂₇₆D₂₇₇R₂₇₈D₂₇₉R₂₈₀D₂₈₁R₂₈₂D₂₈₃R₂₈₄D₂₈₅R₂₈₆D₂₈₇R₂₈₈D₂₈₉R₂₉₀D₂₉₁R₂₉₂D₂₉₃R₂₉₄D₂₉₅R₂₉₆D₂₉₇R₂₉₈D₂₉₉R₃₀₀D₃₀₁R₃₀₂D₃₀₃R₃₀₄D₃₀₅R₃₀₆D₃₀₇R₃₀₈D₃₀₉R₃₁₀D₃₁₁R₃₁₂D₃₁₃R₃₁₄D₃₁₅R₃₁₆D₃₁₇R₃₁₈D₃₁₉R₃₂₀D₃₂₁R₃₂₂D₃₂₃R₃₂₄D₃₂₅R₃₂₆D₃₂₇R₃₂₈D₃₂₉R₃₃₀D₃₃₁R₃₃₂D₃₃₃R₃₃₄D₃₃₅R₃₃₆D₃₃₇R₃₃₈D₃₃₉R₃₄₀D₃₄₁R₃₄₂D₃₄₃R₃₄₄D₃₄₅R₃₄₆D₃₄₇R₃₄₈D₃₄₉R₃₅₀D₃₅₁R₃₅₂D₃₅₃R₃₅₄D₃₅₅R₃₅₆D₃₅₇R₃₅₈D₃₅₉R₃₆₀D₃₆₁R₃₆₂D₃₆₃R₃₆₄D₃₆₅R₃₆₆D₃₆₇R₃₆₈D₃₆₉R₃₇₀D₃₇₁R₃₇₂D₃₇₃R₃₇₄D₃₇₅R₃₇₆D₃₇₇R₃₇₈D₃₇₉R₃₈₀D₃₈₁R₃₈₂D₃₈₃R₃₈₄D₃₈₅R₃₈₆D₃₈₇R₃₈₈D₃₈₉R₃₉₀D₃₉₁R₃₉₂D₃₉₃R₃₉₄D₃₉₅R₃₉₆D₃₉₇R₃₉₈D₃₉₉R₄₀₀D₄₀₁R₄₀₂D₄₀₃R₄₀₄D₄₀₅R₄₀₆D₄₀₇R₄₀₈D₄₀₉R₄₁₀D₄₁₁R₄₁₂D₄₁₃R₄₁₄D₄₁₅R₄₁₆D₄₁₇R₄₁₈D₄₁₉R₄₂₀D₄₂₁R₄₂₂D₄₂₃R₄₂₄D₄₂₅R₄₂₆D₄₂₇R₄₂₈D₄₂₉R₄₃₀D₄₃₁R₄₃₂D₄₃₃R₄₃₄D₄₃₅R₄₃₆D₄₃₇R₄₃₈D₄₃₉R₄₄₀D₄₄₁R₄₄₂D₄₄₃R₄₄₄D₄₄₅R₄₄₆D₄₄₇R₄₄₈D₄₄₉R₄₅₀D₄₅₁R₄₅₂D₄₅₃R₄₅₄D₄₅₅R₄₅₆D₄₅₇R₄₅₈D₄₅₉R₄₆₀D₄₆₁R₄₆₂D₄₆₃R₄₆₄D₄₆₅R₄₆₆D₄₆₇R₄₆₈D₄₆₉R₄₇₀D₄₇₁R₄₇₂D₄₇₃R₄₇₄D₄₇₅R₄₇₆D₄₇₇R₄₇₈D₄₇₉R₄₈₀D₄₈₁R₄₈₂D₄₈₃R₄₈₄D₄₈₅R₄₈₆D₄₈₇R₄₈₈D₄₈₉R₄₉₀D₄₉₁R₄₉₂D₄₉₃R₄₉₄D₄₉₅R₄₉₆D₄₉₇R₄₉₈D₄₉₉R₅₀₀D₅₀₁R₅₀₂D₅₀₃R₅₀₄D₅₀₅R₅₀₆D₅₀₇R₅₀₈D₅₀₉R₅₁₀D₅₁₁R₅₁₂D₅₁₃R₅₁₄D₅₁₅R₅₁₆D₅₁₇R₅₁₈D₅₁₉R₅₂₀D₅₂₁R₅₂₂D₅₂₃R₅₂₄D₅₂₅R₅₂₆D₅₂₇R₅₂₈D₅₂₉R₅₃₀D₅₃₁R₅₃₂D₅₃₃R₅₃