

1 **The population genomics of structural variation in a songbird genus**

2

3

4 Matthias H. Weissensteiner^{1,2}, Ignas Bunikis³, Ana Catalán², Kees-Jan Francoijjs⁶,

5 Ulrich Knief², Wieland Heim⁵, Valentina Peona¹, Saurabh D. Pophaly², Fritz J.

6 Sedlazeck⁴, Alexander Suh¹, Vera M. Warmuth², Jochen B.W. Wolf^{1,2}

7

8 ¹Department of Evolutionary Biology and Science for Life Laboratory, Uppsala
9 University, SE-752 36, Uppsala, Sweden.

10 ²Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner
11 Str. 2, 82152 Planegg-Martinsried, Germany

12 ³SciLife Lab Uppsala, Uppsala University SE-751 85 Uppsala, Sweden

13 ⁴Human Genome Sequencing Center at Baylor College of Medicine, 1 Baylor Plaza,
14 Houston, TX 77030, USA

15 ⁵Institute of Landscape Ecology, University of Münster, Heisenbergstrasse 2, 48149,
16 Münster, Germany

17 ⁶BioNanoGenomics, San Diego, CA 92121, USA

18 Correspondence should be addressed to M.H.W. (email:
19 matthias.weissensteiner@ebc.uu.se) or J.B.W.W. (email: j.wolf@biologie.uni-
20 muenchen.de).

21

22

23 **Abstract**

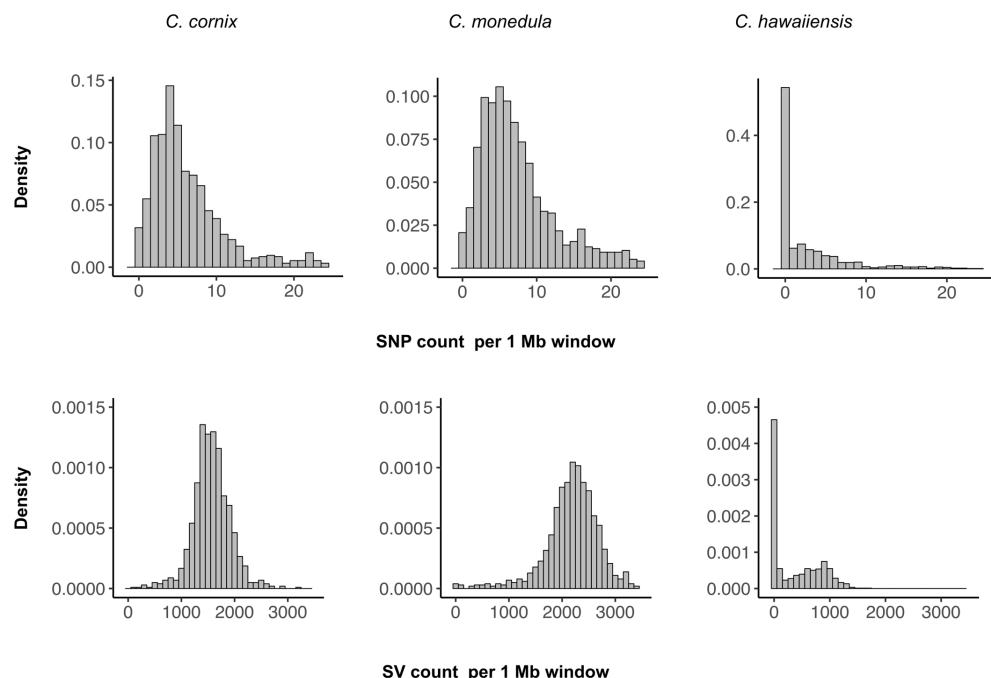
24

25 **Structural variation (SV) accounts for a substantial part of genetic mutations**
26 **segregating across eukaryotic genomes with important medical and evolutionary**
27 **implications. Here, we characterized SV across evolutionary time scales in the**
28 **songbird genus *Corvus* using *de novo* assembly and read mapping approaches.**
29 **Combining information from short-read ($N = 127$) and long-read re-sequencing**
30 **data ($N = 31$) as well as from optical maps ($N = 16$) revealed a total of 201,738**
31 **insertions, deletions and inversions. Population genetic analysis of SV in the**
32 **Eurasian crow speciation model revealed an evolutionary young (~530,000 years)**
33 ***cis*-acting 2.25-kb retrotransposon insertion reducing expression of the *NDP* gene**
34 **with consequences for premating isolation. Our results attest to the wealth of SV**
35 **segregating in natural populations and demonstrate its evolutionary significance.**

36

37 Mutations altering the structure of DNA have the potential to drastically change
38 phenotypes with medical and evolutionary implications (1–3). Yet, technological
39 constraints have long impeded genome-wide characterization of (4). The detection of
40 SV requires highly contiguous genome assemblies accurately representing the
41 repetitive fraction of genomes which is known to be a vibrant source and catalyst of SV
42 (5). Moreover, SV likely remains hidden unless sequence reads traverse it completely
43 (6, 7). As a consequence, despite the rapidly increasing number of short-read (SR)
44 based genome assemblies (8) and associated population genomic investigations (9), SV
45 generally remains unexplored. Even in genetic model organisms, population-level
46 analysis of SV has been restricted to pedigrees (10) or organisms with smaller, less
47 complex genomes (11, 12), and few studies have provided a comprehensive account of
48 SV segregating in natural populations (12, 13).

49


50 To investigate the dynamics of SV and uncover its role in causing phenotypic
51 differences, we first generated high-quality phased *de novo* genome assemblies
52 combining long-read (LR) data from single-molecule, real-time (SMRT, PacBio)
53 sequencing and nanochannel optical mapping (OM) for the hooded crow (*Corvus*
54 (*corone*) *cornix*; data from (14)), and the European jackdaw (*Corvus monedula*). For
55 the former, we also generated chromatin interaction mapping data (Hi-C) to obtain a
56 chromosome-level reference genome (Fig. 1A, see **Supplementary Table S1** for
57 assembly statistics). In addition, we included a previously published LR assembly of
58 the Hawaiian crow (*Corvus hawaiiensis*) in the analyses (15). All assemblies were
59 generated with the diploid-aware FALCON-UNZIP assembler (16), facilitating the
60 comparison of haplotypes within species to identify heterozygous variants and
61 determine genetic diversity at the level of single individuals. After aligning the two
62 haplotypes of each assembly, we identified single-nucleotide polymorphisms (SNPs),
63 insertions and deletions in all three species (Table 1). Genome-wide numbers of SV
64 and SNPs per 1 Mb window were highest in jackdaw and lowest in the highly inbred
65 Hawaiian crow (Fig. 1B), consistent with a positive correlation between census
66 population size and genetic diversity (15, 17).

67

A

B

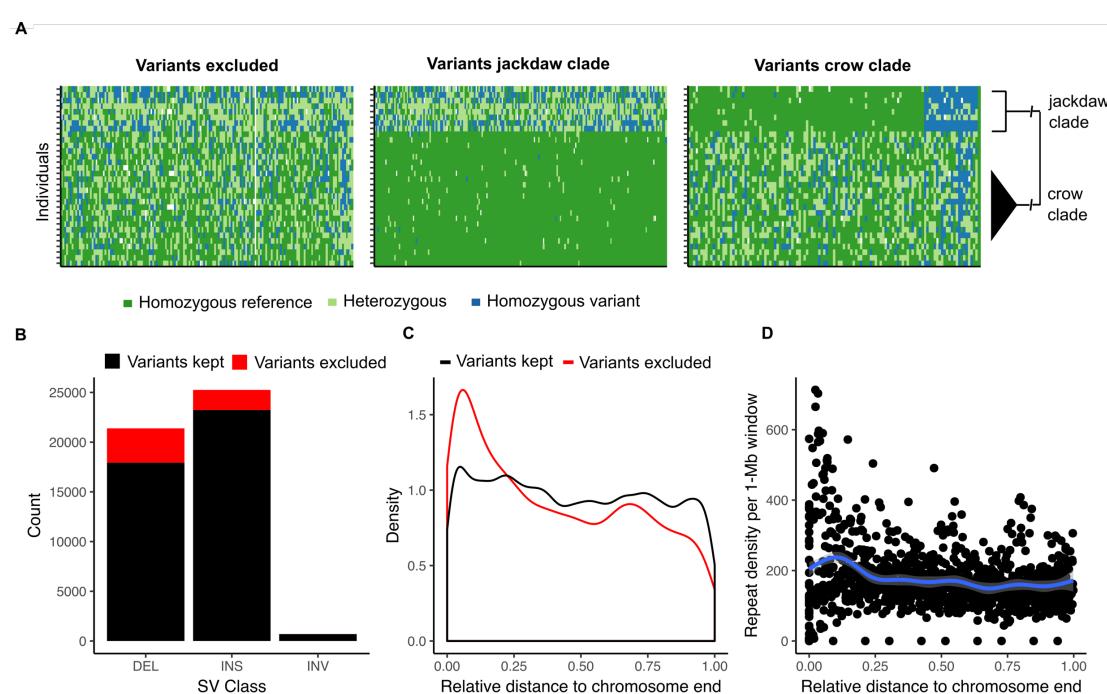
68
69

70 **Fig. 1 | Sampling setup and assembly-based structural and single-nucleotide variation.** (A),
71 Phylogeny of sampled species in the genus *Corvus* (after (50)). Numbers in columns represent individual
72 numbers for short-read sequencing (SR), long-read sequencing (LR) and optical mapping (OM). (B),
73 Density histogram showing the abundance of genetic variation within single individuals. Counts of
74 variants per 1 Mb windows are based on comparing the two haplotypes of each assembly. The upper
75 panel reflects structural variation (SV) densities, the lower panel reflects densities for single-nucleotide
76 polymorphisms (SNP).

