

1 **Using genetics to disentangle the complex relationship between food choices and health
2 status**

3

4 **Authors**

5 Nicola Pirastu^{1†}, Ciara McDonnell^{1,11*}, Eryk J. Grzeszkowiak^{1*}, Ninon Mounier^{2,3}, Fumiaki Imamura³,
6 Felix R. Day⁴, Jie Zheng⁵, Nele Taba^{6,12}, Maria Pina Concas⁷, Linda Repetto¹, Katherine A.
7 Kentistou^{1,11}, Antonietta Robino⁷, Tõnu Esko^{6,9}, Peter K. Joshi¹, Krista Fischer⁶, Ken K. Ong⁴, Tom R.
8 Gaunt⁵, Zoltan Kutalik^{2,3}, John R. B. Perry⁴, James F. Wilson^{1,10}.

9 **Affiliations**

10 1 Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place,
11 Edinburgh, EH8 9AG, Scotland.

12 2. Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland

13 3. Swiss Institute of Bioinformatics, Lausanne, Switzerland

14 4. MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus,
15 University of Cambridge School of Clinical Medicine, Box 285, Cambridge, CB2 0QQ, UK

16 5. MRC Integrative Epidemiology Unit, Bristol Medical School, Bristol, UK

17 6. Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Riia 23b, 51010,
18 Estonia

19 7. Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy

20 8. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A,
21 SE-171 77 Stockholm, Sweden

22 9. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge,
23 Massachusetts, USA

24 10. MRC Human Genetics Unit, Institute of Genetic and Molecular Medicine, University of
25 Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland

26 11. Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of
27 Edinburgh, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, Scotland

28
29 12. Institute of Molecular and Cell Biology, University of Tartu, Tartu, Riia 23, 51010, Estonia

30

31 *Authors contributed equally to this work.

32 †Correspondence should be addressed to Nicola Pirastu, nicola.pirastu@ed.ac.uk

33

34

35

36

37 **Abstract.**

38 **Despite food choices being one of the most important factors influencing health, efforts to**
39 **identify individual food groups and dietary patterns that cause disease have been**
40 **challenging, with traditional nutritional epidemiological approaches plagued by biases and**
41 **confounding. After identifying 302 (289 novel) individual genetic determinants of dietary**
42 **intake in 445,779 individuals in the UK Biobank study, we develop a statistical genetics**
43 **framework that enables us, for the first time, to directly assess the impact of food choices**
44 **on health outcomes. We show that the biases which affect observational studies extend**
45 **also to GWAS, genetic correlations and causal inference through genetics, which can be**
46 **corrected by applying our methods. Finally, by applying Mendelian Randomization**
47 **approaches to the corrected results we identify some of the first robust causal associations**
48 **between eating patterns and risks of cancer, heart disease and obesity, distinguishing**
49 **between the effects of specific foods or dietary patterns.**

50

51 **Introduction**

52 Given their profound impact on human well-being, nutritional choices and their impact on health
53 are one of the most studied human behaviours. Quality and quantity of food consumption are
54 associated with a wide range of medical conditions including metabolic syndrome and
55 cardiovascular disease¹, cancer¹, liver disease², inflammatory bowel disease³ and depression⁴.
56 Food choice is becoming increasingly significant for global health as energy-dense, low fibre
57 western diets proliferate across the globe and an obesity epidemic follows⁴. Despite the extremely
58 high number of studies reporting food/health associations it has been hard to establish causal
59 relationships due to difficulty in measurement, recall bias and confounding.

60

61 Recently, causal inference has been improved by a large number of studies which use Mendelian
62 Randomization (MR) to assess the causal relationship between one or more exposures and
63 outcomes. In MR, genetic variants are used as instrumental variables to measure the “life-long
64 exposure” to a risk factor⁵. This technique has proven to be extremely powerful, not influenced by

65 confounding typical of observational studies and many of the results have been mirrored by
66 randomised controlled trials⁵. It is thus appealing to use MR to assess the causal relationship
67 between food and health. Unfortunately, genetic variants predicting dietary consumption has been
68 limited to a few food groups, such as alcoholic beverages⁶, coffee⁷, milk^{8,9}, and existing evidence
69 from dietary MR studies remain unremarkable^{10,11}. More importantly, previous studies on a single
70 food group have not accounted for interrelationships between different food groups. We therefore
71 aimed to assess the causal relationship between food and several health outcomes by exploiting
72 consumption patterns of multiple food groups in the UK Biobank (UKB) to create a new set of
73 genetic instruments for MR analysis and then testing the causal effect of food consumption on
74 health.¹²

