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SUMMARY 

We developed ASTAR-Seq (Assay for Single-cell Transcriptome and Accessibility 

Regions) integrated with automated microfluidic chips, which allows for parallel sequencing 

of transcriptome and chromatin accessibility within the same single-cell. Using ASTAR-Seq, 

we profiled 192 mESCs cultured in serum+LIF and 2i medium, 424 human cell lines 

including BJ, K562, JK1, and Jurkat, and 480 primary cells undergoing erythroblast 

differentiation. Integrative analysis using Coupled NMF identified the distinct sub-

populations and uncovered sets of regulatory regions and the respective target genes 

determining their distinctions. Analysis of epigenetic regulomes further unravelled the key 

transcription factors responsible for the heterogeneity observed.  

 

INTRODUCTION  

With the growing interest in understanding the cellular heterogeneity, development of 

single cell technologies has exploded in recent years. There are many techniques measuring 

genome1, transcriptome2, chromatin accessibility3, DNA methylation4, chromatin 
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conformation5, copy number variation6, lineage7, and cell surface protein8, at a single-cell 

resolution. scRNA-seq yields comprehensive information of the transcriptome within an 

individual cell. scATAC-seq enables prediction of the novel cis- and trans-regulatory 

elements and regulatory transcription factors, providing insights into the regulome 

heterogeneity3. Besides, there are multi-modal methods developed for the concurrent 

measurement of genome and transcriptome9,10, transcriptome and DNA methylome within a 

single-cell11,12. A recent study describes scNMT-seq13, which simultaneously measures DNA 

methylation, chromatin accessibility and gene expression within a single-cell. However, due 

to the bisulfite treatment, chromatin accessibility libraries suffer from the extremely low 

mapping percentage, and mutations would be acquired during the treatment. Additionally, 

scNMT-seq determines accessibility based on the methylation level rather than actual 

enrichment, rendering it less applicable for the integrative analysis using the pipeline like 

Coupled NMF, and the prediction of regulatory elements using the software such as 

CICERO14. More recently, two similar bimodal techniques, sci-CAR15 and scCAT-seq16, are 

developed to jointly measure chromatin accessibility and gene expression within a single-cell. 

The former is a combinational indexing-based assay, allowing for profiling of thousands of 

single cells, whereas the latter is a 96-well PCR plate-based technique. Owing to the high-

throughput profiling, sci-CAR libraries suffer from rare sequencing reads, resulting in the 

extensive signal loss. On the other hand, requisite for the isolation of gDNA and RNA in the 

first step, makes scCAT-Seq not compatible with the automated platforms, and the extensive 

manual handling steps render scCAT-Seq not applicable for high-throughput study. Here, we 

describe an automated Assay for Single-cell Transcriptome and Accessible Regions 

sequencing (ASTAR-Seq) for concurrent measurement of whole transcriptome and 

epigenome accessibility of a single-cell with high sensitivity. Multilayers of information 
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collected by ASTAR-Seq allows for the identification of regulatory regions and the genes 

being regulated, which together contribute to the cellular heterogeneity. 

 

RESULTS 

In ASTAR-Seq, single cells are first captured at different cell capture sites of the 

Fluidigm C1 microfluidic chip, linked with separate reaction chambers (Fig. 1a). Open 

chromatins of each cell are then tagmented with Tn5 transposase, from which accessible 

DNA fragments (ATAC-DNA) with adaptor sequences are generated. Next, mRNA is 

reverse transcribed to double-stranded cDNA, which is then labeled with biotin during the 

PCR amplification process. Biotinylation of cDNA enables the separation of cDNA from the 

ATAC-DNA using the streptavidin beads. Lastly, the separated ATAC-DNA and cDNA 

fractions are further processed for library preparation and sequenced in parallel. The earlier 

prototype, where the reverse transcription was performed before the transposition, was not 

successful (Supplementary Fig. 1a). This could be attributed to Tn5 transposase unexpectedly 

digesting single-stranded cDNA, which resulted in cDNA to be inseparable from the ATAC-

DNA (Supplementary Fig. 1b-d). The current ASTAR-Seq protocol was first optimized and 

tested with 1000 cells on benchtop. The optimal condition yielded abundant cDNA and 

achieved clear separation of the ATAC-DNA and cDNA (Supplementary Fig. 1e-g).  

As a proof of concept, we first applied ASTAR-Seq to an ENCODE cell line, K562. Of 

the 96 ASTAR-ATACseq libraries sequenced, 92 libraries (95.8%) passed the QC thresholds 

for chromVAR (Fig. 1b and Supplementary Table 1). Of note, a median of 28464 peaks were 

called, and 27.9% of fragments were in peaks, indicating libraries are of high signal-to-noise 

profile (Fig. 1b). Insert-size distribution of ASTAR-ATACseq libraries demonstrated clear 

nucleosomal periodicity, a characteristic pattern of an ATAC-seq library3 (Fig. 1c). In 
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addition, ASTAR-ATACseq libraries showed Pearson correlation of 0.89 with the published 

scATAC-seq libraries3, indicative of its high similarity with the unimodal libraries (Fig. 1d). 

On the other hand, 83 out of 96 ASTAR-RNAseq libraries (86.5%) passed the QC thresholds 

for detected gene rate (>=15%) and exon mapping rate (>=75%) (Fig. 1e and Supplementary 

Table 1). scRNA-Seq reads spread across the entire gene body, without biasing towards any 

end of the mRNA (Fig. 1f).  

To make a fair comparison with the similar bimodal technique scCAT-Seq, we 

sequenced additional 40 K562 ASTAR-Seq libraries at a similar sequencing depth. 

Specifically, ATAC-Seq libraries prepared by scCAT-Seq protocol displayed significantly 

lower mapping percentage to the human genome (scCAT-Seq: 67.6%; ASTAR-Seq: 85.8%) 

(Fig. 1g). Although lesser number of fragments being recovered (scCAT-Seq: 315835; 

ASTAR-Seq: 213141), ASTAR-Seq outperformed in terms of the percentage of fragments 

contributing to the highly accessible regions (HARs) (scCAT-Seq: 44.9%; ASTAR-Seq: 

52.4%), indicating its better library complexity and higher signal-to-noise ratio (Fig. 1h). 

Likewise, scRNA-Seq prepared by scCAT-Seq protocol exhibited lower mapping percentage 

(scCAT-Seq: 54.9%; ASTAR-Seq: 73.8%) (Fig. 1i). Owing to the comparable sequencing 

depth, similar numbers of de-duplicated reads were detected in both scRNA-Seq libraries 

(scCAT-Seq: 4507504; ASTAR-Seq: 4047857) (Fig. 1j). Remarkably, ASTAR-Seq exhibited 

superior performance in terms of the gene detection rate (scCAT-Seq: 33.49%; ASTAR-Seq: 

49.94%), suggesting its outstanding sensitivity (Fig. 1j). Taken together, these data indicate 

the reliability and superior performance of the ASTAR-Seq. 

We next applied ASTAR-Seq to 192 E14 mESCs cultured in serum+LIF and 2i medium, 

which were named as mESCs and 2i cells throughout the study. All the sequenced scATAC-

Seq libraries passed the QC thresholds (Fig. 2a and Supplementary Table 2). A median of 
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87781 peaks were called, and 25% of the fragments contributed to HARs (Fig. 2a and 

Supplementary Fig. 2a). scATAC-Seq reads were highly enriched at Transcription Start Sites 

(TSS) and displayed an insert-size distribution with nucleosomal pattern, indications of high 

quality libraries3 (Supplementary Fig. 2b-c). We then clustered the mESCs and 2i ASTAR-

ATACseq libraries based on the enrichment of Mouse JASPAR motifs. Although mESCs and 

2i cells were mostly clustered separately, a certain degree of overlapping was observed (Fig. 

