

1 **Immediate activation of chemosensory neuron gene expression by bacterial metabolites is**
2 **selectively induced by distinct cyclic GMP-dependent pathways in *C. elegans***

3

4 Jaeseok Park^{1,2}, Joshua D Meisel^{2,†}, Dennis H Kim^{1,*}

5

6 ¹*Division of Infectious Diseases, Boston Children's Hospital, and Department of Pediatrics,*
7 *Harvard Medical School, Boston, MA 02115, USA*

8 ²*Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA*

9

10 [†]Current address: Department of Molecular Biology, Massachusetts General Hospital, Boston
11 MA 02114, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA

12 *Corresponding author: dennis.kim@childrens.harvard.edu

14 **Abstract**

15 Dynamic gene expression in neurons shapes fundamental processes of the nervous systems of
16 animals. But how different stimuli that activate the same neuron can lead to distinct
17 transcriptional responses remains unclear. We have been studying how microbial metabolites
18 modulate gene expression in chemosensory neurons of *Caenorhabditis elegans*. Considering the
19 diverse environmental stimuli that can activate chemosensory neurons of *C. elegans*, we have
20 sought to understand how specific transcriptional responses can be generated in these neurons in
21 response to distinct cues. We have focused on the mechanism of rapid (<6 min) and selective
22 transcriptional induction of *daf-7*, a gene encoding a TGF- β ligand that promotes bacterial lawn
23 avoidance, in the ASJ chemosensory neurons in response to the pathogenic bacterium
24 *Pseudomonas aeruginosa*. Here, we define the involvement of two distinct cyclic GMP (cGMP)-
25 dependent pathways that are required for *daf-7* expression in the ASJ neuron pair in response to
26 *P. aeruginosa*. We show that a calcium-independent pathway dependent on the cGMP-dependent
27 protein kinase G (PKG) EGL-4, and a canonical calcium-dependent signaling pathway
28 dependent on the activity of a cyclic nucleotide-gated channel subunit CNG-2, function in
29 parallel to activate rapid, selective transcription of *daf-7* in response to *P. aeruginosa*
30 metabolites. Our data suggest a requirement for PKG in promoting the fast, selective early
31 transcription of neuronal genes in shaping responses to distinct microbial stimuli in a pair of
32 chemosensory neurons of *C. elegans*.

33

34

35 **Author Summary**

36 The nervous systems of animals carry out the crucial roles of sensing and interpreting the
37 external environment. When the free-living microscopic roundworm *C. elegans* is exposed to the
38 pathogenic bacteria *Pseudomonas aeruginosa*, sensory neurons detect metabolites produced by
39 the pathogen and induce expression of the gene for a neuroendocrine ligand called DAF-7. In
40 turn, activity of DAF-7 is required for the full avoidance response to the *P. aeruginosa*, allowing
41 the animals to reduce bacterial load and survive longer. Here, we systematically dissect the
42 molecular pathway between the sensation of *P. aeruginosa* metabolites and the expression of
43 *daf-7* in a pair of *C. elegans* sensory neurons. We show that the intracellular signaling molecule
44 cyclic GMP is a key signaling intermediate. In addition, we show that there are calcium-
45 dependent and calcium-independent pathways that are both required to engage *daf-7* expression,
46 highlighting an organizational principle that allows neurons to distinguish between various
47 stimuli.

48

49 **Introduction**

50 Chemosensory systems of animals transduce external chemical stimuli into neuronal signals,
51 with diverse roles in animal physiology (1–3). A challenge for chemosensory systems is to detect
52 and process a wide diversity of environmental information to generate corresponding appropriate
53 neuronal and behavioral responses. Whereas neurons utilize electrical impulses in rapid data
54 transmission, changes in gene expression serve as a mechanism for transducing information over
55 a longer time scale. Activity-dependent transcription of immediate-early genes has been shown
56 to involve the activation of calcium-dependent signal transduction converging on CREB (4). Our
57 group's recent work has focused on understanding how changes in gene expression in
58 chemosensory neurons of *C. elegans* can be modulated by interactions with its microbial
59 environment (5,6).

60

61 Interactions with microbes, in a number of forms such as parasitism, symbiosis, predation, and
62 exploitation, have shaped the evolution of animals. There has been an increasing appreciation for
63 the role of the nervous system in recognizing and responding to microbes in the environment.
64 Disgust, for example in response to rotting food, elicits avoidance behavior (7). At the cellular
65 level, examples include host nociceptive neurons that have been shown to respond to microbial
66 toxins to regulate immune responses (8), and chemosensory tuft cells, which have recently been
67 found to sense the gut environment using canonical G-protein pathways to mediate appropriate
68 immune responses (9–11).

69

70 The nematode *C. elegans* is usually found in rotting organic material, a complex environment in
71 which the animal has to navigate between bacterial food, pathogens, predators, competitors, and

72 parasites (12). With an expanded family of chemoreceptor genes in its genome and a limited set
73 of chemosensory neurons that function to regulate diverse aspects of animal physiology, the
74 chemosensory system of *C. elegans* enables navigation and ultimately survival in its
75 predominantly microbial natural environment (13). We investigated how the behavior of *C.*
76 *elegans* is modulated by pathogenic bacteria, specifically *Pseudomonas aeruginosa*, a
77 devastating opportunistic pathogen of humans that is commonly found in soil and water and can
78 also kill *C. elegans* (14).

79

80 We recently showed that the detection of virulence-associated secondary metabolites produced
81 by *P. aeruginosa* can alter the neuronal expression pattern of *daf-7*, encoding a TGF- β ligand
82 that regulates diverse aspects of *C. elegans* physiology (6). Specifically, whereas *daf-7* was
83 previously known to be only expressed in the ASI head chemosensory neurons, we showed that
84 exposure to *P. aeruginosa* causes the rapid (within six minutes) accumulation of *daf-7* mRNA in
85 the ASJ sensory neurons (6). We also showed that exposure to the *P. aeruginosa* secondary
86 metabolite phenazine-1-carboxamide induced an increase in calcium in the ASJ neurons.
87 Considering that abiotic stimuli have previously been shown to increase calcium levels in the
88 ASJ neurons (15–17), whereas induction of *daf-7* expression in the ASJ neurons is highly
89 selective for *P. aeruginosa* metabolites, we sought to define the molecular determinants of the
90 selective transcription of *daf-7* in the ASJ neurons in response to *P. aeruginosa*.

91

92 Here, we have taken a genetic approach to identify and characterize the signal transduction
93 pathways in the ASJ neurons that couple the sensing of *P. aeruginosa* metabolites to the
94 induction of *daf-7* transcription. We define distinct, parallel calcium-independent and canonical

95 calcium-dependent pathways, each of which are dependent on cGMP signaling, which converge
96 to selectively activate *daf-7* expression in the ASJ neurons in response to *P. aeruginosa*
97 metabolites.

98

99 **Results**

100 **The cyclic nucleotide-gated channel CNG-2 is required for *daf-7* expression in the ASJ
101 neurons in response to *P. aeruginosa*.**

102 We previously described the characterization of mutants defective in the induction of *daf-7*
103 expression in the ASJ neurons in response to *P. aeruginosa*: *gpa-2* and *gpa-3*, each encoding G
104 protein alpha subunits; *tax-2* and *tax-4*, encoding components of a cyclic nucleotide-gated
105 channel; and *daf-11*, encoding a receptor guanylate cyclase (6). These data were suggestive of a
106 chemosensory signal transduction cascade that functions in the induction of *daf-7* expression in
107 the ASJ neurons in response to *P. aeruginosa* metabolites.

108 We carried out further characterization of mutants isolated from a forward genetic screen that are
109 defective in the induction of a *Pdaf-7::gfp* reporter transgene in the ASJ neurons in response to
110 *P. aeruginosa*. We isolated an allele of *cng-2(qd254)* that has a splice-site mutation predicted to
111 cause a frame-shift, rendering the protein non-functional. This mutant showed no expression of
112 *Pdaf-7::gfp* in the ASJ neurons in the presence of *P. aeruginosa*, which we further confirmed
113 with additional putative null alleles of *cng-2*: *tm4267*, *qd386* and *qd387* (Figure 1A-E, J). Unlike
114 *tax-2* and *tax-4* mutants, *cng-2* animals did not differ from wild type in *Pdaf-7::gfp* expression in
115 the ASI neurons (Figure 1A-E; Figure 1 – supplement 1A). Expression of *cng-2* cDNA
116 specifically in the ASJ neurons using the ASJ specific promoter *trx-1* was sufficient to rescue the
117

118 *Pdaf-7::gfp* expression in the ASJ neurons (Figure 1F, G, J), suggestive that CNG-2 functions in
119 a cell-autonomous manner in the ASJ neurons to mediate *daf-7* upregulation in response to
120 *Pseudomonas* infection.

121

122 We previously showed that exposure to the *P. aeruginosa* secondary metabolite, phenazine-1-
123 carboxamide (PCN), results not only in the induction of *daf-7* expression in the ASJ neuron pair,
124 but also in a rapid increase of calcium levels in the ASJ neurons (6). The molecular identity of
125 CNG-2 and relevant literature on the chemosensory apparatus in the ASJ neurons (13) led us to
126 test whether CNG-2 might be an integral part of the cation channel that is responsible for the
127 observed calcium influx. We observed that the influx of calcium ions in the ASJ neurons that is
128 observed upon exposure of wild-type animals to the *P. aeruginosa* metabolite phenazine-1-
129 carboxamide was abrogated in *cng-2* animals (Figure 1M, N).

130

131 We next examined mutants carrying mutations in the genes *cmk-1*, the *C. elegans* homolog of
132 calcium/calmodulin-dependent kinase CaMKI/IV, and *crh-1*, the *C. elegans* homolog of the
133 transcription factor CREB, and we observed that both genes are required for *daf-7* expression in
134 the ASJ neurons (Figure 1H, I, K, L). We note that both *cmk-1* and *crh-1* mutants also showed
135 minimal expression of *daf-7* in the ASI neurons (Figure 1H, I, K, L), raising the possibility of
136 additional pleiotropic effects on the development and/or physiology of the nervous systems of
137 these mutants. Nevertheless, expressing *crh-1* cDNA in only the ASJ neurons was able to rescue
138 *daf-7* expression in *crh-1* mutants (Figure 1-supplement 1B), indicating CRH-1 is likely to
139 function cell-autonomously in the ASJ neurons to regulate *daf-7* expression in response to *P.*
140 *aeruginosa*. These data implicate a canonical calcium-dependent signaling pathway downstream

141 of CNG-2 that converges on CRH-1 to activate *daf-7* expression in response to phenazine-1-
142 carboxamide.

143

144 **cGMP-dependent signal transduction activates *daf-7* expression in the ASJ neurons**

145 The requirements for components of a cyclic nucleotide-gated channel, CNG-2/TAX-2/TAX-4,
146 and DAF-11, a guanylate cyclase, in the induction of *Pdaf-7::gfp* expression in response to *P.*
147 *aeruginosa* metabolites suggested the involvement of cGMP-dependent signaling. We
148 demonstrated that mutations in the *gcy-12* gene, encoding another guanylate cyclase subunit, also
149 caused markedly reduced *Pdaf-7::gfp* expression in the ASJ neurons in response to *P.*
150 *aeruginosa*, but did not abolish *Pdaf-7::gfp* expression in the ASI neuron pair as was observed
151 for the *daf-11* mutant (Figure 2A and data not shown). In addition, we observed that expression
152 of the *gcy-12* cDNA specifically in the ASJ neurons rescued the induction of *Pdaf-7::gfp*
153 expression in the ASJ neurons in response to *P. aeruginosa* (Figure 2A).

154

155 In order to investigate further the involvement of cGMP-dependent signaling in the induction of
156 *daf-7* expression in the ASJ neurons, we examined the four *C. elegans* genes encoding
157 phosphodiesterases (PDEs) that are predicted to cleave cGMP: PDE-1, PDE-2, PDE-3, and PDE-
158 5 (18). We observed that loss-of-function of all four PDEs resulted in the induction of *Pdaf-7::gfp*
159 expression in the ASJ neurons even in the absence of *P. aeruginosa*. Mutations in only a
160 subset of the genes encoding PDEs conferred a considerably weaker expression of *Pdaf-7::gfp*
161 (Figure 2B), suggestive that the PDEs function redundantly in the ASJ neurons. We also
162 examined the effect of addition of a cell-permeable, non-hydrolysable analog of cGMP, pCPT-

163 cGMP, to wild-type animals in the absence of *P. aeruginosa*, and we observed the marked
164 induction of expression of *daf-7* in the ASJ neurons (Figure 2C).

165

166 **The cGMP-dependent protein kinase G EGL-4 upregulates *daf-7* expression in ASJ**
167 **neurons in response to *P. aeruginosa***

168 The involvement of cGMP- and calcium-dependent signaling support a role for canonical
169 activity-dependent signaling pathways in the induction of *daf-7* expression in response to *P.*
170 *aeruginosa* metabolites. However, prior studies have shown that multiple stimuli including low
171 pH, *E. coli* supernatant, sodium chloride, temperature changes, and even water can cause calcium
172 influx in the ASJ neurons without the robust upregulation of *daf-7* observed in the presence of *P.*
173 *aeruginosa* (15–17). We sought to define additional, calcium-independent mechanisms that
174 might be involved in the selective transcriptional response to *P. aeruginosa* metabolites.

175

176 The dependence of *daf-7* expression in the ASJ neurons on cGMP led us to consider the
177 involvement of the cGMP-dependent protein kinase G (PKG), EGL-4. EGL-4 has been
178 implicated in various phenotypes including egg-laying behavior, chemosensory behavior, sleep-
179 like state, satiety signaling, and aversive learning behaviors (19–29). We observed that
180 presumptive loss-of-function *egl-4(n478)* and *egl-4(n479)* mutants exhibited a lack of *Pdaf-*
181 *7::gfp* expression in the ASJ neurons in response to *P. aeruginosa* (Figure 3A-C, E). Expression
182 of *egl-4* cDNA in the ASJ neurons was sufficient to rescue *daf-7* expression on *P. aeruginosa*
183 (Figure 3D, E). A gain-of-function allele, *egl-4(ad450)*, exhibited detectable expression of *daf-7*
184 expression in the ASJ neurons even in the absence of *P. aeruginosa* (Figure 4A). In order to
185 examine whether EGL-4 functioned in a calcium-dependent or calcium-independent manner, we

186 examined how *egl-4* loss-of-function affected the influx of calcium into the ASJ neurons
187 observed upon exposure to phenazine-1-carboxamide. We found that unlike *cng-2(tm4267)*
188 mutants, *egl-4(n479)* mutants showed a wild-type calcium level increase in ASJ neurons upon
189 exposure to phenazine-1-carboxamide (Figure 3F, G).

190

191 PKGs have been reported to function in the nucleus to mediate gene expression in some cases
192 (20,30). To investigate the possibility that EGL-4 functions in the nucleus to mediate its effects
193 in ASJ neurons to regulate *daf-7* expression, we expressed mCherry::EGL-4 with an additional
194 nuclear localization sequence (NLS) at the N-terminus, resulting in an EGL-4-derived transgene
195 that was localized to the nucleus (Figure 3H, I). We observed that expression of this nuclear
196 EGL-4 construct rescued the *daf-7* expression defect in the ASJ neurons (Figure 3J). These data
197 are consistent with a role for EGL-4 in the nucleus to regulate *daf-7* transcription in the ASJ
198 neurons in response to *P. aeruginosa*.

199

200 To better define the respective roles and interaction between *cng-2* and *egl-4*, we again utilized
201 the gain-of-function allele of *egl-4*, *ad450*. In the *egl-4(ad450) cng-2(qd254)* double mutant, the
202 expression we observed in the *egl-4(ad450)* mutant was abolished (Figure 4A), which suggested
203 that basal CNG-2-dependent calcium-dependent signaling in the absence of *P. aeruginosa* is
204 required for the observed *daf-7* expression. We further sought to gain clarity regarding the
205 pathway involving *cng-2* and *egl-4* by seeing how each of the mutants might change their *daf-7*
206 expression in response to the addition of pCPT-cGMP. We first tested mutants of the
207 heterotrimeric G-protein *gpa-2(pk16)* and *gpa-3(pk35)*. These proteins are thought to act in the
208 initial steps of the chemosensory cascade by associating with the presumptive receptor for *P.*

209 *aeruginosa* metabolites, and we have previously shown that the *gpa-2 gpa-3* double mutant is
210 defective in *daf-7* transcription in response to *P. aeruginosa* (6). Consistent with this prediction,
211 adding pCPT-cGMP to *gpa-2 gpa-3* double mutants elicited the same induction of *Pdaf-7::gfp*
212 expression in the ASJ neurons as observed in wild-type animals (Figure 4B). However, when
213 pCPT-cGMP was added to *cng-2* and *egl-4* mutants, the response was markedly attenuated or
214 absent (Figure 4C), consistent with roles for CNG-2 and EGL-4 functioning downstream of and
215 dependent on a cGMP signal in the induction of *daf-7* expression in the ASJ neuron pair in
216 response to *P. aeruginosa* metabolites.

217

218 **Discussion**

219 The neuroendocrine TGF-beta ligand, DAF-7, is rapidly transcribed in the ASJ neurons upon
220 exposure to *P. aeruginosa* metabolites (6). In this study, we have identified and characterized
221 several mutants that define the signaling mechanisms coupling the sensing of *P. aeruginosa*
222 metabolites to the induction of *daf-7* expression in the ASJ neuron pair. The identification of
223 cGMP-dependent signaling proteins, CNG-2 and EGL-4, pointed to a pivotal role for cGMP.
224 This was further corroborated by the involvement of guanylate cyclases, GCY-12 and DAF-11,
225 the effect of inactivating multiple redundant phosphodiesterases acting on cGMP, and chemical
226 induction of *Pdaf-7::gfp* expression in the ASJ neurons using pCPT-cGMP. Our data suggest a
227 model for the sequence of cellular signaling events that are initiated by the detection of *P.*
228 *aeruginosa* metabolites and result in the rapid induction of *daf-7* expression (Figure 5). In
229 particular, cGMP-dependent signaling through CNG-2 activates a canonical calcium-dependent
230 signaling pathway that likely activates CREB. In parallel, cGMP-dependent signaling activates
231 EGL-4, which functions in the nucleus in concert with calcium-dependent signaling converging

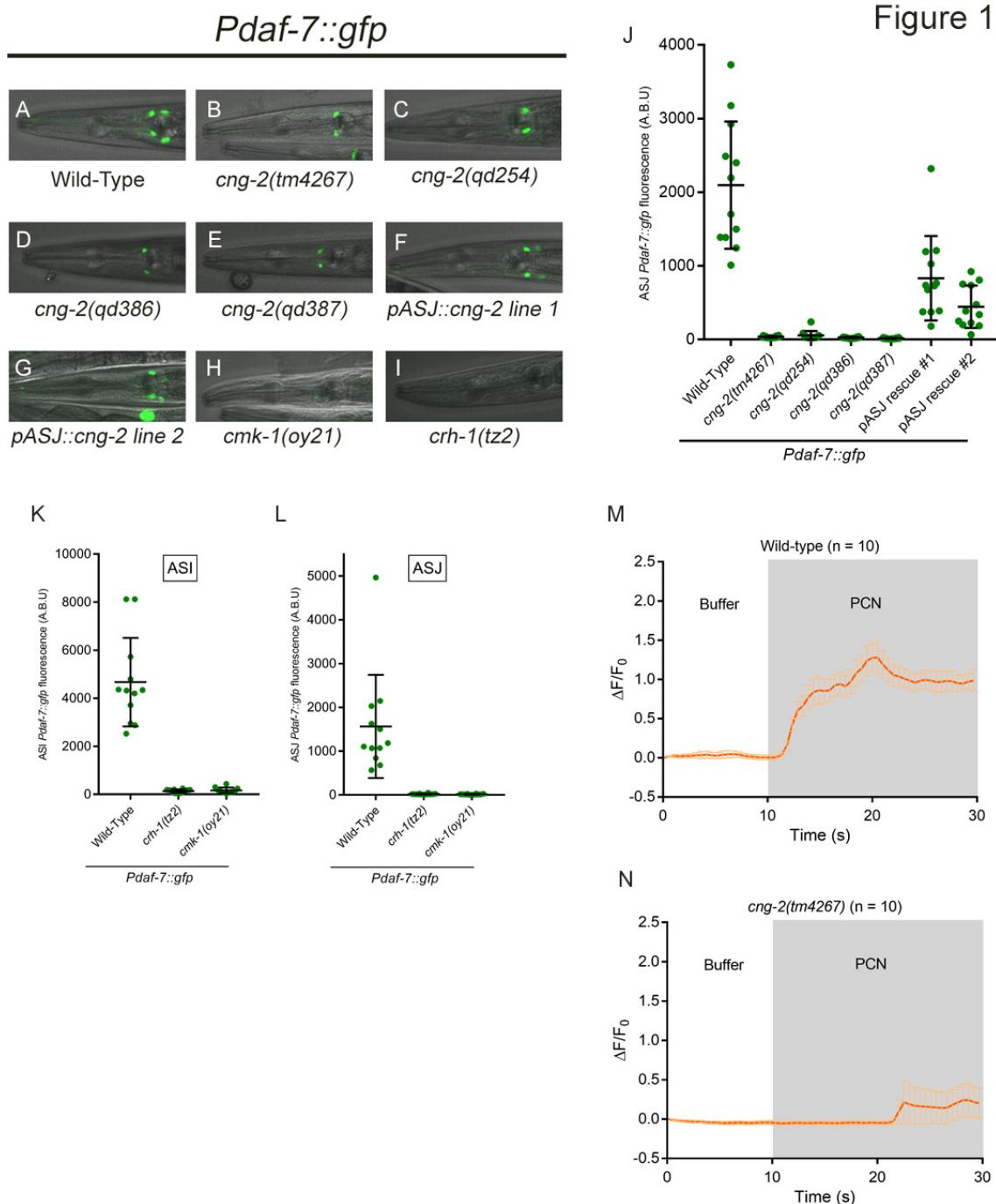
232 on CREB. Both pathways are required for the full activation of *daf-7*, as inactivation of either
233 pathways alone resulted in the inability to robustly upregulate *daf-7*.

234

235 TAX-2, TAX-4, and CNG-2 are subunits for the hetrotetrameric cyclic nucleotide-gated channel,
236 and DAF-11 and GCY-12 are subunits for the dimeric guanylyl cyclase. In *tax-2*, *tax-4*, and *daf-*
237 *11* mutants, *daf-7* expression is lost in both the ASI and ASJ neurons. In contrast, *daf-7*
238 expression in ASI neurons of *cng-2* and *gcy-12* mutants is relatively intact, even as *daf-7*
239 expression in ASJ neurons is lost, suggestive of more ASJ-specific roles for CNG-2 and GCY-
240 12. Neuron-specific activities of CNG-2 and GCY-12 may confer distinct biochemical properties
241 to the CNG channels and guanylyl cyclases in different neurons. Such organization would be
242 consistent with what is seen in other organisms: for example, the CNG channels in the rods and
243 cones of the mammalian retina have different subunit compositions and thus have different
244 biochemical properties differentially optimized for the functions of each cell type (31).

245

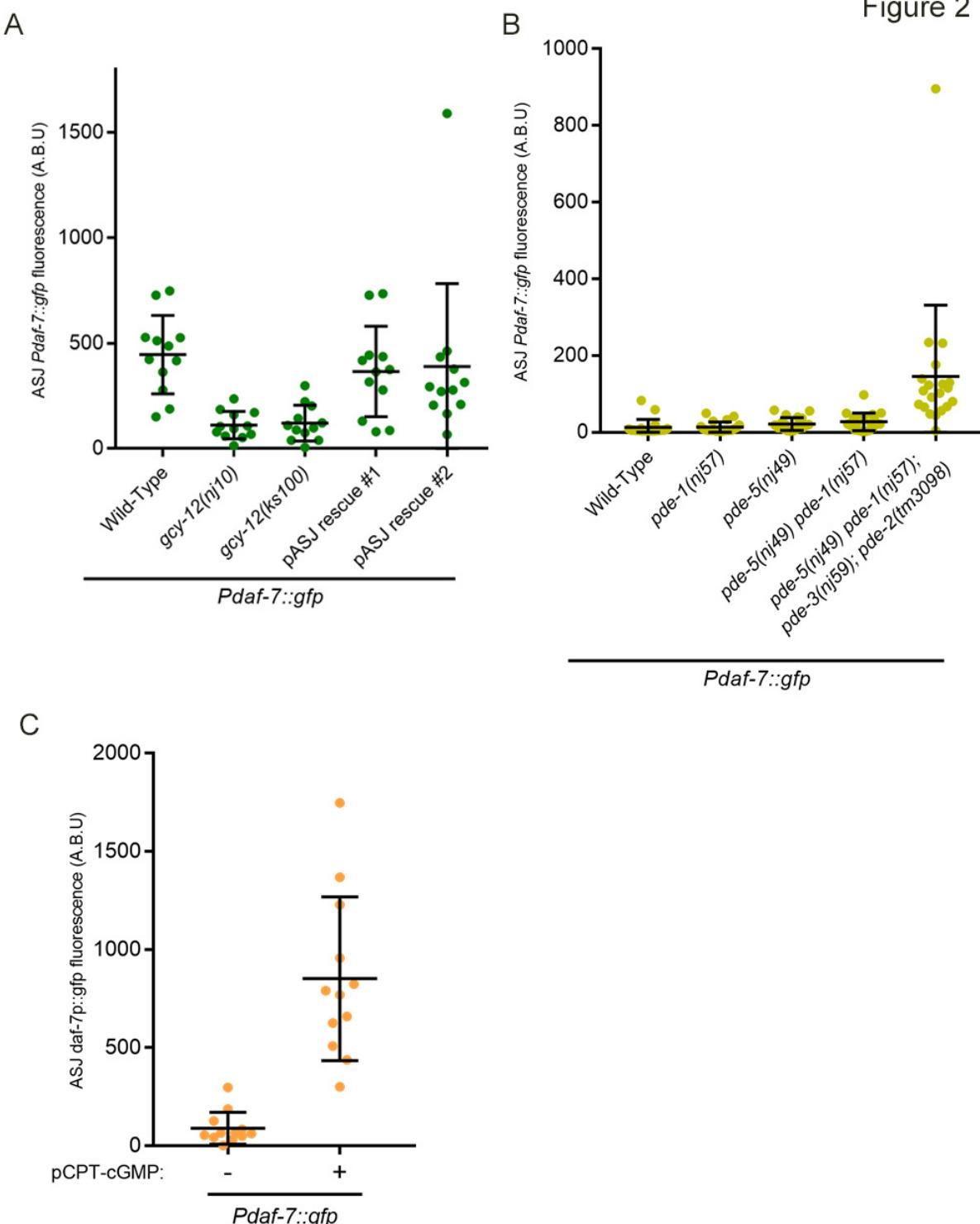
246 Our data point to a key role for calcium-independent signaling through EGL-4 in the selective
247 transcriptional activation of *daf-7* in ASJ neurons. Various external stimuli have been shown to
248 activate ASJ neurons as measured by calcium level changes, such as low pH, salt, and *E. coli*
249 supernatant (17), whereas the robust expression of *daf-7* in the ASJ neurons is activated
250 selectively by *P. aeruginosa*. Loss-of-function *egl-4* mutants are unable to induce *daf-7* in ASJ
251 neurons on *P. aeruginosa* (Figure 3E), and the *daf-7* transcriptional response to the cGMP analog
252 pCPT-cGMP is severely compromised (Figure 4C), underlining the requirement of EGL-4 in
253 *daf-7* expression. Moreover, *egl-4* mutants have wild-type calcium influx in the ASJ neurons
254 when exposed to phenazine-1-carboxamide, implying the necessity, but not sufficiency of


255 calcium influx in the induction of *daf-7* expression in the ASJ neurons in response to *P.*
256 *aeruginosa*. Thus, EGL-4 and activation and calcium influx seem to work together to regulate
257 *daf-7* expression. Calcium and cGMP have been known to work collaboratively to regulate
258 immediate early gene expression in various neuron types (32–35). However, our data uniquely
259 demonstrates a key role for cGMP-dependent signaling functioning in concert with canonical
260 calcium-dependent signaling pathways in a pair of primary sensory neurons, activated by
261 physiological environmental ligands.

262

263 *C. elegans* is anatomically restricted in its neuronal system, with only 302 neurons to carry out
264 sensation, data processing, and motor output all at once. Such constraints dictate that unlike
265 mammalian olfactory neurons, *C. elegans* chemosensory neurons may have to process multiple
266 types of stimuli in a single neuron, while retaining the ability to distinguish between them. The
267 ASJ neurons routinely use calcium-dependent signaling to mediate signal transduction to a wide
268 variety of stimuli, but our data suggest that select stimuli such as secondary pathogen metabolites
269 can be distinguished and linked to gene transcription by engaging calcium-independent PKGs in
270 addition to calcium-dependent signals (Figure 5). Whereas how PKGs can be activated
271 selectively in response to different stimuli remains to be explored further, our data provide an
272 indication of how transcriptional responses in sensory neurons of *C. elegans* may be gated
273 through distinct signal transduction pathways to result in selective changes in gene expression to
274 promote adaptive behaviors.

275

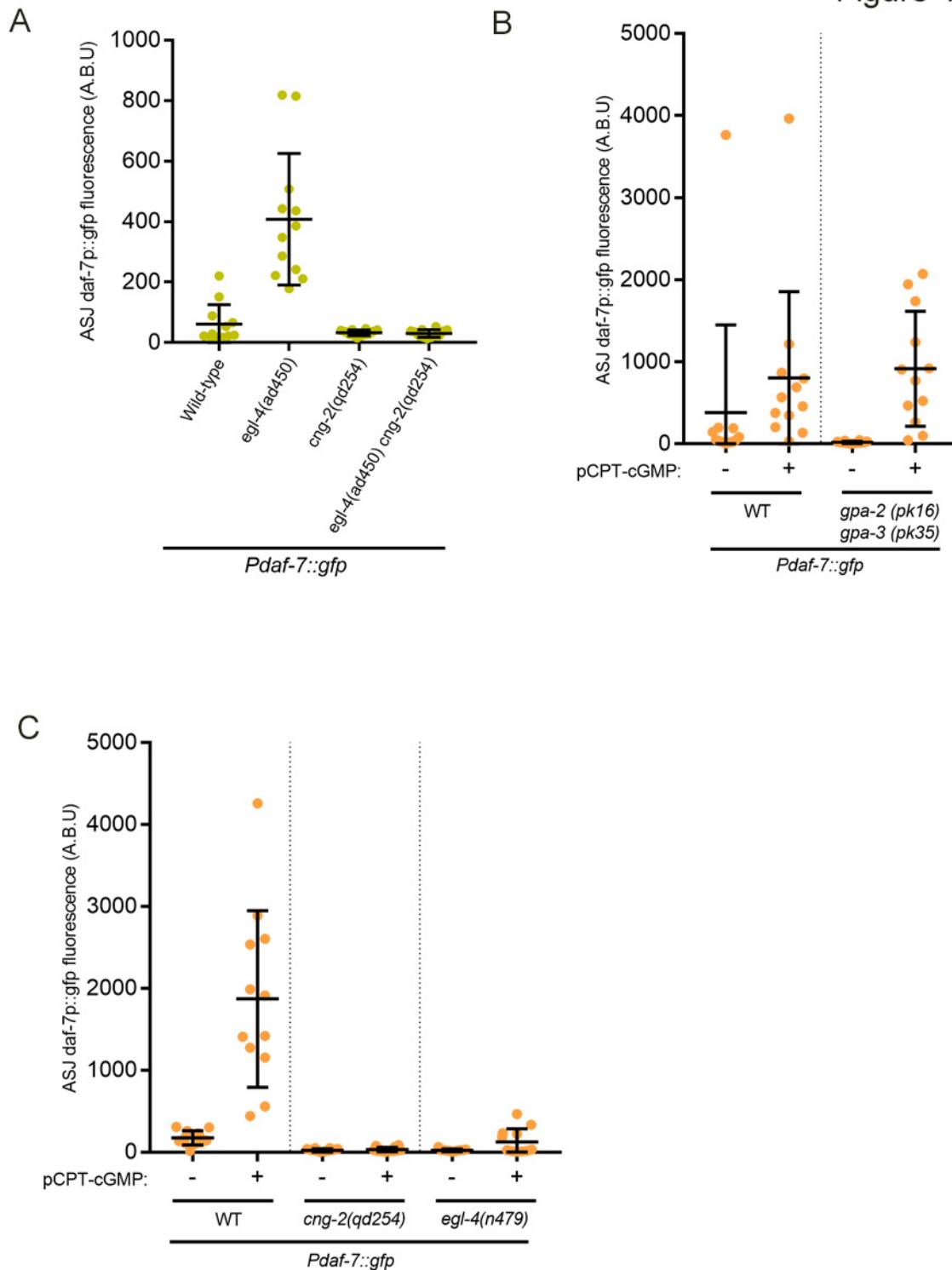

276

277

278 **Figure 1. CNG-2 activates *daf-7* induction upon *P. aeruginosa* exposure in a calcium-dependent manner.** All
 279 error bars indicate standard deviation. (A-I) *Pdaf-7::gfp* expression after exposure to *P. aeruginosa* for various
 280 genotypes. (J) Maximum fluorescence values of *Pdaf-7::gfp* in ASJ neurons in various *cng-2* mutant backgrounds
 281 following *P. aeruginosa* exposure. (K-L) Maximum fluorescence values of *Pdaf-7::gfp* in ASI and ASJ neurons in
 282 *crh-1* and *cmk-1* mutants following *P. aeruginosa* exposure. (M-N) GCaMP5 fluorescence change in the ASJ
 283 neurons of wild-type or *cng-2* mutant when exposed to buffer (DMSO) followed by 80 μ g/ml phenazine-1-
 284 carboxamide (PCN).

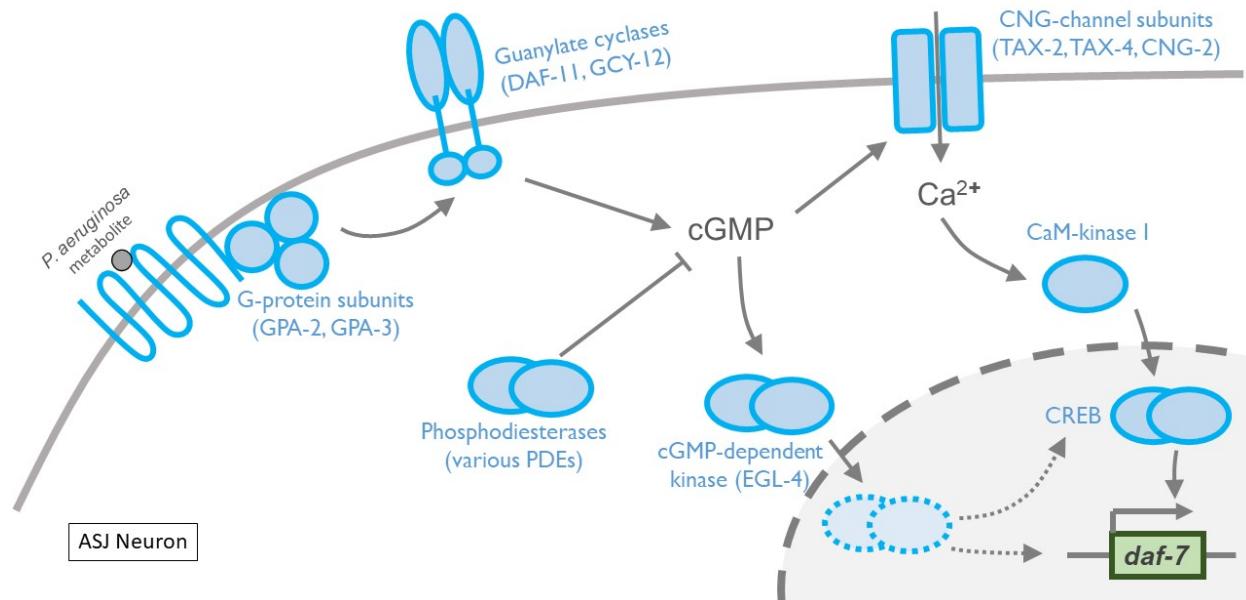
Figure 2

285
286
287
288
289
290
291


Figure 2. cGMP is sufficient for the induction of *daf-7* in the ASJ neurons. All error bars indicate standard deviation. (A) Maximum fluorescence values of *Pdaf-7::gfp* in ASJ neurons in various *gcy-12* mutant backgrounds following *P. aeruginosa* exposure. (B) Maximum fluorescence values of *Pdaf-7::gfp* in ASJ neurons of various phosphodiesterase (PDE) mutants. Animals were maintained on the *E. coli* strain OP50. (C) Maximum fluorescence values of *Pdaf-7::gfp* in ASJ neurons after exposure to 5 mM pCPT-cGMP. Animals were maintained on the *E. coli* strain OP50.

292

293 **Figure 3. *egl-4* mutants show defects in *daf-7* induction on *P. aeruginosa*.** All error bars indicate standard
 294 deviation. (A-D) *Pdaf-7::gfp* expression after exposure to *P. aeruginosa* for various *egl-4* backgrounds. (E)
 295 Maximum fluorescence values of *Pdaf-7::gfp* in ASJ neurons in various *egl-4* mutant backgrounds following *P.*
 296 *aeruginosa* exposure. (F-G) GCaMP5 fluorescence change in the ASJ neurons when exposed to buffer (DMSO)
 297 followed by 66 μ g/ml phenazine-1-carboxamide (PCN) in wild-type or *egl-4* mutants. (H-I) NLS-mCherry-EGL-4
 298 proteins are localized to the nucleus. GFP is observed throughout the ASJ neurons, outlining the cells. (J) Maximum
 299 fluorescence values of *Pdaf-7::gfp* in ASJ neurons in *egl-4(n479)* mutants containing the NLS-mCherry-EGL-4
 300 constructs. Imaging followed exposure to *P. aeruginosa*. Sibling populations with or without the construct were
 301 compared in each line.


Figure 4

303
304
305
306
307
308

Figure 4. EGL-4 and CNG-2 work concurrently in parallel pathways downstream of cGMP to induce *daf-7*.

All error bars indicate standard deviation. (A) Epistasis analysis using *cng-2*(loss-of-function) and *egl-4*(gain-of-function) alleles. Animals were maintained on the *E. coli* strain OP50. (B-C) Maximum fluorescence values of *Pdaf-7::gfp* in ASJ neurons of various mutants following exposure to 5mM pCPT-cGMP. Animals were maintained on the *E. coli* strain OP50.

309

310 **Figure 5. Fast transcription of *daf-7* is selectively induced by activation of calcium-dependent and calcium-
311 independent pathways in ASJ neurons.** A schematic describing the current model for the sensory transduction
312 pathway in the ASJ neurons resulting in fast neuronal gene transcription in response to *P. aeruginosa* metabolite
313 phenazine-1-carboxamide (PCN). The model highlights the role of canonical signal transduction pathway molecules
314 as well the added role of the cGMP-dependent kinase EGL-4 as one of the two parallel pathways required for the
315 induction of *daf-7*. Note that the activation of both pathways are required for the full induction of *daf-7*.
316

317 **Material and Methods**

318 ***C. elegans* Strains**

319 All animals were maintained and fed as previously described (36). The animals were incubated at 20°C unless any
320 of the strains were considered temperature-sensitive, in which case they were grown at 16°C. Please see
321 Supplementary Methods for a complete list of strains used in this study.

322 ***Pdaf-7::gfp* induction assays and quantification**

323 For experiments quantifying the level of *Pdaf-7::gfp* on the *Pseudomonas aeruginosa* strain PA14, bacteria was
324 cultured overnight in 3 mL LB broth at 37°C, and the following day 7 μ l was seeded onto 3.5cm slow-killing assay
325 (SKA) plates as described previously (14). The seeded plates were maintained at 37°C overnight and then
326 transferred to room temperature, where they were kept additional two days before experiments. To preemptively rid
327 animals of bacterial contamination, gravids were bleached to get a large amount of eggs. Animals were loaded onto
328 PA14 at stage L4 and then were kept at 25°C for 14-16 hours before quantification. For assays using pCPT-cGMP,
329 pCPT-cGMP was added to SKA plates in mixed DMSO and water, with the resulting concentration in plates to be 5
330 mM. Plates were left overnight for the chemical to diffuse. The next day, 5 μ l inoculate of *E. coli* strain OP50 was
331 seeded to the middle, and plates were kept in room temperature overnight before experiments commenced. Animals
332 were similarly egg-prepped for this condition as noted above. L4s were loaded onto the center of the SKA plates and
333 kept at 20°C for 17-20 hrs before quantification.

334 **Quantification of *Pdaf-7p::gfp* levels**

335 Animals were mounted on glass slides with agarose pads and anesthetized with 50 mM sodium azide. Animals were
336 imaged using a Zeiss Axioimager Z1. Quantification of GFP brightness was conducted with FIJI by obtaining
337 maximum fluorescence values within the ASJ, or ASI neurons. Y-axes are denoted by arbitrary brightness units
338 (A.B.U.).

339 **Generation of transgenic animals**

340 The *trx-1* promoter (1.1 kb) was amplified by PCR from genomic DNA (37), and *unc-54* 3' UTR was amplified
341 from Fire Vector pPD95.75. *cng-2* cDNA generously provided by P Sengupta, *gcy-12* cDNA by M. Fujiwara, *egl-4*
342 cDNA by N. D. L'Etoile, and *crh-1* cDNA by C. T. Murphy, were all respectively amplified by PCR. Finally, the
343 *trx-1* promoter, respective cDNAs, and the *unc-54* 3' UTR were cloned into plasmids using NEBuilder® HiFi DNA
344 Assembly (New England Biolabs, Ipswich, MA). The plasmids were microinjected at 40 - 50 ng/ μ l concentration,

345 along with *ofm-1p::gfp* as a co-injection marker at 30 - 40 ng/μl for ASJ specific expression. For generation of
346 strains with calcium indicators, amplified *trx-1* promoter was fused with GCaMP5G to express the indicator in ASJ
347 neurons only.

348 **Calcium imaging**

349 The animals were immobilized and exposed to soluble compound in a controlled manner using a microfluidics chip
350 as previously described (38). Imaging was carried out at 40x with a Zeiss Axiovert S100 inverted microscope
351 equipped with an Andor iXon EMCCD camera. Stimulus was given at noted concentrations. Phenazine-1-
352 carboxamide was obtained from Princeton BioMolecular Research (Princeton, NJ). Data analysis was done with a
353 custom MATLAB script written by Nikhil Bhatla.

354

355 **Acknowledgements**

356 We thank members of the Kim lab, members of the Horvitz lab, and Yun Zhang for advice and discussions. We
357 thank Na An and H. Robert Horvitz, Manabi Fujiwara, Noelle D. L'Etoile, Coleen T. Murphy, and Piali Sengupta
358 for strains and reagents. We thank the *Caenorhabditis* Genetics Center (supported by National Institutes of Health -
359 Office of Research Infrastructure Programs, P40 OD010440) and the National BioResource Project for providing
360 strains. We thank Kurt Broderick at MIT Microsystems Technology Laboratories for assistance with microfluidics
361 chip fabrication. This work was supported by National Institutes of Health grant GM084477 (to D.H.K).

362

363 **References**

- 364 1. Hildebrand JG, Shepherd GM. Mechanisms of olfactory discrimination: converging
365 evidence for common principles across phyla. *Annu Rev Neurosci.* 1997;20:595–631.
- 366 2. Yarmolinsky DA, Zuker CS, Ryba NJP. Common sense about taste: from mammals to
367 insects. *Cell.* 2009 Oct 16;139(2):234–44.
- 368 3. Yohe LR, Brand P. Evolutionary ecology of chemosensation and its role in sensory drive.
369 *Curr Zool.* 2018 Aug;64(4):525–33.
- 370 4. Flavell SW, Greenberg ME. Signaling mechanisms linking neuronal activity to gene
371 expression and plasticity of the nervous system. *Annu Rev Neurosci.* 2008;31:563–90.
- 372 5. Hilbert ZA, Kim DH. Sexually dimorphic control of gene expression in sensory neurons
373 regulates decision-making behavior in *C. elegans*. *Elife.* 2017 24;6.
- 374 6. Meisel JD, Panda O, Mahanti P, Schroeder FC, Kim DH. Chemosensation of bacterial
375 secondary metabolites modulates neuroendocrine signaling and behavior of *C. elegans*.
376 *Cell.* 2014;159(2):267–80.
- 377 7. Curtis V, Biran A. Dirt, disgust, and disease. Is hygiene in our genes? *Perspect Biol Med.*
378 2001;44(1):17–31.
- 379 8. Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F, Tran J, et al. Bacteria
380 activate sensory neurons that modulate pain and inflammation. *Nature.* 2013 Sep
381 5;501(7465):52–7.
- 382 9. Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, Dardalhon V, et al. Intestinal
383 epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. *Nature.* 2016 Jan
384 14;529(7585):226–30.
- 385 10. Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, et al. Tuft cells,
386 taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. *Science.* 2016
387 Mar 18;351(6279):1329–33.
- 388 11. von Moltke J, Ji M, Liang H-E, Locksley RM. Tuft-cell-derived IL-25 regulates an
389 intestinal ILC2-epithelial response circuit. *Nature.* 2016 Jan 14;529(7585):221–5.
- 390 12. Schulenburg H, Félix M-A. The Natural Biotic Environment of *Caenorhabditis elegans*.
391 *Genetics.* 2017;206(1):55–86.
- 392 13. Bargmann C. Chemosensation in *C. elegans*. *Wormbook.* 2006;1–29.
- 393 14. Tan MW, Mahajan-Miklos S, Ausubel FM. Killing of *Caenorhabditis elegans* by
394 *Pseudomonas aeruginosa* used to model mammalian bacterial pathogenesis. *Proc Natl Acad
395 Sci USA.* 1999 Jan 19;96(2):715–20.

396 15. Ohta A, Ujisawa T, Sonoda S, Kuhara A. Light and pheromone-sensing neurons regulates
397 cold habituation through insulin signalling in *Caenorhabditis elegans*. *Nature*
398 *Communications*. 2014 Jul 22;5:4412.

399 16. Wang W, Qin L-W, Wu T-H, Ge C-L, Wu Y-Q, Zhang Q, et al. cGMP Signalling Mediates
400 Water Sensation (Hydrosensation) and Hydrotaxis in *Caenorhabditis elegans*. *Scientific*
401 *Reports*. 2016 Feb 19;6:19779.

402 17. Zaslaver A, Liani I, Shtangel O, Ginzburg S, Yee L, Sternberg PW. Hierarchical sparse
403 coding in the sensory system of *Caenorhabditis elegans*. *Proc Natl Acad Sci*.
404 2015;112(4):1185–9.

405 18. Liu J, Ward A, Gao J, Dong Y, Nishio N, Inada H, et al. *C. elegans* phototransduction
406 requires a G protein-dependent cGMP pathway and a taste receptor homolog. *Nat Neurosci*.
407 2010 Jun;13(6):715–22.

408 19. Cho CE, Brueggemann C, L'Etoile ND, Bargmann CI. Parallel encoding of sensory history
409 and behavioral preference during *Caenorhabditis elegans* olfactory learning. *Elife*. 2016
410 06;5.

411 20. Juang B-T, Gu C, Starnes L, Palladino F, Goga A, Kennedy S, et al. Endogenous nuclear
412 RNAi mediates behavioral adaptation to odor. *Cell*. 2013 Aug 29;154(5):1010–22.

413 21. Krzyzanowski MC, Brueggemann C, Ezak MJ, Wood JF, Michaels KL, Jackson CA, et al.
414 The *C. elegans* cGMP-dependent protein kinase EGL-4 regulates nociceptive behavioral
415 sensitivity. *PLoS Genet*. 2013;9(7):e1003619.

416 22. Lee JI, M O Damien, Jeffery E-A, Juang B-T, Kaye JA, Hamilton SO, et al. Nuclear entry
417 of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation. *Proc*
418 *National Acad Sci*. 2010;107(13):6016–21.

419 23. L'Etoile ND, Coburn CM, Eastham J, Kistler A, Gallegos G, Bargmann CI. The Cyclic
420 GMP-Dependent Protein Kinase EGL-4 Regulates Olfactory Adaptation in *C. elegans*.
421 *Neuron*. 2002;36(6):1079–89.

422 24. O'Halloran DM, Hamilton OS, Lee JI, Gallegos M, L'Etoile ND. Changes in cGMP levels
423 affect the localization of EGL-4 in AWC in *Caenorhabditis elegans*. *PLoS ONE*.
424 2012;7(2):e31614.

425 25. O'Halloran DM, Altshuler-Keylin S, Lee JI, L'Etoile ND. Regulators of AWC-mediated
426 olfactory plasticity in *Caenorhabditis elegans*. *PLoS Genet*. 2009 Dec;5(12):e1000761.

427 26. Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You Y, Sundaram MV, et al.
428 Lethargus is a *Caenorhabditis elegans* sleep-like state. *Nature*.
429 2008;451(7178):nature06535.

430 27. Trent C, Tsuing N, Horvitz HR. Egg-laying defective mutants of the nematode
431 *Caenorhabditis elegans*. *Genetics*. 1983 Aug;104(4):619–47.

432 28. van der Linden AM, Wiener S, You YJ, Kim K, Avery L, Sengupta P. The EGL-4 PKG
433 acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene
434 expression and sensory behaviors in *Caenorhabditis elegans*. *Genetics*. 2008;180(3):1475–
435 91.

436 29. You Y, Kim J, Raizen DM, Avery L. Insulin, cGMP, and TGF-beta signals regulate food
437 intake and quiescence in *C. elegans*: a model for satiety. *Cell Metab*. 2008 Mar;7(3):249–
438 57.

439 30. Gudi T, Lohmann S, Pilz R. Regulation of gene expression by cyclic GMP-dependent
440 protein kinase requires nuclear translocation of the kinase: identification of a nuclear
441 localization signal. *Mol Cell Biol*. 1997;17(9):5244–54.

442 31. Podda MV, Grassi C. New perspectives in cyclic nucleotide-mediated functions in the
443 CNS: the emerging role of cyclic nucleotide-gated (CNG) channels. *Pflugers Arch*. 2014
444 Jul;466(7):1241–57.

445 32. Belsham DD, Wetsel WC, Mellon PL. NMDA and nitric oxide act through the cGMP
446 signal transduction pathway to repress hypothalamic gonadotropin-releasing hormone gene
447 expression. *EMBO J*. 1996 Feb 1;15(3):538–47.

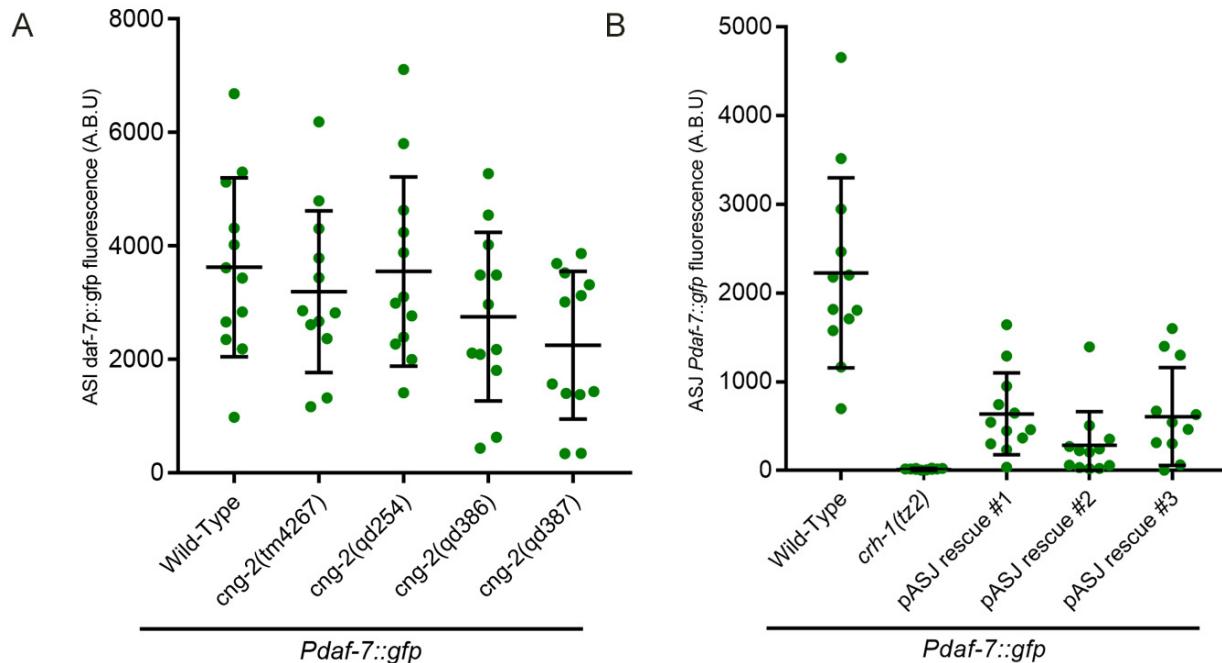
448 33. Chen Y, Zhuang S, Cassenaer S, Casteel DE, Gudi T, Boss GR, et al. Synergism between
449 calcium and cyclic GMP in cyclic AMP response element-dependent transcriptional
450 regulation requires cooperation between CREB and C/EBP-beta. *Mol Cell Biol*. 2003
451 Jun;23(12):4066–82.

452 34. Lee SA, Park JK, Kang EK, Bae HR, Bae KW, Park HT. Calmodulin-dependent activation
453 of p38 and p42/44 mitogen-activated protein kinases contributes to c-fos expression by
454 calcium in PC12 cells: modulation by nitric oxide. *Brain Res Mol Brain Res*. 2000 Jan
455 10;75(1):16–24.

456 35. Peunova N, Enikolopov G. Amplification of calcium-induced gene transcription by nitric
457 oxide in neuronal cells. *Nature*. 1993 Jul 29;364(6436):450–3.

458 36. Brenner S. The genetics of *Caenorhabditis elegans*. *Genetics*. 1974;77(1):71–94.

459 37. Fierro-González JC, Cornils A, Alcedo J, Miranda-Vizuete A, Swoboda P. The thioredoxin
460 TRX-1 modulates the function of the insulin-like neuropeptide DAF-28 during dauer
461 formation in *Caenorhabditis elegans*. *PLoS ONE*. 2011 Jan 27;6(1):e16561.


462 38. Chronis N, Zimmer M, Bargmann CI. Microfluidics for in vivo imaging of neuronal and
463 behavioral activity in *Caenorhabditis elegans*. *Nat Methods*. 2007;4(9):727–31.

464

465

466 **Figure Supplements**

Figure 1-Supplement 1

467
468
469
470

Figure 1 — figure supplement 1. (A) *Pdaf-7::gfp* levels of ASI neurons in *cng-2* mutants after exposure to *P. aeruginosa*. (B) Expressing *crh-1* cDNA specifically in the ASJ neurons restores *daf-7* expression on *P. aeruginosa*.

471 **Supplemental Methods**

472 **Table S1. All strains used in this study**

STRAIN	GENOTYPE
N2	Wild-Type
FK181	<i>ksIs2</i> [<i>Pdaf-7::GFP</i> + <i>rol-6(su1006)</i>]
ZD727	<i>ksIs2</i> ; <i>crh-1(tz2)</i>
ZD899*	<i>ksIs2</i> ; <i>cng-2(tm4267)</i>
ZD882	<i>ksIs2</i> ; <i>cng-2(qd254)</i>
ZD887	<i>ksIs2</i> ; <i>gpa-2(pk16)</i> <i>gpa-3(pk35)</i>
ZD1048	<i>ksIs2</i> ; <i>cmk-1(oy21)</i>
ZD1401	<i>ksIs2</i> ; <i>gcy-12(nj10)</i>
ZD1922	<i>ksIs2</i> ; <i>egl-4(n478)</i> ; <i>him-5(e1490)</i>
ZD1737	<i>qdEx136</i> [<i>trx-1p::GCaMP5</i> ; <i>ofm-1::gfp</i>]
ZD1949	<i>ksIs2</i> ; <i>egl-4(ad450)</i> ; <i>him-5(e1490)</i>
ZD2020	<i>cng-2(tm4267)</i> ; <i>qdEx136</i> [<i>trx-1p::GCaMP5</i> ; <i>ofm-1p::gfp</i>]
ZD2090	<i>ksIs2</i> ; <i>gcy-12(ks100)</i>
ZD2091	<i>pde-5(nj49)</i> <i>ksIs2</i>
ZD2105	<i>pde-5(nj49)</i> <i>pde-1(nj57)</i> <i>ksIs2</i>
ZD2150	<i>pde-1(nj57)</i> <i>ksIs2</i>
ZD2151	<i>pde-5(nj49)</i> <i>pde-1(nj57)</i> <i>ksIs2</i> ; <i>pde-3(nj59)</i> ; <i>pde-2(tm3098)</i>
ZD2170	<i>egl-4(n479)</i> ; <i>qdEx136</i> [<i>trx-1p::GCaMP5::unc-54 5'UTR</i> ; <i>ofm-1p::gfp</i>]
ZD2534	<i>ksIs2</i> ; <i>cng-2(qd386)</i>
ZD2535	<i>ksIs2</i> ; <i>cng-2(qd387)</i>
ZD2250	<i>ksIs2</i> ; <i>cng-2(qd254)</i> ; <i>qdEx</i> [<i>pJP3(trx-1p::cng-2cDNA::unc-54UTR)</i> + <i>ofm-1p::gfp</i>] Line #1
ZD2251	<i>ksIs2</i> ; <i>cng-2(qd254)</i> ; <i>qdEx</i> [<i>pJP3(trx-1p::cng-2cDNA::unc-54UTR)</i> + <i>ofm-1p::gfp</i>] Line #2
ZD2275	<i>ksIs2</i> ; <i>egl-4(n479ts)</i>
ZD2283	<i>ksIs2</i> ; <i>egl-4(ad450)</i> <i>cng-2(qd254)</i>
ZD2307	<i>ksIs2</i> ; <i>egl-4(n479)</i> ; <i>qdEx</i> [<i>trx-1p::mCherry::egl-4cDNA</i> + <i>ofm-1p::gfp</i>] Line #1
ZD2308	<i>ksIs2</i> ; <i>egl-4(n479)</i> ; <i>qdEx</i> [<i>trx-1p::mCherry::egl-4cDNA</i> + <i>ofm-1p::gfp</i>] Line #2
ZD2526	<i>ksIs2</i> ; <i>gcy-12(ks100)</i> ; <i>qdEx</i> [<i>trx-1p::gcy-12cDNA::unc-54UTR</i> + <i>ofm-1p::gfp</i>] Line #1
ZD2527	<i>ksIs2</i> ; <i>gcy-12(ks100)</i> ; <i>qdEx</i> [<i>trx-1p::gcy-12cDNA::unc-54UTR</i> + <i>ofm-1p::gfp</i>] Line #2
ZD2536	<i>ksIs2</i> ; <i>egl-4(n479)</i> ; <i>qdEx</i> [<i>pJP17(trx-1p::SV40-nls::mCherry::egl-4cDNA::unc54UTR)</i> + <i>ofm-1p::gfp</i>] Line #1
ZD2537	<i>ksIs2</i> ; <i>egl-4(n479)</i> ; <i>qdEx</i> [<i>pJP17(trx-1p::SV40-nls::mCherry::egl-4cDNA::unc54UTR)</i> + <i>ofm-1p::gfp</i>] Line #2
ZD2538	<i>ksIs2</i> ; <i>egl-4(n479)</i> ; <i>qdEx</i> [<i>pJP17(trx-1p::SV40-nls::mCherry::egl-4cDNA::unc54UTR)</i> + <i>ofm-1p::gfp</i>] Line #3

ZD2545	<i>ksIs2; crh-1(tz2); qdEx[pJP13(trx-1p::crh-1cDNA::unc-54UTR) + ofm-1p::gfp]</i> <i>Line #1</i>
ZD2546	<i>ksIs2; crh-1(tz2); qdEx[pJP13(trx-1p::crh-1cDNA::unc-54UTR) + ofm-1p::gfp]</i> <i>Line #2</i>
ZD2547	<i>ksIs2; crh-1(tz2); qdEx[pJP13(trx-1p::crh-1cDNA::unc-54UTR) + ofm-1p::gfp]</i> <i>Line #3</i>

473 **tm4267* is currently classified as lethal or sterile by the National BioResource Project of Japan
474 and was originally maintained on a balancer. However, *cng-2(tm4267)* is viable, as we were able
475 to backcross away the linked lethal mutation.