

1
2 **Two common disease-associated TYK2 variants impact exon splicing and TYK2 dosage**
3

4 Zhi Li¹, Maxime Rotival², Etienne Patin², Frédérique Michel¹ and Sandra Pellegrini^{1*}
5

6 ¹ Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France

7 ² Unit of Human Evolutionary Genetics, Institut Pasteur, CNRS UMR2000, Paris, France
8

9

10 * Corresponding author

11 Email : sandra.pellegrini@pasteur.fr

12

13

14 **Funding:** Research in the Unit of Cytokine Signaling funded by the Institut Pasteur, the
15 Fondation pour la Recherche Médicale (Equipe FRM DEQ20170336741) and the Institut
16 National de la Santé et de la Recherche Médicale (INSERM). ZL is supported by the Centre
17 National de la Recherche Scientifique (CNRS). Research in the Unit of Human Evolutionary
18 Genetics funded by the Institut Pasteur, the French Government's Investissement d'Avenir
19 program, Laboratoires d'Excellence "Integrative Biology of Emerging Infectious Diseases"
20 (ANR-10-LABX-62-IBEID), "Milieu Intérieur" (ANR-10-LABX-69-01) and the Fondation
21 pour la Recherche Médicale (Equipe FRM DEQ20180339214).

22 Abstract

23 TYK2 belongs to the JAK protein tyrosine kinase family and mediates signaling of numerous
24 antiviral and immunoregulatory cytokines (type I and type III IFNs, IL-10, IL-12, IL-22, IL-
25 23) in immune and non-immune cells. After many years of genetic association studies, *TYK2*
26 is recognized as a susceptibility gene for some inflammatory and autoimmune diseases (AID).
27 Seven *TYK2* variants have been associated with AIDs in Europeans, and establishing their
28 causality remains challenging. Previous work showed that a protective variant (P1104A) is
29 hypomorphic and also a risk allele for mycobacterial infection. Here, we have studied two
30 AID-associated common *TYK2* variants: rs12720270 located in intron 7 and rs2304256, a
31 non-synonymous variant in exon 8 that causes a valine to phenylalanine substitution (c.1084
32 G > T, Val362Phe). We found that this amino acid substitution does not alter *TYK2*
33 expression, catalytic activity or ability to relay signaling in EBV-B cell lines or in
34 reconstituted *TYK2*-null cells. Based on *in silico* predictions that these variants may impact
35 splicing of exon 8, we: i) analyzed *TYK2* transcripts in genotyped EBV-B cells and in
36 CRISPR/Cas9-edited cells, ii) measured splicing using minigene assays, and iii) performed
37 eQTL (expression quantitative trait locus) analysis of *TYK2* transcripts in primary monocytes
38 and whole blood cells. Our results reveal that the two variants promote the inclusion of exon
39 8, which, we demonstrate, is essential for *TYK2* binding to cognate receptors. In addition and
40 in line with GTEx (Genetic Tissue Expression) data, our eQTL results show that rs2304256
41 mildly enhances *TYK2* expression in whole blood. In all, these findings suggest that these
42 *TYK2* variants are not neutral but instead have a potential impact in AID.

43 Introduction

44 Early genetic association studies have assigned to the *TYK2* locus an impact on susceptibility
45 to systemic lupus erythematosus (SLE) and other autoimmune diseases (AID). The
46 identification has been replicated in a number of recent analyses, and *TYK2* is now recognized
47 as a susceptibility gene in a variety of inflammatory and autoimmune diseases, including type
48 I diabetes (T1D), psoriasis and multiple sclerosis (Table 1). These chronic disorders have a
49 complex etiology where combinations of genetic and environmental factors eventually lead to
50 loss of immunological tolerance, chronic immune activation, and damage to one organ or
51 several tissues [1].

52 How *TYK2* variants impact disease onset or progression remains an open question. In
53 human populations, the *TYK2* locus presents with thousands of single nucleotide
54 polymorphisms (SNP), of which more than 500 cause non-synonymous (amino acid-altering)
55 changes. Seven *TYK2* variants have been associated with AIDs in European cohorts and for
56 most the minor allele is protective (Table 1). Notably, rs12720356 (I684S) is protective for
57 some AID but risky for others, which suggests different underlying pathogenic mechanism.
58 Although these associations are of relatively weak magnitude, they may be relevant in view of
59 promising development of small molecule selective *TYK2* inhibitors to be used in the clinic
60 [2]. Only the biological understanding of each association will enable patient stratification for
61 individualized molecular targeted therapy. For this, it will be necessary to map causal SNP(s)
62 within clustered SNPs that are in linkage disequilibrium (LD), validate their impact on *TYK2*
63 expression and function, define which signaling pathways and molecular processes are most
64 affected by the variation and possibly identify the cell type(s) and/or cell state(s) driving the
65 association in any given disease. These represent major challenges, since *TYK2* is a
66 ubiquitous tyrosine kinase that relays signaling of many antiviral and immunoregulatory

67 cytokines (type I and type III IFNs, IL-10, IL-12, IL-22, IL-23) acting on a variety of immune
68 and non-immune cells [3, 4].

69 Among the seven disease-associated *TYK2* SNPs, five cause a single amino acid
70 change (Table 1). We have previously reported on rs12720356 and rs34536443, which map in
71 the regulatory pseudo-kinase domain and the tyrosine kinase domain, respectively. Both
72 protein variants, *TYK2*-I684S and *TYK2*-P1104A, are catalytically impaired but relay
73 signaling in reconstituted non-immune cells [5]. Further studies in immune cells showed that
74 rs34536443 (P1104A) homozygosity led to reduced type I IFN, IL-12 and IL-23 signaling [6],
75 while rs12720356 (I684S) did not alter *TYK2* function in cytokine signaling [5-7]. Boisson-
76 Dupuis *et al* also found that homozygosity at rs34536443 confers predisposition to
77 tuberculosis and strongly impairs IL-23 signaling in T cells and IFN- γ production in PBMC
78 [7, 8]. Gorman *et al* reported that rs34536443 heterozygosity leads to reduced IFN- α
79 signaling in naïve but not effector T cells, and that carriers have reduced circulating Tfh cells
80 [9]. Another study showed that heterozygosity at rs12720356 (I684S), but not rs34536443
81 (P1104A), leads to reduced IL-12 signaling in CD4+ and CD8+ T cells [10]. While these
82 findings underline a complex picture, they do converge on the view that these two
83 hypomorphic alleles confer protection to auto-inflammatory and auto-immune conditions in
84 European populations.

85 Here, we present a study of two additional disease-associated variants, which are in
86 LD ($r^2=0.50$ and 0.9 in European and Asian populations, respectively) (Ensembl/1000
87 Genomes). Rs12720270 has been associated to protection from SLE in UK families and in
88 Finnish population [11, 12]. Rs2304256 has been associated to protection from SLE [12-14],
89 psoriasis [10] and T1D [15] in Caucasian populations. Based on predictions that these
90 polymorphisms may impact splicing of the flanking exon, we analyzed *TYK2* transcripts in
91 EBV-B cells from genotyped donors. We also studied splicing using a conventional minigene

92 assay and CRISPR/Cas9-edited cells. Combined to *cis* expression quantitative trait locus
93 (eQTL) analysis of *TYK2* in monocytes and whole blood from genotyped individuals, our
94 results revealed an impact of these variants on splicing of a small exon which is essential for
95 *TYK2* binding to cytokine receptors.

96

97 **Results**

98 *Rs2304256 and rs12720270 promote exon 8 inclusion*

99 *Rs2304256* is a non-synonymous variant (C > A) that maps in *TYK2* exon 8 and causes a
100 valine to phenylalanine substitution (c.1084 G > T, Val362Phe) (Fig 1). Valine 362 is located
101 in the FERM domain, which, together with the SH2-like domain, mediates the interaction of
102 *TYK2* with cognate cytokine receptors, such as *IFNAR1* and *IL-12R β 1*. Through this
103 interaction, *TYK2* sustains the level of these receptors and calibrates cytokine signaling [16,
104 17]. Valine 362 is not evolutionarily conserved nor is found in the other members of the JAK
105 family (Fig 1C) and, according to PolyPhen-2, substitution with a phenylalanine is predicted
106 to be benign. To assess the functional consequence of this amino acid substitution, we
107 measured IFN- α signaling in four EBV-B cell lines homozygous for the major allele (CC,
108 *TYK2*-V362) and two lines homozygous for the minor allele (AA, *TYK2*-F362) (Fig 2A). All
109 lines clearly responded to low level IFN- α , as seen by induced phosphorylation of *TYK2* and
110 *STAT1*, even though an inter-individual variability was observed. We thus turned to
111 conventional studies of engineered *TYK2* expressed in *TYK2*-null cells. *TYK2*-V362 and
112 *TYK2*-F362 were transiently transfected in CRISPR/Cas9-edited *TYK2*-null 293T cells and
113 IFN response was measured. As shown in Fig 2A, *TYK2*-V362 and *TYK2*-F362 were
114 similarly expressed, rescued *IFNAR1* level and relayed IFN- α -induced phosphorylation of
115 *TYK2* and *STAT1* to the same extent (Fig 2B). Comparable catalytic activity was indicated
116 by the basal P-*TYK2* in non-treated samples (Fig 2B). To strengthen these findings, we

117 studied TYK2-null fibrosarcoma 11,1 cells [18] transfected with TYK2-V362, TYK2-F362,
118 variant TYK2-A928V, variant TYK2-P1104A (these latter in the F362 background) and the
119 *bona fide* kinase-dead TYK2-K930R [19]. As shown in Fig 2C, TYK2-V362 and TYK2-F362
120 rescued IFN- α -induced signals. TYK2-K930R failed to rescue, while TYK2-A928V and
121 TYK2-P1104A, protective in many autoimmune diseases, partially rescued signaling to IFN.
122 Basal P-STAT1 reflects TYK2 catalytic activity in F362- or V362-expressing cells and was
123 not detected in cells expressing catalytically impaired TYK2-A928V, TYK2-P1104A, TYK2-
124 K930R. In sum, TYK2-V362 and TYK2-F362 did not exhibit functional difference. Thus, we
125 considered the possibility that the nucleotide variation at rs2304256 affects pre-mRNA
126 processing. It is well known that exonic sequences can impact gene expression and that
127 natural variations or somatic mutations can modulate pre-mRNA processing [20]. In close
128 proximity of the intron 7/exon 8 boundary, rs2304256 might not be neutral but may influence
129 splicing efficiency of exon 8 (Fig 1A). An *in silico* analysis (Human Splicing Finder,
130 <http://www.umd.be/HSF>) predicted that the C (major/ancestral) to A (minor/derived)
131 nucleotide change at rs2304256 could destroy a putative exonic splicing enhancer (ESE)
132 regulated by the SR protein SF2/ASF, generating a new ESE recognized by the SRp55 protein
133 or breaking a silencer motif. In parallel, we also studied rs12720270, which is located in
134 intron 7, 36 nt upstream of the intron 7/exon 8 boundary (Fig 1A). The *in silico* analysis of
135 intron 7 sequence predicted that the G (major/ancestral) to A (minor/derived) nucleotide
136 substitution could break a potential branch point and alter pre-mRNA splicing.

137 Based on the above, we asked whether rs12720270 and/or rs2304256 had any impact
138 on transcripts at the level of exon 8 of *TYK2*. For this, we set up a RT-PCR assay with primers
139 mapping in exon 7 and exon 9 of *TYK2* and used as template cDNA from 30 EBV-B cell lines
140 (Table 2) (Materials and Methods). In addition to the expected product (740 nt), in some cell
141 lines a minor product was amplified. Results for 15 representative cell lines is shown in Fig

142 3A. Sequencing showed that the minor product (542 nt) lacked 198 nt corresponding to exon
143 8 and retained the original open reading frame (Fig S1A). Interestingly, 12 of the 30 cell lines
144 analyzed did not yield the 542 nt PCR product. Among these 12 lines, nine were homozygous
145 for the minor rs2304256 allele (AA), one was homozygous for the minor rs12720270 allele
146 (AA) and two were homozygous for both minor alleles (Table 2). These data suggested that
147 minor alleles (homozygosity) at rs12720270 and/or rs2304256 promote the inclusion of exon
148 8. Analysis of PBMC samples purified from two genotyped donors confirmed this
149 observation (Fig 3A).

150 To further assess the effect of the nucleotide variations on exon 8 and exclude
151 potential influence of other polymorphisms on transcript abundance or splicing, we turned to
152 the minigene assay (Cooper, Methods 2005). Using the pI-12 splicing vector, we generated a
153 minigene reporter construct covering 1.2 kb of TYK2 genomic DNA, from exon 7 to exon 9,
154 and comprising rs12720270 and rs2304256 (Fig 3B, top). The four allelic combinations were
155 generated and transfected in 293T cells. After RNA extraction and cDNAs synthesis, splicing
156 products were analysed by PCR using T7 and Sp6 primers specific to the minigene (Fig 3B,
157 bottom). The three major amplification products obtained were sequenced. The 720 nt product
158 contained exon 7 and exon 8. Of note, exon 7 of the minigene was about 70 nt shorter than the
159 *bona fide* exon 7 due to the use of an alternative acceptor site. Also, the absence of exon 9
160 most likely reflects the weakness of its acceptor site with respect to the strong splicing
161 acceptor site (SA) present in the vector. The 520 nt product contained only exon 7. The 210 nt
162 product contained the 5' exon (SD) and 3' exon (SA) of the pI-12 vector. In comparing the
163 profile of transcripts expressed from the four minigenes, it appeared that, for each of the two
164 SNPs, the presence of the minor allele A led to a higher level of a transcript retaining exon 8
165 (Fig 3B). Moreover, the minigene #3 carrying both minor alleles A almost exclusively
166 expressed the exon8-inclusive transcript.