77

78

79


80 **Table 1 | Assembly-based structural variation and single-nucleotide polymorphism detection.**
 81

Species	Total number	Mean density per 1 Mb	Median density per 1 Mb	Total number	Mean density per 1 Mb	Median density per 1 Mb
Hooded crow	1637609	1568	1558	9916	9.19	5
Jackdaw	2262079	2189	2228	9903	9.29	7
Hawaiian crow	414229	366	0	4841	3.82	0

82

83

84 Next, to uncover SV segregating within and between natural populations, we generated
 85 LR re-sequencing data for 31 individuals. Spanning the phylogeny of the genus, this
 86 dataset included samples from the European and Daurian jackdaw (*C. monedula*, *C.*
 87 *dauuricus*), the American crow (*C. brachyrhynchos*) and the Eurasian crow complex
 88 (*C. (corone)* spp.). The latter comprised individuals from the phenotypically divergent
 89 hooded crow (Sweden and Poland), and carrion crow populations (Spain and Germany)
 90 (18) (Fig. 1A). Individuals were sequenced to a mean sequence coverage of 15 (range:
 91 8.47 – 27.91) with a mean read length of 7,535 bp (range: 5,219 - 10,034 bp;
 92 **Supplementary Table S2**). Mapping reads to the hooded crow reference allowed us to
 93 identify variants and genotypes for each diploid individual, which resulted in a set of
 94 47,346 variants. SV genotyping is nontrivial and associated with high uncertainty (7).
 95 Thus, we utilized the sampling scheme to filter for variants complying with basic
 96 population genetic assumptions (Fig. 2A)(19). Variants that were excluded according
 97 to these criteria were enriched for deletions and clustered near the end of chromosomes
 98 (linear model, $p = 10^{-16}$, Fig. 2B, C). Increased densities of repetitive elements (Fig.
 99 2D), particularly tandem repeats, in these regions are conducive to erroneous genotype
 100 calling, though it is possible that a subset of these phylogenetically recurring variants
 101 indeed represent true positive, hypermutable sites.
 102

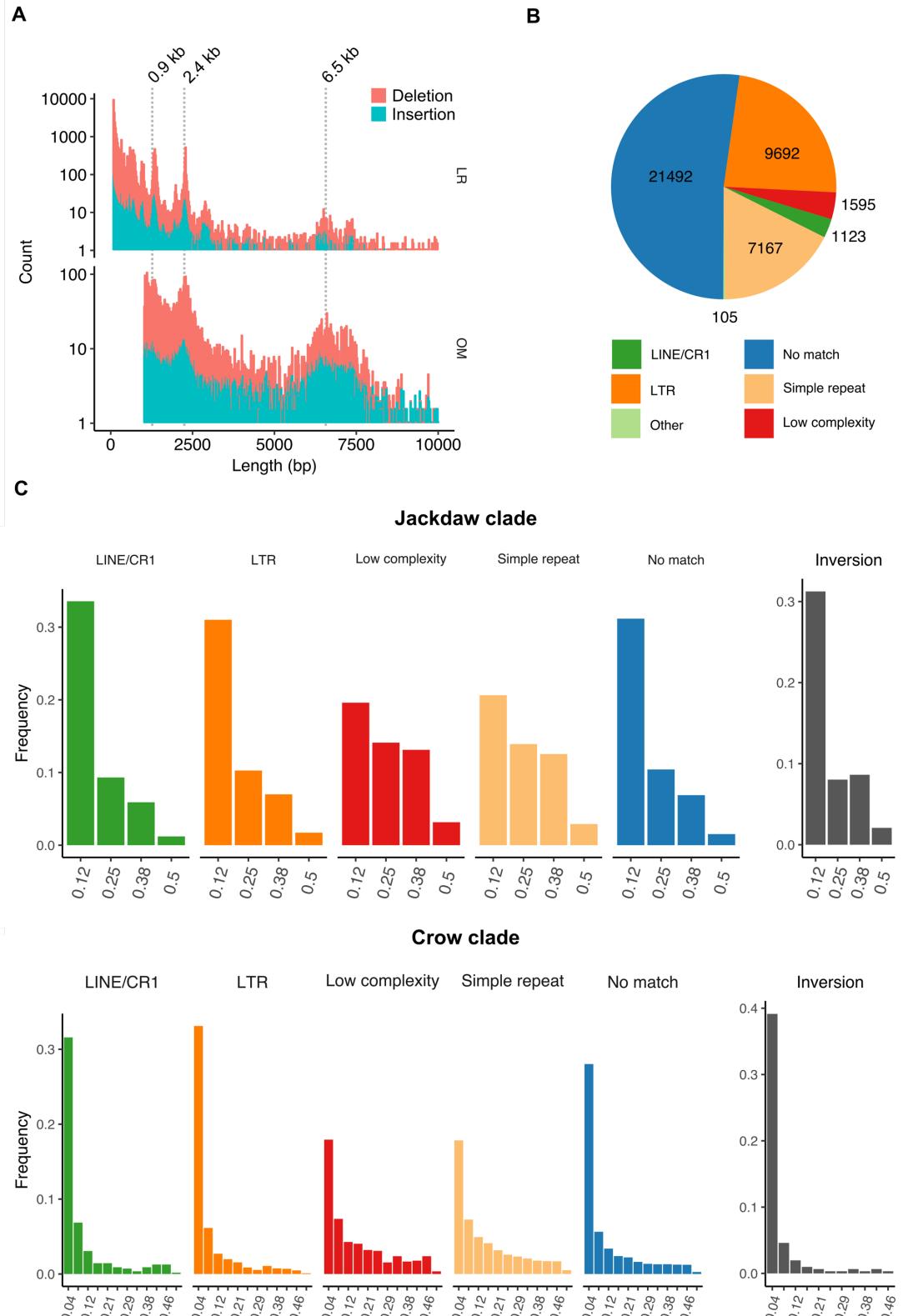
103

104

105

106

103 **Fig. 2 | Phylogenetic filtering of read mapping-based structural variants.** (A), Example genotype
 104 plots of LR-based variants according to phylogenetically informed filtering. Given the large divergence
 105 time of 13 million years (50) between the crow and jackdaw lineage, the proportion of polymorphisms
 106


107 shared by descent is negligible (51) and therefore likely constitutes false positives or hypermutable sites
108 (left panel). Variants segregating exclusively in the jackdaw or crow clade (middle and right panel),
109 however, comply with the infinite sites model and were retained accordingly. Plotted are genotypes of
110 one representative chromosome (chromosome 18), with genotypes of variants in different colors, where
111 each row corresponds to one individual ($N = 8$ individuals jackdaw clade and $N = 24$ individuals crow
112 clade). Note that, due to the tolerance of a certain number of mis-genotyped variants per clade, some
113 variants are present in both clades. **(B)**, Excluded versus retained variants in relation to SV class and
114 chromosomal distribution. Excluded variants are enriched for deletions (LMM, $p < 10^{-16}$) and **c**, are most
115 abundant at chromosome ends, coinciding with **(D)**, an increased repeat density.

116

117

118 After the phylogenetically informed filtering step, we retained a final set of 41,868
119 variants (88.43 % of the initial, unfiltered set) segregating within and between species.
120 Of these, a small proportion was classified as inversions (694, 1.657 %), whereas the
121 vast majority was attributed to insertions (23,235, 55.495 %) and deletions (17,939,
122 42.846 %) relative to the hooded crow reference. Variant sizes were largest for
123 inversions, with a median size of 980 bp (range: 51 – 99,824 bp), followed by insertions
124 (248 bp, range: 51 – 45,373 bp) and deletions (154 bp, range: 51 – 94,167 bp). The
125 latter showed noticeable peaks in the size distribution at around 900, 2,400 and
126 6,500 bp (**Fig. 3A**, for inversions see **Supplementary Fig. S1**), which likely stem from
127 an overrepresentation of paralogous repeat elements. The five most common repeat
128 motifs in insertions and deletions belonged to endogenous retrovirus-like LTR
129 retrotransposon families and accounted for 22.78 % of all matches to a manually
130 curated repeat library (**Supplementary Table S3**). This suggests recent activity of this
131 transposable element group, as has been previously reported in other songbird species
132 (20). More than half of all insertions and deletions could not be associated with any
133 known repeat motif (52.19 %). The remainder was distributed approximately equally
134 between tandem repeats (e.g. simple and low complexity repeats) and interspersed
135 repeats. The latter category was dominated by LTR and LINE/CR retrotransposons with
136 only a small number of SINE retrotransposons (**Fig. 3B, Table 2**). These different types
137 of repeat elements exhibit fundamentally different mutation mechanisms (21) and
138 effects on neighboring genes (22), such that repeat annotations are of crucial
139 importance for the downstream population genetic analysis of SV.