₄D₅₃₅R₅₃₆D₅₃₇R₅₃₈D₅₃₉R₅₄₀D₅₄₁R₅₄₂D₅₄₃R₅₄₄D₅₄₅R₅₄₆D₅₄₇R₅₄₈D₅₄₉R₅₅₀D₅₅₁R₅₅₂D₅₅₃R₅₅₄D₅₅₅R₅₅₆D₅₅₇R₅₅₈D₅₅₉R₅₆₀D₅₆₁R₅₆₂D₅₆₃R₅₆₄D₅₆₅R₅₆₆D₅₆₇R₅₆₈D₅₆₉R₅₇₀D₅₇₁R₅₇₂D₅₇₃R₅₇₄D₅₇₅R₅₇₆D₅₇₇R₅₇₈D₅₇₉R₅₈₀D₅₈₁R₅₈₂D₅₈₃R₅₈₄D₅₈₅R₅₈₆D₅₈₇R₅₈₈D₅₈₉R₅₉₀D₅₉₁R₅₉₂D₅₉₃R₅₉₄D₅₉₅R₅₉₆D₅₉₇R₅₉₈D₅₉₉R₆₀₀D₆₀₁R₆₀₂D₆₀₃R₆₀₄D₆₀₅R₆₀₆D₆₀₇R₆₀₈D₆₀₉R₆₁₀D₆₁₁R₆₁₂D₆₁₃R₆₁₄D₆₁₅R₆₁₆D₆₁₇R₆₁₈D₆₁₉R₆₂₀D₆₂₁R₆₂₂D₆₂₃R₆₂₄D₆₂₅R₆₂₆D₆₂₇R₆₂₈D₆₂₉R₆₃₀D₆₃₁R₆₃₂D₆₃₃R₆₃₄D₆₃₅R₆₃₆D₆₃₇R₆₃₈D₆₃₉R₆₄₀D₆₄₁R₆₄₂D₆₄₃R₆₄₄D₆₄₅R₆₄₆D₆₄₇R₆₄₈D₆₄₉R₆₅₀D₆₅₁R₆₅₂D₆₅₃R₆₅₄D₆₅₅R₆₅₆D₆₅₇R₆₅₈D₆₅₉R₆₆₀D₆₆₁R₆₆₂D₆₆₃R₆₆₄D₆₆₅R₆₆₆D₆₆₇R₆₆₈D₆₆₉R₆₇₀D₆₇₁R₆₇₂D₆₇₃R₆₇₄D₆₇₅R₆₇₆D₆₇₇R₆₇₈D₆₇₉R₆₈₀D₆₈₁R₆₈₂D₆₈₃R₆₈₄D₆₈₅R₆₈₆D₆₈₇R₆₈₈D₆₈₉R₆₉₀D₆₉₁R₆₉₂D₆₉₃R₆₉₄D₆₉₅R₆₉₆D₆₉₇R₆₉₈D₆₉₉R₇₀₀D₇₀₁R₇₀₂D₇₀₃R₇₀₄D₇₀₅R₇₀₆D₇₀₇R₇₀₈D₇₀₉R₇₁₀D₇₁₁R₇₁₂D₇₁₃R₇₁₄D₇₁₅R₇₁₆D₇₁₇R₇₁₈D₇₁₉R₇₂₀D₇₂₁R₇₂₂D₇₂₃R₇₂₄D₇₂₅R₇₂₆D₇₂₇R₇₂₈D₇₂₉R₇₃₀D₇₃₁R₇₃₂D₇₃₃R₇₃₄D₇₃₅R₇₃₆D₇₃₇R₇₃₈D₇₃₉R₇₄₀D₇₄₁R₇₄₂D₇₄₃R₇₄₄D₇₄₅R₇₄₆D₇₄₇R₇₄₈D₇₄₉R₇₅₀D₇₅₁R₇₅₂D₇₅₃R₇₅₄D₇₅₅R₇₅₆D₇₅₇R₇₅₈D₇₅₉R₇₆₀D₇₆₁R₇₆₂D₇₆₃R₇₆₄D₇₆₅R₇₆₆D₇₆₇R₇₆₈D₇₆₉R₇₇₀D₇₇₁R₇₇₂D₇₇₃R₇₇₄D₇₇₅R₇₇₆D₇₇₇R₇₇₈D₇₇₉R₇₈₀D₇₈₁R₇₈₂D₇₈₃R₇₈₄D₇₈₅R₇₈₆D₇₈₇R₇₈₈D₇₈₉R₇₉₀D₇₉₁R₇₉₂D₇₉₃R₇₉₄D₇₉₅R₇₉₆D₇₉₇R₇₉₈D₇₉₉R₈₀₀D₈₀₁R₈₀₂D₈₀₃R₈₀₄D₈₀₅R₈₀₆D₈₀₇R₈₀₈D₈₀₉R₈₁₀D₈₁₁R₈₁₂D₈₁₃R₈₁₄D₈₁₅R₈₁₆D₈₁₇R₈₁₈D₈₁₉R₈₂₀D₈₂₁R₈₂₂D₈₂₃R₈₂₄D₈₂₅R₈₂₆D₈₂₇R₈₂₈D₈₂₉R₈₃₀D₈₃₁R₈₃₂D₈₃₃R₈₃₄D₈₃₅R₈₃₆D₈₃₇R₈₃₈D₈₃₉R₈₄₀D₈₄₁R₈₄₂D₈₄₃R₈₄₄D₈₄₅R₈₄₆D₈₄₇R₈₄₈D₈₄₉R₈₅₀D₈₅₁R₈₅₂D₈₅₃R₈₅₄D₈₅₅R₈₅₆D₈₅₇R₈₅₈D₈₅₉R₈₆₀D₈₆₁R₈₆₂D₈₆₃R₈₆₄D₈₆₅R₈₆₆D₈₆₇R₈₆₈D₈₆₉R₈₇₀D₈₇₁R₈₇₂D₈₇₃R₈₇₄D₈₇₅R₈₇₆D₈₇₇R₈₇₈D₈₇₉R₈₈₀D₈₈₁R₈₈₂D₈₈₃R₈₈₄D₈₈₅R₈₈₆D₈₈₇R₈₈₈D₈₈₉R₈₉₀D₈₉₁R₈₉₂D₈₉₃R₈₉₄D₈₉₅R₈₉₆D₈₉₇R₈₉₈D₈₉₉R₉₀₀D₉₀₁R₉₀₂D₉₀₃R₉₀₄D₉₀₅R₉₀₆D₉₀₇R₉₀₈D₉₀₉R₉₁₀D₉₁₁R₉₁₂D₉₁₃R₉₁₄D₉₁₅R₉₁₆D₉₁₇R₉₁₈D₉₁₉R₉₂₀D₉₂₁R₉₂₂D₉₂₃R₉₂₄D₉₂₅R₉₂₆D₉₂₇R₉₂₈D₉₂₉R₉₃₀D₉₃₁R₉₃₂D₉₃₃R₉₃₄D₉₃₅R₉₃₆D₉₃₇R₉₃₈D₉₃₉R₉₄₀D₉₄₁R₉₄₂D₉₄₃R₉₄₄D₉₄₅R₉₄₆D₉₄₇R₉₄₈D₉₄₉R₉₅₀D₉₅₁R₉₅₂D₉₅₃R₉₅₄D₉₅₅R₉₅₆D₉₅₇R₉₅₈D₉₅₉R₉₆₀D₉₆₁R₉₆₂D₉₆₃R₉₆₄D₉₆₅R₉₆₆D₉₆₇R₉₆₈D₉₆₉R₉₇₀D₉₇₁R₉₇₂D₉₇₃R₉₇₄D₉₇₅R₉₇₆D₉₇₇R₉₇₈D₉₇₉R₉₈₀D₉₈₁R₉₈₂D₉₈₃R₉₈₄D₉₈₅R₉₈₆D₉₈₇R₉₈₈D₉₈₉R₉₉₀D₉₉₁R₉₉₂D₉₉₃R₉₉₄D₉₉₅R₉₉₆D₉₉₇R₉₉₈D₉₉₉R₁₀₀₀D₁₀₀₁R₁₀₀₂D₁₀₀₃R₁₀₀₄D₁₀₀₅R₁₀₀₆D₁₀₀₇R₁₀₀₈D₁₀₀₉R₁₀₁₀D₁₀₁₁R₁₀₁₂D₁₀₁₃R₁₀₁₄D₁₀₁₅R₁₀₁₆D₁₀₁₇R₁₀₁₈D₁₀₁₉R₁₀₂₀D₁₀₂₁R₁₀₂₂D₁₀₂₃R₁₀₂₄D₁₀₂₅R₁₀₂₆D₁₀₂₇R₁₀₂₈D₁₀₂₉R₁₀₃₀D₁₀₃₁R₁₀₃₂D₁₀₃₃R₁₀₃₄D₁₀₃₅R₁₀₃₆D₁₀₃₇R₁₀₃₈D₁₀₃₉R₁₀₄₀D₁₀₄₁R₁₀₄₂D₁₀₄₃R₁₀₄₄D₁₀₄₅R₁₀₄₆D₁₀₄₇R₁₀₄₈D₁₀₄₉R₁₀₅₀D₁₀₅₁R₁₀₅₂D₁₀₅₃R₁₀₅₄D₁₀₅₅R₁₀₅₆D₁₀₅₇R₁₀₅₈D₁₀₅₉R₁₀₆₀D₁₀₆₁R₁₀₆₂D₁₀₆₃R₁₀₆₄D₁₀₆₅R₁₀₆₆D₁₀₆₇R₁₀₆₈D₁₀₆₉R₁₀₇₀D₁₀₇₁R₁₀₇₂D₁₀₇₃R₁₀₇₄D₁₀₇₅R₁₀₇₆D₁₀₇₇R₁₀₇₈D₁₀₇₉R₁₀₈₀D₁₀₈₁R₁₀₈₂D₁₀₈₃R₁₀₈₄D₁₀₈₅R₁₀₈₆D₁₀₈₇R₁₀₈₈D₁₀₈₉R₁₀₉₀D₁₀₉₁R₁₀₉₂D₁₀₉₃R₁₀₉₄D₁₀₉₅R₁₀₉₆D₁₀₉₇R₁₀₉₈D₁₀₉₉R₁₁₀₀D₁₁₀₁R₁₁₀₂D₁₁₀₃R₁₁₀₄D₁₁₀₅R₁₁₀₆D₁₁₀₇R₁₁₀₈D₁₁₀₉R₁₁₁₀D₁₁₁₁R₁₁₁₂D₁₁₁₃R₁₁₁₄D₁₁₁₅R₁₁₁₆D₁₁₁₇R₁₁₁₈D₁₁₁₉R₁₁₂₀D₁₁₂₁R₁₁₂₂D₁₁₂₃R₁₁₂₄D₁₁₂₅R₁₁₂₆D₁₁₂₇R₁₁₂₈D₁₁₂₉R₁₁₃₀D₁₁₃₁R₁₁₃₂D₁₁₃₃R₁₁₃₄D₁₁₃₅R₁₁₃₆D₁₁₃₇R₁₁₃₈D₁₁₃₉R₁₁₄₀D₁₁₄₁R₁₁₄₂D₁₁₄₃R₁₁₄₄D₁₁₄₅R₁₁₄₆D₁₁₄₇R₁₁₄₈D₁₁₄₉R₁₁₅₀D₁₁₅₁R₁₁₅₂D₁₁₅₃R₁₁₅₄D₁₁₅₅R₁₁₅₆D₁₁₅₇R₁₁₅₈D₁₁₅₉R₁₁₆₀D₁₁₆₁R₁₁₆₂D₁₁₆₃R₁₁₆₄D₁₁₆₅R₁₁₆₆D₁₁₆₇R₁₁₆₈D₁₁₆₉R₁₁₇₀D₁₁₇₁R₁₁₇₂D₁₁₇₃R₁₁₇₄D₁₁₇₅R₁₁₇₆D₁₁₇₇R₁₁₇₈D₁₁₇₉R₁₁₈₀D₁₁₈₁R₁₁₈₂D₁₁₈₃R₁₁₈₄D₁₁₈₅R₁₁₈₆D₁₁₈₇R₁₁₈₈D₁₁₈₉R₁₁₉₀D₁₁₉₁R₁₁₉₂D₁₁₉₃R₁₁₉₄D₁₁₉₅R₁₁₉₆D₁₁₉₇R₁₁₉₈D₁₁₉₉R₁₂₀₀D₁₂₀₁R₁₂₀₂D₁₂₀₃R₁₂₀₄D₁₂₀₅R₁₂₀₆D₁₂₀₇R₁₂₀₈D₁₂₀₉R₁₂₁₀D₁₂₁₁R₁₂₁₂D₁₂₁₃R₁₂₁₄D₁₂₁₅R₁₂₁₆D₁₂₁₇R₁₂₁₈D₁₂₁₉R₁₂₂₀D₁₂₂₁R₁₂₂₂D₁₂₂₃R₁₂₂₄D₁₂₂₅R₁₂₂₆D₁₂₂₇R₁₂₂₈D₁₂₂₉R₁₂₃₀D₁₂₃₁R₁₂₃₂D₁₂₃₃R₁₂₃₄D₁₂₃₅R₁₂₃₆D₁₂₃₇R₁₂₃₈D₁₂₃₉R₁₂₄₀D₁₂₄₁R₁₂₄₂D₁₂₄₃R₁₂₄₄D₁₂₄₅R₁₂₄₆D<sub

Figure 5

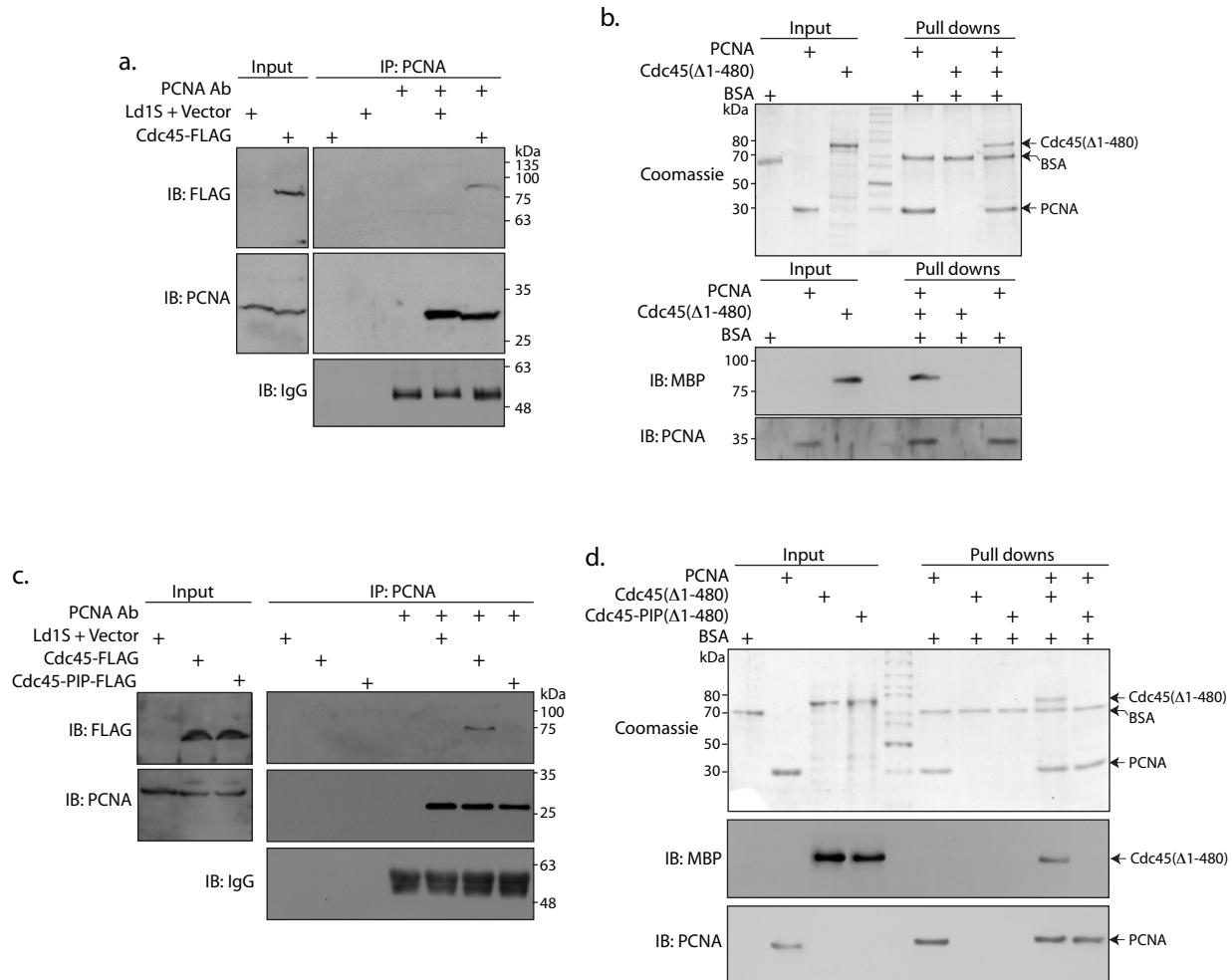


Figure 6

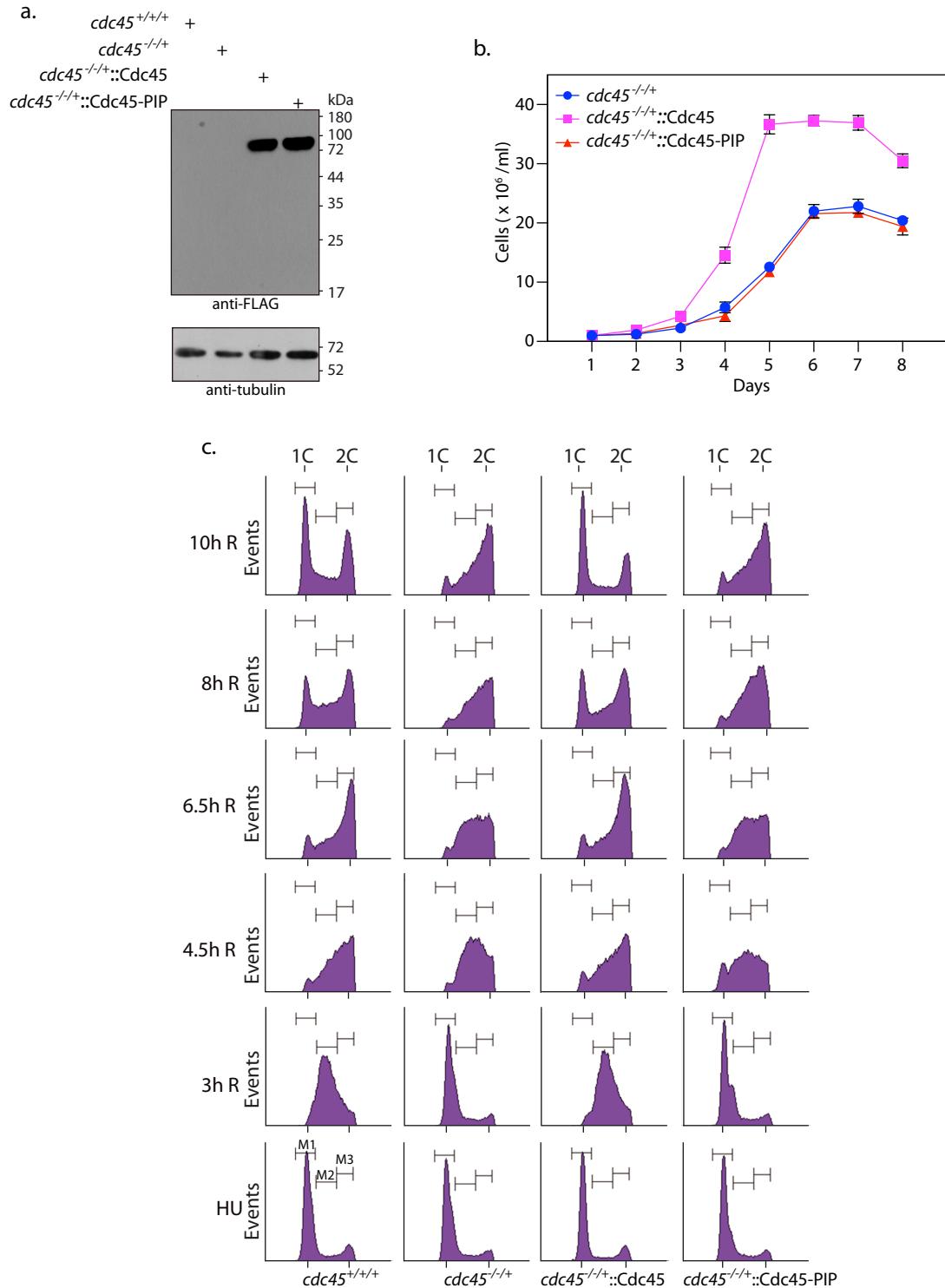


Figure 7

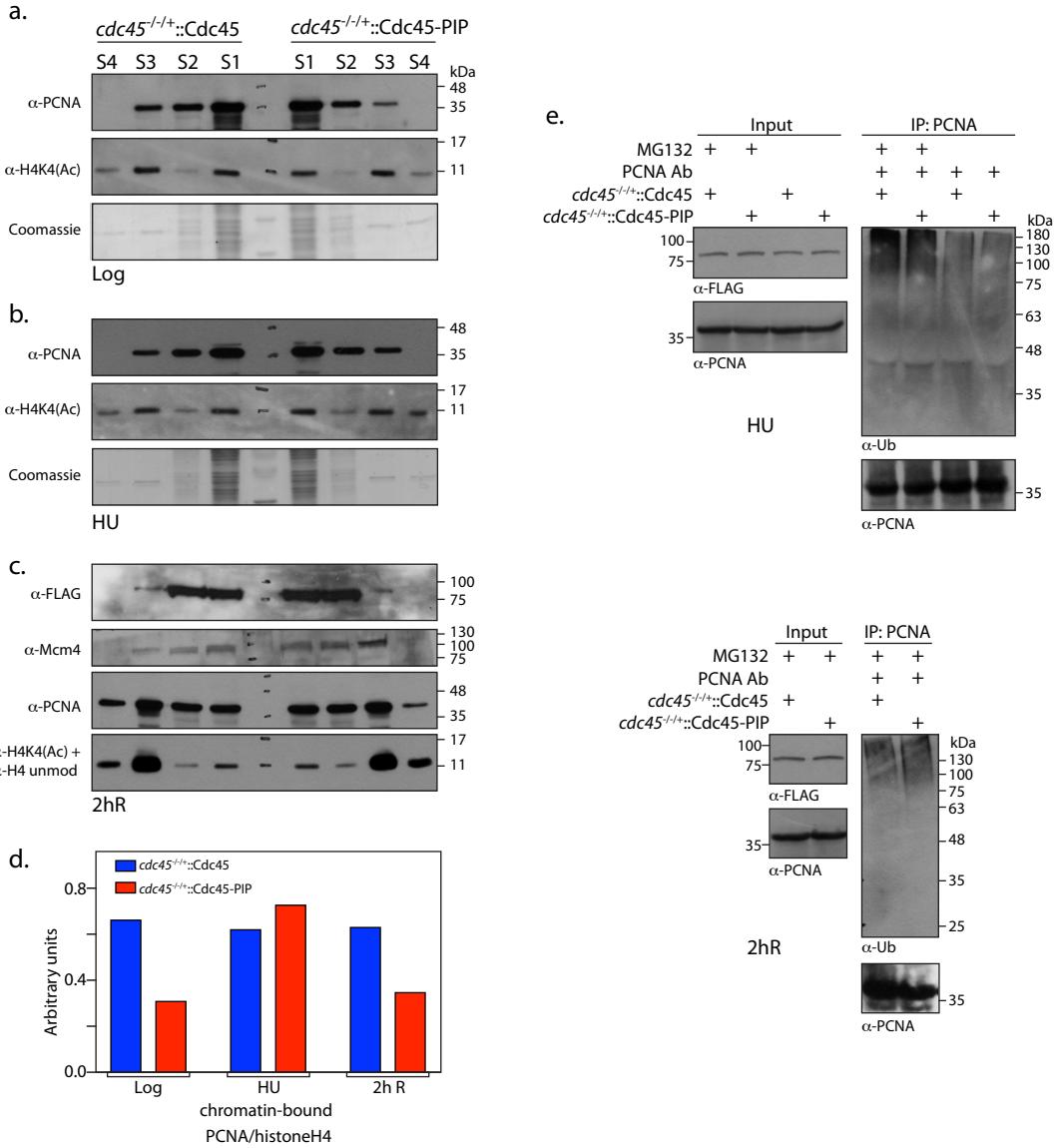
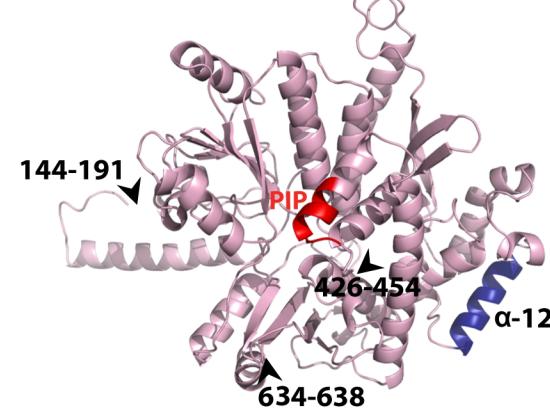
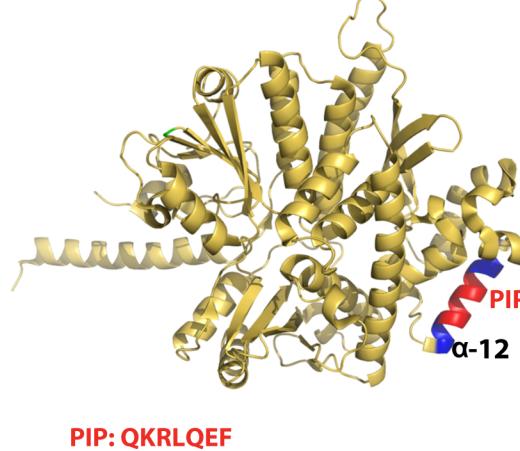




Figure 8

2

PIP: QKRLQEF

PIP: QEWLHNFY

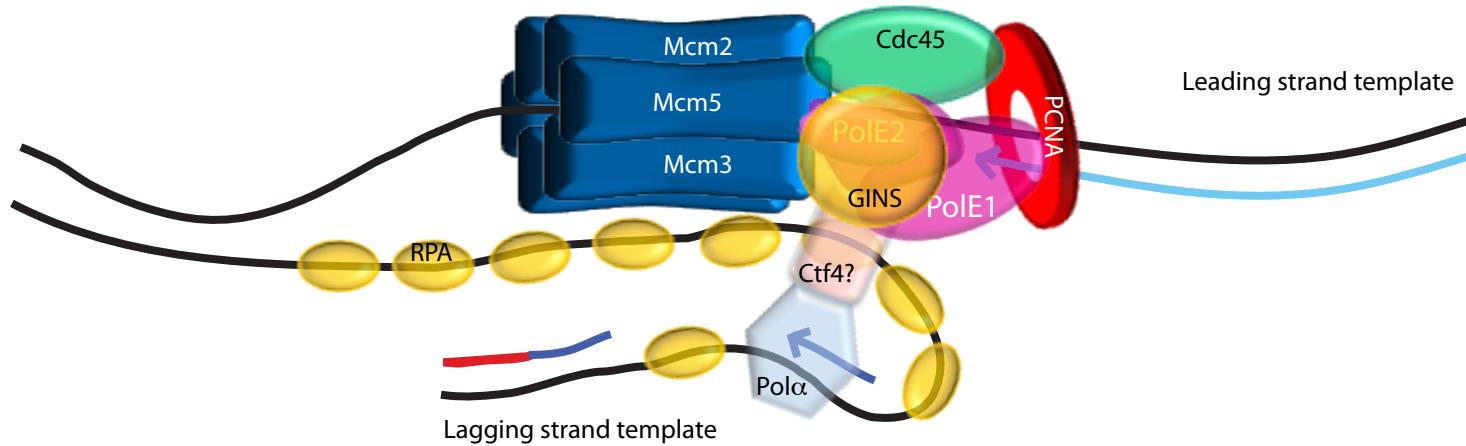
b.

C.

d

a.

<i>sna41</i> ^{goa1}	+		
<i>sna41</i> ^{goa1} + vector	+		
<i>sna41</i> ^{goa1} + SpCdc45	+		
<i>sna41</i> ^{goa1} + SpCdc45-PIP-1	+		
<i>sna41</i> ^{goa1} + SpCdc45-PIP-2	+		


kDa

17 25 35 48 63 75

IB: His

1

Figure 9