167 293T cells are homozygous for the rs2304256 major allele. Using the CRISPR/Cas9
168 genome editing technology, we obtained clones homozygous for the minor A allele. RNAs
169 from four edited clones (AA) were analyzed by RT-PCR as described above. The PCR
170 product lacking exon 8 (550 nt) was undetectable in three edited clones and barely detectable
171 in the fourth clone (Fig 3C, top). These results were corroborated by using a set of primers
172 covering from exon 3 (the first coding exon) to exon 9. Sequencing of the products confirmed
173 that the smaller transcript (960 nt) amplified from control cells lacked exon 8 (Fig 3C, bottom
174 panel).

175

176 *TYK2-ΔE8 is catalytically competent but unable to mediate cytokine signaling*

177 The results described above indicated that rs2304256 and rs12720270 influence pre-mRNA
178 processing at the level of exon 8. Interestingly, one annotated *TYK2* transcript (*TYK2-204*)
179 lacks exon 8 (ENST00000525220). Both *TYK2-204* and the small transcript detected in EBV-
180 B cells retain the correct ORF and may give rise to a protein isoform missing the exon 8-
181 encoded segment. We did not succeed in detecting such protein probably owing to its low
182 expression level. Yet, the alternate transcript - and protein - may be more abundantly
183 expressed in specific cell types and/or under particular conditions. On this basis, we
184 undertook functional studies of a *TYK2-ΔE8* protein. Our reference *TYK2* cDNA was deleted
185 of the exon 8 sequence (198 nt, encoding aa 338-403). *TYK2-WT* and *TYK2-ΔE8* expression
186 vectors were stably transfected in *TYK2*-null cells and clones expressing similar *TYK2* levels
187 were chosen. We first compared the catalytic activity of *WT* and *ΔE8*. *TYK2* was
188 immunoprecipitated and subjected to *in vitro* kinase assay. As shown in Fig 4A, both proteins
189 were basally phosphorylated in cells (lanes 1 and 3) and, when ATP was added to the
190 reaction, the intensity of the phospho-*TYK2*-reactive bands increased (lanes 2 and 4),
191 demonstrating that *TYK2-ΔE8* is as catalytically competent as the wild type protein. Next, we

192 compared the ability of TYK2-ΔE8 to rescue cytokine signaling. The level of TYK2 and
193 STATs phosphorylation was measured in cells pulsed with IFN- β . Fig 4B shows that two
194 TYK2-ΔE8-expressing clones were totally unresponsive to cytokine stimulation, as compared
195 to two WT-expressing clones. Since a key function of TYK2 is to sustain cognate receptors,
196 i.e. IFNAR1, IL-12R β 1 and IL-10R2 [17, 21], we measured IFNAR1 levels in TYK2-null
197 cells (lane 1) and in the derived clones. Fig 4C shows that TYK2-ΔE8 is unable to exert its
198 scaffolding function and rescue IFNAR1 levels.

199 To corroborate this finding, we assessed by *in vitro* pull-down assay the ability of the
200 N-ter portions (aa 1-591, FERM and SH2) to interact *in vitro* with the cytoplasmic region of
201 IFNAR1 [22]. N-ter proteins (WT, ΔE8) were incubated with purified GST-IFNAR1cyt and
202 the material retained on beads was analyzed by immunoblot with anti-TYK2 and anti-GST
203 Abs. As shown in Fig 4D, N-ter ΔE8 was not retained on GST-IFNAR1cyt. Overall, the
204 above data indicate that exon 8, which encodes a segment of TYK2 FERM, is essential for the
205 binding of TYK2 to IFNAR1. IL-12 signaling was also assessed. For this, TYK2-WT and
206 TYK2-ΔE8 were transiently transfected in TYK2-null cells expressing the two chains of the
207 IL-12 receptor. As opposed to TYK2-WT, TYK2-ΔE8 failed to rescue IL-12 signaling (Fig
208 4E). Further, we excluded the possibility that TYK2-ΔE8 abrogates cytokine signaling by
209 acting in a dominant-negative manner (Fig 4F). We thus concluded that TYK2-ΔE8, although
210 well expressed and catalytically competent, is unable to bind cognate cytokine receptors and
211 therefore cannot relay JAK/STAT signaling.

212 Altogether, the above results demonstrate that the 66 aa segment encoded by exon 8 is
213 critical for cytokine receptor binding. Interestingly, in the solved structure of the FERM-SH2
214 domain of TYK2 complexed with IFNAR1 (Fig S1B), this segment does not directly contact
215 the receptor [23, 24]. This segment is likely exposed at the surface of the F3 lobe of the

216 FERM and contains a disordered loop (β 3- β 4 loop), unusually long among the JAK proteins
217 (Fig 1C), which may provide critical contact points for cognate receptors [25].

218

219 *Rs2304256 promotes exon 8 inclusion in monocytes*

220 Next, we decided to investigate the impact of the two disease-associated variants on exon 8 by
221 performing a *TYK2* *cis*-eQTL analysis at multiple resolution levels. While analysis at whole-
222 gene expression level may mask variation of expression of specific exons, eQTL analysis
223 using RNA-seq data allows quantification of individual splicing events at transcript-, exon-,
224 junction- and intron- levels. We thus used available RNA-seq data from primary CD14⁺
225 monocytes of 200 genotyped individuals [26]. Interestingly, we found that rs2304256 minor
226 allele A correlated with lower levels of the annotated *TYK2-204* transcript lacking exon 8 (Fig
227 5A). Consistently, the minor rs2304256 allele also correlated with lower levels of exon 7-
228 exon 9 and exon 7-exon 10 junctions, but higher level of exon 7-exon 8 and exon 8-exon 9
229 junctions, increased activities of the donor and acceptor sites flanking exon 8, and lower
230 levels of intron 7 and intron 9 (Fig 5, B-D). No correlation with total *TYK2* level was detected
231 (Fig 5E). All of the above most likely reflect the impact of rs2304256 on splicing events
232 resulting on the inclusion of exon 8 and exon 9. Rs12720270 as well correlated to lower
233 expression of *TYK2-204* ($P < 0.005$), but the effect disappeared when accounting for
234 rs2304256 ($P = 0.55$) (data not shown). Hence, we could not detect an independent effect of
235 rs12720270 on *TYK2-204* in monocytes.

236

237 *Rs2304256 is associated with increased TYK2*

238 Having shown above that rs2304256 and rs12720270 favour exon 8 inclusion, we wondered if
239 these variants contribute to a higher level of global *TYK2*. Interestingly, in the Genotype-
240 Tissue Expression (GTEx) database, rs2304256 is associated with a modest increase of *TYK2*

241 in several tissues (S1 Table), including whole blood (Fig 6A) (<https://gtexportal.org/>). We
242 therefore performed an eQTL analysis using *TYK2* NanoString data obtained on whole blood
243 of 1000 healthy donors of European ancestry (Milieu Intérieur cohort) [27, 28]. In non-
244 stimulated blood, rs2304256 showed a tendency toward higher *TYK2*. The effect was modest
245 but significant ($P = 0.0048$) (Fig 6B).

246

247

248 **Discussion**

249 In the last decade, hundreds of loci have been genetically associated to several chronic
250 inflammatory and auto-immune diseases. The complexity of these diseases, our limited
251 knowledge of pathogenic processes and the diverse genetic predisposition still make it
252 difficult to assign causality to single variants in human populations. Several coding variants in
253 the *TYK2* gene have been identified largely through GWAS of populations of European
254 ancestry, and their biological impact and relevance in disease are ill defined. Experimental
255 validation may help to prioritize some of these variants on the basis of their predicted effects
256 at both transcript and protein levels.

257 In the present study we have analyzed the impact of two common *TYK2* variants that
258 are in strong LD, rs2304256 (V362F) in exon 8 and rs12720270 in intron 7. We found that the
259 amino acid substitution caused by rs2304256 does not alter *TYK2* function. *In silico* analyses
260 led us to investigate a possible effect of the two variants on splicing. Analysis of *TYK2*
261 transcripts in genotyped EBV-B cell lines and transcripts expressed from minigene splicing
262 reporters clearly demonstrated the impact of both variants on exon 8, with the minor alleles
263 promoting inclusion. This was validated for rs2304256 in 293T-derived clones that were
264 CRISPR/Cas9-edited at that site. The impact of rs2304256 on exon 8 inclusion was also
265 evident in eQTL analyses of RNA-seq data of primary monocytes. Interestingly, a similar

266 conclusion was reached in the large study by Odhams and collaborators aimed at assessing the
267 causality of SLE-associated *cis*-eQTL variants [29]. These authors performed an eQTL
268 analysis at multiple resolution levels on RNA-seq data from lymphoblastoid cell lines
269 (Geuvadis cohort) and classified rs2304256 as a *cis*-eQTL at the level of exon 8.

270 Many studies have reported on genetic variants that modulate pre-mRNA splicing and
271 in turn influence phenotype and disease risk [30-32]. These studies can have broad
272 implications as they can uncover pathogenic mechanisms and also inform on therapeutic
273 choice in disease treatment [33-36]. Pre-mRNA splicing is a highly regulated process where
274 each exon is under the combinatorial control of the flanking splice sites and multiple splicing
275 regulatory elements. These elements can be located in exonic and intronic sequences and are
276 not easily identifiable by sequence inspection. They often act as binding platforms for splicing
277 regulators, such as SR proteins and hnRNPs, and can promote exon inclusion (enhancer) or
278 cause exon skipping (silencer). Our results and close sequence analysis suggest that
279 rs2304256 (G > T) generates an ESE motif (CATTCGGC), possibly recognized by SRp55
280 (SRSF6). The nucleotide variation may at the same time disrupt an ESE recognized by
281 SF2/ASF (CAGTCGGC). Interestingly, among the 13 human immune cell types analyzed in
282 the DICE project (<https://dice-database.org>) [37], SRp55 was found to be particularly
283 abundant in naïve B cells.

284 The genotyped cell lines and primary cells we have analyzed (carriers of major alleles)
285 exhibit a very low level of the alternate transcript $\Delta E8$ relative to full-length *TYK2* (Figs 3 and
286 5). The low-abundance $\Delta E8$ transcript may result from noisy splicing [38, 39] and may have
287 no biological implication. However, we do not favour this hypothesis, since the alternate $\Delta E8$
288 transcript is protein-coding, not subject to nonsense-mediated decay and potentially
289 functional. Alternative splicing is most often cell-specific, tissue-specific or stimulus-induced
290 and the possibility exists that *TYK2* $\Delta E8$ is more abundant and functionally relevant in cells

291 possessing a proper repertoire of splicing regulatory factors. As for the protein, we found that
292 TYK2-ΔE8 has tyrosine kinase activity but cannot bind cytokine receptors, which points to a
293 function unrelated to canonical cytokine signaling. In this regard, we previously reported that
294 overexpressed TYK2 can traffic to the nuclear compartment [21], where it may perform
295 additional roles as proposed for JAK1 and JAK2 [40]. Moreover, TYK2 has been implicated
296 in mitochondrial respiration and differentiation of brown adipose tissue [41, 42]. A non-
297 mutually exclusive possibility is that rs2304256 and rs12720270, by promoting exon 8
298 inclusion, cause an increase in global (functional) TYK2 level. Such a 'dosage' effect is
299 suggested by GTEx data showing that these polymorphisms correlate with increased *TYK2*
300 level in several tissues but with distinct tissue specificity (S1 Table).
301 (<https://gtexportal.org/home/snp/rs2304256>) For rs2304256 the best effect size (0.42) is seen
302 in adrenal gland (Fig 6A). Intriguingly, in culture of primary adrenal gland cells, IFN-β was
303 shown to inhibit cortisol production [43]. Hence, the level of TYK2 in adrenal gland may
304 impact on the immune response by modulating cortisol production [44, 45]. Rs2304256, but
305 not rs12720270, correlates with a slightly higher *TYK2* in whole blood (Fig 6B). No such
306 correlation was found in monocytes (data not shown) and lymphoblastoid cells [29],
307 indicating that the impact of rs2304256 on global *TYK2* expression is likely to be cell context-
308 specific.

309 *TYK2* is one of numerous proteins influencing individual susceptibility to chronic
310 diseases with aberrant innate and adaptive immune responses. Since *TYK2* transmits signals
311 of a broad range of immuno-regulatory cytokines, natural *TYK2* variants may impact a single
312 pathway or a combination of pathways. To date, low-frequency (MAF <5%) coding *TYK2*
313 variants associated to protection to AIDs have been shown to relay weaker or no signaling
314 (hypomorphic variants), depending on the cytokine and the cell context [5-7, 9, 10]. Variants
315 increasing *TYK2* dosage are expected to lower the threshold of responsiveness - *via* effects on

316 both receptor levels and signaling - thus making cells more sensitive to low cytokine doses.
317 The ultimate impact (protective or damaging) is difficult to predict, as it will depend on
318 disease onset and triggering factors as well as on the cytokines involved in the pathogenic
319 process. TYK2 mediates IL-12 and IL-23 signaling, which can play a pathogenic role in
320 autoimmune and auto-inflammatory conditions. TYK2 also mediates signaling of the anti-
321 inflammatory IL-10, whose protective role is well documented in patients with early-onset
322 IBD and deficiency of IL-10R1 or IL-10R2 [46, 47]. Higher TYK2 dosage may also enhance
323 responsiveness to type I IFN, which exert a broad spectrum of functions and can be
324 pathogenic in many AID. Hence, IFN therapy can induce or exacerbate some AID, such as
325 SLE and T1D [48]. Yet, in the case of fulminant T1D caused by viral infection, high TYK2 in
326 pancreatic β cells may be protective by mediating a robust IFN-mediated antiviral response
327 [49].

328 In European population studies, rs2304256 was reported to be protective in SLE and
329 other AIDs (Table 1). In subsequent studies, haplotype analysis showed that the rs2304256
330 association in SLE and RA is likely driven by imperfect LD to the independent causal
331 variants rs34536443 (P1104A), rs12720356 (I684S) or rs35018800 (A928V) [50]. A similar
332 conclusion was reached in a study of systemic sclerosis patients and in a meta-analysis using
333 exome arrays to identify psoriasis-associated rare variants [51, 52]. Recently, a fine mapping
334 analysis of causal variants for RA and IBD identified rs34536443 and rs12720356, but not
335 rs2304256 [53]. Combined with our data, these findings raise the possibility that rs2304256,
336 by acting as a common *cis*-regulatory variant modulating exon 8 inclusion and/or TYK2
337 dosage, modifies the expressivity of the less common rs34536443 (P1104A) and rs12720356
338 (I684S) disease variants [54].

339 Interestingly, in Asian populations rs12720356 (I684S) and rs34536443 (P1104A) are
340 absent or extremely rare, while rs2304256 and rs12720270 are more frequent than in other

341 populations (MAF about 47% and in almost complete LD ($r^2=0.9$) (see Table 1). Hence, one
342 would predict that in Asian populations the impact of rs2304256 and rs12720270 on disease
343 susceptibility will not be masked by rs34536443 or rs12720356. In a trans-ancestral GWA
344 meta-analysis, the direction of the effect of rs2304256 on SLE appears opposite in Europeans
345 and Hong Kong Chinese [14]. Yet, results on the association between rs2304256 and SLE in
346 Chinese populations are not consistent [55, 56]. A candidate gene association study on
347 Crohn's disease in Japanese populations showed that the rs2304256 A allele was significantly
348 more frequent in healthy controls (34.5%) than patients (23.3%) [57]. In two Japanese
349 case/control studies, rs2304256 AA homozygosity was found to be more frequent in SLE
350 patients (17.3%) than controls (13.1%), and in T1D patients (15.2%) than controls (9%) [58,
351 59]. Additional detailed studies will be necessary to assess the impact of the common
352 rs2304256 variant - particularly in homozygosity - in AIDs in East Asians.

353 **Figure legends**

354 **Fig 1. Position of rs12720270 and rs2304256 in TYK2.**

355 (A) The intron-exon organization of the *TYK2* locus is shown above. Coding exons are
356 represented as filled boxes and introns as lines. Two 5' non-coding exons are represented as
357 empty boxes. The region from exon 7 to exon 9 is expanded below. Rs12720356 is located 36
358 nt upstream of the intron 7/exon 8 boundary. Rs2304256 is 75 nt downstream of the
359 boundary. The black arrows point to the 5' and 3' primers used for PCR to amplify
360 endogenous *TYK2* transcripts spanning exon 7 to exon 9. (B) Domain organization of the
361 *TYK2* protein. The FERM domain is made of 3 subdomains (F1 to F3). The position of
362 V362F, I684S and P1104A encoded by rs2304256, rs12720356 and rs34536443, respectively,
363 are arrowed in red. (C) Alignment of the four human JAK proteins in the region surrounding
364 *TYK2*-Val362 in red. Secondary structures are indicated above, with β -strands as arrows and
365 α -helices as cylinders.

366

367 **Fig 2. No impact of the V362F substitution on TYK2 function.**

368 (A) IFN- α -induced JAK/STAT activation in six EBV-B cell lines genotyped for rs2304256.
369 Cells were treated with IFN- α for 15 min, TYK2 and STAT1 tyrosine phosphorylation was
370 analysed by western blot with phospho-specific Abs. Membranes were reprobed for TYK2
371 and STAT1. (B) Level of IFNAR1 (left) and IFN- α -induced TYK2 and STAT1
372 phosphorylation (right) in TYK2-minus 293T cells transiently expressing TYK2-V362 or
373 TYK2-F362 in the pIRES vector. EV, empty vector. (C) IFN- α -induced TYK2 and STAT1
374 phosphorylation in TYK2-deficient 11,1 cells transiently expressing TYK2-F362, TYK2-
375 V362 or three other mutants (A928V, P1104A, K930R) in the F362 backbone. EV, empty
376 pRc-CMV vector.

377

378 **Fig 3. Analysis of the effect of the two variants on exon 8 splicing.**

379 (A) Analysis of *TYK2* exon 8 in 15 EBV-B lines and PBMC from individuals genotyped at
380 rs2304256. RT-PCR assay was performed with primers mapping in *TYK2* exon 7 and exon 9
381 (see Fig 1A). See also Table 2. (B) Schematics of *TYK2* genomic sequence from exon 7 to
382 exon 9 inserted into the pI-12 vector used for minigene analysis. The positions of the two
383 variations is indicated. The vector contains splice donor site (SD) and splice acceptor site
384 (SA). Minigene-specific primers (T7 and Sp6) used for PCR and sequencing are indicated by
385 the triangles. (C) A representative result of the analysis of the four minigenes in 293 cells.
386 Exon 9 is not expressed probably due to the weak acceptor site at its 5' and the strong SA site
387 of the vector. (D) Analysis of *TYK2* exon 8 in 293T clones edited at rs2304256 by
388 CRISPR/Cas9. Two unedited clones (CC) and four edited clones (AA) were analyzed. Top
389 panel, RT-PCR was performed as described in (A). Bottom panel, RT-PCR using a forward
390 primer in exon 3 and a reverse primer in exon 9 (Fig 1A). The middle band is a product
391 resulting from aberrant pairing of the two other products.

392

393 **Fig 4. TYK2-ΔE8 is catalytically active but unable to rescue cytokine signaling.**

394 (A) Basal *in vitro* kinase activity of TYK2 from unstimulated 11,1 cells stably expressing
395 TYK2 WT or TYK2-ΔE8. TYK2 was immunoprecipitated and subjected to an *in vitro* kinase
396 reaction for 5 min at 30°C in the presence (+) or absence (-) of 30 μM ATP. Phosphorylated
397 TYK2 in the reaction was revealed by immunoblotting with anti-phospho-TYK2. The
398 membrane was reprobed for TYK2. (B) IFN-induced JAK/STAT activation in 11,1 cells
399 stably expressing TYK2 WT or TYK2-ΔE8. Cells were treated with IFN-β for 15 min. The
400 level of tyrosine-phosphorylated TYK2, STAT1, STAT2 and STAT3 was analyzed by with
401 phospho-specific Abs. The membrane was reprobed for TYK2 and total STATs. (C) IFNAR1
402 level in 11,1 cells (-) and derived clones stably expressing TYK2 WT or TYK2-ΔE8. (D) *In*

403 *vitro* interaction of His-TYK2-FERM-SH2 with GST-IFNAR1cyt. His-TYK2-FERM-SH2
404 WT or Δ E8 were incubated with a GST fusion protein containing the cytoplasmic domain of
405 IFNAR1(IFNAR1 cyt) or I κ B- β . Proteins bound to glutathione-Sepharose beads were
406 separated on SDS-PAGE and visualized with TYK2 Abs. Five % input TYK2 protein shown
407 at the bottom. (E) IL-12-induced JAK/STAT activation in 11,1 cells stably expressing the IL-
408 12 receptor β 1 and β 2 chains. Cells were transiently transfected with TYK2 WT or TYK2-
409 Δ E8. Twenty-four hrs later, cells were treated with IFN- β (500pM) or IL-12 (20ng/ml) for 15
410 min. The level of tyrosine-phosphorylated TYK2 and STAT1 was analyzed with phospho-
411 specific Abs. The membrane was reprobed for TYK2 levels. A nonspecific band shown as
412 loading control. (F) 293T cells were transfected with the pRc-CMV empty vector (EV),
413 TYK2- Δ E8 or the triple mutant TYK2-K930R/Y1044F/Y1045F (DN) possessing dominant-
414 negative activity [19]. Twenty-four hrs later, cells were treated with IFN- α for 15 min.
415 Phosphorylation of STAT1, STAT2 and TYK2 were analyzed with phospho-specific Abs.
416 The membrane strips were reprobed for TYK2 and STAT1 contents. Of note, neither TYK2-
417 Δ E8 nor DN can be inducibly phosphorylated, hence the phospho-TYK2 band corresponds to
418 endogenous TYK2.

419

420 **Fig 5. Rs2304256 eQTL analysis on TYK2 expression in monocytes.**

421 Direction of the effect of *cis*-eQTL rs2304256 on TYK2 in primary CD14+ monocytes from
422 healthy donors (CC n: 143, CA n: 47, AA n: 10). Analysis was done at the level of: (A)
423 transcript, (B) exon-exon junction, (C) splice sites and (D) intron.

424

425 **Fig 6. Rs2304256 eQTL analysis on TYK2 expression in tissues.**

426 (A) Direction of effect of *cis*-eQTL of rs2304256 on TYK2 expression at gene level in adrenal
427 gland and whole blood from GTEx database (<https://gtexportal.org/home/snp/rs2304256>).

428 (B) Boxplots showing the direction of the effect of *cis*-eQTL of rs2304256 (CC n: 508, CA n:
429 398, AA n: 81) on *TYK2* expression measured by NanoString in whole blood of 1000
430 genotyped healthy donors of European ancestry (Milieu Intérieur cohort).

431

432

433 Materials and methods

434 Plasmid constructs

435 *TYK2* WT has been described as pRc-TYK2 [19]. *TYK2*-P1104A, and *TYK2*-I684S in pRc-
436 CMV and pIRES vectors respectively, were generated by standard PCR. *TYK2*-V362, A928V
437 and *TYK2*-ΔE8 were generated by site-directed mutagenesis using QuickChange XL site-
438 directed mutagenesis kit (Agilent Technologies) in pRc-TYK2 or pQE-His-N [22]. All new
439 plasmids were verified by sequencing. All expression constructs, except *TYK2*-I684S and
440 pQE-His-N, have a C-terminal vesicular stomatitis virus glycoprotein (VSV-G) epitope tag.

441

442 Cells and transfection

443 EBV-transformed B cell lines were obtained from Coriell Cell Repositories (Camden, NJ) and
444 from CRB-REFGENSEP (Centre de ressources biologiques du réseau français d'études
445 génétiques sur la sclérose en plaques). Genotyping rs12720270, rs2304256, rs12720356, and
446 rs34536443 confirmed the specific polymorphism in these lines. Cells were cultured in RPMI
447 1640 and 10% heat-inactivated FCS. The 11,1 (*TYK2*-deficient fibrosarcoma) and 293T cells
448 were cultured in DMEM and 10% heat-inactivated FCS. Transfections were performed with
449 FuGENE HD (Promega). The 11,1 cells were transfected with pRc-CMV-based plasmids for
450 stable expression of *Tyk2* WT or mutants, and clones were selected in 400 µg/ml G418. IFN-
451 α2 was a gift from D. Gewert (Wellcome Research Laboratories).

452

453 **Western blot analysis and antibodies**

454 Cells were lysed in modified RIPA buffer (50 mM Tris-HCl pH 8, 200 mM NaCl, 1% NP40,
455 0.5% DOC, 0.05% SDS, 2mM EDTA) with 1 mM Na₃VO₄ and a cocktail of antiproteases
456 (Roche). A total of 30 µg of proteins was separated by SDS-PAGE and analyzed by western
457 blot. Membranes were cut horizontally according to molecular size markers, and stripes were
458 incubated with different Abs. Immunoblots were analyzed by ECL with the ECL Western
459 blotting Reagent (Pierce) or the more sensitive Western Lightning Chemiluminescence
460 Reagent Plus (PerkinElmer) and bands were quantified with Fuji LAS-4000. For reprobing,
461 blots were stripped in 0.2 M glycine (pH 2.5) for 30 min at room temperature. The following
462 Abs were used: TYK2 mAb T10-2 and anti-GST (Hybridolab, Institut Pasteur); anti-IFNAR1
463 (64G12 mAbs) [60]; anti-STAT2-phospho-Y689 (R&D); Abs to STAT1, STAT2, STAT3,
464 and STAT1-P-Y701, STAT3-P-Y705, and TYK2-P-YY1054/55 (Cell Signaling Technology,
465 Beverly, MA).