140

141

142

143

144

145

146

147

148

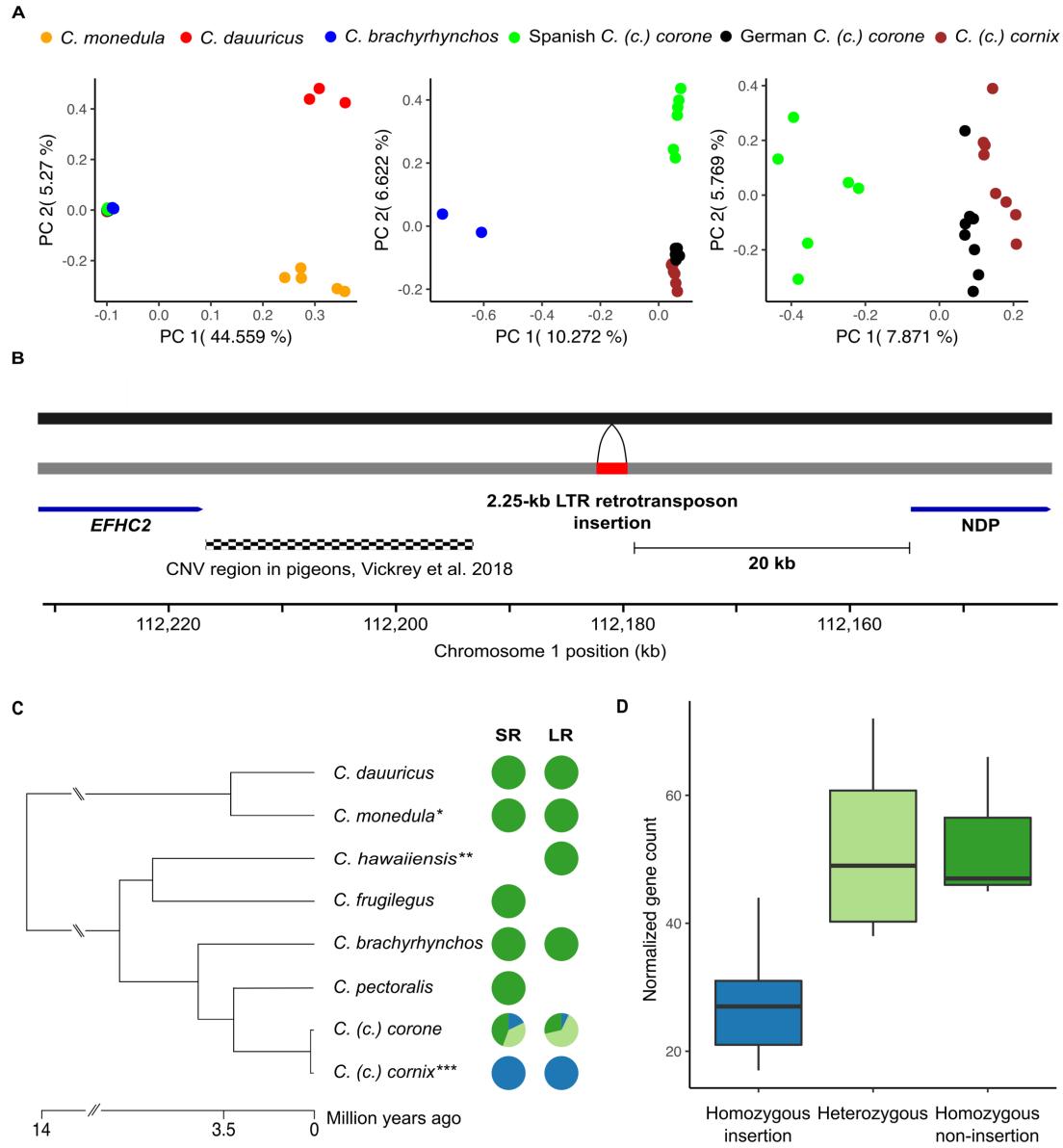
Fig. 3 | Characterization and allele frequencies of SV. (A) Length distributions of deletions and insertions shorter than 10 kb identified with LR (upper panel) and OM (lower panel) data. Pronounced peaks at 0.9, 2.2 kb in the LR and at 2.3 and 6.5 kb in the OM variants likely stem from an overrepresentation of specific repeats. Indeed, among the five most common repeats found in insertions and deletions are LTR retrotransposons with a consensus sequence length of 670, 1,315, 6,022 bp, respectively. (B) Content of insertion and deletion sequences. About half of all variants were assigned to a known repeat family, of which transposable elements from the LTR retrotransposon subclass were

149 most common, followed by simple repeats (including microsatellites) and low complexity repeats. (C)
150 Folded allele frequency spectra of structural variants. Upper and lower panels correspond to the jackdaw
151 and crow clade, respectively. The five left panels depict the minor allele frequencies of insertions and
152 deletions, and the rightmost panel that of inversions.

153
154 **Table 2 | Characterization of LR insertions and deletions.**

Classification	Number	Percentage
Tandem repeat total	8847	21.48
Simple repeat	7167	17.4
Low complexity repeat	1595	3.87
Satellite	75	0.18
rRNA	5	< 0.05
tRNA	3	< 0.05
Macrosatellite	1	< 0.05
Interspersed repeat total	10828	26.3
LTR retrotransposon	9692	23.53
LINE / CR1 retrotransposon	1123	2.27
SINE retrotransposon	11	< 0.05
D/hAT-Charlie element	2	< 0.05
No match	21492	52.19

155
156
157 We then scrutinized structural variation segregating within clades sharing recent
158 common ancestry. A total of 35,723 and 29,555 variants remained after filtering in the
159 jackdaw ($N = 8$ individuals; *C. monedula*, *C. dauuricus*) and crow clade ($N = 24$; *C.*
160 (*corone*) spp., *C. brachyrhynchos*), respectively. Using the full data set across all
161 populations within each clade allowed us to compare folded allele frequency spectra
162 between SV classes and repeat types with high resolution (for population specific
163 spectra unbiased by population structure see **Supplementary Fig. S2**). Consistent with
164 recent studies in grapevine and *Drosophila* SV (12, 23), the distribution of allele
165 frequencies was skewed towards rare alleles (Fig. 3C). However, allele frequency
166 spectra of different SV classes differed in shape. While insertions and deletions
167 associated with LTR elements, LINE/CR1 elements or without any known match as
168 well as inversions exhibited the typical pattern of a strongly right-skewed frequency
169 distribution, allele frequencies of simple and low complexity repeats were shifted
170 towards intermediate frequencies. Besides a potential technical bias due to the more
171 difficult genotyping and variant discovery of these classes (24), this pattern is consistent
172 with convergence to intermediate allele frequencies due to high mutation rates (21).
173 These results illustrate how different underlying mutation dynamics potentially impact
174 the analysis of population genetic parameters for SV.


175
176 To improve our ability to detect larger SV and to provide an independent orthogonal
177 approach for SV discovery, we generated an additional 14 optical maps (Fig. 1A) and
178 compared them to the hooded crow reference assembly. Following that approach, we
179 identified 12,807 insertions, 8,799 deletions and 293 inversions. As expected from the

180 increased size of individually assessed DNA molecules (mean molecule N50 = 223.38
181 kb), variants identified with this approach exhibited a different size range (**Fig. 3A**)
182 after applying the same upper limit (100 kb) as for the LR SV calls and a lower limit of
183 resolution (1 kb) (25). Interestingly, insertion and deletions were not only enriched at
184 lengths around 0.9 and 2.4 kb as seen in the LR-based SV calling, but also at ~ 6.5 kb,
185 indicating an influence of the TguERV1-Ld_I_corCor LTR retrotransposon, which was
186 the third most common single repeat in the LR variant set with a consensus sequence
187 length of 6,022 bp (**Supplementary Table S3**). Thus, independent approaches
188 targeting different size ranges of SV are vital to increase sensitivity in detecting hidden
189 genetic variation.

190
191 To increase our sample size and expand our analysis to further populations and species
192 (**Fig. 1A**), we applied a combination of three different short-read (SR) based SV
193 detection approaches on previously published data of 127 individuals (18, 26). In total,
194 we identified 132,025 variants of which 97,524 (73.87%) were unique to single
195 individuals. In total, only 11,951 variants overlapped with the final set of variants
196 identified in the long-read data set (corresponding to 9.05 % of SR and 28.54 % LR
197 calls). This disconnect cannot be explained solely by differences in sample size. More
198 likely, it indicates a high number of false-positives and false-negatives in the SR-based
199 approach known for its sensitivity to the calling method (27) and disparity to LR-based
200 calls (7). Therefore, we focused on the LR-based SV calls in the subsequent analysis
201 and considered SR calls only for specific mutations.

