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Abstract

Rational compound design remains a challeng-
ing problem for both computational methods
and medicinal chemists. Computational gen-
erative methods have begun to show promis-
ing results for the design problem. However,
they have not yet used the power of 3D struc-
tural information. We have developed a novel
graph-based deep generative model that com-
bines state-of-the-art machine learning tech-
niques with structural knowledge. Our method
(“DeLinker”) takes two fragments or partial
structures and designs a molecule incorporat-
ing both. The generation process is protein
context dependent, utilising the relative dis-
tance and orientation between the partial struc-
tures. This 3D information is vital to success-
ful compound design, and we demonstrate its
impact on the generation process and the limi-
tations of omitting such information. In a large
scale evaluation, DeLinker designed 60% more
molecules with high 3D similarity to the orig-
inal molecule than a database baseline. When
considering the more relevant problem of longer
linkers with at least five atoms, the outperfor-
mance increased to 200%. We demonstrate the
effectiveness and applicability of this approach
on a diverse range of design problems: fragment
linking, scaffold hopping, and proteolysis tar-

geting chimera (PROTAC) design. As far as we
are aware, this is the first molecular generative
model to incorporate 3D structural information
directly in the design process. Code is available
at https://github.com/oxpig/DeLinker.

Introduction

Drug design is an iterative process that requires
potential compounds to be optimised for spe-
cific properties, ranging from binding affinity to
pharmacokinetics. This process is challenging,
in part due to the size of the search space1 and
discontinuous nature of the optimisation land-
scape.2 Typically molecule design is undertaken
by human experts, and therefore is a subjective
process.

Machine learning models for molecule gen-
eration have been proposed as an alternative
to human-led design and rules-based transfor-
mations.3–5 Generative models have adopted
either the SMILES string representation of
molecules6–10 or, more recently, graph represen-
tations.11–15 Existing generative models have
primarily been used in two ways. First, meth-
ods have been developed to generate molecules
that follow the same distribution as the train-
ing set, whether a general set of molecules10

such as ZINC16 or ChEMBL,17 or a more fo-
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cussed one such as inhibitors for a particular
protein target.7,18 Second, generative models
have been proposed to perform molecular op-
timisation, taking an input molecule and at-
tempting to modify one, or several, chemical
properties, typically subject to a similarity con-
straint.15

While substantial progress has been made for
these two problems, current methods have in-
herent limitations, in particular for structure-
based design. Only one approach to date has at-
tempted to include any three dimensional (3D)
information in the generative process,19 despite
its importance for designing potent and selec-
tive compounds. In this work, 3D information
was only provided implicitly to the generative
model, and the method did not allow further
control over generated compounds.19 As a re-
sult, the generative model frequently changes
the entire molecule. This is undesirable in many
practical settings, such as the design problems
described below.

Fragment-based drug discovery (FBDD) has
become an increasingly important tool for find-
ing hit compounds, in particular for challeng-
ing targets and novel protein families. FBDD
utilises smaller than drug-like compounds (typ-
ically <300 Daltons) to identify low potency,
high quality leads, that are then matured into
more potent, drug-like compounds. One com-
mon way of maturing fragments hits is through
a linking strategy, joining fragments together
that bind to distinct sites via a linker. It is cru-
cial for successful fragment linking that a linker
does not disturb the original binding poses of
each fragment.20,21 Thus compound suggestions
have strong 3D constraints, determined by the
binding mode of the fragments.

Scaffold hopping, though a distinct problem,
shares some characteristics with fragment link-
ing. The aim of scaffold hopping is to discover
structurally novel compounds starting from a
known active compound by modifying the cen-
tral core structure of the molecule.22 Such a
change can result in much improved molecular
properties, such as solubility, toxicity, synthetic
accessibility, affinity, and selectivity.22,23

Numerous computational methods have been
proposed for fragment linking or scaffold hop-

ping.24–29 However, almost all methods pub-
lished to date rely exclusively on a database
of candidate fragments from which to select
a linker, with the differences between ap-
proaches arising solely from how the database is
searched, how the linked compounds are scored,
or the contents of database itself. As a result,
these methods are inherently constrained to a
set of predetermined rules or examples, limit-
ing exploration of chemical space. In addition,
they can only incorporate additional structural
knowledge (e.g. the fragment’s binding mode)
via filtering or search mechanisms.

Current machine learning-based molecule
generation methods are not suitable for the
design tasks of fragment linking and scaffold
hopping. These scenarios require proposed
molecules to contain specific substructures,
with the goal to design a molecule that main-
tains the binding mode of the original com-
pound or fragments. Neither of these require-
ments have been explicitly included in previous
methods.

In this work, we introduce the first graph-
based deep generative method that incorpo-
rates 3D structural information directly into the
design process. Our method takes as input two
molecular fragments and designs a molecule in-
corporating both substructures, either generat-
ing or replacing the linker between them. This
allows our method to handle structure-based
design tasks such as fragment linking and scaf-
fold hopping effectively. The generation process
is protein context dependent, and integrates
3D structural information, specifically the dis-
tance between the fragments and their relative
orientations. This 3D information is vital to
successful compound design, and we demon-
strate the limitations of omitting such informa-
tion, both quantifying its impact in large-scale
assessments and empirically showing how our
model uses the structural information.

We first demonstrate the effectiveness of
our proposed deep generative approach over a
database method through large-scale computa-
tional assessments. We show that our method,
DeLinker, designs 60% more compounds with
high 3D similarity to the original molecule com-
pared to a database-based approach on an in-
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dependent test set. DeLinker outperforms the
database approach by 200% when the evalua-
tion is restricted to linkers with at least five
atoms. We then apply our method to sev-
eral case studies encompassing fragment link-
ing, scaffold hopping, and PROTAC design.
DeLinker frequently recovers the experimental
end-point, even in cases where the linker was
not present in the training set, and produces
many novel designs with high 3D similarity to
the original molecules.

Methods

The method takes two fragments and their rel-
ative position and orientation and generates
or replaces the linker between them. This is
achieved by building new molecules in an it-
erative manner “bond-by-bond” from a pool
of atoms that can be initialised with partial
structures (Figure 1). In this framework, the
user is able to control the generation process by
specifying both the substructures that should
be linked and the maximum length of linker
between them. In addition, 3D structural in-
formation in the form of the distance and an-
gle between the starting substructures is pro-
vided to the model to inform the design process.
Molecules are encoded by a set of 14 permit-
ted atom types, and our model enforces simple
atomic valency rules via a masking procedure
to ensure chemical validity. This is the only
chemical knowledge incorporated directly into
our model; all other decisions required to gen-
erate molecules are learnt through a supervised
training procedure.

Generative process. The generative pro-
cess is illustrated in Figure 1 and is simi-
lar to Liu et al. 14 in that our method builds
molecules “bond-by-bond” in a breadth-first
manner. Generation is initialised with two frag-
ments or substructures which are to be linked
together with structural information providing
the distance and angle between the substruc-
tures. The fragments are converted to a graph
representation, where atoms and bonds are rep-
resented by nodes and edges, respectively. Each
node is associated with a hidden state, zv, and

label, lv, representing the atom type of the
node. A list of the 14 permitted atom types
can be found in the Supporting Information.
The graph is passed through an encoder net-
work, a standard gated graph neural network
(GGNN),30 and the hidden states of the nodes
are updated to incorporate their local environ-
ment (Figure 1a).

Next, a set of expansion nodes are initialised
at random, with hidden states zv drawn from
the h-dimensional standard normal distribu-
tion, N (0, I), where h is the length of the hid-
den state (Figure 1b). The nodes are then la-
belled with an atom type according to their hid-
den state, zv, by sampling from the softmax
output of a learned mapping f(zv). Here, f is
implemented as a linear classifier but could be
any function mapping a node’s hidden state to
an atom type. The number of expansion nodes
determines the maximum length of the linker,
and is a parameter chosen by the user.

The new molecule is constructed from this
set of nodes via an iterative process consist-
ing of edge selection, edge labelling, and node
update (Figure 1c-e). At each step, we con-
sider whether to add an edge between one of
the nodes, v, and another node in the graph. v
is chosen according to a deterministic first-in-
first-out queue that is initialised with the exit
vectors of each fragment. When a node is con-
nected to the graph for the first time, it is added
to the queue. New edges are added to node v
until an edge to the stop node is selected. The
node then becomes “closed” with no additional
edges with that node permitted.

All possible edges between the node v and
other nodes in the graph are considered (Fig-
ure 1c), subject to basic valency constraints. A
single-layer neural network assesses the candi-
date edges using a feature vector. The feature
vector for the edge between node v and candi-
date node u is given by

φt
v,u = [t, stv, s

t
u, dv,u,H

0,H t,D],

where stv = [zt
v, lv] is the concatenation of the

hidden state of node v after t steps and its
atomic label, dv,u is the graph distance between
v and u, H0 is the average initial representation
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Figure 1: Overview of the generation process. The initial fragments (a) are iteratively expanded
“bond-by-bond” (c)-(e) to produce a molecule including both fragments (f). Atoms are represented
by nodes in a graph, with the colour of the nodes representing different atoms types, while bonds
are represented by edges, with different edge types for single, double and triple bonds.

of all nodes, H t is the average representation
of nodes at generation step t, and D represents
the 3D structural information. The feature vec-
tor provides the model with both local informa-
tion for the node v and the candidate node u
(stv, s

t
u, dv,u), and global information regarding

both the original graph specification (H0) and
the current graph state (H t). The model is
also provided with structural information (D),
namely the relative distance and orientation be-
tween the starting substructures.

Once a node u has been selected, the edge
between v and u is labelled as either a single,
double, or triple bond (subject to valency con-
straints) by another single layer neural network
taking as input the same feature vector φt

v,u

(Figure 1d).
Finally, the hidden states of all nodes are up-

dated according to a GGNN (Figure 1e). At
each step, we discard the current hidden states
stG := {stv : v ∈ G} and compute new repre-
sentations st+1

G taking their (possibly changed)
neighborhood into account. Note that st+1

G is

computed from s0G rather than stG. This means
that the state of each node is independent of
the generation history of the graph and depends
only on the current state of the graph.

Steps c-e in Figure 1 are repeated for each
node in the queue, until the queue is empty,
at which point the generation process termi-
nates. At termination (Figure 1f), all uncon-
nected nodes are removed and the largest con-
nected component is returned as the generated
molecule.

Multimodal Encoder-Decoder Setup.
Our goal is to learn a multimodal mapping from
unconnected fragments to connected molecules.
During training, we utilised a data set of paired
fragments and molecules and trained our model
in a supervised manner to reconstruct known
linkers. While in this data set there may be a
unique molecule associated with two fragments,
in practice there are many ways to link two frag-
ments. As such, given a new pair of starting
points, a model should be able to generate a
diverse set of output compounds.
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Figure 2: Illustration of training and generation procedures. (a) Pairs of fragments and linked
molecules are provided as input. The model is trained to reproduce the linked molecule from a
combination of the encodings of the fragments and linked molecule. (b) At generation time, the
model is given only the unlinked fragments and structural information, and is able to sample a
diverse range of linked molecules by combining the encoding of the fragments with random noise.

To this end, we took inspiration from Jin
et al. 15 and augmented the basic encoder-
decoder model with a low-dimensional latent
vector z to explicitly encode the multimodal as-
pect of the output distribution. The generative
mapping is converted from F : X 7→ Y to F :
(X, z) 7→ Y , where X represents the starting
substructures and Y the connected molecule,
with latent code z drawn from a prior distribu-
tion, chosen to be the standard normal distri-
bution, N (0, I).

There are two challenges in learning this map-
ping. First, as shown in the image domain,31

the latent codes are often ignored by the model
unless they are forced to encode meaningful
variations. Second, the latent codes should be
suitably regularised so that the model does not
produce invalid outputs. That is, the generated
molecule F (X, z) should belong to the domain
of the target molecule Y (i.e. connected and
able to satisfy the structural constraints pro-
vided) given a latent code drawn from the prior
distribution. We overcome both of these chal-
lenges through our training procedure, where
we derived z during training from the embed-

ding of the linked molecule, but regularised the
latent vector to follow a standard normal dis-
tribution so that we can sample z during gen-
eration.

Training. We trained our generative model
under a variational autoencoder (VAE) frame-
work on a collection of fragment-molecule pairs
(Figure 2). For a given pair of fragments X
and linked molecule Y , the model is trained
to reconstruct Y from (X, z), while enforcing
the standard regularisation constraint on both
z and the encoding of X, zX := {zv : v ∈ X}.

To encode meaningful variations, the latent
code z is derived via a learnt mapping from the
average of the node embeddings of the ground
truth molecule Y , the linked molecule. Cru-
cially, z is constrained to be a low dimensional
vector to prevent the model from ignoring input
X and degenerating to an autoencoder for Y .
The decoder is trained to reconstruct Y when
taking as input a combination of the low dimen-
sional vector z and the node embeddings zX of
the unlinked fragments X (Figure 2).

The training objective is similar to the stan-
dard VAE loss, including a reconstruction
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loss and a Kullback-Leibler (KL) regularisation
term:

L = Lrecon + λKLLKL.

The reconstruction loss is composed of two
cross-entropy loss terms, resulting from the er-
ror in predicting the atom types and in recon-
structing the sequence of steps required to pro-
duce the target molecule.

The KL regularisation loss contains two
terms, one for the encoding of the unlinked frag-
ments X, the other for the low dimensional vec-
tor z derived from the linked molecule Y . These
terms are the standard VAE terms capturing
the KL divergence between the encoder distri-
butions and the standard Gaussian prior.

We performed limited hyperparameter tun-
ing, measuring performance via the validation
loss and not generative performance directly.
We found that overall the model was fairly ro-
bust to the choice of hyperparameters. Full de-
tails of the model architecture and hyperparam-
eters can be found in the Supporting Informa-
tion.

Database method. Several traditional
methods exist for linking fragments or replacing
the core of a molecule.24–29 Almost all methods
rely on a database from which to select link-
ers. As a baseline with which to compare our
method, we created a set of all linkers from the
training data and sampled from this set, join-
ing the linker in one of the two possible orienta-
tions at random. This setup ensures that both
methods are constructed using the same data,
and allows us to assess whether the generated
molecules have better shape complementarity
than using linkers from the database, while still
obeying 2D chemical constraints.

Data sets. There have only been a lim-
ited number of examples of successful frag-
ment linking or scaffold hopping reported. As
such, for training and large scale evaluation,
we constructed sets of fragment-molecule pairs
using standard transformations from matched-
molecular pair analysis.5

ZINC. To construct our training set, we used
the subset of ZINC16 selected at random by
Gómez-Bombarelli et al. 10 that contains 250
000 molecules. We constructed possible frag-

mentations of each molecule by enumerating all
double cuts of non-functional group, acyclic sin-
gle bonds, the same procedure adopted by Hus-
sain and Rea 5 . Fragmentations satisfying basic
criteria regarding the number of atoms in the
linker and fragments were retained, removing
trivial and unrealistics scenarios (see Support-
ing Information for further details).

The remaining fragment-molecule pairs were
filtered for several 2D properties, namely syn-
thetic accessibility,32 ring aromaticity, and pan-
assay interference compounds (PAINS) sub-
structures,33 to remove unwanted examples.
Full details of the property filters can be found
in the Supporting Information.

By filtering the training set for specific 2D
properties, we are also able to assess whether
the model is able to learn to generate linkers
with certain properties implicitly from the data
alone. Since these properties are not input ex-
plicitly into the model, these could easily be
tailored to a specific project or other require-
ments.

To provide structural information, we gener-
ated 3D conformers for the ZINC set using RD-
Kit,34 adopting the filtering and sampling pro-
cedure proposed by Ebejer et al. 35 . We took
the lowest energy conformation as the reference
3D structure for each molecule.

These preprocessing and filtering steps re-
sulted in a data set of 418 797 example frag-
ment elaborations, with linkers of between three
and twelve atoms. We selected 800 fragment-
molecule pairs at random for model validation
(400) and testing (400), and used the remainder
to train our model, ensuring no overlap between
the molecules in the training and held-out sets.
CASF. A major limitation of the ZINC data

set is the use of generated comformers, as op-
posed to experimentally verified active ones.
To address this, we used the CASF-2016 data
set,36 which consists of 285 protein-ligand com-
plexes with high-quality crystal structures from
a diverse set of proteins, as an independent test
set. We followed the same preprocessing proce-
dure as for the ZINC data set (except for con-
former generation), resulting in a set of 309 ex-
amples.

We performed large-scale evaluations of our
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method on both the held-out ZINC test data
and the CASF data set. For each example,
we generated 250 molecules from each pair of
unlinked fragments, assuming the linker length
was equal to the linker length of the original
molecule.

Assessment metrics. We assessed the gen-
erated molecules with a range of 2D and 3D
metrics. As is standard in the assessment
of models for molecule generation,37 we first
checked the generated molecules for validity,
uniqueness, and novelty. We then determined if
the generated linkers were consistent with the
2D property filters used to produce the train-
ing set. In addition, we recorded in how many
cases the original molecule used to produce the
fragments was recovered by the generation pro-
cess.

Molecules which passed the 2D property fil-
ters were assessed on the basis of their 3D
shape. Conformers of the generated molecules
and the original molecule were compared using
two distinct methods: (i) a shape and colour
similarity score (SCRDKit), and (ii) root-mean-
square deviation (RMSD).

The shape and colour similarity score
(SCRDKit) uses two RDKit functions, based
on the methods described in Putta et al. 38

and Landrum et al. 39 . The colour similarity
function scores two 3D conformers against each
other based on the overlap of their pharma-
cophoric features, while the shape similarity
measure is a simple volumetric comparison be-
tween the two conformers. Each produces a
score between 0 (no match) and 1 (perfect
match), which are averaged to produce a fi-
nal score between 0 and 1. Scores above 0.7
indicate a good match, while scores above 0.9
suggest an almost perfect match. An illustra-
tion of several conformers and their similarity
scores can be seen in Figure 3.

SCRDKit can either be calculated by compar-
ing only the atoms of the starting fragments
(SCRDKit Fragments), or by comparing the en-
tire generated molecule to the original molecule
(SCRDKit Molecule). The first measure assesses
how closely the conformations of the fragments
match, whereas the second also incorporates
whether or not the generated linker matches the

original (Figure 3). Our method is trained to
output a diverse range of linkers and not to map
exactly to a previously observed linker. How-
ever, in the case of scaffold hopping, this metric
is important as typically the new linker should
match the shape and pharmacophoric features
of the original core.23

Figure 3: Examples of the 3D metrics used to
assess the similarity of conformers. The refer-
ence conformer is shown in magenta, while con-
formers of the generated molecule are shown in
cyan. (a) represents very strong alignment by
both fragment-based metrics, but lower simi-
larity by SCRDKit Molecule due to the different
linker. (b) shows modest similarity by all three
metrics, while (c) represents poor similarity by
all three measures.

RMSD between the coordinates of atoms in
the starting fragments in the original and gen-
erated molecule can be calculated to give a dif-
ferent measure of 3D similarity (RMSD Frag-
ments). A perfect match has an RMSD of
0Å, with a higher figure indicating greater de-
viation. An RMSD of below 0.5Å suggests
an almost perfect match, while an RMSD
above 1.0Å corresponds to a poor match given
the alignment procedure and number of heavy
atoms. An illustration of several conformations
and their RMSDs can be seen in Figure 3. Due
to the need to match specific atoms, RMSD can
only be (reliably) calculated between the atoms
of the fragments that are linked, and not the
entire molecule.

For each proposed molecule, we generated 3D
conformers using RDKit,34 adopting the filter-
ing and sampling procedure proposed by Ebejer
et al. 35 , and scored all conformers. The score
for each similarity measure was the best score
among all generated conformers for a particular
molecule.
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Results and Discussion

We demonstrate DeLinker, a deep generative
method that designs a molecule incorporating
two starting substructures using 3D structural
information. We first checked the impact of
the structural information and then assessed
our generative method in three experiments: (i)
large-scale validation on ZINC (generated con-
formers), (ii) large-scale validation on CASF
(experimentally determined active conforma-
tions), and (iii) three case studies covering frag-
ment linking,40 scaffold hopping,41 and PRO-
TAC design.42

Table 1: Impact of structural information on
generated ring substitution patterns. The gen-
erated compounds closely followed the true sub-
stitution pattern, with only the structural infor-
mation provided differing between examples.