466

467 **Minigene assay**

468 TYK2 minigene constructs were made in the plasmid vector pI-12 (Addgene). A ~1.2 kb
469 TYK2 genomic region comprising rs12720270 and rs2304256, spanning from exon 7 to 9,
470 was amplified from genomic DNA of the EBV-B cell line GM52173 using the forward primer
471 5'-GCCGTCTAGACTTCAAGGACTGCATCCCG-3' and the reverse primer 5'-
472 GCCGATCGATAGCAGGGTCCGTGGATC-3'. The PCR product was subcloned into the
473 XbaI and ClaI sites of the pI-12 vector. The different allelic combinations were introduced by
474 site-directed mutagenesis. RNA was isolated from transfected 293T cells using the RNeasy
475 Mini Kit (Qiagen) and cDNA was synthesized using High-Capacity cDNA Reverse
476 Transcription Kit (appliedbiosystems). Minigene splicing was analyzed by PCR amplification
477 of cDNA using T7 and SP6 primers specific to the minigene. All resulting amplification

478 products were sequenced.

479

480 **RT-PCR and sequencing of *TYK2* transcripts**

481 To assess the impact of rs2304256 and rs12720270 on splicing of *TYK2* exon 8, we performed
482 RT-PCR and sequenced *TYK2* transcripts that were amplified. Total cellular RNA extraction
483 and reverse transcription were performed using the method described above. We used the
484 forward primer 5'-GCCGTCTAGACTTCAAGGACTGCATCCCG-3' and reverse primer 5'-
485 GCCGATCGATAGCAGGGTCCGTGGATC-3' to amplify transcripts containing exons 7,
486 8 and 9, and the forward primer 5'-GAGTCATCGCTGACAAC TGAGGAAGTCTGCATC-3'
487 and reverse primer 5'-GCACAGGTAGTGGCTGGAG -3' to amplify all transcripts that con-
488 tained from exon 3 to exon 9. All PCR products were separated and purified from agarose gel
489 before being sent for sequencing.

490

491 **CRISPR-Cas9-modified cell lines**

492 293T cells were modified using the CRISPR-Cas9 system as in [61]. We used the plasmid-
493 based delivery method. Briefly, to introduce the rs2304256 minor allele, the oligo pair
494 encoding the guide sequence (forward 5'- CACCGCCAAGGCTCACAAAGGCAGT-3',
495 reverse 5'-AAACACTGCCTTGTGAGCCTTGGC -3') were annealed and ligated into the
496 vector pSpCas9(BB)-2A-Puro (PX459) for co-expression with Cas9, a gift from Feng Zhang
497 (Addgene plasmid 62988). The homology-directed repair (HDR) template
498 (5'cacttgctgggtttcagGGTCTAGTGGCAGCAGTGGCAGGAACCCCCAAGGCCAGCCTG
499 TTTGGGAAGAAGGCCAAGGCTCACAAAGGCATTCCAGCCAGCCGGCAGACAGGCCG
500 CGGGAGCCACTGTGGCCTACTTCTGTGACTTCCGGGACATCACCCACGTGGTGC
501 TGAAAGAGCACT-3') was co-transfected in 293T cells with the above sgRNA expression
502 plasmid using Fugene HD. Cells were kept in puromycin (0.9 µg/ml) for 4 days. Individual

503 clones were genotyped for rs2304256 by Sanger sequencing. TYK2-knockout cell lines were
504 generated by transfecting 293T cells with sgRNA expression plasmid without HDR template.

505

506 ***In vitro* kinase assay**

507 Cells were lysed in 50 mM Tris (pH 6.8), 0.5% Nonidet P-40, 200 mM NaCl, 10% glycerol, 1
508 mM EDTA, 1 mM sodium vanadate, 1 mM sodium fluoride, 10 mM PMSF, cocktail of
509 antiproteases (Roche Applied Science). TYK2 and JAK1 were immunoprecipitated from 2
510 mg lysate using affinity-purified anti-VSV-G polyclonal Abs (a gift from M. Arpin, Institut
511 Curie). Immunocomplexes were washed three times in buffer 1 (50 mM Tris [pH 6.8], 400
512 mM NaCl, 0.5% Triton X-100, and 1 mM EDTA), once in buffer 2 (50 mM Tris [pH 6.8] and
513 200 mM NaCl), and once in kinase buffer (50 mM HEPES [pH 7.6] and 10 mM MgCl₂). The
514 kinase reaction was carried out in 50 mM HEPES [pH 7.6], 10 mM MgCl₂ and with or
515 without 30 μM ATP at 30°C for 5 min in a total volume of 30 μl. The reaction was terminated
516 by boiling in Laemmli buffer. Half of the sample was loaded for SDS-PAGE, transferred to a
517 nitrocellulose membrane, and phosphorylated products were analyzed by western blotting
518 with activation loop phospho-specific Abs. After stripping, membranes were reblotted with
519 anti-TYK2 mAb, revealed using ECL detection reagents (Western Lightning, PerkinElmer).

520

521 **Protein purification and *in vitro* pull-down assay**

522 Histidine-tagged proteins were expressed in bacteria, purified on Ni-NTA agarose beads
523 according to the manufacturer's protocol (Qiagen), eluted, and dialyzed against 20 mM Tris-
524 HCl, pH 7.5, 100 mM NaCl, 10% glycerol, and 2mM EDTA, 1mM dithiothreitol (DTT).
525 Proteins were concentrated by Vivaspin concentrator (Vivascience) and stored at 80 °C. GST
526 fusion proteins were affinity-purified on glutathione-Sepharose (GE Healthcare). For *in vitro*
527 pull-down assays, same quantity of His-tagged purified recombinant proteins were incubated

528 with glutathione-Sepharose containing about 2 μ g of bound GST fusion protein in 100 μ l of
529 binding buffer (0.1% Nonidet P-40, 10% glycerol, 50 mM NaCl, 50 mM Tris-HCl, pH 8, and
530 1 mM DTT) with 0.5% bovine serum albumin and protease inhibitors for 60 min at 4 °C.
531 Beads were pelleted and washed three times in binding buffer. Bound proteins were eluted and
532 boiled in 20 μ l of Laemmli buffer, separated by SDS-PAGE, and analyzed by immunoblotting
533 with the appropriate antibody.

534

535 **Quantification and statistical analysis**

536 RNA-Sequencing (RNA-Seq) data on *TYK2* expression in primary monocytes derived from
537 200 genotyped healthy male individuals of self-reported African and European ancestry are
538 from the EvoImmunoPop project [26], and were analyzed as described in [38, 39] at five
539 levels: gene-, transcript-, exon-, junction-, and intron-level. Expression data are corrected for
540 sequencing depth and gene/transcript/exon/intron length (RPKM for transcripts, exons,
541 introns and RPM for exon-exon junctions and splicing sites). Briefly, transcripts were
542 quantified with Cuffdiff [62], based on Ensembl v70 annotations. For exon and intron
543 quantification, all exons were split into non-overlapping exonic parts [63], and a pseudo-
544 transcript was build containing the union of all exons from the gene. Genic regions located
545 between exons from the pseudo-transcript were then used as introns. Quantification of gene
546 expression from exonic parts and introns was done using HT-Seq [64]. For the quantification
547 of splice junction, we used the the filter_cs script from leafcutter package [65] to extract all
548 spliced reads with an overhang of at least 6 nucleotides into each exon and count reads across
549 each exon-exon junction. EQTL analyses were performed using Matrix EQTL [66], including
550 for population of origin as a covariate. *TYK2* mRNA levels were measured in whole blood of
551 healthy donors from the Milieu Intérieur cohort by the NanoString hybridization-based
552 multiplex assay [28]. The Milieu Intérieur cohort is composed of 500 men and 500 women

553 from 20 to 69 years of age [67, 68]. The NanoString *TYK2* probe is complementary to the
554 exon 3/exon 4 junction:
555 GGGCCTGAGCATCGAAGAGGGCAAAGAGATTGAAGCAAGGAGGAGTGATACCA
556 ACTTTATGTGCAATGTGGATGCAGACTTCCTCAGCTGTCAGCGATGA. eQTL
557 analyses were performed with the linear mixed model implemented in GenABEL R package
558 [69].

559 Supporting information

560 **S1 Table. Summary of single-tissue eQTL for rs2304256 and rs12720270 on TYK2**
561 **transcript expression across 48 tissues**

562
563 **S1 Fig. Skipping of exon 8 maintains the correct reading frame of TYK2.**
564 Partial exon 7 and exon 9 sequences are boxed. The central exon 8 encodes the 66 aa
565 segment. Red arrowhead points to Val362.

566
567 **S2 Fig. The exon 8-encoded segment within the TYK2 FERM.**
568 Taken and adapted from Suppl. Fig. S3 in (Wallweber HJ *et al*, Nat. Struct. Mol. Biol.
569 2014, 21:443). Shown is the secondary structure of the TYK2 FERM-SH2 domain in complex
570 with a short peptide of the IFNAR1 cytoplasmic portion (yellow). SH2 domain in light blue.
571 The FERM comprises three lobes (F1, F2 and F3). Helices displayed as cylinders, strands
572 displayed as block arrows, and loops displayed as lines. Arrows point to the start (5') and the
573 end (3') of the exon 8-encoded segment, spanning from the β 3- β 4 loop to the β 7 strand of the
574 F3 lobe. Valine 362 is located in the unstructured β 3- β 4 loop and is tentatively indicated by
575 an arrow.

576

577 Acknowledgments

578 We wish to thank Barbara Piasecka for help in initial analyses of *TYK2* variants in the Milieu
579 Intérieur cohort.

580 Author contributions

581 ZL designed and performed experiments. ZL, FM and SP analyzed the data. MR and EP
582 performed the eQTL analyses. ZL, SP, MR wrote and edited the manuscript. FM advised and
583 revised the manuscript. SP supervised the work.

584

585 References

- 586 1. Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways
587 and complex relationships among immune-mediated diseases. *Nat Rev Genet.*
588 2013;14(9):661-73. doi: 10.1038/nrg3502 PMID: 23917628.
- 589 2. Papp K, Gordon K, Thaci D, Morita A, Gooderham M, Foley P, et al. Phase 2 Trial of
590 Selective Tyrosine Kinase 2 Inhibition in Psoriasis. *N Engl J Med.* 2018;379(14):1313-
591 21. doi: 10.1056/NEJMoa1806382 PMID: 30205746.
- 592 3. Strobl B, Stoiber D, Sexl V, Mueller M. Tyrosine kinase 2 (TYK2) in cytokine
593 signalling and host immunity. *Front Biosci.* 2011;17:3214-32. Epub 2011/05/31. doi:
594 3908 [pii] PMID: 21622231.
- 595 4. Leitner NR, Witalisz-Siepracka A, Strobl B, Muller M. Tyrosine kinase 2 - Surveillant
596 of tumours and bona fide oncogene. *Cytokine.* 2017;89:209-18. doi:
597 10.1016/j.cyto.2015.10.015 PMID: 26631911.
- 598 5. Li Z, Gakovic M, Ragimbeau J, Eloranta ML, Ronnblom L, Michel F, et al. Two rare
599 disease-associated tyk2 variants are catalytically impaired but signaling competent. *J
600 Immunol.* 2013;190(5):2335-44. Epub 2013/01/30. doi: 10.4049/jimmunol.1203118
601 PMID: 23359498.
- 602 6. Dendrou CA, Cortes A, Shipman L, Evans HG, Attfield KE, Jostins L, et al. Resolving
603 *TYK2* locus genotype-to-phenotype differences in autoimmunity. *Sci Transl Med.*
604 2016;8(363):363ra149. doi: 10.1126/scitranslmed.aag1974 PMID: 27807284.

605 7. Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, Kerner G, et al.
606 Tuberculosis and impaired IL-23-dependent IFN-gamma immunity in humans
607 homozygous for a common TYK2 missense variant. *Sci Immunol.* 2018;3(30). doi:
608 10.1126/sciimmunol.aau8714 PMID: 30578352.

609 8. Kerner G, Ramirez-Alejo N, Seeleuthner Y, Yang R, Ogishi M, Cobat A, et al.
610 Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a
611 cohort of European ancestry. *Proc Natl Acad Sci U S A.* 2019;116(21):10430-4. doi:
612 10.1073/pnas.1903561116 PMID: 31068474.

613 9. Gorman JA, Hundhausen C, Kinsman M, Arkatkar T, Allenspach EJ, Clough C, et al.
614 The TYK2-P1104A Autoimmune Protective Variant Limits Coordinate Signals
615 Required to Generate Specialized T Cell Subsets. *Front Immunol.* 2019;10:44. doi:
616 10.3389/fimmu.2019.00044 PMID: 30740104.

617 10. Enerback C, Sandin C, Lambert S, Zawistowski M, Stuart PE, Verma D, et al. The
618 psoriasis-protective TYK2 I684S variant impairs IL-12 stimulated pSTAT4 response in
619 skin-homing CD4+ and CD8+ memory T-cells. *Sci Rep.* 2018;8(1):7043. doi:
620 10.1038/s41598-018-25282-2 PMID: 29728633.

621 11. Graham DS, Akil M, Vyse TJ. Association of polymorphisms across the tyrosine kinase
622 gene, TYK2 in UK SLE families. *Rheumatology.* 2007;46(6):927-30. PMID:
623 17384181.

624 12. Hellquist A, Jarvinen TM, Koskenmies S, Zucchelli M, Orsmark-Pietras C, Berglind L,
625 et al. Evidence for Genetic Association and Interaction Between the TYK2 and IRF5
626 Genes in Systemic Lupus Erythematosus. *J Rheumatol.* 2009;36(8):1631-8. PMID:
627 19567624.

628 13. Sigurdsson S, Nordmark G, Goring HH, Lindroos K, Wiman AC, Sturfelt G, et al.
629 Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are
630 associated with systemic lupus erythematosus. *Am J Hum Genet.* 2005;76(3):528-37.
631 PMID: 15657875.

632 14. Morris DL, Sheng Y, Zhang Y, Wang YF, Zhu Z, Tombleson P, et al. Genome-wide
633 association meta-analysis in Chinese and European individuals identifies ten new loci
634 associated with systemic lupus erythematosus. *Nat Genet.* 2016;48(8):940-6. doi:
635 10.1038/ng.3603 PMID: 27399966.

636 15. Wallace C, Smyth DJ, Maisuria-Armer M, Walker NM, Todd JA, Clayton DG. The
637 imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to
638 type 1 diabetes. *Nat Genet.* 2010;42(1):68-71. doi: 10.1038/ng.493 PMID: 19966805.

639 16. Ragimbeau J, Dondi E, Alcover A, Eid P, Uze G, Pellegrini S. The tyrosine kinase Tyk2
640 controls IFNAR1 cell surface expression. *EMBO J.* 2003;22(3):537-47. PMID:
641 12554654.

642 17. Kreins AY, Ciancanelli MJ, Okada S, Kong XF, Ramirez-Alejo N, Kilic SS, et al.
643 Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE
644 syndrome. *J Exp Med.* 2015;212(10):1641-62. doi: 10.1084/jem.20140280 PMID:
645 26304966.

646 18. Pellegrini S, John J, Shearer M, Kerr IM, Stark GR. Use of a selectable marker
647 regulated by alpha interferon to obtain mutations in the signaling pathway. *Mol Cell
648 Biol.* 1989;9(11):4605-12. PMID: 2513475.

649 19. Gauzzi MC, Velazquez L, McKendry R, Mogensen KE, Fellous M, Pellegrini S.
650 Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive
651 regulatory tyrosines by another kinase. *J Biol Chem.* 1996;271(34):20494-500. PMID:
652 8702790.

653 20. Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the
654 decoding machinery. *Nat Rev Genet.* 2007;8(10):749-61. doi: 10.1038/nrg2164 PMID:
655 17726481.

656 21. Ragimbeau J, Dondi E, Vasserot A, Romero P, Uze G, Pellegrini S. The receptor
657 interaction region of Tyk2 contains a motif required for its nuclear localization. *J Biol
658 Chem.* 2001;276(33):30812-8. Epub 2001/06/16. doi: 10.1074/jbc.M103559200 PMID:
659 11399767.

660 22. Richter MF, Dumenil G, Uze G, Fellous M, Pellegrini S. Specific contribution of Tyk2
661 JH regions to the binding and the expression of the interferon alpha/beta receptor
662 component IFNAR1. *J Biol Chem.* 1998;273(38):24723-9. PMID: 9733772.

663 23. Wallweber HJ, Tam C, Franke Y, Starovasnik MA, Lupardus PJ. Structural basis of
664 recognition of interferon-alpha receptor by tyrosine kinase 2. *Nat Struct Mol Biol.*
665 2014;21(5):443-8. Epub 2014/04/08. doi: 10.1038/nsmb.2807 PMID: 24704786.

666 24. Ferrao R, Lupardus PJ. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing
667 Specificity to JAK-Receptor Interactions. *Front Endocrinol (Lausanne).* 2017;8:71. doi:
668 10.3389/fendo.2017.00071 PMID: 28458652.

669 25. Ferrao RD, Wallweber HJ, Lupardus PJ. Receptor-mediated dimerization of JAK2
670 FERM domains is required for JAK2 activation. *Elife.* 2018;7. doi:
671 10.7554/eLife.38089 PMID: 30044226.

672 26. Quach H, Rotival M, Pothlichet J, Loh YE, Dannemann M, Zidane N, et al. Genetic
673 Adaptation and Neandertal Admixture Shaped the Immune System of Human
674 Populations. *Cell*. 2016;167(3):643-56 e17. doi: 10.1016/j.cell.2016.09.024 PMID:
675 27768888.

676 27. Duffy D, Rouilly V, Libri V, Hasan M, Beitz B, David M, et al. Functional analysis via
677 standardized whole-blood stimulation systems defines the boundaries of a healthy
678 immune response to complex stimuli. *Immunity*. 2014;40(3):436-50. doi:
679 10.1016/j.immuni.2014.03.002 PMID: 24656047.

680 28. Piasecka B, Duffy D, Urrutia A, Quach H, Patin E, Posseme C, et al. Distinctive roles of
681 age, sex, and genetics in shaping transcriptional variation of human immune responses
682 to microbial challenges. *Proc Natl Acad Sci U S A*. 2018;115(3):E488-E97. doi:
683 10.1073/pnas.1714765115 PMID: 29282317.

684 29. Odhams CA, Cunningham Graham DS, Vyse TJ. Profiling RNA-Seq at multiple
685 resolutions markedly increases the number of causal eQTLs in autoimmune disease. *PLoS
686 Genet*. 2017;13(10):e1007071. doi: 10.1371/journal.pgen.1007071 PMID: 29059182.

687 30. Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, et al. RNA splicing is a
688 primary link between genetic variation and disease. *Science*. 2016;352(6285):600-4.
689 doi: 10.1126/science.aad9417 PMID: 27126046.

690 31. Manning KS, Cooper TA. The roles of RNA processing in translating genotype to
691 phenotype. *Nat Rev Mol Cell Biol*. 2017;18(2):102-14. doi: 10.1038/nrm.2016.139
692 PMID: 27847391.

693 32. Park E, Pan Z, Zhang Z, Lin L, Xing Y. The Expanding Landscape of Alternative
694 Splicing Variation in Human Populations. *Am J Hum Genet*. 2018;102(1):11-26. doi:
695 10.1016/j.ajhg.2017.11.002 PMID: 29304370.

696 33. Nielsen KB, Sorensen S, Cartegni L, Corydon TJ, Doktor TK, Schroeder LD, et al.
697 Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating
698 mutations: a synonymous SNP in exon 5 of MCAD protects from deleterious mutations
699 in a flanking exonic splicing enhancer. *Am J Hum Genet*. 2007;80(3):416-32. doi:
700 10.1086/511992 PMID: 17273963.

701 34. Gregory AP, Dendrou CA, Attfield KE, Haghikia A, Xifara DK, Butter F, et al. TNF
702 receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis.
703 *Nature*. 2012;488(7412):508-11. Epub 2012/07/18. doi: 10.1038/nature11307 PMID:
704 22801493.

705 35. Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, et al. A common BIM
706 deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine
707 kinase inhibitors in cancer. *Nat Med.* 2012;18(4):521-8. Epub 2012/03/20. doi:
708 10.1038/nm.2713 PMID: 22426421.

709 36. Matesanz F, Potenciano V, Fedetz M, Ramos-Mozo P, Abad-Grau Mdel M, Karaky M,
710 et al. A functional variant that affects exon-skipping and protein expression of SP140 as
711 genetic mechanism predisposing to multiple sclerosis. *Hum Mol Genet.*
712 2015;24(19):5619-27. doi: 10.1093/hmg/ddv256 PMID: 26152201.

713 37. Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM, Zapardiel-
714 Gonzalo J, et al. Impact of Genetic Polymorphisms on Human Immune Cell Gene
715 Expression. *Cell.* 2018;175(6):1701-15 e16. doi: 10.1016/j.cell.2018.10.022 PMID:
716 30449622.

717 38. Rotival M, Quach H, Quintana-Murci L. Defining the genetic and evolutionary
718 architecture of alternative splicing in response to infection. *Nat Commun.*
719 2019;10(1):1671. doi: 10.1038/s41467-019-09689-7 PMID: 30975994.

720 39. Pickrell JK, Pai AA, Gilad Y, Pritchard JK. Noisy splicing drives mRNA isoform
721 diversity in human cells. *PLoS Genet.* 2010;6(12):e1001236. doi:
722 10.1371/journal.pgen.1001236 PMID: 21151575.

723 40. Zouein FA, Duhe RJ, Booz GW. JAKs go nuclear: emerging role of nuclear JAK1 and
724 JAK2 in gene expression and cell growth. *Growth Factors.* 2011;29(6):245-52. doi:
725 10.3109/08977194.2011.614949 PMID: 21892841.

726 41. Potla R, Koeck T, Wegrzyn J, Cherukuri S, Shimoda K, Baker DP, et al. Tyk2 tyrosine
727 kinase expression is required for the maintenance of mitochondrial respiration in
728 primary pro-B lymphocytes. *Mol Cell Biol.* 2006;26(22):8562-71. doi:
729 10.1128/MCB.00497-06 PMID: 16982690.

730 42. Derecka M, Gornicka A, Koralov SB, Szczepanek K, Morgan M, Raje V, et al. Tyk2
731 and Stat3 regulate brown adipose tissue differentiation and obesity. *Cell Metab.*
732 2012;16(6):814-24. doi: 10.1016/j.cmet.2012.11.005 PMID: 23217260.

733 43. van Koetsveld PM, Vitale G, Feelders RA, Waaijers M, Sprij-Mooij DM, de Krijger
734 RR, et al. Interferon-beta is a potent inhibitor of cell growth and cortisol production in
735 vitro and sensitizes human adrenocortical carcinoma cells to mitotane. *Endocr Relat
736 Cancer.* 2013;20(3):443-54. doi: 10.1530/ERC-12-0217 PMID: 23507702.

737 44. Quatrini L, Wieduwild E, Escaliere B, Filtjens J, Chasson L, Laprie C, et al.
738 Endogenous glucocorticoids control host resistance to viral infection through the tissue-

739 specific regulation of PD-1 expression on NK cells. *Nat Immunol.* 2018;19(9):954-62.
740 doi: 10.1038/s41590-018-0185-0 PMID: 30127438.

741 45. Franco LM, Gadkari M, Howe KN, Sun J, Kardava L, Kumar P, et al. Immune
742 regulation by glucocorticoids can be linked to cell type-dependent transcriptional
743 responses. *J Exp Med.* 2019;216(2):384-406. doi: 10.1084/jem.20180595 PMID:
744 30674564.

745 46. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, et al.
746 Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. *N Engl
747 J Med.* 2009;361(21):2033-45. doi: 10.1056/NEJMoa0907206 PMID: 19890111.

748 47. Charbit-Henrion F, Begue B, Sierra A, Hanein S, Stolzenberg MC, Li Z, et al. Copy
749 number variations and founder effect underlying complete IL-10Rbeta deficiency in
750 Portuguese kindreds. *PLoS One.* 2018;13(10):e0205826. doi:
751 10.1371/journal.pone.0205826 PMID: 30365510.

752 48. Tovey MG, Lallemand C. Safety, Tolerability, and Immunogenicity of Interferons.
753 *Pharmaceuticals (Basel).* 2010;3(4):1162-86. doi: 10.3390/ph3041162 PMID:
754 27713294.

755 49. Izumi K, Mine K, Inoue Y, Teshima M, Ogawa S, Kai Y, et al. Reduced Tyk2 gene
756 expression in beta-cells due to natural mutation determines susceptibility to virus-
757 induced diabetes. *Nat Commun.* 2015;6:6748. doi: 10.1038/ncomms7748 PMID:
758 25849081.

759 50. Diogo D, Bastarache L, Liao KP, Graham RR, Fulton RS, Greenberg JD, et al. TYK2
760 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no
761 evidence of major pleiotropic effects on non-autoimmune complex traits. *PLoS One.*
762 2015;10(4):e0122271. Epub 2015/04/08. doi: 10.1371/journal.pone.0122271 PMID:
763 25849893.

764 51. Lopez-Isac E, Campillo-Davo D, Bossini-Castillo L, Guerra SG, Assassi S, Simeon CP,
765 et al. Influence of TYK2 in systemic sclerosis susceptibility: a new locus in the IL-12
766 pathway. *Ann Rheum Dis.* 2015. Epub 2015/09/05. doi: 10.1136/annrheumdis-2015-
767 208154 PMID: 26338038.

768 52. Dand N, Mucha S, Tsoi LC, Mahil SK, Stuart PE, Arnold A, et al. Exome-wide
769 association study reveals novel psoriasis susceptibility locus at TNFSF15 and rare
770 protective alleles in genes contributing to type I IFN signalling. *Hum Mol Genet.*
771 2017;26(21):4301-13. doi: 10.1093/hmg/ddx328 PMID: 28973304.

772 53. Westra HJ, Martinez-Bonet M, Onengut-Gumuscu S, Lee A, Luo Y, Teslovich N, et al.
773 Fine-mapping and functional studies highlight potential causal variants for rheumatoid
774 arthritis and type 1 diabetes. *Nat Genet.* 2018;50(10):1366-74. doi: 10.1038/s41588-
775 018-0216-7 PMID: 30224649.

776 54. Castel SE, Cervera A, Mohammadi P, Aguet F, Reverter F, Wolman A, et al. Modified
777 penetrance of coding variants by cis-regulatory variation contributes to disease risk. *Nat*
778 *Genet.* 2018;50(9):1327-34. doi: 10.1038/s41588-018-0192-y PMID: 30127527.

779 55. Li P, Chang YK, Shek KW, Lau YL. Lack of association of TYK2 gene polymorphisms
780 in Chinese patients with systemic lupus erythematosus. *J Rheumatol.* 2011;38(1):177-8.
781 doi: 10.3899/jrheum.100424 PMID: 21196586.

782 56. Tang L, Wan P, Wang Y, Pan J, Wang Y, Chen B. Genetic association and interaction
783 between the IRF5 and TYK2 genes and systemic lupus erythematosus in the Han
784 Chinese population. *Inflamm Res.* 2015;64(10):817-24. doi: 10.1007/s00011-015-0865-
785 2 PMID: 26294277.

786 57. Sato K, Shiota M, Fukuda S, Iwamoto E, Machida H, Inamine T, et al. Strong evidence
787 of a combination polymorphism of the tyrosine kinase 2 gene and the signal transducer
788 and activator of transcription 3 gene as a DNA-based biomarker for susceptibility to
789 Crohn's disease in the Japanese population. *J Clin Immunol.* 2009. PMID: 19653082.

790 58. Kyogoku C, Morinobu A, Nishimura K, Sugiyama D, Hashimoto H, Tokano Y, et al.
791 Lack of association between tyrosine kinase 2 (TYK2) gene polymorphisms and
792 susceptibility to SLE in a Japanese population. *Mod Rheumatol.* 2009;19(4):401-6.
793 PMID: 19440814.

794 59. Nagafuchi S, Kamada-Hibio Y, Hirakawa K, Tsutsu N, Minami M, Okada A, et al.
795 TYK2 Promoter Variant and Diabetes Mellitus in the Japanese. *EBioMedicine.*
796 2015;2(7):744-9. doi: 10.1016/j.ebiom.2015.05.004 PMID: 26288847.

797 60. Eid P, Tovey MG. Characterization of a domain of a human type I interferon receptor
798 protein involved in ligand binding. *J Interferon Cytokine Res.* 1995;15(3):205-11. doi:
799 10.1089/jir.1995.15.205 PMID: 7584665.

800 61. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering
801 using the CRISPR-Cas9 system. *Nat Protoc.* 2013;8(11):2281-308. doi:
802 10.1038/nprot.2013.143 PMID: 24157548.

803 62. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.
804 Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and

805 isoform switching during cell differentiation. *Nat Biotechnol.* 2010;28(5):511-5. doi:
806 10.1038/nbt.1621 PMID: 20436464.

807 63. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq
808 data. *Genome Res.* 2012;22(10):2008-17. doi: 10.1101/gr.133744.111 PMID:
809 22722343.

810 64. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput
811 sequencing data. *Bioinformatics.* 2015;31(2):166-9. doi: 10.1093/bioinformatics/btu638
812 PMID: 25260700.

813 65. Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, et al.
814 Annotation-free quantification of RNA splicing using LeafCutter. *Nat Genet.*
815 2018;50(1):151-8. doi: 10.1038/s41588-017-0004-9 PMID: 29229983.

816 66. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations.
817 *Bioinformatics.* 2012;28(10):1353-8. doi: 10.1093/bioinformatics/bts163 PMID:
818 22492648.

819 67. Thomas S, Rouilly V, Patin E, Alanio C, Dubois A, Delval C, et al. The Milieu Interieur
820 study - an integrative approach for study of human immunological variance. *Clin
821 Immunol.* 2015;157(2):277-93. doi: 10.1016/j.clim.2014.12.004 PMID: 25562703.

822 68. Thomas AO, Jackson DJ, Evans MD, Rajamanickam V, Gangnon RE, Fain SB, et al.
823 Sex-related differences in pulmonary physiologic outcome measures in a high-risk birth
824 cohort. *J Allergy Clin Immunol.* 2015;136(2):282-7. doi: 10.1016/j.jaci.2014.12.1927
825 PMID: 25678088.

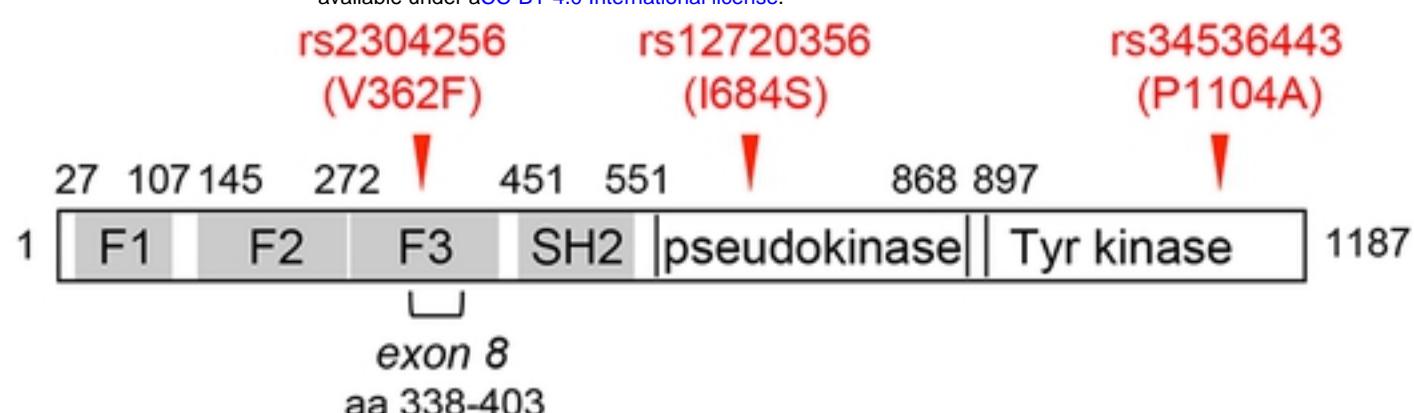
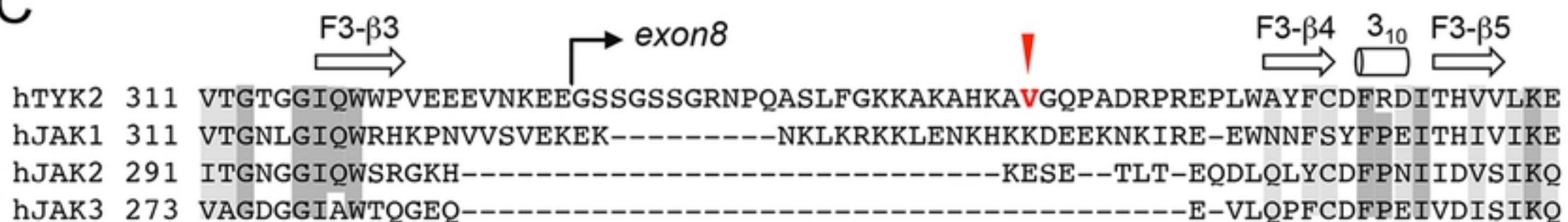
826 69. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-
827 wide association analysis. *Bioinformatics.* 2007;23(10):1294-6. doi:
828 10.1093/bioinformatics/btm108 PMID: 17384015.

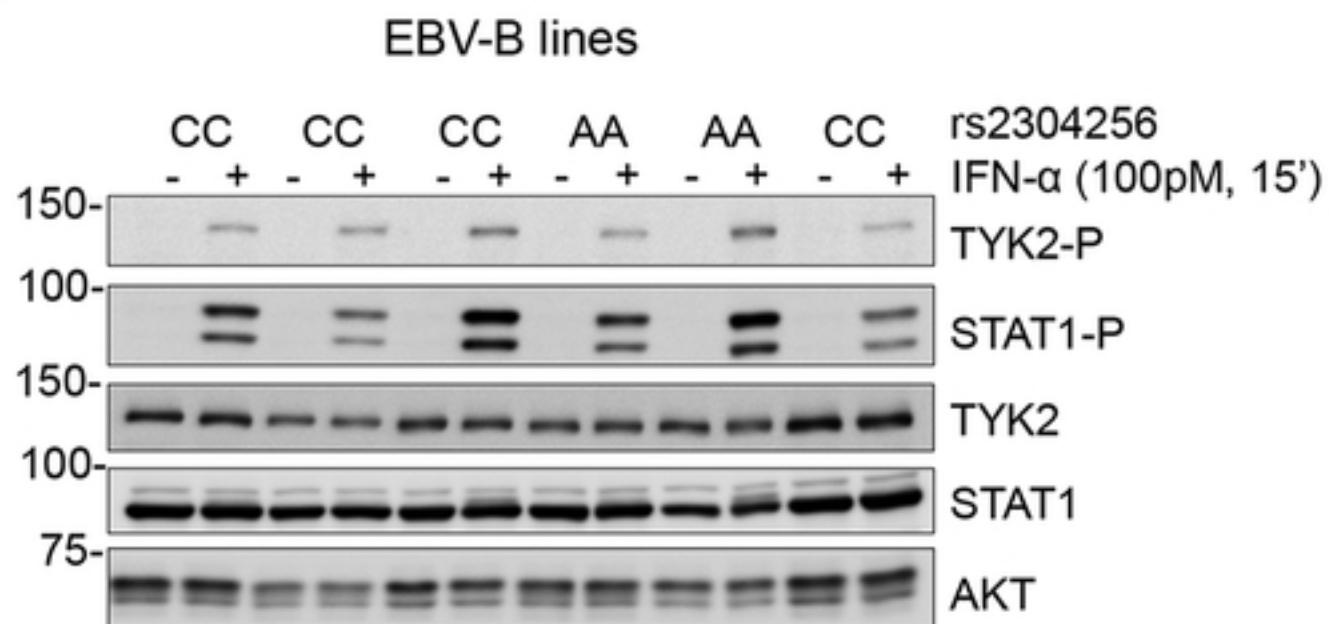
829

Table 1. Autoimmune disease-associated TYK2 variants in European population

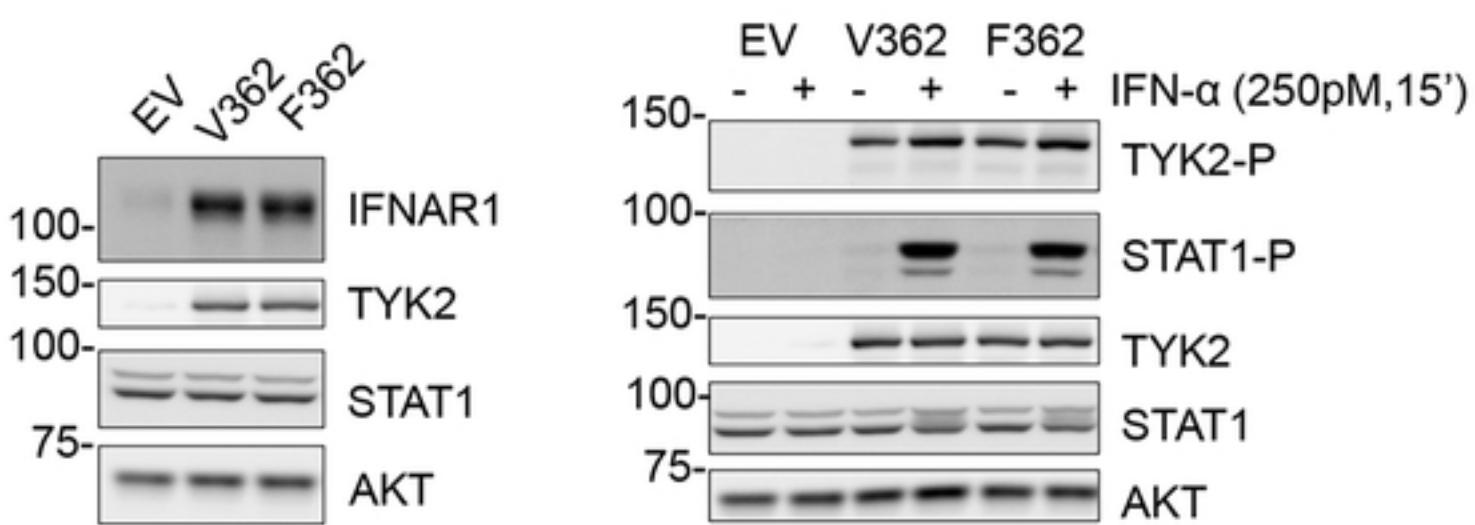
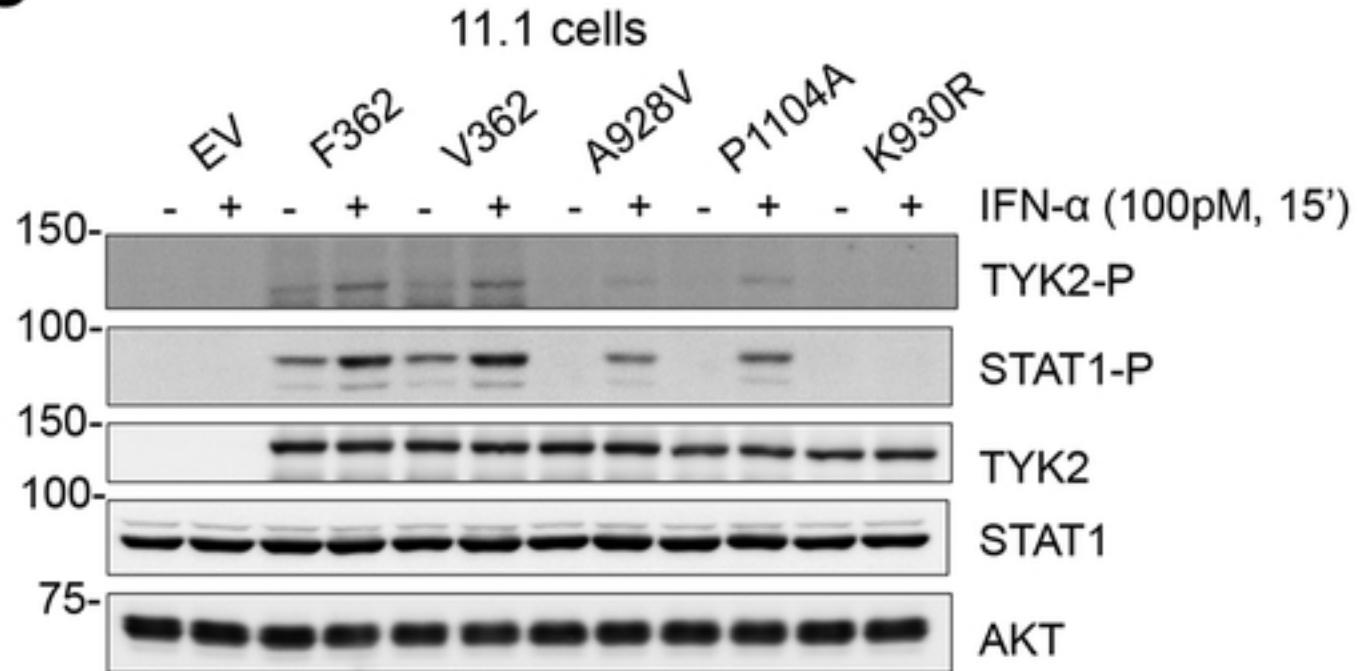
Rs	Major > Minor ^a	MAF ^b (%)			Aa residue	Location	Disease association (OR) ^c	Risk allele	Study name
		Afr	Amr	Eur					
55762744	C > T	0	1	1	0	A53T	FERM	MS	T
12720270	G > A	3	14	17	50	-	intron 7	SLE	Graham 2007; Hellquist 2009
2304256	C > A	9	19	26	52	V362F	FERM	SLE (0.79) Psoriasis (0.94) T1D (0.86) IIM	C
280519	G > A	43	66	50	39	-	intron 11	SLE (1.17) Psoriasis (1.13)	Graham 2011 Strange 2010
12720356	A > C	0.3	5	9	0	I684S	pseudo-kinase	SLE (0.88) RA (0.86), Psoriasis (0.71) T1D (0.82) Crohn's disease (1.12) IBD (1.26) AS(1.09)	A
35018800	G > A	0	0.3	0.3	0	A928V	TK	SLE (0.37), RA (0.53), IBD (0.64) AS (0.598)	G
34536443	G > C	0.2	2	3	0	P1104A	TK	MS (0.77) SLE (0.55), RA (0.42), IBD (0.75) RA (0.62) Psoriasis (0.51) T1D (0.67) Primary biliary cirrhosis (0.52) Systemic sclerosis Juvenile idiopathic arthritis (0.56)	G

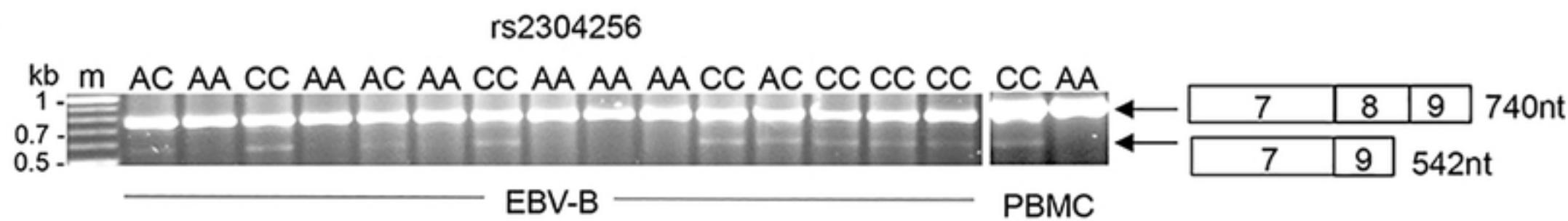
^a Major and minor allele in European population and (+) strand nucleotide. ^b Minor allele frequency. ^c Odds ratio (OR) for the minor allele.
 Abbreviations: TK: tyrosine kinase; MS: multiple sclerosis; SLE: systemic lupus erythematosus; T1D: type I diabetes, RA: rheumatoid arthritis; IBD: inflammatory bowel disease; AS: ankylosing spondylitis; IIM: idiopathic inflammatory myopathies



831 **Table 2 Analysis of exon 8 splicing in genotyped EBV-B cell lines**

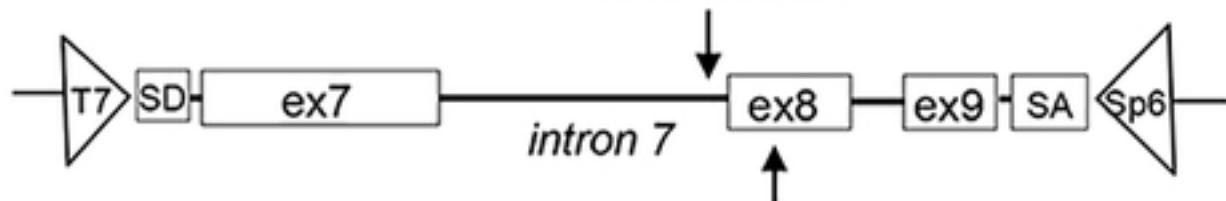

EBV-B cell line	550nt band (Δexon 8)	Rs2304256 (V362F)	rs12720270 (intron 7)
50044	+	CC	GG
GM07056	+	CC	GG
GM10854	+	CC	GG
GM10846	+	CC	GG
GM10857	+	CC	GG
GM10851	+	CC	GG
GM11830	+	CC	GG
GM12004	+	CC	GG
GM12282	+	CC	GG
GM10836	+	CA	GG
GM10859	+	CA	GG
GM10864	+	CA	GG
51814	+	CA	GG
GM12145	+	CA	GG
GM11918	+	CA	GA
GM10835	+	CA	GA
GM12144	+	CA	GA
52173	+	CA	GA
GM12249	-	CA	AA
34702	-	AA	GG
GM12275	-	AA	GG
50772	-	AA	GG
51464	-	AA	GG
GM11882	-	AA	GG
52279	-	AA	GA
49888	-	AA	GA
GM07037	-	AA	GA
GM12154	-	AA	GA
GM12342	-	AA	AA
GM12234	-	AA	AA

832

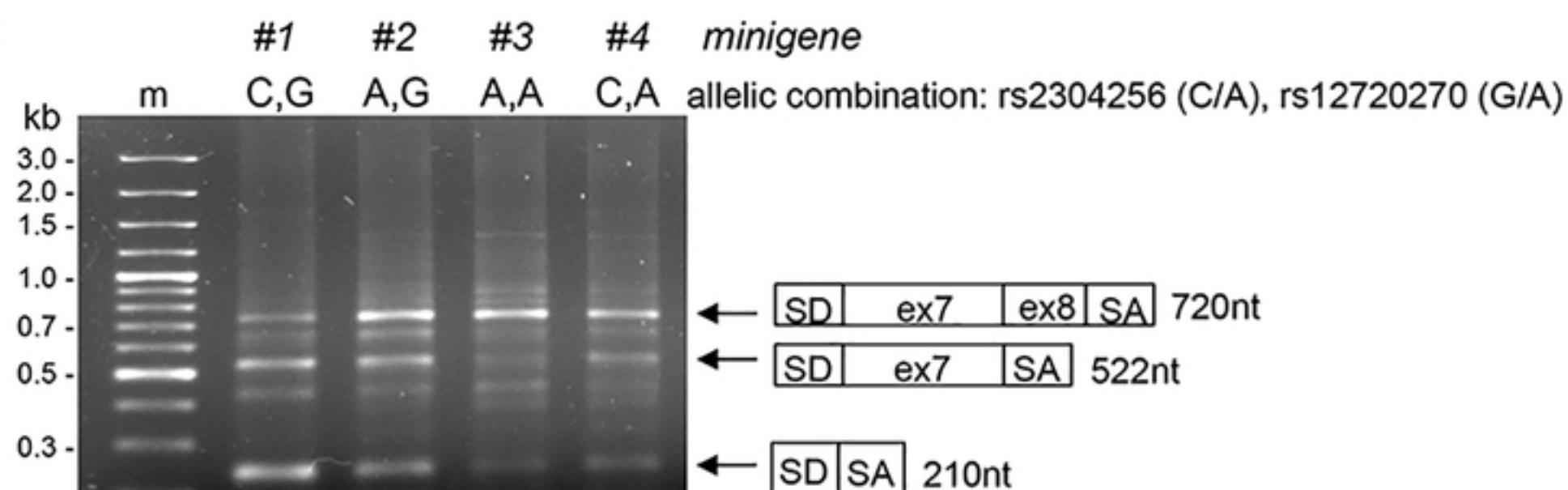


A**B**


bioRxiv preprint doi: <https://doi.org/10.1101/830232>; this version posted November 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

C**Fig 1****Fig 1**


A**B**

bioRxiv preprint doi: <https://doi.org/10.1101/830232>; this version posted November 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


C**Fig 2**

A**B**

rs12720270

bioRxiv preprint doi: <https://doi.org/10.1101/830232>; this version posted November 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

rs2304256
(V362F)**C****D**

293T clones

Figure 3

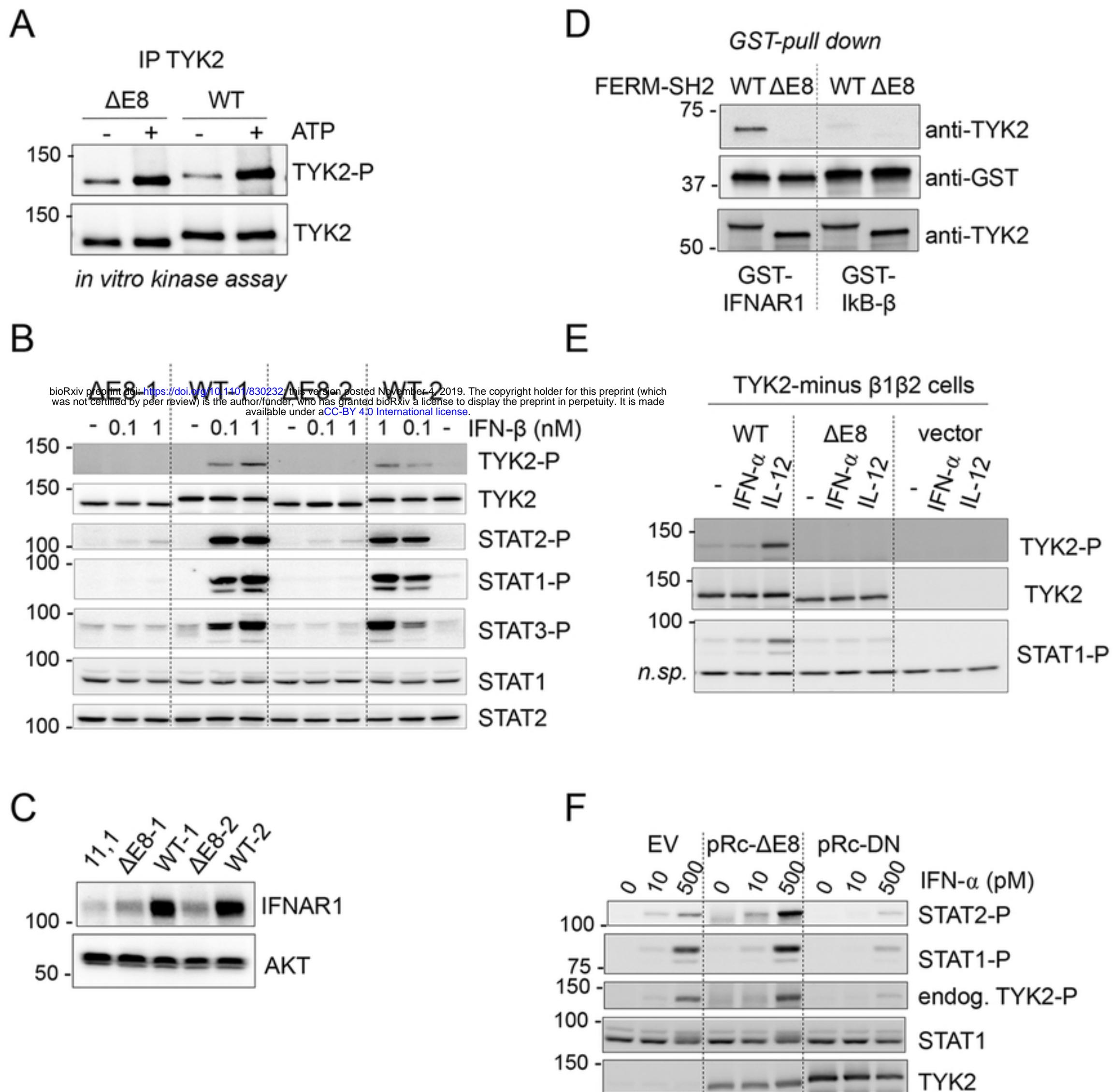
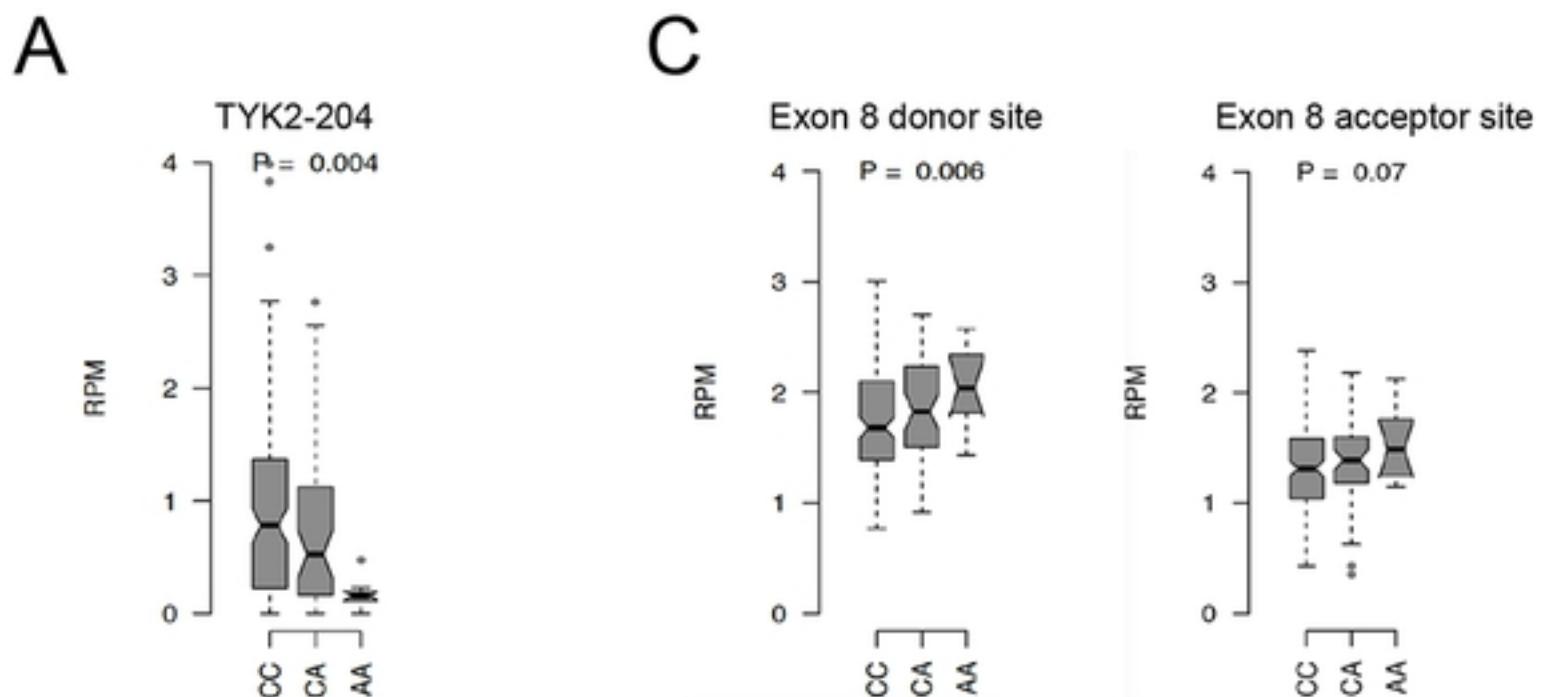



Fig 4

bioRxiv preprint doi: <https://doi.org/10.1101/830232>; this version posted November 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

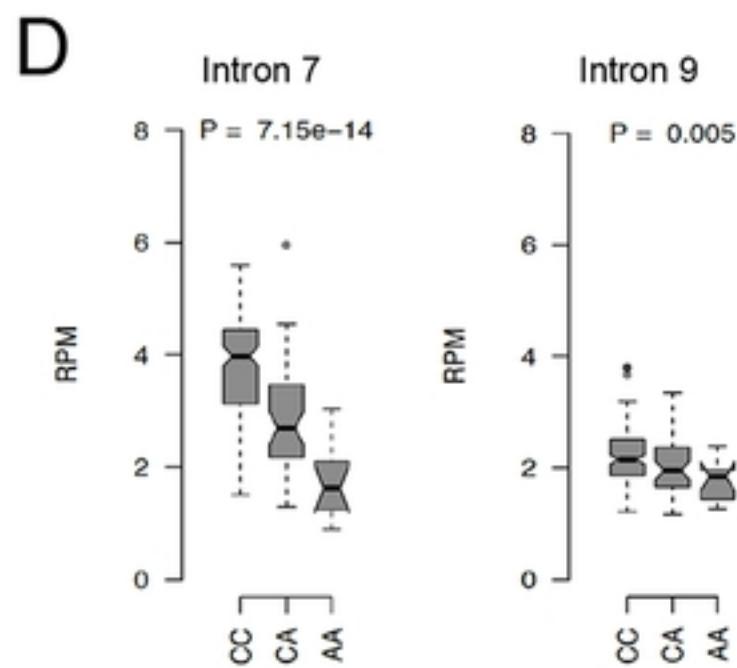
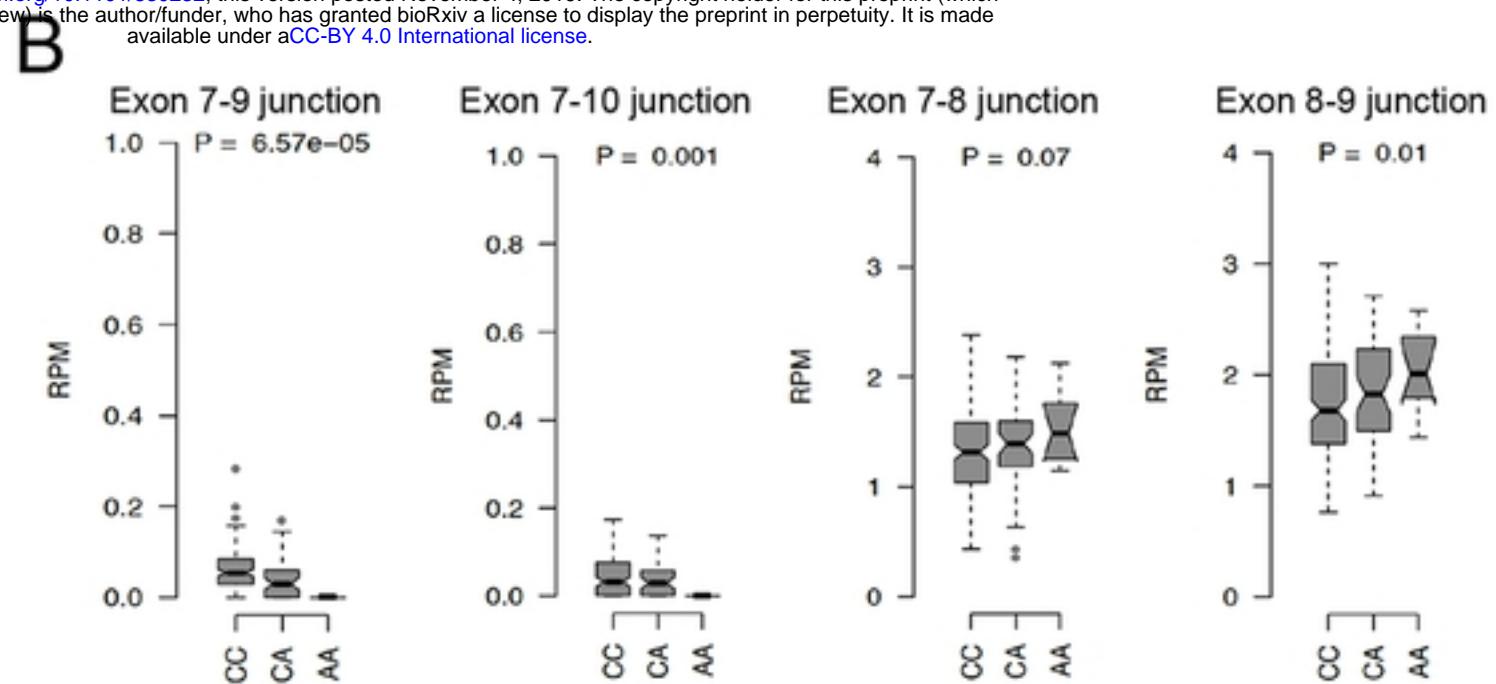
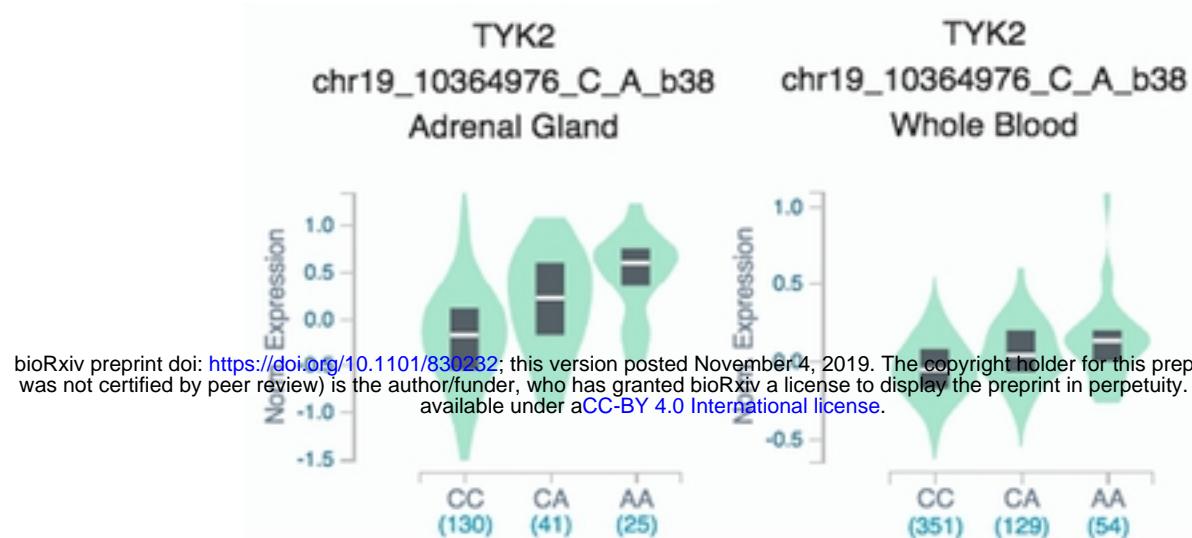




Fig 5

A

B

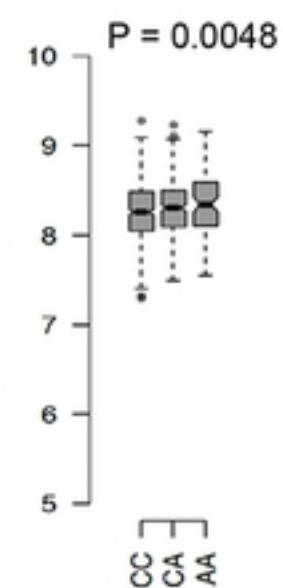


Fig 6

Fig 6