202
203 Next, we investigated population structure using principal component analyses (PCA).
204 The pattern in **Fig. 4A** (based on LR data) recapitulates the pattern of population
205 stratification found in Vijay et al. based on 16.6 million SNPs (18), and thus supports
206 the general suitability of SV genotypes for population genetic analyses (for SR data see
207 **Supplementary Fig. S3**). In order to identify SV associated with prezygotic
208 reproductive isolation, we calculated genetic differentiation between phenotypically
209 divergent populations connected by gene flow (18, 26) and allopatric populations
210 within the same phenotype (18). Mean F_{ST} was low overall with values ranging from
211 0.03 in the hooded versus carrion crow comparison to 0.156 in the hooded versus
212 American crow comparison.

213

214
215

Fig. 4 | SV-based population structure and LTR retrotransposon insertion upstream of the *NDP* gene. (A) Principal component analysis based on SV genotypes. The first two principal components separate the crow and jackdaw clade, while principal components 3 to 5 separate lineages within the crow clade. (B) A 2.25-kb LTR retrotransposon insertion into the crow lineage (black bar: ancestral state, grey bar: derived, reference allele) belongs to the endogenous retrovirus-like family ERVK and the subfamily TguERV1-Ld-I and is located 20 kb upstream of the *NDP* gene. In close proximity, variation in copy number is associated with plumage pattern variation in pigeons. (C) Genotypes of the LTR element in short-read (SR) and long-read (LR) data. In both datasets, the LTR element insertion (blue) is fixed in all hooded crow populations. Species and populations with a black plumage are either polymorphic (light green) or fixed non-insertion (green). (D) Gene expression of *NDP*. Normalized gene counts of 18 individuals are significantly associated with the insertion genotypes (LMM, $p = 0.002$).

227
228
229

230 A total of 103 variants fell into the 99th percentile of F_{ST} in the gray-coated hooded
231 versus all-black carrion crow population comparison in central Europe. These variants,
232 located on in total 23 chromosomes, were considered as *ad hoc* candidate outlier loci
233 subject to divergent selection (9), and were found at a median distance of 14.32 kb to

234 adjacent genes (range: 0 - 695.84 kb). (**Supplementary Table S4**). Ten of these outliers
235 (10.31 %) were placed on chromosome 18, which only represents 1.22 % of the entire
236 assembly, corresponding to an ~8.5-fold enrichment. Given that outliers are located in
237 the proximity of previously identified genes presumably under divergent selection
238 (such as *AXIN2* and *RGS9*, Supplementary Table S5), this supports a crucial role of
239 chromosome 18 in maintaining plumage divergence (26, 28).

240
241 The three highest F_{ST} outliers included an 86 bp indel on chromosome 18 inside of a
242 tandem repeat array, a 1.56 kb indel on chromosome 3 and a 2.25 kb indel on
243 chromosome 1 (**Supplementary Table S5**). The latter, an LTR retrotransposon
244 insertion, was located 20 kb upstream of the *NDP* gene on chromosome 1 (**Fig. 4B**), a
245 gene known to contribute to the maintenance of color divergence across the European
246 crow hybrid zone (28). Molecular dating based on the LTR region suggest an insertion
247 event at <534,000 years ago upon diversification of the European crow lineage (**Fig.**
248 **4C**) (18). In current day populations, the insertion still segregates in all-black crows
249 including *C. (c.) corone* in Europe and *C. (c.) orientalis* in Russia (N individuals with
250 LR = 14 and with SR = 45 genotypes) (**Fig. 4C**). All hooded crow *C. (c.) cornix*
251 individuals, however, genotyped with LR (N = 9) and SR data (N = 61) were
252 homozygous for the insertion regardless of their population of origin. This finding is
253 consistent with a selective sweep in proximity to the *NDP* gene that has previously been
254 suggested for hooded crow populations (26, 28). Recent work has also shown that the
255 *NDP* gene exhibits decreased gene expression in grey feather follicles of hooded crows,
256 suggesting a role in modulating overall plumage color patterning (29). Following re-
257 analysis of normalized gene expression data for 8 carrion and 10 hooded crows (29),
258 we found a significant association between the homozygous insertion genotype and
259 decreased *NDP* gene expression levels (linear model, p = 0.002) (**Fig. 4D**), consistent
260 with reduced pigmentation in hooded crows (29).

261
262 To further investigate the relationship between the abovementioned insertion and
263 phenotypic differences between all-black *C. (c.) corone* and gray-coated *C. (c.) cornix*
264 populations, we genotyped 120 individuals from the European hybrid zone using PCR
265 (Methods, (28)). Including data of adjacent SNPs for the same individuals, we tested
266 the association between genotype and pigmentation phenotype. A statistical model
267 including the insertion fit best to the observed phenotypes (ΔAIC_c = 2.33, but ΔBIC =
268 -0.12) explaining an additional 10.32% of the variance of the phenotype-derived PC1
269 relative to the adjacent SNPs. The insertion lies upstream of *NDP* in close proximity to
270 an orthologous region in pigeons containing a copy number variation shown to
271 modulate plumage patterning (**Fig. 4B**) (30). Reminiscent of the wing color altering TE
272 insertion in the peppered moth (3), this insertion thus constitutes a prime candidate
273 causal mutation modulating gene expression with phenotypic consequences;
274 reminiscent of the TE insertion in the peppered moth altering wing coloration (3). While
275 such insertions have usually been associated with increased expression of the affected
276 gene (31), there are also examples of TE insertions repressing gene activity, as observed
277 here (32).

278
279 In conclusion, this study provides the first comprehensive population-level SV
280 catalogue in a non-model organism, further elucidating the role of SV on modulating
281 expression of evolutionary important genes with phenotypic consequences. Given that
282 the majority of SV is likely still uncovered in most organisms (33), these results mark

283 an important hallmark for the field highlighting the evolutionary importance of SV in
284 natural populations and the need for rigorous methodological approaches.

285

286 **Material and Methods**

287

288 **Short-read sequencing data**

289 We compiled raw short-read sequencing data from Poelstra et al. 2014 and Vijay et al.
290 2016 (18, 26) for *Corvus (corone)* spp., *C. frugilegus*, *C. dauuricus*, *C. monedula* and
291 *C. brachyrhynchos* (for more information on the origin of samples and accession
292 numbers of the data see **Supplementary Table S5**). Overall, 127 individuals had an
293 average 12.6-fold sequencing coverage using paired-end libraries (primarily)
294 sequenced on an Illumina HiSeq2000 machine.

295

296 **DNA extraction and long-read sequencing**

297 First, we extracted high-molecular weight DNA from a total of 32 samples using either
298 a modified phenol-chloroform extraction protocol (14), or the Qiagen Genomic-tip kit
299 (following manufacturer's instructions) from frozen blood samples. For sampling
300 details, see **Supplementary Table S5**. Extracted DNA was eluted in 10 mM Tris buffer
301 and stored at -80 °C. The quality and concentration of the DNA was assessed using a
302 0.5 % agarose gel (run for >8 h at 25 V) and a Nanodrop spectrophotometer
303 (ThermoFisherScientific). Long-read sequencing DNA libraries were prepared using
304 the SMRTbell Template Prep Kit 1.0 (Pacific Biosciences). For each library, 10 µg
305 genomic DNA was sheared into 20-kb fragments with the Hydroshear
306 (ThermoFisherScientific) instrument. SMRTbell libraries for circular consensus
307 sequencing were generated after an Exo VII treatment, DNA damage repair and end-
308 repair before ligation of hairpin adaptors. Following an exonuclease treatment and PB
309 AMPure bead wash, libraries were size-selected using the BluePippin system with a
310 minimum cutoff value of 8,500 bp. All libraries were then sequenced on either the RSII
311 or Sequel instrument from Pacific Biosciences, totaling 324 RSII and 76 Sequel SMRT
312 cells, respectively, resulting in 754 Gbp of raw data.

313

314 **Genome assembly**

315 In birds, females are the heterogametic sex (ZW). For this study, we were interested in
316 a high-quality assembly of all autosomes and the shared sex chromosome (Z) and
317 accordingly chose male individuals for the genome assemblies. Note, however, that this
318 choice excludes the female-specific W chromosome *a priori*. Diploid genome assembly
319 was performed for both a hooded crow and a jackdaw individual. For the former a long-
320 read based genome assembly has previously been published (14) and is available under
321 the accession number GCA_002023255.2 at the repository of the National Center for
322 Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov). Here, we (re)assembled
323 raw reads using updated filtering and assembly software. First, all SMRT cells for the
324 respective individuals (102 for the hooded crow individual S_Up_H32, 70 for the
325 jackdaw individual S_Up_J01) were imported into the SMRT Analysis software suite
326 (v2.3.0). Subreads shorter than 500 bp or with a quality (QV) <80 were filtered out.
327 The resulting data sets were used for *de novo* assembly with FALCON UNZIP v0.4.0
328 (16). Initial FALCON UNZIP assemblies of hooded crow and jackdaw consisted of
329 primary and associated contigs with a total length of 1,053.37 Mb and 965.95 Mb for
330 the hooded crow and 1,073.84 and 1,092.55 Mb for the jackdaw, presumably
331 corresponding to the two chromosomal haplotypes (for assembly statistics see
332 **Supplementary Table S1**). To further improve the assembly, we performed consensus

333 calling of individual bases using ARROW (16). In addition, we obtained the genome
334 of the Hawaiian crow (*Corvus hawaiiensis*) from the repository of NCBI with accession
335 number GCA_003402825.1. This genome had been likewise derived from long-reads
336 generated with the SMRT technology and assembled using FALCON UNZIP (16). To
337 assess the completeness of the newly assembled genomes we used BUSCO v2.0.1 (34).
338 The aves and the vertebrate databases were used to indentify ultra conserved
339 orthologous gene sets (**Supplementary Table S1**).
340

341 **Optical mapping data and assembly**

342 We generated additional optical map assemblies for two jackdaw individuals, 8 carrion
343 crow individuals and 4 additional hooded crow individuals, following the same
344 approach used for the optical map assembly of the hooded crow individual (see
345 Weissensteiner et al.(14)). In brief, we extracted nuclei of red blood cells and captured
346 them in low-melting point agarose plugs. DNA extraction was followed by melting and
347 digesting of the agarose resulting in a high-molecular weight DNA solution. After
348 digestion with a nicking endonuclease (Nt.BspQI) which inserts a fluorescently labelled
349 nick strand, the sample was loaded onto an IrysChip, which was followed by
350 fluorescent label detection on the Irys instrument. The assembled consensus maps were
351 then used to perform SV calling as part of the Bionano Access 1.3.1 Bionano Solve
352 pipeline 3.3.1 (pipeline version 7841). As reference an *in-silico* map of the hooded crow
353 reference assembly was used. Molecule and assembly statistics of optical maps can be
354 found in **Supplementary Table S6**. For details regarding the hybrid scaffolding see
355 Weissensteiner et al. 2017 (14).
356
357

358 **Hi-C chromatin interaction mapping and scaffolding**

359 One Dovetail Hi-C library was prepared from a hooded crow sample following
360 Lieberman-Aiden et al. (2009) (35). In brief, chromatin was fixed in place with
361 formaldehyde in the nucleus and extracted thereafter. Fixed chromatin was digested
362 with DpnII, the 5' overhangs filled with biotinylated nucleotides and free blunt ends
363 were ligated. After ligation, crosslinks were reversed and the DNA purified from the
364 protein. Purified DNA was treated such that all biotin was removed that was not internal
365 to ligated fragments. The DNA was then sheared to ~350 bp mean fragment size and
366 sequencing libraries were generated using NEBNext Ultra enzymes and Illumina-
367 compatible adapters. Biotin-containing fragments were isolated using streptavidin
368 beads before PCR enrichment of each library. The library was then sequenced on an
369 Illumina HiSeq X (rapid run mode). The Dovetail Hi-C library reads and the contigs of
370 the primary FALCON UNZIP assembly were used as input data for HiRise, a software
371 pipeline designed specifically for using proximity ligation data to scaffold genome
372 assemblies (36). An iterative analysis was conducted. First, Hi-C library sequences
373 were aligned to the draft input assembly using a modified SNAP read mapper
374 (<http://snap.cs.berkeley.edu>). The separation of read pairs mapped within draft
375 scaffolds were analyzed by HiRise to produce a likelihood model for genomic distance
376 between read pairs, and the model was used to identify and break putative misjoins, to
377 score prospective joins and make joins above a threshold. The resulting 48 super-
378 scaffolds were assigned to 27 chromosomes based on synteny to the flycatcher genome
379 version (NCBI accession GCA_000247815.2) (37) using LASTZ (38). The final Hi-C
380 scaffolded hooded crow assembly is available as a Dryad repository, file XX.
381
382

383 **Assembly-based SV and SNP detection**

384 We aligned the associated contigs of all three assemblies (hooded crow, jackdaw and
385 Hawaiian crow) to the primary contigs (super-scaffolded to chromosome level for
386 hooded crow) using MUMmer (39). SNPs were then identified using *show-snps* with
387 the options –Clr and –T following a filtering step with delta-filter –r and –q. We only
388 considered single-nucleotide differences in this analysis.

389 Structural variants between the two haplotypes of each assembly were identified using
390 two independent approaches. First, we used the alignments produced with MUMmer to
391 identify variants using the Assemblytics tool (40). We then converted the output to a
392 *vcf* file using SURVIVOR (v1.0.3) (27). Independently, we used the smartie-sv pipeline
393 to identify structural variants (41), and then converted and merged the output with the
394 Assemblytics-based variant set with SURVIVOR. This final unified variant set was
395 then used to calculate SV-density in non-overlapping 1-Mb windows.

396

397 **Repeat annotation and characterization of insertions and deletions**

398

399 To characterize the repeat content of the hooded crow assembly, we used the repeat
400 library from Vijay et al. (18). Raw consensus sequences were manually curated
401 following the method used in Suh et al. (2018) (20). Every consensus sequence was
402 aligned back to the reference genome, then the best 20 BLASTN (42) hits were
403 collected, extended by 2 kb and aligned to one another using MAFFT (v6; (43)). The
404 alignments were manually curated applying a majority-rule and the superfamily of each
405 repeat assessed following Wicker et al. (44). We then masked the new consensus
406 sequences in CENSOR (<http://www.girinst.org/censor/index.php>) and named them
407 according to homology to known repeats present in Repbase(45). Repeats with high
408 sequence similarity to known repeats were given the name of the known repeat + suffix
409 "_corCor"; repeats with partial homology were named with the suffix "-L_corCor"
410 where "L" stands for "like" (20). Repeats with no homology to other known repeats
411 were considered as new families and named with the prefix "corCor" followed by the
412 name of their superfamilies. Using this fully curated repeat library (**Supplementary**
413 **file S1**), we performed a RepeatMasker (46) search on all sequences reported for
414 insertion and deletion variants. In case of multiple different matches per variant or
415 individual, we took the match with the highest overlap with the query sequence to yield
416 a single match for each variant. We also performed a RepeatMasker search with the
417 curated library to estimate repeat density per 1 Mb window in the hooded crow
418 reference assembly.

419

420 **Read-mapping based SV and SNP detection**

421 We aligned PacBio long-read data of all re-sequenced individuals to both the hooded
422 crow and jackdaw reference assembly using NGM-LR (47) (v0.2.2) with the –pacbio
423 option and sorted and indexed resulting alignments with samtools (48)(v1.9). Initial SV
424 calling per individual was then performed using Sniffles (47) (v1.0.8) with parameters
425 set to a minimum support of 5 reads per variant (–min_support 5) and enabled –
426 genotype, –cluster and –report_seq options. We removed abundant translocation calls
427 indicative of an excess of false positives and filtered remaining variants for a maximum
428 length of 100 kb and a maximum read support of 60 with bcftools (49). Both of these
429 filtering steps have been shown to be necessary to remove erroneously called variants.
430 Next, we generated a merged multi-sample *vcf* file consisting of all individuals from
431 both the crow and the jackdaw clades with SURVIVOR merge and options set to 1000
432 1 1 0 0 50. This merged *vcf* file was then used as an input to reiterate SV calling with

433 Sniffles for each individual with the `-Ivcf` option enabled, effectively genotyping each
434 variant per individual. Resulting single individual `vcf` files were again merged with the
435 SURVIVOR command described above and variants overlapping with assembly gaps
436 were removed. We converted the `vcf` file into a genotype file with `vcftools` (49)
437 (v0.1.15) for downstream analysis.

438 To account for the high amount of genotyping errors and false positives after initial
439 filtering, we employed a ‘phylogenetic’ filtering strategy. The crow and jackdaw clades
440 diverged roughly 13 million years ago (50), such that the proportion of polymorphisms
441 shared by descent is near negligible (51). Moreover, under the infinite sites model,
442 recurrent mutations are not expected, such that polymorphisms segregating in both
443 lineages most likely constitute false positives. For population genetic analyses of the
444 jackdaw clade, we therefore considered only variants which were homozygous for the
445 reference in crow clade individuals, allowing for a maximum of four genotyping errors.
446 In the crow clade analyses, we only retained variants which were either fixed for the
447 reference or the variant allele in the jackdaw clade, allowing for 2 genotyping errors. It
448 is likely that this conservative approach excludes variants with a high mutation rate
449 (52). However, since it is difficult to differentiate such variants from genotyping errors,
450 we deemed this filter necessary to yield a set of more reliable variants. Due to the
451 tolerance of genotyping errors, there is a number of variants present in both clades,
452 most of them fixed or almost fixed in both clades. Extensive manual curation would be
453 necessary to differentiate between genotyping errors and variants truly polymorphic
454 between clades. To find common features in filtered versus kept variants, we applied a
455 generalized linear mixed-effects model with a binomial error structure, in which we
456 coded the dependent variable as 1 for a retained variant and as 0 for a filtered variant.
457 As covariates we included the distance to the chromosome end and variant class as a
458 factor (insertion, deletion or inversion). We further fitted chromosome identity as a
459 random intercept term. All models were run in R (v3.2.3, R Core Team) using the `lme4`
460 package (53) (v1.1-19).

