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Using genetics to disentangle the complex relationship between food choices and health
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Abstract.

Despite food choices being one of the most important factors influencing health, efforts to
identify individual food groups and dietary patterns that cause disease have been
challenging, with traditional nutritional epidemiological approaches plagued by biases and
confounding. After identifying 302 (289 novel) individual genetic determinants of dietary
intake in 445,779 individuals in the UK Biobank study, we develop a statistical genetics
framework that enables us, for the first time, to directly assess the impact of food choices
on health outcomes. We show that the biases which affect observational studies extend
also to GWAS, genetic correlations and causal inference through genetics, which can be
corrected by applying our methods. Finally, by applying Mendelian Randomization
approaches to the corrected results we identify some of the first robust causal associations
between eating patterns and risks of cancer, heart disease and obesity, distinguishing

between the effects of specific foods or dietary patterns.

Introduction

Given their profound impact on human well-being, nutritional choices and their impact on health
are one of the most studied human behaviours. Quality and quantity of food consumption are
associated with a wide range of medical conditions including metabolic syndrome and
cardiovascular disease’, cancer’, liver disease?, inflammatory bowel disease® and depression®.
Food choice is becoming increasingly significant for global health as energy-dense, low fibre
western diets proliferate across the globe and an obesity epidemic follows*. Despite the extremely
high number of studies reporting food/health associations it has been hard to establish causal

relationships due to difficulty in measurement, recall bias and confounding.

Recently, causal inference has been improved by a large number of studies which use Mendelian
Randomization (MR) to assess the causal relationship between one or more exposures and
outcomes. In MR, genetic variants are used as instrumental variables to measure the “life-long

exposure” to a risk factor®. This technique has proven to be extremely powerful, not influenced by
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confounding typical of observational studies and many of the results have been mirrored by
randomised controlled trials®. It is thus appealing to use MR to assess the causal relationship
between food and health. Unfortunately, genetic variants predicting dietary consumption has been
limited to a few food groups, such as alcoholic beverages®, coffee’, milk®®, and existing evidence
from dietary MR studies remain unremarkable'®"". More importantly, previous studies on a single
food group have not accounted for interrelationships between different food groups. We therefore
aimed to assess the causal relationship between food and several health outcomes by exploiting
consumption patterns of multiple food groups in the UK Biobank (UKB) to create a new set of
genetic instruments for MR analysis and then testing the causal effect of food consumption on

health.'?

GWAS of food traits

The first step in MR is to identify those genetic variants which are associated with the exposure of
interest (food consumption in our case). We thus conducted a genome-wide association study
(GWAS) on 29 food consumption traits, such as “beef’ and “cheese” intake, using a mixed linear
model in the white European participants of UKB' (up to N=445,779), including only sex and age
as covariates to avoid collider bias' For a full description of the traits see Tables S1 and S2. The
GWAS identified 414 phenotype-genotype associations divided into 260 independent loci with p <

1 x 108, summarized in Table S3 and Figure 1.
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Fig. 1 Miami plot showing 302 independent loci associated with food choices. Results for both univariate and
multivariate analyses are included. For each SNP the lowest p-value for all traits was plotted. The upper panel
represents the unadjusted GWAS associations while the lower panel represents the association with food choices, after
adjustment for mediating traits, such as health status.
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Replication for 23 of the 29 traits was sought in two additional UK based cohorts (EPIC-Norfolk'®
and Fenland16) totalling up to 32,779 subjects. Despite relatively limited power, we could nominally
replicate 104/325 associations at p<0.05 (one-sided test) (32%; p=9.47x10"**). The direction of
effect was consistent with that for discovery in 268 of the 325 associations (82%; p=7.82x10"%,
Binomial test; see Table S5). After prioritization of the genes in each locus (see Methods for details
and Supp. Table S4 for the prioritized genes), we noticed that for many genes associated with
BMI, the BMI-raising allele was associated with lower reported consumption of energy-dense foods
such as meat or fat and with higher consumption of lower-calorie foods. Although the exact
mechanism of action of many of these genes is unknown, in the case of MC4R in mice loss-of-
function K314X mutants show an increase in weight, higher intake of calories and higher
preference for a high fat diet'’, while we observe a lower intake of fat and higher intake of fresh
fruit. We thus wondered if this could be due to the effect of higher BMI on food choices instead of

the reverse and if this effect might also occur for a broader range of health-related traits.