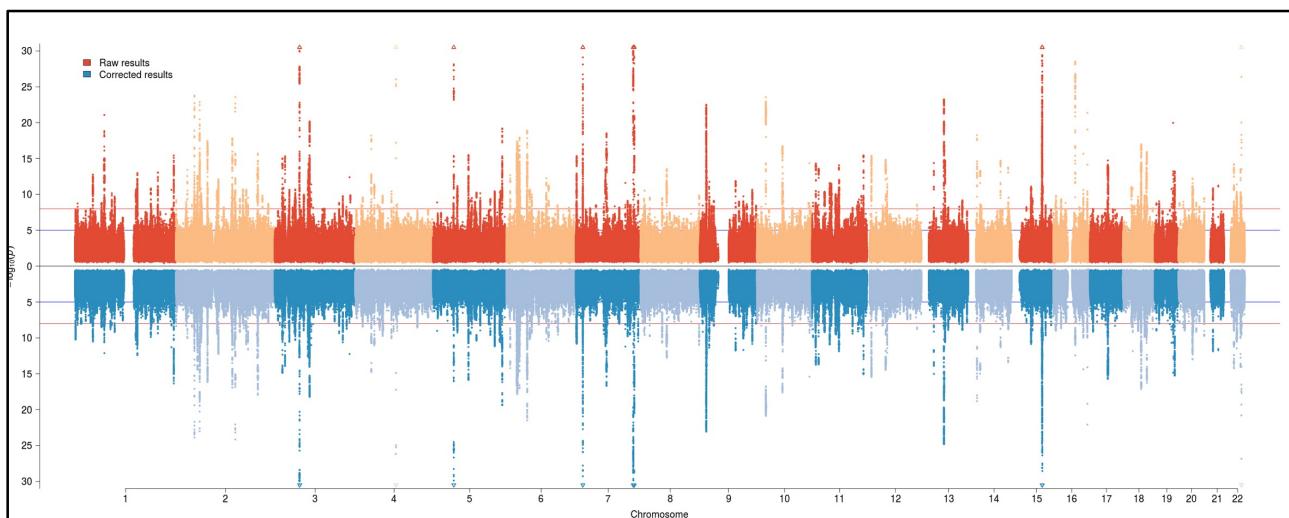
75

76 **GWAS of food traits**

77 The first step in MR is to identify those genetic variants which are associated with the exposure of
78 interest (food consumption in our case). We thus conducted a genome-wide association study
79 (GWAS) on 29 food consumption traits, such as “beef” and “cheese” intake, using a mixed linear
80 model in the white European participants of UKB¹³ (up to N=445,779), including only sex and age
81 as covariates to avoid collider bias¹⁴ For a full description of the traits see Tables S1 and S2. The
82 GWAS identified 414 phenotype-genotype associations divided into 260 independent loci with $p <$
83 1×10^{-8} , summarized in Table S3 and Figure 1.

84

85 **Fig. 1 Miami plot showing 302 independent loci associated with food choices.** Results for both univariate and
86 multivariate analyses are included. For each SNP the lowest p-value for all traits was plotted. The upper panel
87 represents the unadjusted GWAS associations while the lower panel represents the association with food choices, after
88 adjustment for mediating traits, such as health status.
89



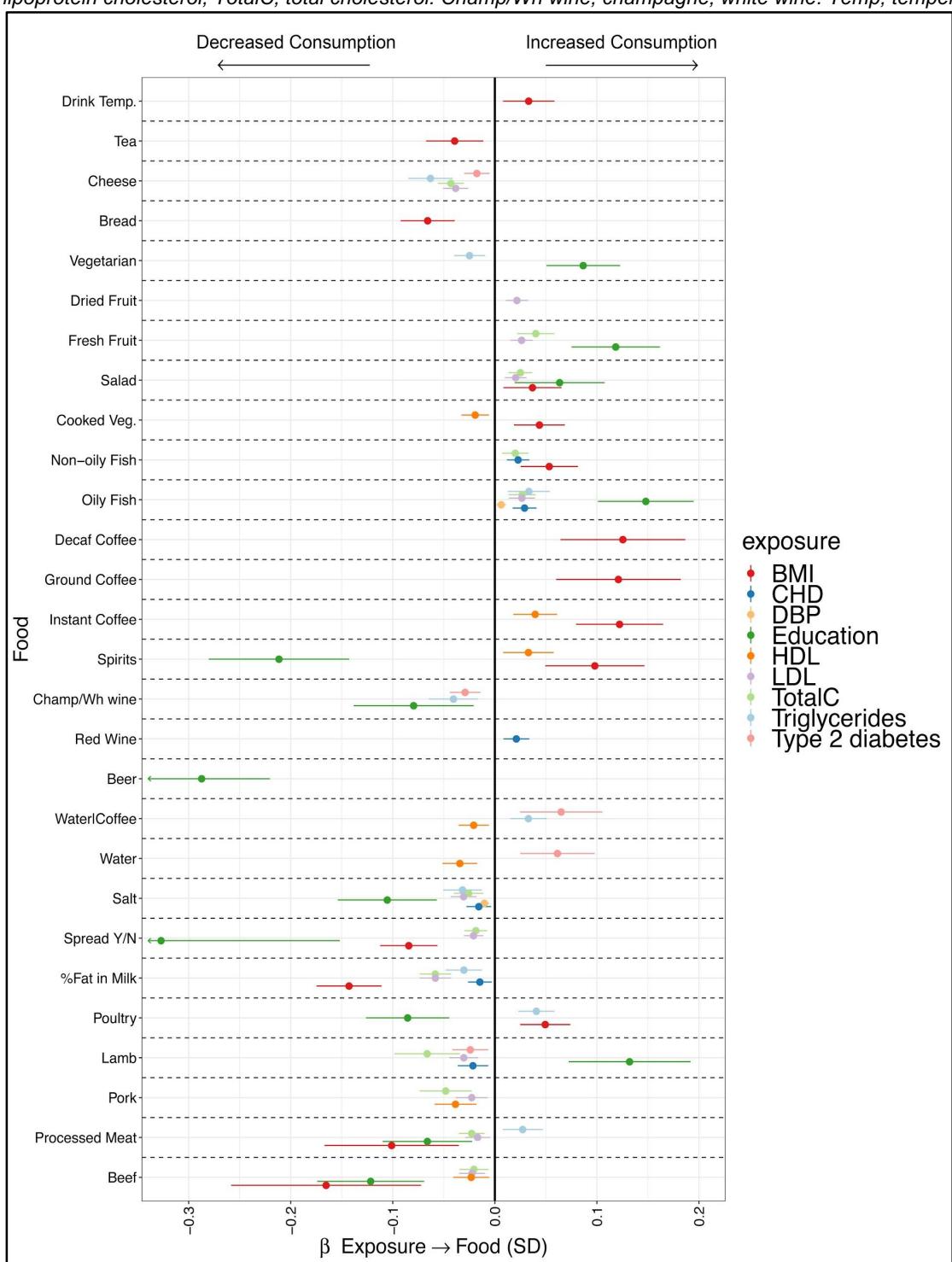
90
91
92
93 Replication for 23 of the 29 traits was sought in two additional UK based cohorts (EPIC-Norfolk¹⁵
94 and Fenland¹⁶) totalling up to 32,779 subjects. Despite relatively limited power, we could nominally
95 replicate 104/325 associations at $p < 0.05$ (one-sided test) (32%; $p = 9.47 \times 10^{-54}$). The direction of
96 effect was consistent with that for discovery in 268 of the 325 associations (82%; $p = 7.82 \times 10^{-35}$,
97 Binomial test; see Table S5). After prioritization of the genes in each locus (see Methods for details
98 and Supp. Table S4 for the prioritized genes), we noticed that for many genes associated with
99 BMI, the BMI-raising allele was associated with lower reported consumption of energy-dense foods
100 such as meat or fat and with higher consumption of lower-calorie foods. Although the exact
101 mechanism of action of many of these genes is unknown, in the case of *MC4R* in mice loss-of-
102 function K314X mutants show an increase in weight, higher intake of calories and higher
103 preference for a high fat diet¹⁷, while we observe a lower intake of fat and higher intake of fresh
104 fruit. We thus wondered if this could be due to the effect of higher BMI on food choices instead of
105 the reverse and if this effect might also occur for a broader range of health-related traits.
106

107 Detecting the effects of potential confounders on food frequency data

108 To test this hypothesis, we first selected nine diseases and risk factors for which dietary advice is
109 usually given and for which GWA summary statistics (from large meta-analyses not including UKB)

110 were available. Educational attainment was also included as a proxy for socioeconomic status.
111 Using MR we identified 81 instances where we had evidence of health-related traits significantly
112 influencing food choice (Fig. 2).

Fig 2. Health status influences reported food choices. The plot reports only the univariable MR results which were significant at $FDR < 0.05$. For each food outcome the effect estimate (β) is reported in standard deviations of the exposure trait, together with 95% confidence intervals. Each colour represents a different exposure. BMI, body mass index; CHD, coronary heart disease; DBP, diastolic blood pressure; HDL, high density lipoprotein cholesterol; LDL, low density lipoprotein cholesterol; TotalC, total cholesterol. Champ/Wh wine, champagne, white wine. Temp, temperature.



120 Aside from educational attainment, many associations seem to reflect common nutritional advice.
121 For example, higher genetically-determined BMI associates with higher consumption of poultry,
122 vegetables (both raw and cooked), non-oily fish, (also spirits and coffee); but less beef, processed
123 meat, bread and fatty foods. Similarly, those genetically predisposed to CHD report lower
124 consumption of whole milk, salt and lamb; and higher consumption of fish and red wine. This last
125 case is particularly interesting, reflecting the standard dietary advice (lower intake of fat and salt
126 but higher intake of fish as a means to increase omega-3 fatty acid intake¹⁸), but also higher
127 consumption of red wine (and not other alcoholic beverages), which is commonly believed to have
128 cardioprotective effects^{19,20}.

129

130 From these MR results, it is clear that some of the loci we have identified in GWAS are not directly
131 associated with food consumption but are the result of the effect of the health-related phenotypes
132 on food consumption. Although we commonly consider the food-health relationship with diet as the
133 exposure and disease as the outcome, we must consider that humans may change their behaviour
134 because of their health status. This reverses the expected cause and effect relationship, making
135 the interpretation of the GWAS results complex.

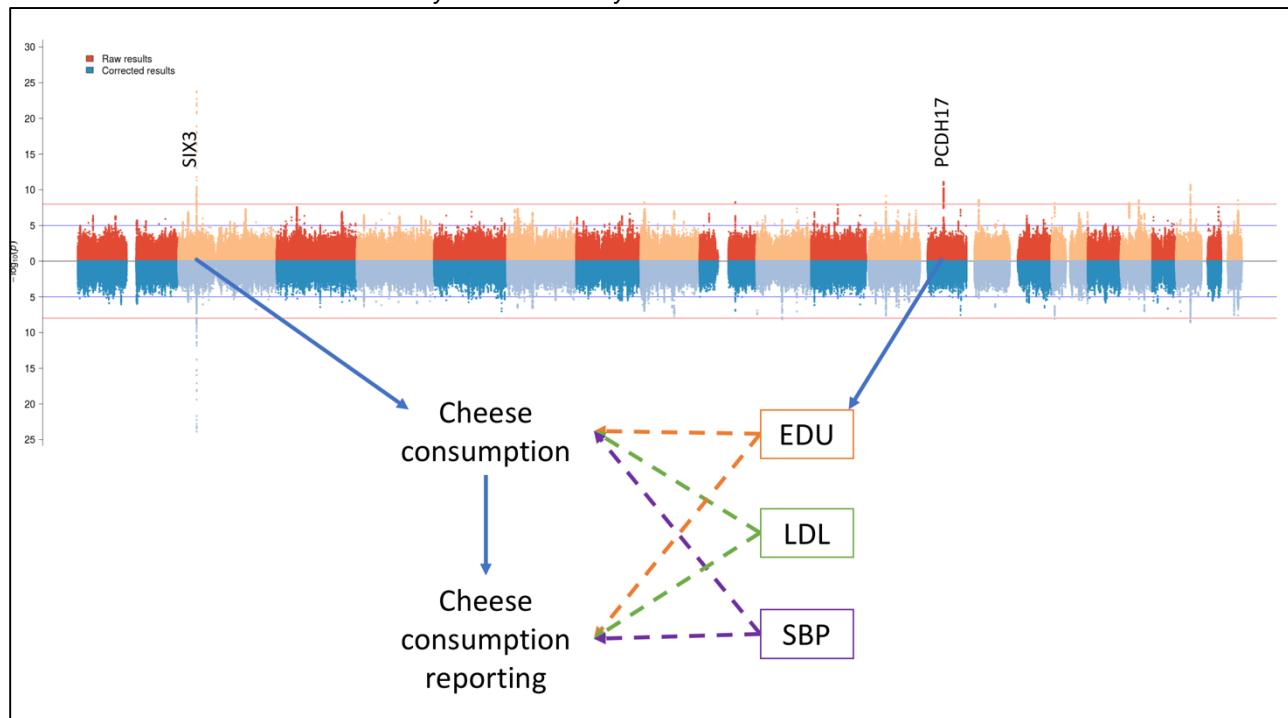
136

137 **Correcting biases in dietary GWAS**

138 To address the possibility of mediated effects, it is common to add the potential mediators as
139 covariates in the association model. However, adding heritable covariates may lead to spurious
140 associations due to collider bias (i.e. the false association between two variables induced by
141 including a third variable (the collider) in the regression model, to which both variables of interest
142 are causal)¹⁴. Moreover, when the causal relationship is bidirectional, adding a covariate will
143 correct for the overall effect and not for the unidirectional effect we actually want to correct for.

144

145 **Fig. 3 Direct and indirect SNP effects.** The plot shows the causal path of exemplar genes identified for cheese
146 consumption. In the multivariable MR model cheese consumption is causally influenced by educational attainment
147 (EDU), low density lipoprotein cholesterol levels (LDL) and systolic blood pressure (SBP). The effect of PCDH17 and is
148 mediated through educational attainment, while SIX3 has a direct effect on cheese consumption. The mediated effects
149 cannot be used reliably as MR instruments as they could be affecting either consumption or its reporting. Moreover, they
150 could act as confounders in the MR analysis and thus they need to be identified.



151
152 We thus developed a new MR-based approach to correct the effect of each SNP in the dietary
153 GWAS for the effect mediated through other confounding traits. Briefly, our approach consists of
154 two steps: the first is to fit a multivariable MR model to estimate the effects of the traits we would
155 like to test (the health-related traits in our case) on the traits of interest (the food traits). For each
156 SNP, then an expected mediated effect is calculated, based on the effect of the SNP on the
157 mediator traits. The expected effect is then subtracted from the observed one to get an adjusted
158 estimate (see Methods for details). This last step is exactly analogous to estimating the direct
159 effect in mediation analysis²¹.

160
161 We applied this method to all 29 food traits. As potential mediators, we used the traits tested in the
162 univariate models, to which we added Crohn's disease and ulcerative colitis, as they may impact
163 dietary choices after diagnosis. We also removed total cholesterol to avoid problems due to
164 collinearity with LDL and HDL cholesterol. Looking at the exposure traits selected for the
165 multivariable (MV) causal model of each food trait (Supplementary Fig S3 panel A and
166 Supplementary Table S8), educational attainment plays a fundamental role in shaping food

167 choices, significantly influencing over half of the traits, as does BMI. Looking at the percentage of
168 the genetic variance of the food traits explained by the health-related traits (Supplementary Fig S3
169 panel B and Supplementary Table S16), it ranges from 42% for cheese to ~0% for fortified wine
170 and white wine/champagne, highlighting the scope these effects have to influence GWAS results.
171 The combined results from all traits before and after adjustment for the effect of health status on
172 food preference are shown in Fig. 1 (see Supplementary file 1 for trait-specific plots). In many loci
173 previously associated with health-related traits, the effect changed dramatically, suggesting that
174 the effect of the SNP on the food traits is mediated through health status. For example, the effect
175 size of the lead *FTO* variant (rs55872725) with percentage fat in milk reduces by three-fold from
176 0.0045 to 0.0015 log units ($p=2\times 10^{-29}$ and $p=7\times 10^{-5}$, respectively). We observed similar effects for
177 other associations at the same locus, which suggests that in general the associations we are
178 observing near *FTO* are primarily mediated through its strong association with BMI²².
179 This insight is crucial to understanding: a naïve approach would interpret that eating less healthy
180 foods and more calorie-dense foods would lead to a lower BMI, while in fact, our analysis suggests
181 that it is having a higher BMI that leads to either having a healthier diet or reporting one. This
182 accords with known biases in a dietary assessment²³. Unfortunately, we cannot distinguish
183 between a change in behaviour (and thus indication bias) or such reporting bias. These results
184 warrant even greater caution in using SNPs influencing diet in MR or for functional follow up
185 studies. Moreover, most nutritional epidemiological studies have focused only on BMI and
186 socioeconomic status for correction, while we show that the confounding effects extend to many
187 other health traits such as blood pressure and lipids. The widespread effect of education and BMI
188 on dietary choices is especially strong on cheese and percentage fat in milk. This may explain
189 some of the recent epidemiological results linking dairy product consumption to positive health
190 benefits²⁴.
191
192 To further explore the effects of the correction procedure, we compared the correlation patterns
193 between the food traits and 832 phenotypes present in the LD hub²⁵ database using the raw and
194 corrected results (See Supplementary Data 2.3 and additional table S10). These analyses showed

195 that the correction produced more meaningful food clusters and that in many cases the genetic
196 correlations with other traits changed greatly (see https://npirastu.shinyapps.io/rg_plotter_2/ for a
197 graphical representation of these results). For example, if we look at the relationship of the two fat
198 intake traits (percentage fat in milk and adding spread to bread) and body fat percentage we can
199 see that they both have a seemingly beneficial effect before correction ($r_G = -0.43$ and -0.10 ,
200 respectively) which diminishes to near zero ($r_G = -0.04$ and 0.07) after applying the correction,
201 suggesting that the apparent protective effect is likely due to confounding.

202

203 **Clustering of food items**

204 To investigate how the mediation procedure affected the genetic correlations amongst the
205 consumption traits and with other traits, we first compared the clustering based on the uncorrected
206 and adjusted genetic correlations. Figure S7 panel A shows the tanglegram comparing the two
207 analyses. The adjusted correlations give more reasonable groupings, showing that some of the
208 unadjusted clusterings are due in part to common confounders (e.g. wine clustering closer to
209 coffee than other alcoholic beverages) than actual common genetic background.

210

211 Clustering of the food traits based on their corrected genetic associations using ICLUS identified
212 five different food groups (Fig S7 panel B): one composed of increased meat, fat, salt and
213 decreased vegetarianism (labelled as “Meat/Fat”), one made up of alcoholic beverages and coffee
214 (labelled “Psychoactive drinks”) and one comprised of healthier items such as fish, fruit and
215 vegetables (labelled “Low-Calorie Foods”). Two final groups contained only two items each: drink
216 temperature and tea; and cheese and bread; these were not used for the MV analysis. In order to
217 explore if additional loci influence these groups, we ran a multivariate GWAS using the package
218 MultiABEL, which performs MANOVA on summary statistics. 168 additional associations, including
219 42 novel loci not identified in the single-trait analysis, were identified in multivariate analysis of the
220 three main food groups (Table S5).

221

222 **Selection of instruments for MR**

223 The primary objective of our study is to use MR to assess causal relationships between food
224 choices and health. To achieve this goal we need to be able to identify the SNPs which have only
225 a direct effect on the food trait, which is not mediated through other possible confounders. We
226 hypothesised that if a SNP is biologically associated with a food behaviour - without mediation by
227 health - its effect should not change strongly after the adjustment procedure. To try to distinguish
228 the variants with only a direct effect from those with effects at least partly mediated through other
229 traits, we defined the corrected-to-raw ratio (CRR) as the ratio between the corrected effect and
230 the raw uncorrected one.

231

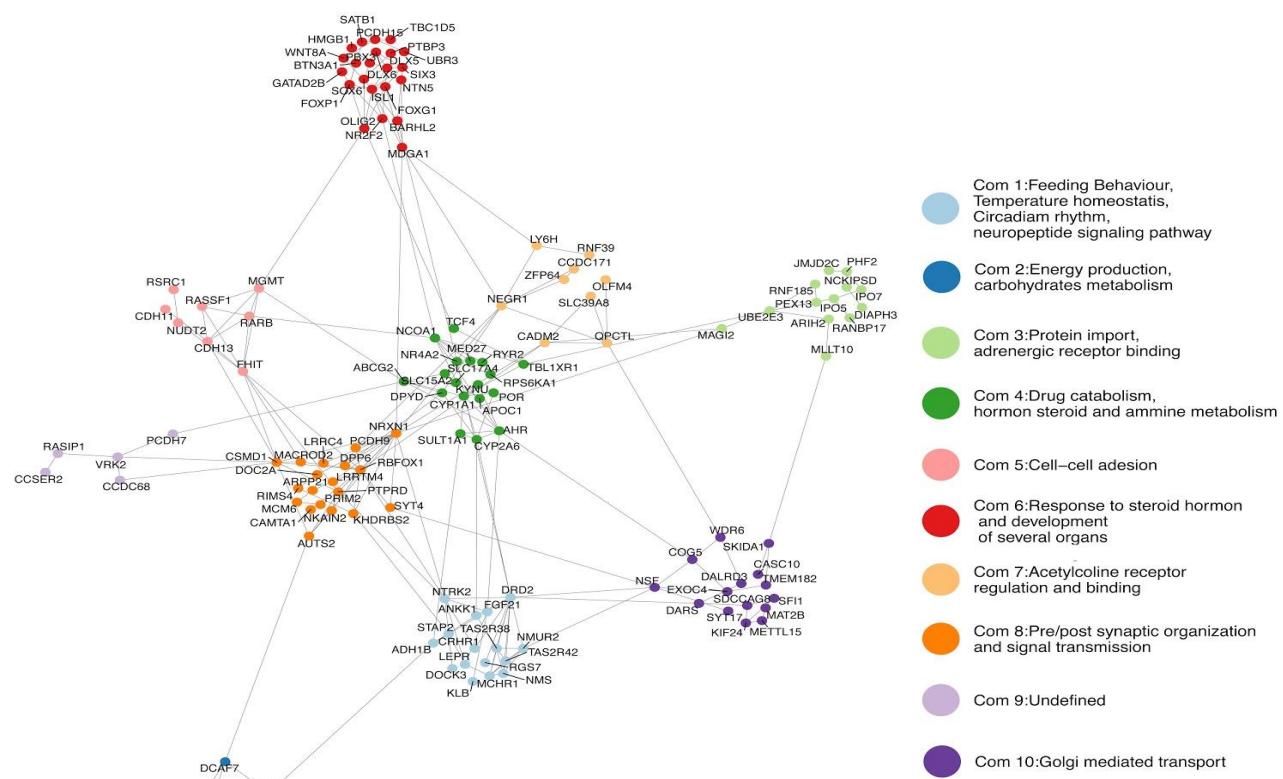
232 Through extensive simulations we estimated that the CRR range between 0.95 and 1.05
233 maximises this probability, with 88% of the SNPs being directly associated with the trait of interest
234 (see Supplementary Data 2.1 for details on the simulations and Supplementary Data 1.8 for
235 theory). Further evidence comes from variants in alcohol dehydrogenase 1B and the taste and
236 olfactory receptors (for which clear biological pathways can be defined): all have CRR values
237 between 0.95-1.05. We thus defined SNPs with a CRR in this range as “non-mediated”.
238 387 out of 581 associations corresponding to 208/302 loci (~69%) were categorised as non-
239 mediated associations, although of these 50 showed both mediated and non-mediated effects. The
240 balance of mediated to non-mediated SNP associations varied by foodstuff, ranging from none
241 mediated for tea, spirits and processed meat to all mediated for percentage fat in milk and adding
242 spread to bread (see Table S3). The necessity of using the CRR filtering instead of existing
243 methods is further outlined in additional paragraph 2.7.

244

245 Functional annotation of the direct-effect-only loci and tissue enrichment analysis prominently
246 feature brain areas involved in reward (Supplementary Data 2.5). Inference of interaction networks
247 reveals ten communities ranging from feeding behaviour and energy metabolism to steroid
248 response, acetylcholine receptor regulation and synaptic transmission (Supplementary Data 2.6
249 and Figure. 4).

250 **Fig 4. STRING network of genes in non mediated loci.** Network plot of the genes in the non-mediated loci. After
251 performing community detection we identified ten different clusters of genes each with its particular set of functions and

252 expression patterns (see additional paragraph 2.6 for details). Nodes have been colored according to community
253 membership.



254
255
256 **Causal inference**

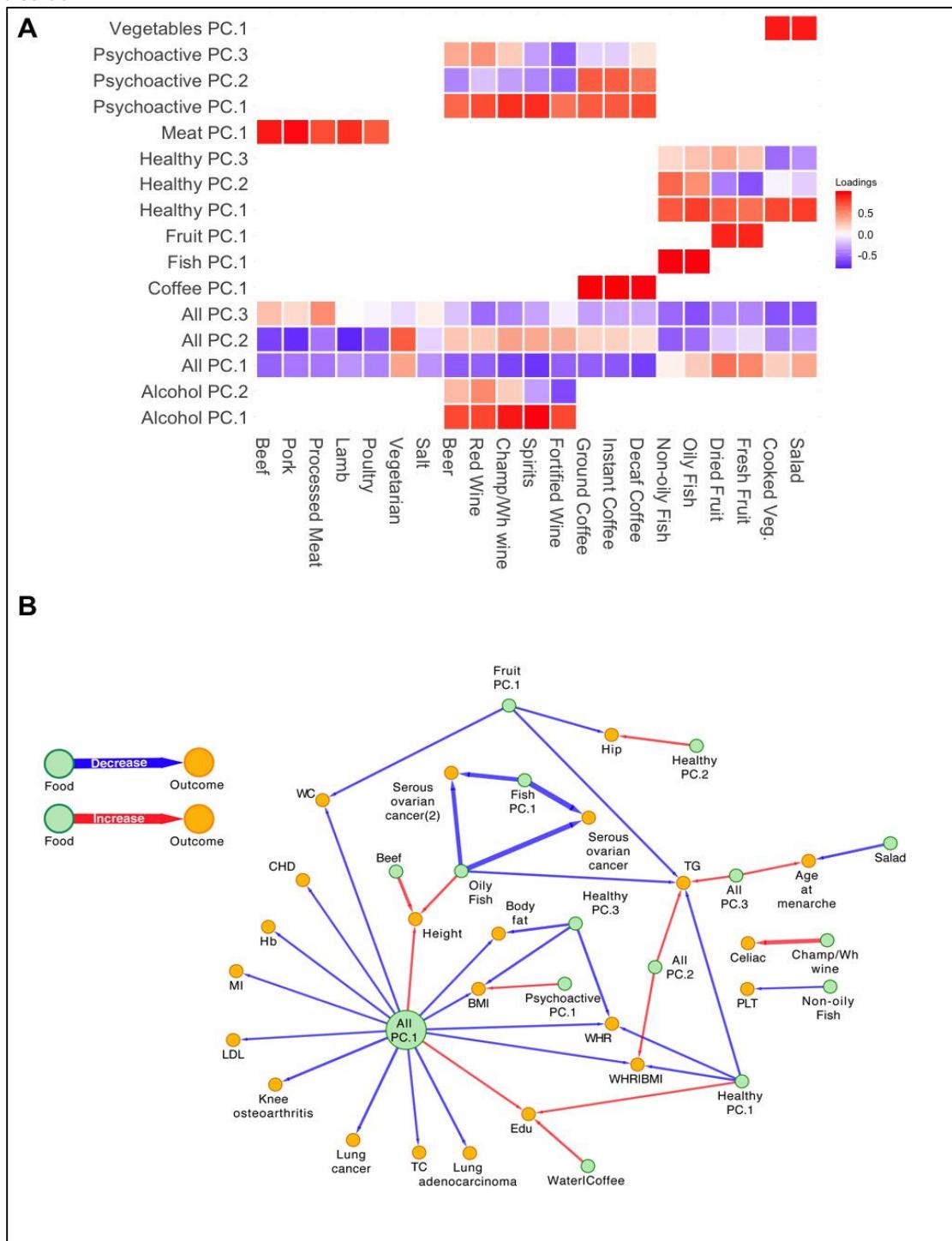
257 We proceeded to perform two-sample MR using the food traits as exposures and 78 traits (see
258 table S17 for a list and description) as outcomes (chosen to include those for which diet could be a
259 causal factor, that were in MR-base and for which full GWAS summary statistics were available).
260 As well as using each single food trait as exposures, we also assessed the effect of 16 different
261 principal components (PC)-derived phenotypes based on the previous clustering of food traits, to
262 quantify the consequences of broader dietary patterns. The relationships between the different
263 traits are reported in figure S2 while loadings for each PC trait are reported in Fig 5 panel A. