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Abstract. 37 

Despite food choices being one of the most important factors influencing health, efforts to 38 

identify individual food groups and dietary patterns that cause disease have been 39 

challenging, with traditional nutritional epidemiological approaches plagued by biases and 40 

confounding.  After identifying 302 (289 novel) individual genetic determinants of dietary 41 

intake in 445,779 individuals in the UK Biobank study, we develop a statistical genetics 42 

framework that enables us, for the first time, to directly assess the impact of food choices 43 

on health outcomes. We show that the biases which affect observational studies extend 44 

also to GWAS, genetic correlations and causal inference through genetics, which can be 45 

corrected by applying our methods. Finally, by applying Mendelian Randomization 46 

approaches to the corrected results we identify some of the first robust causal associations 47 

between eating patterns and risks of cancer, heart disease and obesity, distinguishing 48 

between the effects of specific foods or dietary patterns. 49 

 50 

Introduction 51 

Given their profound impact on human well-being, nutritional choices and their impact on health 52 

are one of the most studied human behaviours. Quality and quantity of food consumption are 53 

associated with a wide range of medical conditions including metabolic syndrome and 54 

cardiovascular disease1, cancer1, liver disease2, inflammatory bowel disease3 and depression4. 55 

Food choice is becoming increasingly significant for global health as energy-dense, low fibre 56 

western diets proliferate across the globe and an obesity epidemic follows4. Despite the extremely 57 

high number of studies reporting food/health associations it has been hard to establish causal 58 

relationships due to difficulty in measurement, recall bias and confounding.  59 

 60 

Recently, causal inference has been improved by a large number of studies which use Mendelian 61 

Randomization (MR) to assess the causal relationship between one or more exposures and 62 

outcomes. In MR, genetic variants are used as instrumental variables to measure the “life-long 63 

exposure” to a risk factor5. This technique has proven to be extremely powerful, not influenced by 64 
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confounding typical of observational studies and many of the results have been mirrored by 65 

randomised controlled trials5. It is thus appealing to use MR to assess the causal relationship 66 

between food and health. Unfortunately, genetic variants predicting dietary consumption has been 67 

limited to a few food groups, such as alcoholic beverages6 , coffee7,  milk8,9,  and existing evidence 68 

from dietary MR studies remain unremarkable10,11. More importantly, previous studies on a single 69 

food group have not accounted for interrelationships between different food groups. We therefore 70 

aimed to assess the causal relationship between food and several health outcomes by exploiting 71 

consumption patterns of multiple food groups in the UK Biobank (UKB) to create a new set of 72 

genetic instruments for MR analysis and then testing the causal effect of food consumption on 73 

health.12 74 

 75 

GWAS of food traits 76 

The first step in MR is to identify those genetic variants which are associated with the exposure of 77 

interest (food consumption in our case). We thus conducted a genome-wide association study 78 

(GWAS) on 29 food consumption traits, such as “beef” and “cheese” intake, using a mixed linear 79 

model in the white European participants of UKB13 (up to N=445,779), including only sex and age 80 

as covariates to avoid collider bias14 For a full description of the traits see Tables S1 and S2. The 81 

GWAS identified 414 phenotype-genotype associations divided into 260 independent loci with p < 82 

1 x 10-8, summarized in Table S3 and Figure 1. 83 

84 
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Fig. 1 Miami plot showing 302 independent loci associated with food choices. Results for both univariate and 85 
multivariate analyses are included. For each SNP the lowest p-value for all traits was plotted. The upper panel 86 
represents the unadjusted GWAS associations while the lower panel represents the association with food choices, after 87 
adjustment for mediating traits, such as health status.  88 
 89 

 90 
 91 
 92 
Replication for 23 of the 29 traits was sought in two additional UK based cohorts (EPIC-Norfolk15 93 

and Fenland16) totalling up to 32,779 subjects. Despite relatively limited power, we could nominally 94 

replicate 104/325 associations at p<0.05 (one-sided test) (32%; p=9.47x10-54). The direction of 95 

effect was consistent with that for discovery in 268 of the 325 associations (82%; p=7.82x10-35, 96 

Binomial test; see Table S5). After prioritization of the genes in each locus (see Methods for details 97 

and Supp. Table S4 for the prioritized genes), we noticed that for many genes associated with 98 

BMI, the BMI-raising allele was associated with lower reported consumption of energy-dense foods 99 

such as meat or fat and with higher consumption of lower-calorie foods. Although the exact 100 

mechanism of action of many of these genes is unknown, in the case of MC4R in mice loss-of-101 

function K314X mutants show an increase in weight, higher intake of calories and higher 102 

preference for a high fat diet17, while we observe a lower intake of fat and higher intake of fresh 103 

fruit. We thus wondered if this could be due to the effect of higher BMI on food choices instead of 104 

the reverse and if this effect might also occur for a broader range of health-related traits. 105 