Detecting the effects of potential confounders on food frequency data
To test this hypothesis, we first selected nine diseases and risk factors for which dietary advice is

usually given and for which GWA summary statistics (from large meta-analyses not including UKB)
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were available. Educational attainment was also included as a proxy for socioeconomic status.
Using MR we identified 81 instances where we had evidence of health-related traits significantly

influencing food choice (Fig. 2).

Fig 2. Health status influences reported food choices. The plot reports only the univariable MR results which were
significant at FDR<0.05. For each food outcome the effect estimate (f3) is reported in standard deviations of the exposure
trait, together with 95% confidence intervals. Each colour represents a different exposure. BMI, body mass index; CHD,
coronary heart disease; DBP, diastolic blood pressure; HDL, high density lipoprotein cholesterol; LDL, low density
lipoprotein cholesterol; TotalC, total cholesterol. Champ/Wh wine, champagne, white wine. Temp, temperature.
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Aside from educational attainment, many associations seem to reflect common nutritional advice.
For example, higher genetically-determined BMI associates with higher consumption of poultry,
vegetables (both raw and cooked), non-oily fish, (also spirits and coffee); but less beef, processed
meat, bread and fatty foods. Similarly, those genetically predisposed to CHD report lower
consumption of whole milk, salt and lamb; and higher consumption of fish and red wine. This last
case is particularly interesting, reflecting the standard dietary advice (lower intake of fat and salt
but higher intake of fish as a means to increase omega-3 fatty acid intake'®), but also higher
consumption of red wine (and not other alcoholic beverages), which is commonly believed to have

cardioprotective effects'®.

From these MR results, it is clear that some of the loci we have identified in GWAS are not directly
associated with food consumption but are the result of the effect of the health-related phenotypes
on food consumption. Although we commonly consider the food-health relationship with diet as the
exposure and disease as the outcome, we must consider that humans may change their behaviour
because of their health status. This reverses the expected cause and effect relationship, making

the interpretation of the GWAS results complex.

Correcting biases in dietary GWAS

To address the possibility of mediated effects, it is common to add the potential mediators as
covariates in the association model. However, adding heritable covariates may lead to spurious
associations due to collider bias (i.e. the false association between two variables induced by
including a third variable (the collider) in the regression model, to which both variables of interest
are causal)'®. Moreover, when the causal relationship is bidirectional, adding a covariate will

correct for the overall effect and not for the unidirectional effect we actually want to correct for.
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Fig. 3 Direct and indirect SNP effects. The plot shows the causal path of exemplar genes identified for cheese
consumption. In the multivariable MR model cheese consumption is causally influenced by educational attainment
(EDU), low density lipoprotein cholesterol levels (LDL) and systolic blood pressure (SBP). The effect of PDCH17 and is
mediated through educational attainment, while SIX3 has a direct effect on cheese consumption. The mediated effects
cannot be used reliably as MR instruments as they could be affecting either consumption or its reporting. Moreover, they
could act as confounders in the MR analysis and thus they need to be identified.
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We thus developed a new MR-based approach to correct the effect of each SNP in the dietary
GWAS for the effect mediated through other confounding traits. Briefly, our approach consists of
two steps: the first is to fit a multivariable MR model to estimate the effects of the traits we would
like to test (the health-related traits in our case) on the traits of interest (the food traits). For each
SNP, then an expected mediated effect is calculated, based on the effect of the SNP on the
mediator traits. The expected effect is then subtracted from the observed one to get an adjusted
estimate (see Methods for details). This last step is exactly analogous to estimating the direct

effect in mediation analysis®’.

We applied this method to all 29 food traits. As potential mediators, we used the traits tested in the
univariate models, to which we added Crohn’s disease and ulcerative colitis, as they may impact
dietary choices after diagnosis. We also removed total cholesterol to avoid problems due to
collinearity with LDL and HDL cholesterol. Looking at the exposure traits selected for the
multivariable (MV) causal model of each food trait (Supplementary Fig S3 panel A and

Supplementary Table S8), educational attainment plays a fundamental role in shaping food


https://doi.org/10.1101/829952
http://creativecommons.org/licenses/by-nc-nd/4.0/

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

bioRxiv preprint doi: https://doi.org/10.1101/829952; this version posted November 8, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

choices, significantly influencing over half of the traits, as does BMI. Looking at the percentage of
the genetic variance of the food traits explained by the health-related traits (Supplementary Fig S3
panel B and Supplementary Table S16), it ranges from 42% for cheese to ~0% for fortified wine
and white wine/champagne, highlighting the scope these effects have to influence GWAS results.
The combined results from all traits before and after adjustment for the effect of health status on
food preference are shown in Fig. 1 (see Supplementary file 1 for trait-specific plots). In many loci
previously associated with health-related traits, the effect changed dramatically, suggesting that
the effect of the SNP on the food traits is mediated through health status. For example, the effect
size of the lead FTO variant (rs55872725) with percentage fat in milk reduces by three-fold from
0.0045 to 0.0015 log units (p=2x10% and p=7x107, respectively). We observed similar effects for
other associations at the same locus, which suggests that in general the associations we are
observing near FTO are primarily mediated through its strong association with BMI?.

This insight is crucial to understanding: a naive approach would interpret that eating less healthy
foods and more calorie-dense foods would lead to a lower BMI, while in fact, our analysis suggests
that it is having a higher BMI that leads to either having a healthier diet or reporting one. This

accords with known biases in a dietary assessment®

. Unfortunately, we cannot distinguish
between a change in behaviour (and thus indication bias) or such reporting bias. These results
warrant even greater caution in using SNPs influencing diet in MR or for functional follow up
studies. Moreover, most nutritional epidemiological studies have focused only on BMI and
socioeconomic status for correction, while we show that the confounding effects extend to many
other health traits such as blood pressure and lipids. The widespread effect of education and BMI
on dietary choices is especially strong on cheese and percentage fat in milk. This may explain

some of the recent epidemiological results linking dairy product consumption to positive health

benefits®*.

To further explore the effects of the correction procedure, we compared the correlation patterns
between the food traits and 832 phenotypes present in the LD hub?® database using the raw and

corrected results (See Supplementary Data 2.3 and additional table S10). These analyses showed
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that the correction produced more meaningful food clusters and that in many cases the genetic

correlations with other traits changed greatly (see https://npirastu.shinyapps.io/rg plotter 2/ for a

graphical representation of these results). For example, if we look at the relationship of the two fat
intake traits (percentage fat in milk and adding spread to bread) and body fat percentage we can
see that they both have a seemingly beneficial effect before correction (rg = -0.43 and -0.10,
respectively) which diminishes to near zero (rg = -0.04 and 0.07) after applying the correction,

suggesting that the apparent protective effect is likely due to confounding.

Clustering of food items

To investigate how the mediation procedure affected the genetic correlations amongst the
consumption traits and with other traits, we first compared the clustering based on the uncorrected
and adjusted genetic correlations. Figure S7 panel A shows the tanglegram comparing the two
analyses. The adjusted correlations give more reasonable groupings, showing that some of the
unadjusted clusterings are due in part to common confounders (e.g. wine clustering closer to

coffee than other alcoholic beverages) than actual common genetic background.

Clustering of the food traits based on their corrected genetic associations using ICLUST identified
five different food groups (Fig S7 panel B): one composed of increased meat, fat, salt and
decreased vegetarianism (labelled as “Meat/Fat”), one made up of alcoholic beverages and coffee
(labelled “Psychoactive drinks”) and one comprised of healthier items such as fish, fruit and
vegetables (labelled “Low-Calorie Foods”). Two final groups contained only two items each: drink
temperature and tea; and cheese and bread; these were not used for the MV analysis. In order to
explore if additional loci influence these groups, we ran a multivariate GWAS using the package
MultiABEL, which performs MANOVA on summary statistics. 168 additional associations, including
42 novel loci not identified in the single-trait analysis, were identified in multivariate analysis of the

three main food groups (Table S5).

Selection of instruments for MR
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The primary objective of our study is to use MR to assess causal relationships between food
choices and health. To achieve this goal we need to be able to identify the SNPs which have only
a direct effect on the food trait, which is not mediated through other possible confounders. We
hypothesised that if a SNP is biologically associated with a food behaviour - without mediation by
health - its effect should not change strongly after the adjustment procedure. To try to distinguish
the variants with only a direct effect from those with effects at least partly mediated through other
traits, we defined the corrected-to-raw ratio (CRR) as the ratio between the corrected effect and

the raw uncorrected one.

Through extensive simulations we estimated that the CRR range between 0.95 and 1.05
maximises this probability, with 88% of the SNPs being directly associated with the trait of interest
(see Supplementary Data 2.1 for details on the simulations and Supplementary Data 1.8 for
theory). Further evidence comes from variants in alcohol dehydrogenase 1B and the taste and
olfactory receptors (for which clear biological pathways can be defined): all have CRR values
between 0.95-1.05. We thus defined SNPs with a CRR in this range as “non-mediated”.

387 out of 581 associations corresponding to 208/302 loci (~69%) were categorised as non-
mediated associations, although of these 50 showed both mediated and non-mediated effects. The
balance of mediated to non-mediated SNP associations varied by foodstuff, ranging from none
mediated for tea, spirits and processed meat to all mediated for percentage fat in milk and adding
spread to bread (see Table S3). The necessity of using the CRR filtering instead of existing

methods is further outlined in additional paragraph 2.7.

Functional annotation of the direct-effect-only loci and tissue enrichment analysis prominently
feature brain areas involved in reward (Supplementary Data 2.5). Inference of interaction networks
reveals ten communities ranging from feeding behaviour and energy metabolism to steroid
response, acetylcholine receptor regulation and synaptic transmission (Supplementary Data 2.6

and Figure. 4).

Fig 4. STRING network of genes in non mediated loci. Network plot of the genes in the non-mediated loci. After
performing community detection we identified ten different clusters of genes each with its particular set of functions and

10
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expression patterns (see additional paragraph 2.6 for details). Nodes have been colored according to community
membership.
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Causal inference

We proceeded to perform two-sample MR using the food traits as exposures and 78 traits (see
table S17 for a list and description) as outcomes (chosen to include those for which diet could be a
causal factor, that were in MR-base and for which full GWAS summary statistics were available).
As well as using each single food trait as exposures, we also assessed the effect of 16 different
principal components (PC)-derived phenotypes based on the previous clustering of food traits, to
quantify the consequences of broader dietary patterns. The relationships between the different
traits are reported in figure S2 while loadings for each PC trait are reported in Fig 5 panel A. Traits
which had no direct-effect-only SNPs (percentage fat in milk, fortified wine and adding spread to
bread) were left out of the analysis. For each exposure-outcome pair, four types of analyses were
performed, selecting instrumental variables with or without filtering by CRR or using corrected or
uncorrected betas. We considered as the main analysis the CRR-filtered analysis using
uncorrected betas and used the others for comparison. Finally we considered as significant the

exposure-outcome pairs after multiple test correction of the main analysis using Storey’s g-value at
11
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g<0.05. Table 1 reports the significant results, while all results can be found in table S18 and are

available through a shiny app https://npirastu.shinyapps.io/Food MR/.

12
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Fig 5. Significant effects of food choice on disease. (a) Heatmap of the loadings of each food trait on the PC traits.
Red reflects a positive loading while blue a negative one. (b) Network representation of all the significant exposure-
outcome pairs. The green nodes represent the food traits used as exposures while the yellow ones represent the
outcome traits. Arrows represent the causal relationships detected through the MR analysis, they are directed to reflect
the exposure -> outcome relationship and the colour reflects the direction of effect: blue, decrease, red, increase.
Clearly, All PC1 (which reflects what is generally considered a healthy vs unhealthy diet) is the trait with most putatively
causal associations, which range from an improved blood lipid profile to protection from both myocardial infartion and
lung cancer. Blood triglyceride (TG) levels seem to be the outcome influenced by the largest number of food traits, being
lowered by All PC2 and PC3, Healthy PC1, Fruit PC1, and Oily fish. Abbreviations: WC, waist circumference; Hip, hip
circumference; CHD, coronary heart disease; Hb, Hemoglobin concentration; MI, myocardial infarction; LDL, low density
lipoproteins; TC, total cholesterol;, Serous ovarian cancer (1), High grade and low grade serous ovarian cancer; Serous
ovarian cancer (2), Serous ovarian cancer: low grade and low malignant potential; Edu, Educational attainment; BMI,
body mass index; WHR, waist to hip ratio; WHR|BMI, waist to hip ratio BMI adjusted; PLT, platelet; Celiac, celiac

disorder.
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Table 1. Significant Food-Outcome relationships. Results are presented for the associations with FDR<0.05. The
Method column refers to the primary analysis method (either IVW fixed effect (FE) or random effect (RE) or Wald ratio in
case of a single SNP V). The other columns report effect sizes, standard errors and p-values for the main analysis and
the two methods used as sensitivity analyses (MR-RAPS and MR Median). Finally the p-value for heterogeneity in the
main analysis is reported.

Exposure Outcome Method N SNPs IVW (wald ratio) MR-RAPS MR Median Heterogeneit
y p-value
beta (se) p-value beta (se) p-value beta (se) p-value
AllPC.1 Body fat IVW (FE) 123 -0.08 3.2E-04 -0.074 7.5E-03 -0.02 5.7E-01 1.1E-03
(0.022) (0.028) (0.035)
AllPC.1 BMI IVW (RE) 120 -0.087 8.1E-05 -0.087 4.2E-05 -0.056 1.3E-02 1.5E-12
(0.021) (0.021) (0.022)
AllPC.1 CHD IVW (FE) 128 -0.059 2.2E-04 -0.065 5.6E-04 -0.066 1.5E-02 2.2E-02
(0.016) (0.019) (0.027)
AllPC.1 Hb IVW (FE) 124 -0.074 6.7E-04 -0.071 8.3E-03 -0.066 6.1E-02 4.5E-03
(0.021) (0.027) (0.035)
AllPC.1 Height IVW (RE) 117 0.094 2.2E-04 0.092 9.7E-04 0.122 2.2E-06 2.0E-19
(0.025) (0.028) (0.026)
AllPC.1 Knee osteoarthritis IVW (FE) 122 -0.257 1.8E-04 -0.271 5.4E-04 -0.259 1.3E-02 1.9E-01
(0.067) (0.078) (0.105)
AllPC.1 LDL IVW (FE) 121 -0.061 6.4E-04 -0.062 1.8E-03 -0.057 4.9E-02 1.7E-01
(0.017) (0.02) (0.029)
AllPC.1 Lung adenocarcinoma IVW (FE) 128 -0.176 6.2E-04 -0.188 8.2E-04 -0.133 1.2E-01 1.4E-01
(0.05) (0.056) (0.086)
AllPC.1 Lung cancer IVW (FE) 127 -0.278 3.5E-09 -0.287 1.1E-07 -0.275 2.0E-04 1.6E-02
(0.044) (0.054) (0.074)
AllPC.1 Mi IVW (FE) 128 -0.056 6.7E-04 -0.055 6.0E-03 -0.049 8.3E-02 1.4E-02
(0.016) (0.02) (0.028)
AllPC.1 TC IVW (FE) 121 -0.07 6.0E-05 -0.063 1.2E-03 -0.05 7.3E-02 3.7E-02
(0.017) (0.019) (0.028)
AllPC.1 wc IVW (RE) 123 -0.113 1.5E-05 -0.122 5.4E-08 -0.071 1.9E-02 1.4E-06
(0.025) (0.022) (0.03)
AllPC.1 WHR IVW (RE) 124 -0.104 2.4E-06 -0.109 3.4E-07 -0.074 6.7E-03 2.0E-04
(0.021) (0.021) (0.027)
AllPC.1 WHR | BMI IVW (RE) 124 -0.078 4.9E-04 -0.08 3.6E-04 -0.069 8.3E-03 3.5E-06
(0.022) (0.022) (0.026)
AllPC.1 Edu IVW (RE) 123 0.086 1.3E-05 0.084 2.7E-06 0.059 7.2E-03 6.0E-05
(0.019) (0.018) (0.022)
AllPC.2 TG IVW (FE) 114 0.092 6.2E-05 0.077 1.3E-02 0.023 5.2E-01 6.7E-04
(0.022) (0.031) (0.036)
AllPC.2 WHR | BMI IVW (FE) 116 0.116 3.7E-08 0.108 3.6E-05 0.093 (0.03) 2.3E-03 5.6E-03
(0.02) (0.026)
AllPC.3 Age at menarche IVW (FE) 117 0.118 1.3E-05 0.108 1.5E-03 0.093 2.1E-02 7.0E-04
(0.026) (0.034) (0.041)
AllPC.3 TG IVW (FE) 118 0.147 6.3E-07 0.151 3.9E-05 0.15 (0.047) 1.4E-03 4.9E-03
(0.028) (0.037)
Beef Height IVW (FE) 2 0.516 6.4E-06 NA (NA) NA NA (NA) NA 3.8E-01
(0.114)
Champ/Wh Celiac Wald ratio 1 1.129 5.3E-04 NA (NA) NA NA (NA) NA NA
wine (0.326)
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Fish PC.1 Serous ovarian cancer Wald ratio 1 -1.7 9.8E-05 NA (NA) NA NA (NA) NA NA
(0.436)
Fish PC.1 Serous ovarian Wald ratio 1 -1.146 4.6E-04 NA (NA) NA NA (NA) NA NA
cancer(2) (0.327)
Fruit PC.1 Hip IVW (FE) 31 -0.13 6.3E-04 -0.113 4.5E-03 -0.093 7.4E-02 1.2E-01
(0.034) (0.04) (0.052)
Fruit PC.1 TG IVW (FE) 32 -0.142 7.4E-04 -0.154 5.7E-04 -0.15 8.9E-03 1.6E-01
(0.038) (0.045) (0.057)
Fruit PC.1 wc IVW (FE) 32 -0.162 3.8E-05 -0.155 6.9E-04 -0.163 2.4E-03 1.6E-02
(0.034) (0.046) (0.054)
Healthy PC.1 TG IVW (FE) 58 0.143 6.6E-06 0.14 (0.036) 1.2E-04 0.095 4.3E-02 2.6E-02
(0.029) (0.047)
Healthy PC.1 WHR IVW (FE) 58 0.115 3.3E-05 0.112 8.2E-04 0.122 4.1E-03 1.3E-02
(0.026) (0.034) (0.042)
Healthy PC.1 WHR | BMI IVW (FE) 58 0.126 8.0E-06 0.116 3.6E-04 0.11 (0.041) 7.7E-03 1.7E-02
(0.026) (0.033)
Healthy PC.1 Edu IVW (FE) 59 -0.079 7.1E-04 -0.072 1.5E-02 -0.096 1.0E-02 4.9E-03
(0.022) (0.03) (0.038)
Healthy PC.2 Hip IVW (FE) 58 0.197 2.3E-06 0.174 1.0E-03 0.141 (0.06) 2.0E-02 9.4E-04
(0.037) (0.053)
Healthy PC.3 Body fat IVW (FE) 57 -0.338 3.8E-04 -0.339 4.2E-03 -0.282 3.0E-02 2.5E-02
(0.089) (0.119) (0.13)
Healthy PC.3 BMI IVW (FE) 50 -0.197 3.8E-04 -0.167 2.5E-02 -0.202 1.5E-02 5.9E-03
(0.052) (0.074) (0.083)
Healthy PC.3 WHR IVW (FE) 57 -0.218 5.9E-04 -0.195 2.8E-02 -0.211 2.6E-02 2.7E-03
(0.06) (0.089) (0.095)
Non-oily Fish PLT IVW (FE) 2 -0.016 9.2E-05 NA (NA) NA NA (NA) NA 5.1E-01
(0.004)
Oily Fish Height IVW (FE) 21 0.196 1.6E-05 0.177 9.6E-04 0.174 1.1E-03 8.4E-04
(0.035) (0.054) (0.053)
Oily Fish Serous ovarian cancer Wald ratio 1 -1.518 9.8E-05 NA (NA) NA NA (NA) NA NA
(0.39)
Oily Fish Serous ovarian Wald ratio 1 -1.02 4.6E-04 NA (NA) NA NA (NA) NA NA
cancer(2) (0.291)
Oily Fish TRG IVW (FE) 21 -0.175 5.1E-04 -0.156 5.2E-03 -0.084 1.7E-01 7.3E-02
(0.042) (0.056) (0.061)
Psyco PC.1 BMI IVW (FE) 21 -0.064 8.5E-04 -0.058 1.7E-02 -0.047 5.1E-02 2.0E-03
(0.016) (0.024) (0.024)
Salad Age at menarche IVW (FE) 14 -0.298 5.3E-04 -0.28 4.2E-04 -0.251 8.5E-03 1.7E-01
(0.065) (0.079) (0.095)
Water|Coffee Edu IVW (FE) 24 0.162 1.3E-04 0.169 4.4E-04 0.162 1.7E-03 8.4E-03
(0.035) (0.048) (0.052)

296 Looking at the significant MR results, we detected no sign of directional pleiotropy using the MR-
297  Egger test (results in table S18). In some cases, we did detect strong heterogeneity of effect,
298  especially with All PC1 and in general with PC-food exposures which included several diverse
299 items. Considering more specific results, all PC.1 differentiates those eating more meat and salt

300  while drinking more alcohol and coffee from those who eat more fruit and vegetables, thus it
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describes a general healthy-unhealthy diet continuum. All PC1 showed the largest number of
associations (15; Fig.S22a), with a healthy value of All PC1 lowering most risk factors linked to
obesity and lipid profile (and likely consequently lowering cardiovascular disease risk) and having a
positive effect on height and education. With the exception of educational attainment, these results
may not be surprising as they broadly overlap with general dietary advice. However, when we
decompose these effects into food groups or single foods, we detect differences amongst traits.

For example, All PC 1 leads to very similar effects across different obesity/adiposity measures :

body fat % ([3=-0.080,p=3.2x10*), body mass index (3= -0.087,p=8.1x10"°), waist-to-hip ratio ( =-

0.104, p=2.4x10° ) and BMI-adjusted waist-to-hip ratio (B=-O.O78,p=2.9x10‘4). Figure S23 shows

the comparative effects of each food on the four obesity measures: generally, the individual foods
affect all four in very similar ways showing that the estimates are stable regardless of the outcome.
However, there are some exceptions, for example, both Fresh Fruit and Oily Fish affect Body Fat
and both waist:hip ratio measures but not BMI, suggesting that their effect is specifically on

adiposity and not body size.

As a whole, alcohol does not seem to impact any of the four obesity traits, with a very small effect
on waist-to-hip ratios. However, looking at each alcoholic beverage individually, beer has a
substantial and specific effect on BMI not seen for the other alcoholic beverages, suggesting that

this effect is independent of alcohol content.

Another notable result is the association of oily fish consumption with height (B= 0.2, p=1.76x10%)

(Fig S22c). It is unclear, however, if this is the result of general healthy eating or if it is the effect of

a specific food. In particular if we look at the effects of All PC1-3, we see that a height-raising of

PC1 (higher healthy foods, less alcohol/coffee and meat 3= 0.09, p=1 .35x10™), a height-lowering
effect PC2 (lower healthy food and meat and higher alcohol/coffee 3= -0.1, p=1 .34x107%), but no

effect of PC3 ( higher meat and less alcohol/coffee and healthy foods [3=-0.02, p=0.65) suggesting
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that the effect on height is lead by healthy foods and alcohol/coffee but independent of meat.
Looking at the associations of Healthy PC1-3, we see association only with the first which
represents the overall consumption of fish, fruit and vegetables. Finally, comparing these three we

find that both higher consumption of vegetables and fish are associated with being taller, with

similar effect sizes (Fish PC1, [3=0.17, p=4.99x10™ and Vegetables PC1, B=0.15, p=1 .30x10"3),

while fruit has no effect (= 0, p= 0.96), which makes the effects of fish and vegetables

indistinguishable.

Several associations seem to be masked by the confounding effects, for example if we look at

genetically-determined beef intake, the CRR-corrected instruments show a significant association
with being taller ( 3= 0.51 SD adjusted vs. 3= -0.01 unadjusted) and with other anthropometric

traits such as hip and waist circumference. None of these associations were recovered using the
raw instruments with estimated effects extremely close to 0, showing that the problems arising
from using the unadjusted set of instruments are not limited to false positive results but also can

generate false negatives, depending on the biases involved.

Discussion

Our results emphasise how complicated relationships among dietary traits are. We have clearly
shown that the causal path between food and health is not unidirectional and that in fact genes
may affect food behaviours in many different and unexpected ways. Understanding the origins of
these effects is fundamental not only for prioritizing loci for functional follow up, but also for
understanding why genetic correlations and GWAS results change when different datasets or
populations are used. In fact, given that many of the effects we see are likely due to confounding, if
the health advice in different populations changes this could alter the architecture of the studied
trait and thus the GWAS results, which would appear as allelic heterogeneity.

It is unclear whether these effects are limited to dietary phenotypes or if they extend to other traits

10,11

and further studies are needed to resolve this issue. Recent similar studies on the genetic
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bases of dietary patterns reported having detected no reverse causality. We believe that this
difference is due to our novel approach, which is not based on using the potential confounders as
covariates, but rather exploits MR, which should be able to distinguish the forward and reverse
effects when the causal relationship is bidirectional. Nevertheless, extreme care is required when
claiming causal relationships between food and health as the level and complexity of the biases
and confounding is so high that it affects even MR, which is known to be more robust than other

approaches to these types of effects.

In a classic dietary analysis, investigators evaluate macronutrient compositions. In this study, we
did not see similar effects from foods which have similar macronutrient composition. For example,
if we look at cheese and meat, which are both relatively high in saturated fat and protein, we see
no association of eating either with blood lipid profile (triglycerides, LDL or total cholesterol), while
they have opposite effects on BMI (cheese lowering it and meat increasing it) (Fig S22e).). While
the findings require further investigations in mechanisms and related behaviours, our genetic
evidence lenders the support for the importance of food consumption and dietary patterns, not only

intakes of specific nutrients®.

If we look at which foods have the greatest effect on triglycerides, it is fruit, vegetables and fish; all
with lowering effects (Fig S22f), not sources of carbohydrates or alcohol, known drivers of de novo
lipogenesis. This seems to be confirmed by looking at the results with the overall PC traits (All-
PC1, -PC2, -PC3) in which a higher consumption of fruit, vegetables and fish is always associated
with lower triglycerides regardless of the loading on other food groups. It is impossible, however, to
separate the effects of fruit, vegetables and fish from each other, in fact, if we look at the Healthy
PC traits (see fig 5 panel A), only PC1, which summarises a higher consumption of all three is
associated with lower triglycerides, suggesting the combined effects of all the three dietary factors
or unmeasured correlated dietary behaviours or healthful habits.

This example shows that when considering the effect of food on health it is sometimes hard to

separate the effect of single foods (although we have shown some examples) from those which
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are usually consumed together in a pattern. In this case, although fish and fruit and vegetables
have a very different macronutrient composition it is impossible to separate their effect on
triglycerides. This has been implied in previous studies including the European study on lactase
persistence gene®. There, while the MR relating lactase-persistence gene to diabetes incidence
supported no causal evidence of milk consumption, the secondary analyses identified the lactase-
persistence variant would relate to consumption of potatoes, poultry, and cereals. These pieces of
genetic evidence highlight the importance of a dietary pattern rather than single foods or nutrients.
Any health claim from observational studies regarding one or the other should always take into
account these facts. For further details of specific results, our online app allows exploration of

hypotheses.

Our study was limited by the number of items available in the dietary questionnaire in the UK
BioBank and thus has not explored the full extent of human nutrition, unfortunately apart from
bread consumption no carbohydrate or sugar sources were measured, limiting our ability to
explore these macronutrients and thus capture the overall diet. Nonetheless, this limitation is
unlikely to turn over the abovementioned cautionary interpretation of the dietary MR results.
Another important limitation is that effect sizes could be inflated because of the underestimation of
the SNP effects on the food traits which will increase MR estimate effects. This under-estimation is
due to the noise in the questionnaire responses, which warrant further statistical investigations. Of
note, as we have no rationale to consider non-random measurement error, it is unlikely to hinder
the detection of a causal effect or its direction, but further studies are needed to assess the precise
effect sizes. Before translation of our findings into policy, more studies using different

methodologies will be required.

In conclusion, we have developed an important framework and new tools to help illuminate the
effects of nutrition on health and have shown that despite the existing belief that certain dietary
assessment provides low-quality data, it is still possible to extract useful information using our

methods. It will be interesting to learn to what degree the confounding of food choice reporting by
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educational attainment and disease risk factors observed here is seen in other settings with

different food cultures and social stratification to the UK.
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