True Proportion with
substitution substitution pattern

pattern Ortho Meta Para

91.8% 8.2% 0.0%

Ortho

0.0% 83.1% 16.9%

Meta

0.0% 1.8% 98.2%

Para

Importance of structural information.
To assess the importance of including struc-
tural information, we empirically examined its
impact on the generation process (Table 1).
We considered three almost identical fragment-
molecules pairs based on ZINC7670105 from
the held-out ZINC test set (see Methods). In all
three cases, the starting substructures remained
constant, but the substitution pattern of the
benzene linker differed. This resulted in the dis-
tance and angle between the fragments chang-

ing, but no other differences between the input
data to our model. We generated 1000 linkers
with a maximum of six atoms for each set of
structural information and assessed the substi-
tution pattern of generated molecules that con-
tained a six-membered ring as the linker (Table
1).

DeLinker generated a high number of six-
membered rings in all three cases (33%-54%).
The most rings were generated with the para-
structural information. This is consistent with
chemical knowledge since there are fewer possi-
bilities given those structural constraints. The
generated molecules closely followed the substi-
tution pattern of the molecule used to calcu-
late the structural information, with between
83% and 98% of the rings produced following
the same pattern (Table 1). The effect of the
structural information on the performance of
DeLinker in a large-scale evaluation is discussed
below and can be found in Tables S2 and S3.

Validation on ZINC. We next evaluated
our method on the held-out test set from the
ZINC data set, consisting of 400 pairs of frag-
ments. We compared DeLinker to a method
based on database lookup (“Database”). The
Database samples linkers from the same set of
data used to train our method, joining the frag-
ments in one of the two possible orientations at
random. This setup ensures that both meth-
ods are constructed using the same data, and
allows a direct comparison to be made between
database lookup and our deep learning-based
generative approach.

We generated 250 linkers for each pair of frag-
ments, resulting in 100 000 generated molecules
to be assessed for both DeLinker and the
Database (see Methods for details). For the
evaluation on ZINC, the number of atoms in the
linker was set equal to the linker length of the
original molecule. This is an easier test for both
methods than if the linker length was assumed
to be unknown, but allows us to assess whether
the two methods presented are able to gener-
ate molecules that possess desired 2D chemical
properties and high 3D structural similarity.

DeLinker substantially outperformed the
Database method by all 3D similarity measures
(Table 3), generating a high proportion of valid
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Table 2: 2D performance metrics for molecules generated by DeLinker, our deep generative model,
compared to a Database baseline on the held-out ZINC test set and the independent CASF data
set.

ZINC CASF CASF > 5 atoms
Metric Database DeLinker Database DeLinker Database DeLinker
Valid 100.0% 98.4% 99.0% 95.5% 98.4% 94.7%

Unique 38.8% 44.2% 43.0% 51.9% 58.3% 72.9%
Novel 0.0% 39.5% 0.0% 51.0% 0.0% 68.7%

Recovered 78.0% 79.0% 42.8% 53.7% 14.9% 29.8%
Pass 2D filters 97.0% 89.8% 95.0% 81.4% 93.6% 71.7%

molecules that passed the 2D chemical prop-
erty filters (Table 2). Further metrics and an
ablation study showing the effects of including
different structural information can be found
in Tables S2 and S3. Without any structural
information, the deep generative model per-
formed similarly to the Database method by
the 3D similarity measures (Table S3). Includ-
ing only the distance between the fragments
substantially improved performance, with fur-
ther benefit from including the angle between
fragments.

A molecule is deemed “valid” if it contains
both starting fragments (i.e. the fragments
have been linked) and its SMILES representa-
tion can be parsed by RDKit34 (i.e. satisfies
atomic valency rules). The small proportion of
invalid molecules produced by DeLinker (Table
2) were all due to the fragments remaining un-
linked, rather than failing atomic valency. This
is a design choice by the deep learning system,
and is beneficial in reducing the number of un-
suitable linkers suggested.

A fundamental benefit of our deep generative
method over any database is evident in the pro-
portion of novel linkers. The Database method
is unable to suggest linkers not in the database,
and thus 0% of the proposals were novel. In
contrast, DeLinker proposed a linker not in the
training set in around 40% of suggestions, de-
spite the training set of linkers containing over
5 000 unique linkers. Examples of novel linkers
proposed by DeLinker are shown in Figure S1.

Both methods recovered over 75% of the orig-
inal molecules (Table 2), demonstrating that

they are able to sample from the distribution
of linkers effectively. However, this is in part
due to the chemical redundancy of molecules
in ZINC. Indeed, all of the original linkers in
the held-out ZINC test set were present in the
training set.

DeLinker was able to learn the 2D fil-
ters implicitly, although it produced slightly
fewer molecules passing these filters than the
Database method (Table 2). Both methods had
high success rates of 95% or above for all of the
individual filters (Table S2).

For all of the 3D measures at all thresh-
olds assessed, DeLinker produced a substan-
tially higher proportion of linkers with the re-
quired 3D similarity than the Database (Ta-
ble 3). In particular, at the highest levels of
similarity, DeLinker generated over 80% more
molecules scoring > 0.9 for SCRDKit Fragments
and over 60% more molecules with an RMSD
< 0.5Å.

Performance of both methods is impacted by
the length of the generated linkers, and in par-
ticular the number of short (three/four atoms)
linkers in the test set (Table S1), where there
are a limited number of possibilities. The de-
gree of outperformance of DeLinker over the
Database increased substantially when only
considering linkers with at least five atoms (Ta-
ble S4). In this setting, DeLinker generated
around 190% more molecules scoring > 0.9 for
SCRDKit Fragments and 130% more molecules
with RMSD Fragments < 0.5Å or SCRDKit

Molecule > 0.9.
Validation on CASF. We saw similar per-
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Table 3: 3D performance metrics for molecules generated by DeLinker, our deep generative model,
compared to a Database baseline on the held-out ZINC test set and the independent CASF data
set. See Methods - Assessment metrics for a description of the metrics.

ZINC CASF CASF > 5 atoms
Metric Database DeLinker Database DeLinker Database DeLinker

SCRDKit Molecule
>0.7 33.5% 47.1% 14.9% 22.3% 7.8% 16.3%
>0.8 8.5% 14.2% 3.3% 5.2% 1.1% 3.6%
>0.9 1.3% 1.8% 0.5% 0.8% 0.3% 0.8%

SCRDKit Fragments
>0.7 60.2% 71.3% 28.4% 39.1% 24.2% 38.7%
>0.8 24.7% 35.8% 8.7% 12.7% 6.1% 12.3%
>0.9 4.5% 8.2% 1.4% 2.3% 0.5% 1.6%

RMSD Fragments
<1.00Å 46.9% 58.6% 19.4% 28.1% 14.6% 26.6%
<0.75Å 20.5% 30.0% 7.1% 10.2% 4.3% 9.3%
<0.50Å 5.7% 9.3% 2.0% 3.1% 0.9% 2.4%

formance when we evaluated the methods on
the CASF data set (Tables 2 and 3). Both
methods found producing 3D similar molecules
more challenging than the held-out ZINC set.
However, our method was still frequently able
to generate compounds with high similarity to
the original molecule (Table 3).

In particular, DeLinker generated around
60% more molecules than the Database at
the highest 3D similarity threshold (> 0.9
SCRDKit Fragments and SCRDKit Molecule, <
0.5Å RMSD Fragments). When restricting the
evaluation to linkers with at least five atoms,
the degree of outperformance substantially in-
creased, with DeLinker producing 200% more
molecules that scored > 0.9 by SCRDKit Frag-
ments than the Database (Table 3).

DeLinker recovered 54% of the original link-
ers, compared to only 43% for the Database
method, while around 50% of molecules gen-
erated by DeLinker were novel. The propor-
tion recovered was lower than in the evaluation
on ZINC, however, this set is more challeng-
ing with an average length of the true linker
5.9 atoms, compared to 4.9 for the held-out
ZINC test set and 4.7 for the ZINC training
set. In addition, only around 70% of the true
linkers were present in the training set, provid-

ing an upper bound for the Database method.
Similarly to the ZINC set, DeLinker substan-
tially outperformed the Database method for
longer linkers; DeLinker recovered around 30%
of molecules with a linker of at least five atoms,
twice as many as the Database method which
only recovered 15% (Table 2).

As previously noted, a fundamental limitation
of a database method is an inability to gener-
ate linkers that are not present in the database.
Despite being trained on the same database of
linkers, DeLinker has learnt to extrapolate from
this set to novel linkers. The following is an
example of when this is crucial for successful
compound design.

Dequalinium is a nanomolar binder (Ki: 70
nM) of Chitinase A (PDB ID: 3ARP, Fig-
ure 4b).43 One possible fragmentation of the
dequalinium-chitinase complex is shown in Fig-
ure 4a. To recover dequalinium from these
fragments requires joining them with a decane
linker, which is not present in the training set
of linkers and thus the Database is unable to
recover the original molecule. We generated
250 molecules with DeLinker, which included
several highly similar novel linkers. The five
most similar by SCRDKit Fragments are shown
in Figure 4c. While DeLinker did not recover
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Figure 4: Comparison of DeLinker with an exhaustive Database search. A fragmention of dequalin-
ium (PDB ID: 3ARP, (b)) is shown in (a). The most 3D similar molecules by SCRDKit Fragments
proposed by DeLinker and the Database method are shown in (c) and (d), respectively, together
with the 3D similarity score. (c) DeLinker was able to produce several very similar molecules,
despite limited sampling (250 samples). (d) An exhaustive search of the database was not able to
recover the original molecule or produce any highly similar molecules.

the decane linker within 250 generated com-
pounds, simple chain linkers that closely re-
semble the true decane linker are prevalent.
We compared this to an exhaustive search of
linkers in the Database of the same length as
the true decane linker (790 unique molecules).
None of the Database generated molecules are
highly similar to dequalinium (Figure 4d), with
only one molecule with SCRDKit Fragments >
0.7. In contrast, DeLinker generated 34 unique
molecules with SCRDKit Fragments > 0.7. This
illustrates the importance of de novo design and
the limitations of any database-based solution.

Finally, we showed the applicability of our
method in three diverse examples from the lit-
erature, covering fragment linking,40 scaffold
hopping,41 and PROTAC design.42 Due to the
availability of independent experimental struc-
tural data for both the initial and optimised
complexes, this represents the most realistic
evaluation, albeit with a limited sample size.

Fragment linking case study. Trapero
et al. 40 considered both growing and link-
ing strategies to create potent inhibitors of
inosine 5-monophosphate dehydrogenase (IM-

PDH, UniProt: G7CNL4), a tuberculosis drug
target. Linking proved most successful, with
the authors identifying several promising com-
pounds, the most potent with more than 1000-
fold improvement in affinity over the initial
fragment hits. Three direct elaborations of
the initial fragments were reported (compounds
29-31 in Table 4 of Trapero et al. 40), with
structures of both the initial fragments (PDB
ID: 5OU2) and most potent linked compound
(PDB ID: 5OU3) available (Figure 5a).

In previous experiments, we chose the linker
length based on the number of atoms in the
linker of the original molecule. To reflect
prospective use more accurately, we assumed
the linker length was unknown and generated
1000 linkers for each length between three and
eleven atoms, inclusively. We assessed the gen-
erated linkers using the same criteria as before.

DeLinker recovered all three experimen-
tally validated compounds, while the Database
method recovered two, although all three link-
ers were present in the training set. In addi-
tion, DeLinker identified more than twice as
many unique compounds as the Database with
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Figure 5: Fragment linking case study. (a) Left: The inital fragment hits (PDB 5OU2). Right: The
most potent experimentally verified linked molecule of Trapero et al. 40 (PDB ID: 5OU3). DeLinker
recovered this and the two other experimentally verified active molecules. (b) 3D similarity metrics
and AutoDock Vina Minized Affinities. Unique ligands with SCRDKit Fragments > 0.8 were docked
with AutoDock Vina using a local minimization. DeLinker produced more than twice as many
molecules than the Database method with better Vina scores than the most potent reported binder
(Lead).

high 3D similarity (> 0.8 SCRDKit Fragments)
to the initial fragments (301 vs. 129, Figure
5b and Table S5). The compounds meeting the
above 3D similarity threshold were docked with
AutoDock Vina44,45 via a local minimisation
after alignment with the starting fragments.
This allows us to understand whether the pro-
posed molecules are complementary to the ac-
tive site and are able to maintain the binding
mode of the original fragments. Around 30%
of both DeLinker and Database molecules were
scored better the most potent experimentally
validated compound. As a result, DeLinker
suggested more than twice as many unique
compounds as the Database with better dock-
ing scores than the active compound (87 vs.
42, Figure 5b).

Scaffold hopping case study. Kamenecka
et al. 41 designed JNK3-selective (UniProt:
P53779) inhibitors that had > 1000-fold se-
lectivity over p38 (UniProt: Q16539), another
closely related mitogen-activated protein kinase
family member. Starting with an indazole class
of compounds, they were not able to establish
significant selectivity for JNK3 over p38. How-
ever, changing scaffolds led to an aminopyrazole
linker that afforded compounds with > 2800-
fold selectivity. The two inhibitors displayed
nearly identical binding mode (RMSD 0.33 Å,
Figure 6a) and affinity for JNK3 (indazole:
IC50 12 nM, aminopyrazole: IC50 25 nM), but
significantly different binding affinity to p38
(indazole: IC50 3.2 nM, aminopyrazole IC50

3.6 µM).
Starting with the indazole-based inhibitor

(PDB ID: 3FI3), we explored the ability of our
method to change molecular scaffold, in partic-
ular towards the aminopyrazole-based inhibitor
(PDB ID: 3FI2). We generated 5 000 link-
ers with both eight and nine atoms, and as-
sessed the generated linkers using the same cri-
teria as before. In particular, we focussed on
the diversity of molecular scaffolds proposed by
DeLinker that satisfied the 3D structural infor-
mation and could adopt a highly similar confor-
mation to the original indazole-based inhibitor.

Of the 10 000 compounds generated by
DeLinker, there were 2 688 unique compounds
that satisfied the 2D chemical filters (Table S6).
699 of these had a SCRDKit Fragments score
above 0.75, of which 627 were not in the train-
ing set (89.7% novel). These compounds cov-
ered 182 unique generic Murko scaffolds.46 Five
of the most common are shown in Figure 6b,
together with an example linker and the num-
ber of unique linkers generated with the same
generic Murko scaffold that also met the 3D
similarity threshold. The examples from all five
scaffolds show almost perfect overlap with the
indazole linker, while maintaining the confor-
mation of the remainder of the molecule. In
addition, DeLinker recovered both the indazole-
and aminopyrazole-based linkers, despite nei-
ther being present in the training set.

PROTAC case study. Farnaby et al. 42 de-
veloped PROTAC degraders of the BAF AT-
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Figure 6: Scaffold hopping case study. (a) Overlay of the indazole (PDB ID 3FI3, magenta carbons)
and aminopyrazole (PDB ID 3FI2, cyan carbons) structures, with JNK3 shown in green. DeLinker
recovered both active molecules, despite neither linker being in the training set. (b) Structures of
the indazole (left) and aminopyrazole (right) linkers, and their Murcko scaffolds. (c) Overlay of the
indazole compound (PDB ID 3FI3, magenta carbons) and example linkers (yellow carbons) from
several highly 3D similar scaffolds.

Pase subunits SMARCA2 (UniProt: P51531)
and SMARCA4 (UniProt: P51532) using a bro-
modomain ligand and recruitment of the E3
ubiquitin ligase VHL (UniProt: P40337). They
first designed a PROTAC by combining known
binders of SMARCA2/4 and E3 ubiquitin lig-
ase VHL using polyethylene glycol-based link-
ers (PDB ID: 6HAY, Figure 7a). The linker was
then optimised to improve interactions with the
lipophilic face created in part by Y98 of the
VHL protein. In particular, they designed the
linker to mimic the conformation observed in
the ternary complex structure, resulting in im-
proved molecular recognition (PDB ID: 6HAX).
This was confirmed with the two crystal struc-
tures displaying near identical ternary com-
plexes (Figure 7b).

We investigated the ability of our model to de-
sign alternative linkers to the known polyethy-
lene glycol-based linker (PDB ID: 6HAY) that
could maintain the same conformation observed
in the ternary complex. We generated 5 000
linkers with a maximum of either nine or ten
atoms. There were almost 3 000 unique linkers
that passed the 2D chemical filters (Table S7).

Due to the size and complexity of the PRO-
TAC, we generated conformers constraining the
two starting substructures (Figure 7a) to adopt
poses close to their known binding conforma-
tion, removing any high energy poses. DeLinker
produced 236 unique compounds with SCRDKit

Fragments > 0.85, of which three novel linkers
that accurately recapitulate the linker geome-
try observed in PROTAC 2 are shown in Fig-
ure 7c. In all three cases, the aromatic systems
perfectly align with that of PROTAC 2, and are
likely to fulfil the goal of improving interactions
with the lipophilic face compared to PROTAC
1. In particular, the pyrrole-based linker (Fig-
ure 7c, left) appears to be making a NH-π in-
teraction with the Y98 residue, improving the
CH-π interaction being made by the benzene in
PROTAC 2.

Conclusion

We have developed a graph-based deep gener-
ative method for fragment linking or scaffold
hopping that is protein context dependent, util-
ising the relative distance and orientation be-
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Figure 7: PROTAC design case study. (a) Two-dimensional chemical structures of PROTAC 1 and
PROTAC 2. (b) Overlays of ternary crystal structures of PROTAC 1 (PDB ID 6HAY, magenta
carbons) and PROTAC 2 (PDB ID 6HAY, yellow carbons), with SMARCA2 shown in orange, VHL
in blue. (c) Overlays of three linkers with different scaffolds produced by DeLinker (green carbons);
all three accurately recapitulate the linker geometry observed in PROTAC 2 (yellow carbons). None
of these linkers were present in the training set.

tween the starting substructures in the design
process. Unlike previous attempts at compu-
tational fragment linking or scaffold hopping,
our method does not rely on a database of frag-
ments from which to select a linker but instead
designs one given the fragments provided and
3D information.

Through two large scale assessments, we have
demonstrated that our generative method is
able to learn to produce a distribution of link-
ers that matches the constraints present in the
training set, while being able to generalise to
novel linkers that satisfy both 2D and 3D con-
straints. In addition, the generated molecules
consistently have high 3D similarity to both
the initial fragments and the original molecules,
outperforming a database baseline by 60% in
the evaluation on CASF, increasing to 200%
when restricting the evaluation to linkers with
at least five atoms.

Finally, through three case studies, we have
shown that our method can be applied to
fragment linking, scaffold hopping, and PRO-
TAC design. In the fragment linking ex-
ample, our method reproduced all of the re-

ported potent molecules using only the crys-
tal data of the initial fragment hits. In addi-
tion, in docking-based evaluation, many of the
generated molecules were scored more highly
than the original hits, while maintaining sim-
ilar binding modes. In the scaffold hopping
case study, our method reproduced both the
starting and final molecule, while suggesting
many other scaffolds with high 3D similarity
to the initial crystal data. Finally, in the PRO-
TAC design case study, our method suggested a
range of novel linkers that met the design goal of
maintaining the linker geometry of PROTAC 1,
while improving interactions with the lipophilic
face created in part by residue Y98 of the VHL
protein.

As far as we are aware, this is the first molec-
ular generative model to incorporate 3D struc-
tural information directly in the design process.
Currently the only 3D information utilised by
the model is the distance between the fragments
or starting substructures and their relative ori-
entations. This provides explicit constraints for
a given compound, but only implicit informa-
tion about the shape of the binding site. De-
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spite this minimal parametrisation, there is a
substantial impact on the generated molecules.
Extending our method to use additional struc-
tural information that incorporates further con-
straints from the protein is a direction for future
research and promises substantial benefits for
structure-based molecular generative methods.

Code is available at https://github.com/

oxpig/DeLinker.
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