2b). Clustering accuracy was measured using the confusion matrix, which achieved an 

accuracy of 100% (Supplementary Fig. 2d). Of note, chromatins containing motif sequences 

of Klf4, Rarg, Zfx, Klf12, and Mlxip showed significant variability in terms of accessibility 

(P-value <0.05) (Supplementary Fig. 2e and Supplementary Table 2). Klf4 motif was highly 

accessible in 2i cells, whereas Zfx showed the opposite trend (Supplementary Fig. 2f-g). On 

the other hand, majority of the ASTAR-RNAseq libraries (80.7%) displayed high gene 

detection rate and exon mapping rate and demonstrated full gene body coverage for the 

detected transcripts (Fig. 2c, Supplementary Fig. 2h and Supplementary Table 2). Similarly, 

confusion matrix also illustrated the highly accurate clustering (95.9%) of mESCs and 2i 

ASTAR-RNAseq libraries (Supplementary Fig. 2i). To study the heterogeneity within the 

mESCs, we correlated the ASTAR-RNAseq libraries to the Mouse Cell Atlas (MCA) panel17. 

The analysis revealed three types of cells, including mESCs, ICM-like mESCs, and 2C-like 

(2-cell) mESCs, in agreement with the previous report18 (Fig. 2d). PCA also revealed the 

separate cluster of minority 2C-like cells (Supplementary Fig. 2j). To confirm the presence of 

2C-like cells in our mESCs culture, we utilized the previously constructed 2C::tdTomato 

reporter18. Indeed, around 1-2% of cells consistently exhibited the activation of the 2C 

reporter, which was significantly increased upon the depletion of G9a, a H3K9me3 

methyltransferase, as previously described18 (Supplementary Fig. 2k). Intriguingly, MCA 

analysis of 2i cells exhibited complete absence of 2C-like population (Supplementary Fig. 2l). 
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We then clustered mESCs and 2i cells using coupled Non-negative Matrix Factorization 

(NMF)19, based on the correlative information of transcriptome and chromatin accessibility of 

each individual cell. Notably, when clustering was based on either the differentially 

expressed genes or the accessible regions identified by coupled NMF, two distinct clusters 

were always observed (Supplementary Fig. 2m). Cluster 1 was mostly comprised of mESCs, 

whereas cluster 2 was composed of 2i cells. Intriguingly, integrative clustering based on the 

NMF-specific genes and peaks together demonstrated superior performance in distinguishing 

the sub-populations, as seen from the clear separation of mESCs and 2i cells (Fig. 2e). 

Further, the correlation between accessibility and gene expression enabled us to identify 

regulatory networks specific to each cluster (Fig. 2f and Supplementary Table 2). For 

example, Dnmt3l was highly accessible and expressed in cells of cluster 1, whereas Scd1, 

Gdf3, and Dppa3 were highly expressed in cluster 2 cells with greater accessibility (Fig. 2f 

and Supplementary Fig. 2n). In addition, Cicero14 co-accessibility analysis demonstrated that 

Dnmt3l gene and its surrounding loci displayed open chromatin architecture with high 

interaction frequency in cluster 1, on the contrary, more 3D genomic interactions were 

observed for Scd1, Gdf3, and Dppa3 in cluster 2 (Fig. 2g). This highlights the differential 

interactive networks where the cluster-specific putative regulatory elements result in the 

differential expression of the respective genes. Moreover, NMF cluster-specific genes 

exhibited extensive interaction among themselves, suggesting their involvement in the same 

biological processes (Supplementary Fig. 2o-p and Supplementary Table 2). Specifically, 

cluster 2 genes were involved in pathways related to ribosome, mRNA splicing, and 

glutathione metabolism, which were implicated to play important roles in the acquisition or 

maintenance of naïve pluripotent state in earlier studies20,21 (Fig. 2h and Supplementary Fig. 

2p). On the other hand, cluster 1 genes associated with nodal inhibition and spliceosome 

pathway, which were reported to safeguard the primed pluripotency22–24 (Fig. 2i and 
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Supplementary Fig. 2o). To further examine the transcriptions factors responsible for the 

differential regulatory networks, we performed motif enrichment analysis. Motifs of Klf3, 

Ctcf, Sp1 and Maz were enriched in cluster 1 specific accessible regions, which were also 

highly expressed in the cluster 1 cells (Fig. 2j and Supplementary Table 2). Interestingly, an 

earlier study reported lower genomic looping frequencies in 2i cells as compared to mESCs25, 

supporting the higher Ctcf regulon activity detected in cluster 1. On the contrary, motifs of 

Tcfp2l1, Nfe2l2, Klf6, Tcf7 and Sp5 were enriched in cluster 2 specific accessible regions, 

majority of which displayed higher expression in the cells of cluster 2 (Fig. 2k and 

Supplementary Table 2). 

To expand the applicability, we prepared ASTAR-Seq libraries for additional human cell 

lines, including the BJ cells in adherent culture, and JK1 and Jurkat cells in suspension 

culture (Figure 3). To characterize the molecular distinction among the hematopoietic cells, 

96 K562 libraries sequenced with similar depth were also included for the following analysis. 

Out of 384 libraries profiled, 375 ASTAR-ATACseq libraries passed the QC thresholds of 

chromVAR (Supplementary Fig. 3a and Supplementary Table 3). In median, 55193 peaks 

were called, and 35% fragments contributed to HARs (Supplementary Fig. 3a-b). Insert-size 

distribution of ASTAR-ATACseq libraries also exhibited characteristic nucleosomal pattern 

of an ATAC-seq library3 (Supplementary Fig. 3c). These indicate the prepared ASTAR-

ATACseq libraires are of good quality. In addition, ASTAR-ATACseq libraries also showed 

a high similarity to the published scATAC-Seq libraries3 (Pearson correlation: 0.8). A 

clustering accuracy of 96.5% was detected using confusion matrix (Supplementary Fig. 3e). 

Next, we clustered the ASTAR-ATACseq libraries based on the enrichment of human 

JASPAR motifs, and observed four sub-clusters, among which BJ cells clustered distinctly 

from the cells of blood lineage and displayed the most distinctive epigenome regulatory 

profiles (Fig. 3a). Variability analysis identified the transcriptions factors (TFs) defining the 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2019. ; https://doi.org/10.1101/829960doi: bioRxiv preprint 

https://doi.org/10.1101/829960
http://creativecommons.org/licenses/by-nc/4.0/


                                                                                                                                      Xing et.al                           

 9

cell type identities and their distinctions (Fig. 3b and Supplementary Table 3). Notably, 

consistent with its distinct cluster, 16 TFs were specifically enriched in BJ cells, such as 

FOS-JUN and NFE2 (Fig. 3b-d. and Supplementary Fig. 3f). On the other hand, BJ cells also 

extensively shared motifs with the myeloid lineage cells K562 (79 motifs) and JK1(28 

motifs), including ETS1 and ZBTB33 (K562), and families of MEF2, SP, and NFY factors 

(JK1), as compared to the 6 motifs shared with lymphoid Jurkat cells, such as TEAD family 

(Fig. 3b-d and Supplementary Fig. 3f). In addition, 46 motifs were shared between the 

myeloid lineage JK1 and K562 cells, including TFs of GATA-TAL family (Fig. 3b-d). 

Of the 384 ASTAR-RNAseq libraries, 296 libraries (77.1%) passed the QC and 

exhibited full coverage for the expressed transcripts (Supplementary Fig. 3g-h and 

Supplementary Table 3). Of the 296 cells with RNA-seq library of good quality, only 5 cells 

failed the scATAC-seq QC (1.69%) (Supplementary Table 3). In summary, a total of 291 

cells (75.8%) passed the QC filtration for both scATAC-seq and scRNA-seq (Supplementary 

Table 3). Meta-analysis of K562 ASTAR-RNAseq, K562 bulk RNA-seq, BJ ASTAR-

RNAseq and BJ scRNA-seq illustrated the expected clustering according to the respective 

cell types26 and indicated the similarity of human ASTAR-RNAseq libraries to the bulk 

RNA-seq or unimodal scRNA-seq previously generated (Supplementary Fig. 3i). Clustering 

accuracy of the ASTAR-RNAseq libraries was again measured by confusion matrix, which 

reached an accuracy of 99.63% (Supplementary Fig. 3j). Expectedly, Reference Component 

Analysis (RCA) analysis demonstrated distinct correlation of BJ cells to the foreskin 

fibroblasts and muscle lineage cells, and Jurkat cells to the leukemia lymphoblasts (Fig. 3e). 

Of note, K562 cells showed highest correlation to leukemia K562 and erythroblast 

progenitors, whereas JK1 exhibited correlation to the erythroblast progenitors, early and late 

erythroblast (Fig. 3e). Consistent with their differential regulatory activities, GATA1 was 

only accessible and expressed in JK1 and K562 cells, whereas SP1 was accessible and 
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expressed in BJ, JK1, and K562 cells (Fig. 3f). Taken together, ASTAR-RNAseq libraries of 

the human cell lines are of good quality, differential analysis of which identified the TFs 

responsible for the cell type distinctions.  

To measure its capability in capturing the dynamic changes, we applied ASTAR-Seq to 

the primary cells undergoing erythroblast differentiation. We harvested a total of 480 cells at 

day 6, day 8, day 10, and day12 of erythroblast differentiation, which was induced from the 

mononuclear cells isolated from umbilical cord blood, and subjected them to ASTAR-Seq 

library preparation (Fig. 4a). Of the 480 cells, 273 cells (56.9%) demonstrated good quality 

libraries for both scATAC-seq and scRNA-seq, whereas 41 cells (8.5%), 103 cells (21.5%), 

and 63 cells (13.1%) failed the QC for scATAC-seq, scRNA-seq, and both respectively 

(Supplementary Table 4). We next investigated trajectories of the erythroblast differentiation 

process using pseudotemporal analysis27,28. The resultant trajectories consisted of 2 branching 

events and 5 states (Fig. 4b-c). Interestingly, pseudotime highly correlated with the actual 

differentiation time points. For instance, cells of early time points such as D6 and D8 were 

mostly at state 1-3, and D10 cells were mostly at state 4 and 5, whereas majority of D12 cells 

belonged to state 5 and located at the end of pseudotime (Fig. 4b-c). Expectedly, HBA2, a 

hemoglobin gene, showed elevated expression in cells of state 5 as compared to the others. 

Next, RCA analysis was performed to track the differentiation status of cells of various states. 

Notably, majority of the cells exhibited strong correlation to the myeloid or erythroid lineages 

(Fig. 4d). As the time-point increased, transitions from common myeloid progenitors (CMPs) 

to myeloid erythroid progenitors (MEPs), and from erythroblast progenitor to early 

erythroblast and to late erythroblast were observed. Specifically, majority of state 1-3 cells 

showed strong correlation to the erythroblast progenitor cells and some degrees of correlation 

to the MEPs and early erythroid cells (Fig. 4d). Cells of state 5 can be broadly classified into 

three groups, including groups with correlation to early erythroid cells but not to MEPs, with 
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strong early erythroid identity, and with significant late erythroid fate (Fig. 4d). On the other 

hand, cells of state 4 displayed significant correlation to granulocyte monocyte progenitor 

(GMP). In addition, state 5 cells abundantly expressed genes related to oxygen transport, 

hydrogen peroxide catabolic process, cell cycle arrest and erythrocyte differentiation process, 

whereas state 4 cells expressed genes associated with innate immune response, antigen 

processing and presentation via MHC class II process (Supplementary Fig. 4a). On the 

contrary, as compared to state 1 cells, genes that were repressed in state 5 cells were involved 

in stem cell population maintenance, positive regulation of H3-K4 methylation, and 

chromatin organization, whilst genes related to erythrocyte maturation, oxygen transport and 

NF-KB signaling were repressed in state 4 cells (Supplementary Fig. 4b). In conclusion, state 

5 cells represent the cells attaining erythroid fate, whereas state 4 cells deviate from the 

differentiation path to erythroblast, instead acquire the GMP identity.  

To identify the genes and regulatory regions responsible for the differentiation 

progression, we applied coupled NMF analysis and identified three clusters. Superimposition 

of NMF clusters on the erythroblast differentiation trajectory demonstrated that majority of 

cluster 1 cells belonged to state 1-2, whereas cells of cluster 3 were the major constituent of 

state 5. Cluster 2 cells scattered across the various states (Fig. 4e). Consistent with the 

identity of pseudotemporal states, cluster 1 cells mostly exhibited pro-erythroblast and early 

erythroid characteristics, and clustered closer to K562 cells (Fig. 4f). Cluster 2 cells showed 

stronger early erythroid identity and started to develop late erythroid characteristics. Notably, 

cluster 2 cells demonstrated higher similarity to JK1 than K562 cells, possibly reflecting their 

maturity (Fig. 4f). Indeed, studies suggested that K562 resemble early erythroid precursor 

cells29. On the contrary, cluster 3 cells displayed strong late erythroid identity and were 

clustered intimately with JK1 cells (Fig. 4f). Supporting this notion, differentially expressed 

genes of NMF cluster 1 were highly represented in K562 cells, whereas cluster 3 genes were 
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specifically expressed in JK1 cells (Fig. 4g). This was further substantiated using CTen30 

(Supplementary Fig. 4c-d). On the other hand, chromatins containing motif sequences of 

GATA1:TAL1 and MEF2D were highly variable in terms of accessibility across the clusters 

(Supplementary Fig. 4e-f and Supplementary Table 4). In addition, cluster 1 accessible 

regions were enriched with HOXB4 and FOXA3 motifs, cluster 2 with HNF6 motif, and 

cluster 3 with OCT2 and RUNX2 motifs, implicating their importance in regulating the genes 

crucial for the progression of erythroblast differentiation (Supplementary Fig. 4g and 

Supplementary Table 4). Moreover, the cluster specific genes demonstrated differential co-

accessibility with its surrounding regulatory regions. For example, NOP16 was highly 

expressed and accessible in cluster 1 with multiple genomic interactions with the nearby 

genes, whereas cluster 3 specific gene GYPB demonstrated high interaction frequency with 

GYPE only in cluster 3 (Fig. 4h).   

Altogether, we present an automated bimodal technology ASTAR-Seq, which enables 

parallel profiling of transcriptome and chromatin accessibility within the same single-cell, at 

a greater sensitivity. ASTAR-Seq is a powerful integrated approach to understand the 

connectivity between transcription and epigenetic regulation. We expect the technology to 

have attractive applications in early embryonic testing, identification of rare cancer sub-

populations, and atlasing of whole tissues or cell types. 

 

METHODS 

Methods and any associated references are available in the supplementary information.  
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All the raw data has been deposited to GEO database: GSE113418. The source data 

underlying Figs 1b, 1d, 1e, 1g, 1h, 1i, 1j, 2a, 2c, 2d, 2f, 2j, 2k, 3b, 3e, 4d, 4f, 4g and 

Supplementary Figs 1b, 1d-g, 2a, 2e, 2l, 3a, 3b, 3d, 3g, 4a, 4b, 4e are provided as 

Supplementary File 1 under ‘Source Data’ sub-folder. The scripts for bioinformatics 

analysis were provided as Supplementary File 1 under ‘Bioinformatic scripts’ sub-folder. 

The ASTAR-Seq scripts of the microfluidic chip (Fluidigm) were provided as 

Supplementary File 1 under ‘ASTAR script’ sub-folder. All the relevant data are available 

within the manuscript and Supplementary files or from the corresponding author upon 

request.  
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FIGURE LEGENDS 

Figure 1. Assay for Single-cell Transcriptome and Accessible chromatin Region 

(ASTAR-Seq).  

(a) Overview of the ASTAR-Seq protocol. (b) Dotplot revealing the proportion of fragments 

in peaks (y-axis) against the fragment numbers of each K562 ASTAR-ATACseq library (x-

axis). Red dotted lines represent the threshold values set for each criterion. Source data is 

provided as a Source Data file. (c) Histogram demonstrating the frequency (y-axis) of 

fragments with the indicated insert size (x-axis). (d)  Dotplot demonstrating Pearson 

correlation between the K562 ASTAR-ATACseq and the published K562 scATACseq3 

libraries. Source data is provided as a Source Data file. (e) Dotplot revealing the detected 

gene rate (%) of each K562 ASTAR-RNAseq (y-axis) plotted against its exon mapping rate 

(x-axis). Blue dots represent the libraries which pass the QC, whereas grey dots represent the 

libraries of low quality. Source data is provided as a Source Data file. (f) Line plot 

representing the coverage ratio (y-axis) of K562 ASTAR-RNAseq reads over the genebodies 

of housekeeping genes (x-axis). (g-h) Boxplots showing the mapping percentage to human 

genome (g), number of fragments (h-left), and percentage of peaks in HAR (h-right) of 
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scATAC-Seq libraries prepared by scCAT-Seq and ASTAR-Seq protocol. Source data is 

provided as a Source Data file. (i-j) Boxplots showing the mapping percentage to human 

genome (i), number of de-duplicated reads (j-left), and detected gene rate (j-right) of scRNA-

Seq libraries prepared by scCAT-Seq and ASTAR-Seq protocol. Source data is provided as a 

Source Data file. 

Figure 2. Transcriptomic and Epigenetic Heterogeneity of Primed and Naïve E14 

mESCs 

(a) Dotplot revealing the proportion of fragments in HARs (y-axis) and number of fragments 

(x-axis) of each mouse ASTAR-ATACseq library. Red dotted lines represent the thresholds 

set for each criterion. Source data is provided as a Source Data file. (b) Heatmap 

demonstrating the correlation among mESCs and 2i cells based on their ASTAR-ATACseq 

libraries. (c) Dotplot revealing the detected gene rate (%) of each mouse ASTAR-RNAseq (y-

axis) plotted against its exon mapping rate (x-axis). Blue dots represent the libraries which 

pass the QC, whereas grey dots indicate the low-quality libraries. Source data is provided as a 

Source Data file. (d) Heatmap revealing the correlation of each mESCs ASTAR-RNAseq 

library to the various lineages of MCA. Color indicates the correlation level, ranging from 

dark grey (low) to dark red (high). 2-cell like (2C-like) mESCs are boxed with dotted line. 

Source data is provided as a Source Data file. (e) NMF clustering of mESCs and 2i cells 

based on the correlative signals of their ASTAR-ATACseq and ASTAR-RNAseq libraries. (f) 

Heatmaps revealing pairs of accessible regulatory regions (left) and the corresponding genes 

(right) which are differentially enriched between the NMF clusters. Each column represents 

an ASTAR-Seq library, whereas each row represents a chromatin region (left) or a gene 

(right). Color indicates the accessibility (left) and expression (right) levels, ranging from blue 

(low) to red (high). Representative genes are indicated on the right. Source data is provided 
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as a Source Data file. (g) Line plots demonstrating the differential co-accessibility links 

between the highlighted regions and its surrounding regions, identified using Cicero. Top 

plots are constructed from cluster 1 cells, whereas bottom plots are constructed from cluster 2 

cells. Peak heights (y-axis) denote the co-accessibility scores. (h-i) Interactome analysis 

revealing the top pathways enriched with the cluster 1 (i) and cluster 2 (h) specific genes. (j-k) 

Heatmaps demonstrating the TF motifs enriched with the cluster 1 (j) and cluster 2 (k) 

specific accessible regions and their relative expressions. Source data is provided as a Source 

Data file. 

Figure 3. Application of ASTAR-Seq on Human Cell Lines 

(a) Clustering of BJ, JK1, K562 and Jurkat ASTAR-ATACseq libraries based on the human 

JASPAR motif deviation scores calculated over the HARs. Color indicates the correlation 

level between the libraries, ranging from blue (no) to red (high). Side color bar (y-axis) 

indicates the identity of each ATACseq library. (b) Variability plot indicating the TF motifs 

enriched variably across the ASTAR-ATACseq libraries of four human cell lines. Y-axis 

represents the variability score assigned to each JASPAR motif, whereas x-axis represents the 

motif rank. Top variable motifs are classified based on their enrichment score across the four 

cell lines. Box colors indicate the cell lines with high enrichment of TF motifs. Source data is 

provided as a Source Data file. (c) Multi-Venn diagram showing the shared and unique TFs 

across the cell lines. (d) Top left: tSNE clustering of BJ, JK1, K562 and Jurkat ASTAR-

ATACseq libraries based on the deviation scores of human JASPAR motifs. Colors represent 

the time-points. Top right & bottom: super-imposition of the motif enrichment scores for 

FOSL1, GATA1, ZBTB33, and TEAD3 on the tSNE cluster. Colors represent the motif 

enrichment level, ranging from blue (no) to red (high). (e) Left: PCA clustering of ASTAR-

RNAseq libraries based on their correlation to the RCA panel. Right: Heatmap showing the 
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lineages that each cell correlate to. Source data is provided as a Source Data file. (f) UCSC 

screenshots indicating the chromatin accessibility levels (top panels) and the expression 

(bottom panels) of GATA1 (left) and SP1 (right) across the cell lines. 

Figure 4. Interactive Analysis of Transcriptomic and Chromatin Accessibility during 

the Erythroblast Differentiation.  

(a) Schematic of the erythroblast differentiation time-points harvested for ASTAR-Seq 

library preparation. (b) Left: trajectory of erythroblast differentiation identified by the 

DDRTree dimension reduction of ASTAR-RNAseq libraries. Right: Superimposition of 

HBA2 expression on the trajectory. (c) Trajectory plots indicating the pseudotemporal states. 

(d) RCA clustering heatmap of the cells undergoing erythroblast differentiation, based on 

their correlation with the cells of different lineage origins in the RCA panel. Color indicates 

correlation value, ranging from blue (low) to red (high). Each row indicates one lineage, 

whereas each column represents an ASTAR-RNAseq library. Pseudotemporal state of each 

library is indicated on top. Cellular differentiation status is determined based on their 

correlation to the cells of RCA panel, and indicated below. Source data is provided as a 

Source Data file. (e) Superimposition of NMF clusters on the trajectory plots of erythroblast 

differentiation. (f) RCA clustering of JK1, K562, Jurkat cells and the cells of NMF cluster 1 

(top), cluster 2 (middle) and cluster 3 (below), respectively. Color indicates correlation value, 

ranging from blue (low) to red (high). Each row indicates one lineage, whereas each column 

represents an ASTAR-RNAseq library. Cellular identities are indicated on top. Source data is 

provided as a Source Data file. (g) Heatmap demonstrating the expression of differential 

genes across the NMF clusters and the hematopoietic cell lines. Color indicates the 

expression level, ranging from blue (no) to red (high). Source data is provided as a Source 

Data file. (h) Line plots indicating the Cicero co-accessibility links between the regions 
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highlighted in red and the distal sites in the surrounding region. The height indicates the 

Cicero co-accessibility score between the connected peaks. The links are constructed from 

cells of cluster 1 (top), cluster 2 (middle) and cluster 3 (bottom).  
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