461 The short-read data were mapped using BWA-MEM with the `-M` option to the hooded
462 crow reference assembly (54). We used LUMPY (55), DELLY (56) and Manta (57) to
463 obtain SV calls for each sample using their respective default parameters. Subsequently
464 the individual SV calls per sample were merged using SURVIVOR (27) merge with
465 the parameters: “1000 2 1 0 0 0”. This filtering step retained only SV calls for which 2
466 out of the 3 callers had reported a call within 1 kbp. Next, we computed the coverage
467 of low mapping quality reads ($MQ < 5$) for each sample independently and recorded
468 regions where the low MQ coverage exceeded 10. SV calls which overlapped these
469 regions were filtered out.

470

471 **Optical mapping-based SV detection**

472 The assembled optical maps were used to identify SV compared to the provided
473 reference, which is part of the assembly pipeline or can be run manually. SV calling
474 was based on the alignment between an individual assembled consensus `cmap` and the
475 *in-silico* generated map of the reference using a multiple local alignment algorithm and
476 detecting SV signatures. The detection algorithm identifies insertions, deletions,
477 translocation breakpoints, inversion breakpoints and duplications. The results are in a
478 generated file in the Bionano specific format `smap` in which the SVs are classified as
479 homozygous or heterozygous. This resulting `smap` file was converted to `vcf` format
480 (version 4.2) for further downstream processing.

481

482

483 **Population genetic analysis of structural variants**

484 To investigate population structure, we performed principal component analyses (PCA)
485 with both the long-read and short-read variant sets using the R packages SNPrelate
486 (v1.4.2.) and gdsfmt (v1.6.2) (58). We further calculated the folded allele frequency
487 spectrum using minor allele frequencies of variants for all populations and clades.
488 To estimate genetic differentiation of structural variations, we calculated F_{ST} for each
489 variant using vcftools (59). We employed the Weir and Cockerham estimator for F_{ST}
490 (60), variants with an F_{ST} exceeding the 99th percentile were considered as outliers.
491

492 **Analyses of SV in the vicinity of the *NDP* gene**

493 The LTR retrotransposon insertion identified upstream of the *NDP* gene on
494 chromosome 1 - an ERV1 element belonging to the subfamily TguERV1-Ld-I - has
495 initially been called as a deletion relative to the reference (hooded crow) assembly. To
496 estimate its age, we assumed that the two long terminal repeats of the full-length LTR
497 retrotransposon were identical at the time of insertion (61). Thus, we quantified the
498 number of substitutions and 1-bp indels between the left and right LTR of the insertion
499 at position 112,179,329 on chromosome 1 of the hooded crow reference. The LTRs
500 showed 5 differences which we then divided by the length of the LTR (296 bp) and by
501 twice the neutral substitution rate per site and million years (0.0158 (18)). Assuming
502 that all differences between the left and right LTR of this insertion are fixed, this
503 estimate yields an upper bound of the insertion age. However, overlap with SNPs
504 segregating in the hooded crow population suggests that all 5 differences were not fixed
505 and the insertion could thus be considerably younger.

506 To investigate a potential link between the LTR insertion and differences in plumage
507 coloration, we re-analyzed gene expression data from 10 black-and-grey hooded crows
508 and 8 all-black carrion crows raised under common garden conditions (29). Expression
509 was measured for messenger RNA derived from feather buds at the torso, where carrion
510 crows have black feathers and hooded crows are grey. We inferred the insertion
511 genotype for each individual using short-read sequencing data via visual inspection of
512 the alignments to the hooded crow reference. We then fitted a linear model with
513 normalized *NDP* expression data as the dependent variable and *NDP* indel genotype as
514 the predictor. We decomposed the effect of the insertion genotype into an additive
515 component (the number of non-inserted minor allele copies – 0, 1, or 2 – as a covariate)
516 and a dominance component (homozygous = 0, heterozygous = 1).

517 To further establish a link between the LTR retrotransposon insertion and phenotypic
518 differences, we made use of a hybrid admixture data set from the European hybrid zone
519 (28). We designed three sets of PCR primers to genotype the insertion for 120
520 phenotyped individuals from the European hybrid zone of all-black *C. (c.) corone* and
521 black-and-grey *C. (c.) cornix* crows. For absence of the insertion, a pair of primers
522 located in the sequence flanking the insertion was used (A_F_3
523 ‘AGTAACCTGTCCTCTGTAGTGCAGG’ and A_R_3
524 ‘CCTGGGTAAGATCACAGTGTGTC’) resulting in a 197 bp fragment. For presence
525 of the insertion, a pair of primers with one in the flanking and one in either left or right
526 LTR region of the insertion (P_L_F_1 ‘TCCTCTGTAGTGCAGGACTGG’ and
527 P_L_R_2 ‘CACCCATGGTTCCCTCACA’, as well as P_R_F_1
528 ‘GGATCAGGGATCGTTCTGCT’ and P_R_R_1
529 ‘CACAGCCCCAGAAGATGTGC’), resulting in fragments of 659 and 564 bp,
530 respectively. A representative gel picture used for genotyping can be found in the
531 **Supplementary Fig. S4**. Phenotypic data was taken from Knief et al. (28) who
532 summarized 11 plumage color measures on the dorsal and ventral body into a principal

533 component (PC1), explaining 78% of the phenotypic variation. We then tested whether
534 the interaction between chromosome 18 and the insertion genotype explained more
535 variation in plumage color than the interaction between chromosome 18 and the most
536 significant SNP near the *NDP* gene (28). We fitted two linear regression models on the
537 same subset of the data that contained no missing genotypes ($N = 120$ individuals). In
538 both models, we used color PC1 as our dependent variable. In the first model, we fitted
539 the interaction between chromosome 18 and the insertion genotype, and in the second
540 model the interaction between chromosome 18 and the SNP genotype as our
541 independent variables. Both variables were coded as 0, 1, 2 copies of the derived allele
542 and fitted as factors. We selected the model with the better fit to the data by estimating
543 the AICc and BIC and deemed a $\Delta\text{AICc} \geq 2$ as significant.
544

545 **Competing interests**

546 Kees-Jan Francoijis is an employee of BioNano Genomics (San Diego, CA).

547 **Acknowledgements**

549 We thank John Marzluff, Vittorio Baglione and Kristaps Sokolovskis for providing
550 sample material. Reto Burri and Sergio Tusso Gomez provided helpful input for the
551 downstream analysis. We are thankful for being able to use the UPPMAX Next-
552 Generation Sequencing Cluster and Storage (UPPNEX) project, funded by the Knut
553 and Alice Wallenberg Foundation and the Swedish National Infrastructure for
554 Computing. This work was supported by the Swedish Research Council (grant number
555 621-2010-5553 to J.B.W.W. and grant number 2016-05139 to A.S.), the European
556 Research Council (grant number ERCStG-336536 to J.B.W.W.) and the National
557 Institutes of Health (grant number UM1 HG008898 to F.J.S.).
559

560 **Author contributions**

561 M.W. and J.W. conceived of the study, conducted field work and wrote the manuscript
562 with input from all other authors. M.W. conducted lab work and all bioinformatic
563 analyses with help from V.P., V.W., S.D.P., A.S. (repeat annotation) and U.K.
564 (statistical analyses). W.H. conducted field work. I.B. generated genome assemblies
565 and F.J.S. performed short-read based SV calling.
566

567 **References and Notes**

- 568 1. L. Feuk, A. R. Carson, S. W. Scherer, Structural variation in the human
569 genome. *Nat. Rev. Genet.* **7**, 85–97 (2006).
- 570 2. C. Küpper, M. Stocks, J. E. Risso, N. dos Remedios, L. L. Farrell, S. B. McRae, T.
571 C. Morgan, N. Karlionova, P. Pinchuk, Y. I. Verkuil, A. S. Kitaysky, J. C.
572 Wingfield, T. Piersma, K. Zeng, J. Slate, M. Blaxter, D. B. Lank, T. Burke, A
573 supergene determines highly divergent male reproductive morphs in the
574 ruff. *Nat. Genet.* **48**, 79–83 (2016).
- 575 3. A. E. van't Hof, P. Campagne, D. J. Rigden, C. J. Yung, J. Lingley, M. A. Quail, N.
576 Hall, A. C. Darby, I. J. Saccheri, The industrial melanism mutation in British
577 peppered moths is a transposable element. *Nature*. **534**, 102–105 (2016).
- 578 4. J. Huddleston, E. E. Eichler, An Incomplete Understanding of Human Genetic
579 Variation. *Genetics*. **202**, 1251–1254 (2016).

580 5. B. Weckselblatt, M. K. Rudd, Human Structural Variation: Mechanisms of
581 Chromosome Rearrangements. *Trends Genet.* **31**, 587–599 (2015).

582 6. M. J. P. Chaisson, R. K. Wilson, E. E. Eichler, Genetic variation and the de novo
583 assembly of human genomes. *Nat. Rev. Genet.* **16**, 627–640 (2015).

584 7. F. J. Sedlazeck, H. Lee, C. A. Darby, M. C. Schatz, Piercing the dark matter:
585 bioinformatics of long-range sequencing and mapping. *Nat. Rev. Genet.* **19**,
586 329–346 (2018).

587 8. S. Goodwin, J. D. McPherson, W. R. McCombie, Coming of age: ten years of
588 next-generation sequencing technologies. *Nat. Rev. Genet.* **17**, 333–351
589 (2016).

590 9. J. B. W. Wolf, H. Ellegren, Making sense of genomic islands of differentiation
591 in light of speciation. *Nat. Rev. Genet.* **18**, 87–100 (2017).

592 10. M. J. P. Chaisson, A. D. Sanders, X. Zhao, A. Malhotra, D. Porubsky, T. Rausch, E.
593 J. Gardner, O. Rodriguez, L. Guo, R. L. Collins, X. Fan, J. Wen, R. E. Handsaker,
594 S. Fairley, Z. N. Kronenberg, X. Kong, F. Hormozdiari, D. Lee, A. M. Wenger, A.
595 Hastie, D. Antaki, P. Audano, H. Brand, S. Cantsilieris, H. Cao, E. Cerveira, C.
596 Chen, X. Chen, C.-S. Chin, Z. Chong, N. T. Chuang, C. C. Lambert, D. M. Church,
597 L. Clarke, A. Farrell, J. Flores, T. Galeev, D. Gorkin, M. Gujral, V. Guryev, W.
598 Haynes Heaton, J. Korlach, S. Kumar, J. Y. Kwon, J. E. Lee, J. Lee, W.-P. Lee, S.
599 P. Lee, S. Li, P. Marks, K. Viaud-Martinez, S. Meiers, K. M. Munson, F. Navarro,
600 B. J. Nelson, C. Nodzak, A. Noor, S. Kyriazopoulou-Panagiotopoulou, A. Pang,
601 Y. Qiu, G. Rosanio, M. Ryan, A. Stutz, D. C. J. Spierings, A. Ward, A. E. Welch,
602 M. Xiao, W. Xu, C. Zhang, Q. Zhu, X. Zheng-Bradley, E. Lowy, S. Yakneen, S.
603 McCarroll, G. Jun, L. Ding, C. L. Koh, B. Ren, P. Flicek, K. Chen, M. B. Gerstein,
604 P.-Y. Kwok, P. M. Lansdorp, G. Marth, J. Sebat, X. Shi, A. Bashir, K. Ye, S. E.
605 Devine, M. Talkowski, R. E. Mills, T. Marschall, J. O. Korbel, E. E. Eichler, C.
606 Lee, Multi-platform discovery of haplotype-resolved structural variation in
607 human genomes (2018), doi:10.1101/193144.

608 11. S. Tusso, B. P. S. Nieuwenhuis, F. J. Sedlazeck, J. W. Davey, D. C. Jeffares, J. B. W.
609 Wolf, Ancestral Admixture Is the Main Determinant of Global Biodiversity in
610 Fission Yeast. *Mol. Biol. Evol.* **36**, 1975–1989 (2019).

611 12. M. Chakraborty, J. J. Emerson, S. J. Macdonald, A. D. Long, Structural variants
612 exhibit widespread allelic heterogeneity and shape variation in complex
613 traits. *Nat. Commun.* **10** (2019), doi:10.1038/s41467-019-12884-1.

614 13. L. E. Flagel, J. H. Willis, T. J. Vision, The Standing Pool of Genomic Structural
615 Variation in a Natural Population of *Mimulus guttatus*. *Genome Biol. Evol.* **6**,
616 53–64 (2014).

617 14. M. H. Weissensteiner, A. W. C. Pang, I. Bunikis, I. H?ijer, O. Vinnere-Petterson,
618 A. Suh, J. B. W. Wolf, Combination of short-read, long-read, and optical
619 mapping assemblies reveals large-scale tandem repeat arrays with
620 population genetic implications. *Genome Res.* **27**, 697–708 (2017).

621 15. J. T. Sutton, M. Helmkampf, C. C. Steiner, M. R. Bellinger, J. Korlach, R. Hall, P.
622 Baybayan, J. Muehling, J. Gu, S. Kingan, B. M. Masuda, O. A. Ryder, A High-
623 Quality, Long-Read De Novo Genome Assembly to Aid Conservation of
624 Hawaii's Last Remaining Crow Species. *Genes*. **9**, 393 (2018).

625 16. C.-S. Chin, P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion, A. Clum, C.
626 Dunn, R. O'Malley, R. Figueroa-Balderas, A. Morales-Cruz, G. R. Cramer, M.
627 Delledonne, C. Luo, J. R. Ecker, D. Cantu, D. R. Rank, M. C. Schatz, Phased
628 diploid genome assembly with single-molecule real-time sequencing. *Nat. Methods*. **13**, 1050 (2016).

630 17. R. B. Corbett-Detig, D. L. Hartl, T. B. Sackton, Natural Selection Constrains
631 Neutral Diversity across A Wide Range of Species. *PLOS Biol.* **13**, e1002112
632 (2015).

633 18. N. Vijay, C. M. Bossu, J. W. Poelstra, M. H. Weissensteiner, A. Suh, A. P.
634 Kryukov, J. B. W. Wolf, Evolution of heterogeneous genome differentiation
635 across multiple contact zones in a crow species complex. *Nat. Commun.* **7**,
636 13195 (2016).

637 19. See Supplementary Materials. *Online*.

638 20. A. Suh, L. Smeds, H. Ellegren, Abundant recent activity of retrovirus-like
639 retrotransposons within and among flycatcher species implies a rich source
640 of structural variation in songbird genomes. *Mol. Ecol.* **27**, 99–111 (2018).

641 21. B. Charlesworth, P. Sniegowski, W. Stephan, The evolutionary dynamics of
642 repetitive DNA in eukaryotes. *Nature*. **371**, 215–220 (1994).

643 22. E. B. Chuong, N. C. Elde, C. Feschotte, Regulatory activities of transposable
644 elements: from conflicts to benefits. *Nat. Rev. Genet.* **18**, 71–86 (2017).

645 23. Y. Zhou, A. Minio, M. Massonnet, E. Solares, Y. Lv, T. Beridze, D. Cantu, B. S.
646 Gaut, The population genetics of structural variants in grapevine
647 domestication. *Nat. Plants*. **5**, 965–979 (2019).

648 24. M. Gymrek, A genomic view of short tandem repeats. *Curr. Opin. Genet. Dev.*
649 **44**, 9–16 (2017).

650 25. M. Levy-Sakin, S. Pastor, Y. Mostovoy, L. Li, A. K. Y. Leung, J. McCaffrey, E.
651 Young, E. T. Lam, A. R. Hastie, K. H. Y. Wong, C. Y. L. Chung, W. Ma, J. Sibert, R.
652 Rajagopalan, N. Jin, E. Y. C. Chow, C. Chu, A. Poon, C. Lin, A. Naguib, W.-P.
653 Wang, H. Cao, T.-F. Chan, K. Y. Yip, M. Xiao, P.-Y. Kwok, Genome maps across
654 26 human populations reveal population-specific patterns of structural
655 variation. *Nat. Commun.* **10** (2019), doi:10.1038/s41467-019-08992-7.

656 26. J. W. Poelstra, N. Vijay, C. M. Bossu, H. Lantz, B. Ryll, I. Müller, V. Baglione, P.
657 Unneberg, M. Wikelski, M. G. Grabherr, J. B. W. Wolf, The genomic landscape
658 underlying phenotypic integrity in the face of gene flow in crows. *Science*.
659 **344**, 1410–1415 (2014).

660 27. D. C. Jeffares, C. Jolly, M. Hoti, D. Speed, L. Shaw, C. Rallis, F. Balloux, C.
661 Dessimoz, J. Bähler, F. J. Sedlazeck, Transient structural variations have
662 strong effects on quantitative traits and reproductive isolation in fission
663 yeast. *Nat. Commun.* **8**, 14061 (2017).

664 28. U. Knief, C. M. Bossu, N. Saino, B. Hansson, J. Poelstra, N. Vijay, M.
665 Weissensteiner, J. B. W. Wolf, Epistatic mutations under divergent selection
666 govern phenotypic variation in the crow hybrid zone. *Nat. Ecol. Evol.* (2019),
667 doi:10.1038/s41559-019-0847-9.

668 29. J. W. Poelstra, N. Vijay, M. P. Hoeppner, J. B. W. Wolf, Transcriptomics of
669 colour patterning and coloration shifts in crows. *Mol. Ecol.* **24**, 4617–4628
670 (2015).

671 30. A. I. Vickrey, R. Bruders, Z. Kronenberg, E. Mackey, R. J. Bohlender, E. T.
672 Maclary, R. Maynez, E. J. Osborne, K. P. Johnson, C. D. Huff, M. Yandell, M. D.
673 Shapiro, Introgression of regulatory alleles and a missense coding mutation
674 drive plumage pattern diversity in the rock pigeon. *eLife.* **7** (2018),
675 doi:10.7554/eLife.34803.

676 31. E. B. Chuong, N. C. Elde, C. Feschotte, Regulatory activities of transposable
677 elements: from conflicts to benefits. *Nat. Rev. Genet.* **18**, 71–86 (2017).

678 32. M. F. L. Derkx, K. M. Schachtschneider, O. Madsen, E. Schijlen, K. J. F.
679 Verhoeven, K. van Oers, Gene and transposable element methylation in
680 great tit (*Parus major*) brain and blood. *BMC Genomics.* **17** (2016),
681 doi:10.1186/s12864-016-2653-y.

682 33. M. Chakraborty, N. W. VanKuren, R. Zhao, X. Zhang, S. Kalsow, J. J. Emerson,
683 Hidden genetic variation shapes the structure of functional elements in
684 *Drosophila*. *Nat. Genet.* **50**, 20–25 (2018).

685 34. F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, E. M. Zdobnov,
686 BUSCO: assessing genome assembly and annotation completeness with
687 single-copy orthologs. *Bioinformatics.* **31**, 3210–3212 (2015).

688 35. E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A.
689 Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B.
690 Bernstein, M. A. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A.
691 Mirny, E. S. Lander, J. Dekker, Comprehensive Mapping of Long-Range
692 Interactions Reveals Folding Principles of the Human Genome. *Science.* **326**,
693 289–293 (2009).

694 36. N. H. Putnam, B. L. O'Connell, J. C. Stites, B. J. Rice, M. Blanchette, R. Calef, C. J.
695 Troll, A. Fields, P. D. Hartley, C. W. Sugnet, D. Haussler, D. S. Rokhsar, R. E.
696 Green, Chromosome-scale shotgun assembly using an in vitro method for
697 long-range linkage. *Genome Res.* **26**, 342–350 (2016).

698 37. T. Kawakami, L. Smeds, N. Backström, A. Husby, A. Qvarnström, C. F. Mugal, P.
699 Olason, H. Ellegren, A high-density linkage map enables a second-generation
700 collared flycatcher genome assembly and reveals the patterns of avian

701 recombination rate variation and chromosomal evolution. *Mol. Ecol.* **23**,
702 4035–4058 (2014).

703 38. R. S. Harris, *Improved Pairwise Alignment of Genomic DNA* (Pennsylvania
704 State Univ., 2007), *PhD thesis*.

705 39. S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu, S. L.
706 Salzberg, Versatile and open software for comparing large genomes.
707 *Genome Biol.* **5**, R12 (2004).

708 40. M. Nattestad, M. C. Schatz, Asemblytics: a web analytics tool for the
709 detection of variants from an assembly. *Bioinformatics*. **32**, 3021–3023
710 (2016).

711 41. Z. N. Kronenberg, I. T. Fiddes, D. Gordon, S. Murali, S. Cantsilieris, O. S.
712 Meyerson, J. G. Underwood, B. J. Nelson, M. J. P. Chaisson, M. L. Dougherty, K.
713 M. Munson, A. R. Hastie, M. Diekhans, F. Hormozdiari, N. Lorusso, K.
714 Hoekzema, R. Qiu, K. Clark, A. Raja, A. E. Welch, M. Sorensen, C. Baker, R. S.
715 Fulton, J. Armstrong, T. A. Graves-Lindsay, A. M. Denli, E. R. Hoppe, P. Hsieh,
716 C. M. Hill, A. W. C. Pang, J. Lee, E. T. Lam, S. K. Dutcher, F. H. Gage, W. C.
717 Warren, J. Shendure, D. Haussler, V. A. Schneider, H. Cao, M. Ventura, R. K.
718 Wilson, B. Paten, A. Pallen, E. E. Eichler, High-resolution comparative
719 analysis of great ape genomes. *Science*. **360**, eaar6343 (2018).

720 42. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local
721 alignment search tool. *J. Mol. Biol.* **215**, 403–410 (1990).

722 43. K. Katoh, H. Toh, Recent developments in the MAFFT multiple sequence
723 alignment program. *Brief. Bioinform.* **9**, 286–298 (2008).

724 44. T. Wicker, F. Sabot, A. Hua-Van, J. L. Bennetzen, P. Capy, B. Chalhoub, A.
725 Flavell, P. Leroy, M. Morgante, O. Panaud, E. Paux, P. SanMiguel, A. H.
726 Schulman, A unified classification system for eukaryotic transposable
727 elements. *Nat. Rev. Genet.* **8**, 973–982 (2007).

728 45. J. Jurka, V. V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany, J. Walichiewicz,
729 Repbase Update, a database of eukaryotic repetitive elements. *Cytogenet.
730 Genome Res.* **110**, 462–467 (2005).

731 46. A. F. Smit, R. Hubley, P. Green, RepeatMasker. Open-3.0 (1996).

732 47. F. J. Sedlazeck, P. Rescheneder, M. Smolka, H. Fang, M. Nattestad, A. von
733 Haeseler, M. C. Schatz, Accurate detection of complex structural variations
734 using single-molecule sequencing. *Nat. Methods*. **15**, 461–468 (2018).

735 48. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G.
736 Abecasis, R. Durbin, 1000 Genome Project Data Processing Subgroup, The
737 Sequence Alignment/Map format and SAMtools. *Bioinformatics*. **25**, 2078–
738 2079 (2009).

739 49. P. Danecek, S. A. McCarthy, BCFtools/csq: haplotype-aware variant
740 consequences. *Bioinformatics*. **33**, 2037–2039 (2017).

741 50. K. A. Jønsson, P.-H. Fabre, J. D. Kennedy, B. G. Holt, M. K. Borregaard, C.
742 Rahbek, J. Fjeldså, A supermatrix phylogeny of corvoid passerine birds
743 (Aves: Corvides). *Mol. Phylogenet. Evol.* **94**, 87–94 (2016).

744 51. C. F. Mugal, V. E. Kutschera, F. Botero-Castro, J. B. W. Wolf, I. Kaj,
745 Polymorphism Data Assist Estimation of the Nonsynonymous over
746 Synonymous Fixation Rate Ratio ω for Closely Related Species. *Mol. Biol.*
747 *Evol.* (2019), doi:10.1093/molbev/msz203.

748 52. H. Ellegren, Microsatellite mutations in the germline: Implications for
749 evolutionary inference. *Trends Genet.* **16**, 551–558 (2000).

750 53. D. Bates, M. Maechler, B. Bolker, S. Walker, *lme4: Linear mixed-effects models*
751 *using Eigen and S4. R package version 1.1-7.* 2014 (2015).

752 54. H. Li, R. Durbin, Fast and accurate long-read alignment with Burrows–
753 Wheeler transform. *Bioinformatics*. **26**, 589–595 (2010).

754 55. R. M. Layer, C. Chiang, A. R. Quinlan, I. M. Hall, LUMPY: a probabilistic
755 framework for structural variant discovery. *Genome Biol.* **15**, R84 (2014).

756 56. T. Rausch, T. Zichner, A. Schlattl, A. M. Stutz, V. Benes, J. O. Korbel, DELLY:
757 structural variant discovery by integrated paired-end and split-read
758 analysis. *Bioinformatics*. **28**, i333–i339 (2012).

759 57. X. Chen, O. Schulz-Trieglaff, R. Shaw, B. Barnes, F. Schlesinger, M. Källberg, A.
760 J. Cox, S. Kruglyak, C. T. Saunders, Manta: rapid detection of structural
761 variants and indels for germline and cancer sequencing applications.
762 *Bioinformatics*. **32**, 1220–1222 (2016).

763 58. X. Zheng, D. Levine, J. Shen, S. M. Gogarten, C. Laurie, B. S. Weir, A high-
764 performance computing toolset for relatedness and principal component
765 analysis of SNP data. *Bioinformatics*. **28**, 3326–3328 (2012).

766 59. P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E.
767 Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, 1000
768 Genomes Project Analysis Group, The variant call format and VCFtools.
769 *Bioinformatics*. **27**, 2156–2158 (2011).

770 60. B. S. Weir, C. C. Cockerham, Estimating F-Statistics for the Analysis of
771 Population Structure. *Evolution*. **38**, 1358 (1984).

772 61. T. E. Kijima, H. Innan, On the Estimation of the Insertion Time of LTR
773 Retrotransposable Elements. *Mol. Biol. Evol.* **27**, 896–904 (2010).

774