 106 

Detecting the effects of potential confounders on food frequency data 107 

To test this hypothesis, we first selected nine diseases and risk factors for which dietary advice is 108 

usually given and for which GWA summary statistics (from large meta-analyses not including UKB) 109 
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were available. Educational attainment was also included as a proxy for socioeconomic status. 110 

Using MR we identified 81 instances where we had evidence of health-related traits significantly 111 

influencing food choice (Fig. 2).  112 

Fig 2. Health status influences reported food choices. The plot reports only the univariable MR results which were 113 
significant at FDR<0.05. For each food outcome the effect estimate (β) is reported in standard deviations of the exposure 114 
trait, together with 95% confidence intervals. Each colour represents a different exposure. BMI, body mass index; CHD, 115 
coronary heart disease; DBP, diastolic blood pressure; HDL, high density lipoprotein cholesterol; LDL, low density 116 
lipoprotein cholesterol; TotalC, total cholesterol. Champ/Wh wine, champagne, white wine. Temp, temperature. 117 

 118 
 119 
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Aside from educational attainment, many associations seem to reflect common nutritional advice. 120 

For example, higher genetically-determined BMI associates with higher consumption of poultry, 121 

vegetables (both raw and cooked), non-oily fish, (also spirits and coffee); but less beef, processed 122 

meat, bread and fatty foods. Similarly, those genetically predisposed to CHD report lower 123 

consumption of whole milk, salt and lamb; and higher consumption of fish and red wine. This last 124 

case is particularly interesting, reflecting the standard dietary advice (lower intake of fat and salt 125 

but higher intake of fish as a means to increase omega-3 fatty acid intake18), but also higher 126 

consumption of red wine (and not other alcoholic beverages), which is commonly believed to have 127 

cardioprotective effects19,20.  128 

 129 

From these MR results, it is clear that some of the loci we have identified in GWAS are not directly 130 

associated with food consumption but are the result of the effect of the health-related phenotypes 131 

on food consumption. Although we commonly consider the food-health relationship with diet as the 132 

exposure and disease as the outcome, we must consider that humans may change their behaviour 133 

because of their health status. This reverses the expected cause and effect relationship, making 134 

the interpretation of the GWAS results complex.  135 

 136 

Correcting biases in dietary GWAS 137 

To address the possibility of mediated effects, it is common to add the potential mediators as 138 

covariates in the association model. However, adding heritable covariates may lead to spurious 139 

associations due to collider bias (i.e. the false association between two variables induced by 140 

including a third variable (the collider) in the regression model, to which both variables of interest 141 

are causal)14. Moreover, when the causal relationship is bidirectional, adding a covariate will 142 

correct for the overall effect and not for the unidirectional effect we actually want to correct for.  143 

  144 
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Fig. 3 Direct and indirect SNP effects. The plot shows the causal path of exemplar genes identified for cheese 145 
consumption. In the multivariable MR model cheese consumption is causally influenced by educational attainment 146 
(EDU), low density lipoprotein cholesterol levels (LDL) and systolic blood pressure (SBP). The effect of PDCH17 and is 147 
mediated through educational attainment, while SIX3 has a direct effect on cheese consumption. The mediated effects 148 
cannot be used reliably as MR instruments as they could be affecting either consumption or its reporting. Moreover, they 149 
could act as confounders in the MR analysis and thus they need to be identified. 150 

 151 
We thus developed a new MR-based approach to correct the effect of each SNP in the dietary 152 

GWAS for the effect mediated through other confounding traits. Briefly, our approach consists of 153 

two steps: the first is to fit a multivariable MR model to estimate the effects of the traits we would 154 

like to test (the health-related traits in our case) on the traits of interest (the food traits). For each 155 

SNP, then an expected mediated effect is calculated, based on the effect of the SNP on the 156 

mediator traits. The expected effect is then subtracted from the observed one to get an adjusted 157 

estimate (see Methods for details). This last step is exactly analogous to estimating the direct 158 

effect in mediation analysis21.  159 

 160 

We applied this method to all 29 food traits. As potential mediators, we used the traits tested in the 161 

univariate models, to which we added Crohn’s disease and ulcerative colitis, as they may impact 162 

dietary choices after diagnosis. We also removed total cholesterol to avoid problems due to 163 

collinearity with LDL and HDL cholesterol. Looking at the exposure traits selected for the 164 

multivariable (MV) causal model of each food trait (Supplementary Fig S3 panel A and 165 

Supplementary Table S8), educational attainment plays a fundamental role in shaping food 166 
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choices, significantly influencing over half of the traits, as does BMI. Looking at the percentage of 167 

the genetic variance of the food traits explained by the health-related traits (Supplementary Fig S3 168 

panel B and Supplementary Table S16), it ranges from 42% for cheese to ~0% for fortified wine 169 

and white wine/champagne, highlighting the scope these effects have to influence GWAS results.  170 

The combined results from all traits before and after adjustment for the effect of health status on 171 

food preference are shown in Fig. 1 (see Supplementary file 1 for trait-specific plots). In many loci 172 

previously associated with health-related traits, the effect changed dramatically, suggesting that 173 

the effect of the SNP on the food traits is mediated through health status. For example, the effect 174 

size of the lead FTO variant (rs55872725) with percentage fat in milk reduces by three-fold from 175 

0.0045 to 0.0015 log units (p=2x10-29 and p=7x10-5, respectively). We observed similar effects for 176 

other associations at the same locus, which suggests that in general the associations we are 177 

observing near FTO are primarily mediated through its strong association with BMI22.  178 

This insight is crucial to understanding: a naïve approach would interpret that eating less healthy 179 

foods and more calorie-dense foods would lead to a lower BMI, while in fact, our analysis suggests 180 

that it is having a higher BMI that leads to either having a healthier diet or reporting one. This 181 

accords with known biases in a dietary assessment23. Unfortunately, we cannot distinguish 182 

between a change in behaviour (and thus indication bias) or such reporting bias. These results 183 

warrant even greater caution in using SNPs influencing diet in MR or for functional follow up 184 

studies. Moreover, most nutritional epidemiological studies have focused only on BMI and 185 

socioeconomic status for correction, while we show that the confounding effects extend to many 186 

other health traits such as blood pressure and lipids. The widespread effect of education and BMI 187 

on dietary choices is especially strong on cheese and percentage fat in milk. This may explain 188 

some of the recent epidemiological results linking dairy product consumption to positive health 189 

benefits24.  190 

 191 

To further explore the effects of the correction procedure, we compared the correlation patterns 192 

between the food traits and 832 phenotypes present in the LD hub25 database using the raw and 193 

corrected results (See Supplementary Data 2.3 and additional table S10). These analyses showed 194 
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that the correction produced more meaningful food clusters and that in many cases the genetic 195 

correlations with other traits changed greatly (see https://npirastu.shinyapps.io/rg_plotter_2/ for a 196 

graphical representation of these results). For example, if we look at the relationship of the two fat 197 

intake traits (percentage fat in milk and adding spread to bread) and body fat percentage we can 198 

see that they both have a seemingly beneficial effect before correction (rG = -0.43 and -0.10, 199 

respectively) which diminishes to near zero (rG = -0.04 and 0.07) after applying the correction, 200 

suggesting that the apparent protective effect is likely due to confounding. 201 

 202 

Clustering of food items 203 

To investigate how the mediation procedure affected the genetic correlations amongst the 204 

consumption traits and with other traits, we first compared the clustering based on the uncorrected 205 

and adjusted genetic correlations. Figure S7 panel A shows the tanglegram comparing the two 206 

analyses. The adjusted correlations give more reasonable groupings, showing that some of the 207 

unadjusted clusterings are due in part to common confounders (e.g. wine clustering closer to 208 

coffee than other alcoholic beverages) than actual common genetic background.  209 

 210 

Clustering of the food traits based on their corrected genetic associations using ICLUST identified 211 

five different food groups (Fig S7 panel B): one composed of increased meat, fat, salt and 212 

decreased vegetarianism (labelled as “Meat/Fat”), one made up of alcoholic beverages and coffee 213 

(labelled “Psychoactive drinks”) and one comprised of healthier items such as fish, fruit and 214 

vegetables (labelled “Low-Calorie Foods”). Two final groups contained only two items each: drink 215 

temperature and tea; and cheese and bread; these were not used for the MV analysis. In order to 216 

explore if additional loci influence these groups, we ran a multivariate GWAS using the package 217 

MultiABEL, which performs MANOVA on summary statistics. 168 additional associations, including 218 

42 novel loci not identified in the single-trait analysis, were identified in multivariate analysis of the 219 

three main food groups (Table S5). 220 

 221 

Selection of instruments for MR 222 
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The primary objective of our study is to use MR to assess causal relationships between food 223 

choices and health. To achieve this goal we need to be able to identify the SNPs which have only 224 

a direct effect on the food trait, which is not mediated through other possible confounders. We 225 

hypothesised that if a SNP is biologically associated with a food behaviour - without mediation by 226 

health - its effect should not change strongly after the adjustment procedure. To try to distinguish 227 

the variants with only a direct effect from those with effects at least partly mediated through other 228 

traits, we defined the corrected-to-raw ratio (CRR) as the ratio between the corrected effect and 229 

the raw uncorrected one.  230 

 231 

Through extensive simulations we estimated that the CRR range between 0.95 and 1.05 232 

maximises this probability, with 88% of the SNPs being directly associated with the trait of interest 233 

(see Supplementary Data 2.1 for details on the simulations and Supplementary Data 1.8 for 234 

theory). Further evidence comes from variants in alcohol dehydrogenase 1B and the taste and 235 

olfactory receptors (for which clear biological pathways can be defined): all have CRR values 236 

between 0.95-1.05. We thus defined SNPs with a CRR in this range as “non-mediated”. 237 

387 out of 581 associations corresponding to 208/302 loci (~69%) were categorised as non-238 

mediated associations, although of these 50 showed both mediated and non-mediated effects. The 239 

balance of mediated to non-mediated SNP associations varied by foodstuff, ranging from none 240 

mediated for tea, spirits and processed meat to all mediated for percentage fat in milk and adding 241 

spread to bread (see Table S3). The necessity of using the CRR filtering instead of existing 242 

methods is further outlined in additional paragraph 2.7. 243 

 244 

Functional annotation of the direct-effect-only loci and tissue enrichment analysis prominently 245 

feature brain areas involved in reward (Supplementary Data 2.5). Inference of interaction networks 246 

reveals ten communities ranging from feeding behaviour and energy metabolism to steroid 247 

response, acetylcholine receptor regulation and synaptic transmission (Supplementary Data 2.6 248 

and Figure. 4). 249 

Fig 4.  STRING network of genes in non mediated loci. Network plot of the genes in the non-mediated loci. After 250 
performing community detection we identified ten different clusters of genes each with its particular set of functions and 251 
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expression patterns (see additional paragraph 2.6 for details). Nodes have been colored according to community 252 
membership. 253 

 254 
 255 
Causal inference 256 

We proceeded to perform two-sample MR using the food traits as exposures and 78 traits (see 257 

table S17 for a list and description) as outcomes (chosen to include those for which diet could be a 258 

causal factor, that were in MR-base and for which full GWAS summary statistics were available). 259 

As well as using each single food trait as exposures, we also assessed the effect of 16 different 260 

principal components (PC)-derived phenotypes based on the previous clustering of food traits, to 261 

quantify the consequences of broader dietary patterns. The relationships between the different 262 

traits are reported in figure S2 while loadings for each PC trait are reported in Fig 5 panel A. Traits 263 

which had no direct-effect-only SNPs (percentage fat in milk, fortified wine and adding spread to 264 

bread) were left out of the analysis. For each exposure-outcome pair, four types of analyses were 265 

performed, selecting instrumental variables with or without filtering by CRR or using corrected or 266 

uncorrected betas. We considered as the main analysis the CRR-filtered analysis using 267 

uncorrected betas and used the others for comparison. Finally we considered as significant the 268 

exposure-outcome pairs after multiple test correction of the main analysis using Storey’s q-value at 269 
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q<0.05. Table 1 reports the significant results, while all results can be found in table S18 and are 270 

available through a shiny app https://npirastu.shinyapps.io/Food_MR/. 271 

  272 
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Fig 5. Significant effects of food choice on disease. (a) Heatmap of the loadings of each food trait on the PC traits. 273 
Red reflects a positive loading while blue a negative one. (b) Network representation of all the significant exposure-274 
outcome pairs. The green nodes represent the food traits used as exposures while the yellow ones represent the 275 
outcome traits. Arrows represent the causal relationships detected through the MR analysis, they are directed to reflect 276 
the exposure -> outcome relationship and the colour reflects the direction of effect: blue, decrease; red, increase. 277 
Clearly, All PC1 (which reflects what is generally considered a healthy vs unhealthy diet) is the trait with most putatively 278 
causal associations, which range from an improved blood lipid profile to protection from both myocardial infartion and 279 
lung cancer. Blood triglyceride (TG) levels seem to be the outcome influenced by the largest number of food traits, being 280 
lowered by All PC2 and PC3, Healthy PC1, Fruit PC1, and Oily fish. Abbreviations: WC, waist circumference; Hip, hip 281 
circumference; CHD, coronary heart disease; Hb, Hemoglobin concentration; MI, myocardial infarction; LDL, low density 282 
lipoproteins; TC, total cholesterol; Serous ovarian cancer (1), High grade and low grade serous ovarian cancer; Serous 283 
ovarian cancer (2), Serous ovarian cancer: low grade and low malignant potential; Edu, Educational attainment; BMI, 284 
body mass index; WHR, waist to hip ratio; WHR|BMI, waist to hip ratio BMI adjusted; PLT, platelet; Celiac, celiac 285 
disorder. 286 

 287 
 288 
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Table 1. Significant Food-Outcome relationships. Results are presented for the associations with FDR<0.05. The 289 
Method column refers to the primary analysis method (either IVW fixed effect (FE) or random effect (RE) or Wald ratio in 290 
case of a single SNP IV). The other columns report effect sizes, standard errors and p-values for the main analysis and 291 
the two methods used as sensitivity analyses (MR-RAPS and MR Median). Finally the p-value for heterogeneity in the 292 
main analysis is reported. 293 

Exposure Outcome Method N SNPs IVW (wald ratio) MR-RAPS MR Median Heterogeneit
y p-value 

beta (se) p-value beta (se) p-value beta (se) p-value 

All PC.1 Body fat IVW (FE) 123 -0.08 
(0.022) 

3.2E-04 -0.074 
(0.028) 

7.5E-03 -0.02 
(0.035) 

5.7E-01 1.1E-03 

All PC.1 BMI IVW (RE) 120 -0.087 
(0.021) 

8.1E-05 -0.087 
(0.021) 

4.2E-05 -0.056 
(0.022) 

1.3E-02 1.5E-12 

All PC.1 CHD IVW (FE) 128 -0.059 
(0.016) 

2.2E-04 -0.065 
(0.019) 

5.6E-04 -0.066 
(0.027) 

1.5E-02 2.2E-02 

All PC.1 Hb IVW (FE) 124 -0.074 
(0.021) 

6.7E-04 -0.071 
(0.027) 

8.3E-03 -0.066 
(0.035) 

6.1E-02 4.5E-03 

All PC.1 Height IVW (RE) 117 0.094 
(0.025) 

2.2E-04 0.092 
(0.028) 

9.7E-04 0.122 
(0.026) 

2.2E-06 2.0E-19 

All PC.1 Knee osteoarthritis IVW (FE) 122 -0.257 
(0.067) 

1.8E-04 -0.271 
(0.078) 

5.4E-04 -0.259 
(0.105) 

1.3E-02 1.9E-01 

All PC.1 LDL IVW (FE) 121 -0.061 
(0.017) 

6.4E-04 -0.062 
(0.02) 

1.8E-03 -0.057 
(0.029) 

4.9E-02 1.7E-01 

All PC.1 Lung adenocarcinoma IVW (FE) 128 -0.176 
(0.05) 

6.2E-04 -0.188 
(0.056) 

8.2E-04 -0.133 
(0.086) 

1.2E-01 1.4E-01 

All PC.1 Lung cancer IVW (FE) 127 -0.278 
(0.044) 

3.5E-09 -0.287 
(0.054) 

1.1E-07 -0.275 
(0.074) 

2.0E-04 1.6E-02 

All PC.1 MI IVW (FE) 128 -0.056 
(0.016) 

6.7E-04 -0.055 
(0.02) 

6.0E-03 -0.049 
(0.028) 

8.3E-02 1.4E-02 

All PC.1 TC IVW (FE) 121 -0.07 
(0.017) 

6.0E-05 -0.063 
(0.019) 

1.2E-03 -0.05 
(0.028) 

7.3E-02 3.7E-02 

All PC.1 WC IVW (RE) 123 -0.113 
(0.025) 

1.5E-05 -0.122 
(0.022) 

5.4E-08 -0.071 
(0.03) 

1.9E-02 1.4E-06 

All PC.1 WHR IVW (RE) 124 -0.104 
(0.021) 

2.4E-06 -0.109 
(0.021) 

3.4E-07 -0.074 
(0.027) 

6.7E-03 2.0E-04 

All PC.1 WHR | BMI IVW (RE) 124 -0.078 
(0.022) 

4.9E-04 -0.08 
(0.022) 

3.6E-04 -0.069 
(0.026) 

8.3E-03 3.5E-06 

All PC.1 Edu IVW (RE) 123 0.086 
(0.019) 

1.3E-05 0.084 
(0.018) 

2.7E-06 0.059 
(0.022) 

7.2E-03 6.0E-05 

All PC.2 TG IVW (FE) 114 0.092 
(0.022) 

6.2E-05 0.077 
(0.031) 

1.3E-02 0.023 
(0.036) 

5.2E-01 6.7E-04 

All PC.2 WHR | BMI IVW (FE) 116 0.116  
(0.02) 

3.7E-08 0.108 
(0.026) 

3.6E-05 0.093 (0.03) 2.3E-03 5.6E-03 

All PC.3 Age at menarche IVW (FE) 117 0.118 
(0.026) 

1.3E-05 0.108 
(0.034) 

1.5E-03 0.093 
(0.041) 

2.1E-02 7.0E-04 

All PC.3 TG IVW (FE) 118 0.147 
(0.028) 

6.3E-07 0.151 
(0.037) 

3.9E-05 0.15 (0.047) 1.4E-03 4.9E-03 

Beef Height IVW (FE) 2 0.516 
(0.114) 

6.4E-06 NA (NA) NA NA (NA) NA 3.8E-01 

Champ/Wh 
wine 

Celiac Wald ratio 1 1.129 
(0.326) 

5.3E-04 NA (NA) NA NA (NA) NA NA 
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Fish PC.1 Serous ovarian cancer Wald ratio 1 -1.7   
(0.436) 

 

9.8E-05 NA (NA) NA NA (NA) NA NA 

Fish PC.1 Serous ovarian 
cancer(2) 

Wald ratio 1 -1.146 
(0.327) 

4.6E-04 NA (NA) NA NA (NA) NA NA 

Fruit PC.1 Hip IVW (FE) 31 -0.13 
(0.034) 

6.3E-04 -0.113 
(0.04) 

4.5E-03 -0.093 
(0.052) 

7.4E-02 1.2E-01 

Fruit PC.1 TG IVW (FE) 32 -0.142 
(0.038) 

7.4E-04 -0.154 
(0.045) 

5.7E-04 -0.15 
(0.057) 

8.9E-03 1.6E-01 

Fruit PC.1 WC IVW (FE) 32 -0.162 
(0.034) 

3.8E-05 -0.155 
(0.046) 

6.9E-04 -0.163 
(0.054) 

2.4E-03 1.6E-02 

Healthy PC.1 TG IVW (FE) 58 0.143 
(0.029) 

6.6E-06 0.14 (0.036) 1.2E-04 0.095 
(0.047) 

4.3E-02 2.6E-02 

Healthy PC.1 WHR IVW (FE) 58 0.115 
(0.026) 

3.3E-05 0.112 
(0.034) 

8.2E-04 0.122 
(0.042) 

4.1E-03 1.3E-02 

Healthy PC.1 WHR | BMI IVW (FE) 58 0.126 
(0.026) 

8.0E-06 0.116 
(0.033) 

3.6E-04 0.11 (0.041) 7.7E-03 1.7E-02 

Healthy PC.1 Edu IVW (FE) 59 -0.079 
(0.022) 

7.1E-04 -0.072 
(0.03) 

1.5E-02 -0.096 
(0.038) 

1.0E-02 4.9E-03 

Healthy PC.2 Hip IVW (FE) 58 0.197 
(0.037) 

2.3E-06 0.174 
(0.053) 

1.0E-03 0.141 (0.06) 2.0E-02 9.4E-04 

Healthy PC.3 Body fat IVW (FE) 57 -0.338 
(0.089) 

3.8E-04 -0.339 
(0.119) 

4.2E-03 -0.282 
(0.13) 

3.0E-02 2.5E-02 

Healthy PC.3 BMI IVW (FE) 50 -0.197 
(0.052) 

3.8E-04 -0.167 
(0.074) 

2.5E-02 -0.202 
(0.083) 

1.5E-02 5.9E-03 

Healthy PC.3 WHR IVW (FE) 57 -0.218 
(0.06) 

5.9E-04 -0.195 
(0.089) 

2.8E-02 -0.211 
(0.095) 

2.6E-02 2.7E-03 

Non-oily Fish PLT IVW (FE) 2 -0.016 
(0.004) 

9.2E-05 NA (NA) NA NA (NA) NA 5.1E-01 

Oily Fish Height IVW (FE) 21 0.196 
(0.035) 

1.6E-05 0.177 
(0.054) 

9.6E-04 0.174 
(0.053) 

1.1E-03 8.4E-04 

Oily Fish Serous ovarian cancer Wald ratio 1 -1.518 
(0.39) 

9.8E-05 NA (NA) NA NA (NA) NA NA 

Oily Fish Serous ovarian 
cancer(2) 

Wald ratio 1 -1.02 
(0.291) 

4.6E-04 NA (NA) NA NA (NA) NA NA 

Oily Fish TRG IVW (FE) 21 -0.175 
(0.042) 

5.1E-04 -0.156 
(0.056) 

5.2E-03 -0.084 
(0.061) 

1.7E-01 7.3E-02 

Psyco PC.1 BMI IVW (FE) 21 -0.064 
(0.016) 

8.5E-04 -0.058 
(0.024) 

1.7E-02 -0.047 
(0.024) 

5.1E-02 2.0E-03 

Salad Age at menarche IVW (FE) 14 -0.298 
(0.065) 

5.3E-04 -0.28 
(0.079) 

4.2E-04 -0.251 
(0.095) 

8.5E-03 1.7E-01 

Water|Coffee Edu IVW (FE) 24 0.162 
(0.035) 

1.3E-04 0.169 
(0.048) 

4.4E-04 0.162 
(0.052) 

1.7E-03 8.4E-03 

  294 
 295 
Looking at the significant MR results, we detected no sign of directional pleiotropy using the MR-296 

Egger test (results in table S18). In some cases, we did detect strong heterogeneity of effect, 297 

especially with All PC1 and in general with PC-food exposures which included several diverse 298 

items. Considering more specific results, all PC.1 differentiates those eating more meat and salt 299 

while drinking more alcohol and coffee from those who eat more fruit and vegetables, thus it 300 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2019. ; https://doi.org/10.1101/829952doi: bioRxiv preprint 

https://doi.org/10.1101/829952
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

describes a general healthy-unhealthy diet continuum. All PC1 showed the largest number of 301 

associations (15; Fig.S22a), with a healthy value of All PC1 lowering most risk factors linked to 302 

obesity and lipid profile (and likely consequently lowering cardiovascular disease risk) and having a 303 

positive effect on height and education. With the exception of educational attainment, these results 304 

may not be surprising as they broadly overlap with general dietary advice. However, when we 305 

decompose these effects into food groups or single foods, we detect differences amongst traits. 306 

For example, All PC 1 leads to very similar effects across different obesity/adiposity measures : 307 

body fat % (b=-0.080,p=3.2x10-4), body mass index (b= -0.087,p=8.1x10-5), waist-to-hip ratio ( =-308 

0.104, p=2.4x10-6 ) and BMI-adjusted waist-to-hip ratio (b=-0.078,p=2.9x10-4). Figure S23 shows 309 

the comparative effects of each food on the four obesity measures: generally, the individual foods 310 

affect all four in very similar ways showing that the estimates are stable regardless of the outcome. 311 

However, there are some exceptions, for example, both Fresh Fruit and Oily Fish affect Body Fat 312 

and both waist:hip ratio measures but not BMI, suggesting that their effect is specifically on 313 

adiposity and not body size.  314 

 315 

As a whole, alcohol does not seem to impact any of the four obesity traits, with a very small effect 316 

on waist-to-hip ratios. However, looking at each alcoholic beverage individually, beer has a 317 

substantial and specific effect on BMI not seen for the other alcoholic beverages, suggesting that 318 

this effect is independent of alcohol content.  319 

 320 

Another notable result is the association of oily fish consumption with height (b= 0.2, p=1.76x10-8) 321 

(Fig S22c). It is unclear, however, if this is the result of general healthy eating or if it is the effect of 322 

a specific food. In particular if we look at the effects of All PC1-3, we see that a height-raising of 323 

PC1 (higher healthy foods, less alcohol/coffee and meat b= 0.09, p=1.35x10-4), a height-lowering 324 

effect PC2 (lower healthy food and meat and higher alcohol/coffee b= -0.1, p=1.34x10-3), but no 325 

effect of PC3 ( higher meat and less alcohol/coffee and healthy foods b=-0.02, p=0.65) suggesting 326 
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that the effect on height is lead by healthy foods and alcohol/coffee but independent of meat. 327 

Looking at the associations of Healthy PC1-3, we see association only with the first which 328 

represents the overall consumption of fish, fruit and vegetables. Finally, comparing these three we 329 

find that both higher consumption of vegetables and fish are associated with being taller, with 330 

similar effect sizes (Fish PC1, b=0.17, p=4.99x10-4 and Vegetables PC1, b=0.15, p=1.30x10-3), 331 

while fruit has no effect (b= 0, p= 0.96), which makes the effects of fish and vegetables 332 

indistinguishable.  333 

 334 

Several associations seem to be masked by the confounding effects, for example if we look at 335 

genetically-determined beef intake, the CRR-corrected instruments show a significant association 336 

with being taller ( b= 0.51 SD adjusted vs. b= -0.01 unadjusted) and with other anthropometric 337 

traits such as hip and waist circumference. None of these associations were recovered using the 338 

raw instruments with estimated effects extremely close to 0, showing that the problems arising 339 

from using the unadjusted set of instruments are not limited to false positive results but also can 340 

generate false negatives, depending on the biases involved. 341 

 342 

Discussion 343 

Our results emphasise how complicated relationships among dietary traits are. We have clearly 344 

shown that the causal path between food and health is not unidirectional and that in fact genes 345 

may affect food behaviours in many different and unexpected ways. Understanding the origins of 346 

these effects is fundamental not only for prioritizing loci for functional follow up, but also for 347 

understanding why genetic correlations and GWAS results change when different datasets or 348 

populations are used. In fact, given that many of the effects we see are likely due to confounding, if 349 

the health advice in different  populations changes this could alter the architecture of the studied 350 

trait and thus the GWAS results, which would appear as allelic heterogeneity.  351 

It is unclear whether these effects are limited to dietary phenotypes or if they extend to other traits 352 

and further studies are needed to resolve this issue. Recent similar studies10,11 on the genetic 353 
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bases of dietary patterns reported having detected no reverse causality. We believe that this 354 

difference is due to our novel approach, which is not based on using the potential confounders as 355 

covariates, but rather exploits MR, which should be able to distinguish the forward and reverse 356 

effects when the causal relationship is bidirectional. Nevertheless, extreme care is required when 357 

claiming causal relationships between food and health as the level and complexity of the biases 358 

and confounding is so high that it affects even MR, which is known to be more robust than other 359 

approaches to these types of effects. 360 

 361 

In a classic dietary analysis, investigators evaluate macronutrient compositions. In this study, we 362 

did not see similar effects from foods which have similar macronutrient composition. For example, 363 

if we look at cheese and meat, which are both relatively high in saturated fat and protein, we see 364 

no association of eating either with blood lipid profile (triglycerides, LDL or total cholesterol), while 365 

they have opposite effects on BMI (cheese lowering it and meat increasing it) (Fig S22e).). While 366 

the findings require further investigations in mechanisms and related behaviours, our genetic 367 

evidence lenders the support for the importance of food consumption and dietary patterns, not only 368 

intakes of specific nutrients26. 369 

 370 

If we look at which foods have the greatest effect on triglycerides, it is fruit, vegetables and fish; all 371 

with lowering effects (Fig S22f), not sources of carbohydrates or alcohol, known drivers of de novo 372 

lipogenesis. This seems to be confirmed by looking at the results with the overall PC traits (All-373 

PC1, -PC2, -PC3) in which a higher consumption of fruit, vegetables and fish is always associated 374 

with lower triglycerides regardless of the loading on other food groups. It is impossible, however, to 375 

separate the effects of fruit, vegetables and fish from each other, in fact, if we look at the Healthy 376 

PC traits (see fig 5 panel A), only PC1, which summarises a higher consumption of all three is 377 

associated with lower triglycerides, suggesting the combined effects of all the three dietary factors 378 

or unmeasured correlated dietary behaviours or healthful habits.  379 

This example shows that when considering the effect of food on health it is sometimes hard to 380 

separate the effect of single foods (although we have shown some examples) from those which 381 
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are usually consumed together in a pattern. In this case, although fish and fruit and vegetables 382 

have a very different macronutrient composition it is impossible to separate their effect on 383 

triglycerides. This has been implied in previous studies including the European study on lactase 384 

persistence gene9.  There, while the MR relating lactase-persistence gene to diabetes incidence 385 

supported no causal evidence of milk consumption, the secondary analyses identified the lactase-386 

persistence variant would relate to consumption of potatoes, poultry, and cereals.  These pieces of 387 

genetic evidence highlight the importance of a dietary pattern rather than single foods or nutrients.  388 

Any health claim from observational studies  regarding one or the other should always take into 389 

account these facts. For further details of specific results, our online app allows exploration of 390 

hypotheses.  391 

 392 

Our study was limited by the number of items available in the dietary questionnaire in the UK 393 

BioBank and thus has not explored the full extent of human nutrition, unfortunately apart from 394 

bread consumption no carbohydrate or sugar sources were measured, limiting our ability to 395 

explore these macronutrients and thus capture the overall diet. Nonetheless, this limitation is 396 

unlikely to turn over the abovementioned cautionary interpretation of the dietary MR results. 397 

Another important limitation is that effect sizes could be inflated because of the underestimation of 398 

the SNP effects on the food traits which will increase MR estimate effects. This under-estimation is 399 

due to the noise in the questionnaire responses, which warrant further statistical investigations. Of 400 

note, as we have no rationale to consider non-random measurement error, it is unlikely to hinder 401 

the detection of a causal effect or its direction, but further studies are needed to assess the precise 402 

effect sizes. Before translation of our findings into policy, more studies using different 403 

methodologies will be required. 404 

 405 

In conclusion, we have developed an important framework and new tools to help illuminate the 406 

effects of nutrition on health and have shown that despite the existing belief that certain dietary 407 

assessment provides low-quality data, it is still possible to extract useful information using our 408 

methods. It will be interesting to learn to what degree the confounding of food choice reporting by 409 
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educational attainment and disease risk factors observed here is seen in other settings with 410 

different food cultures and social stratification to the UK. 411 
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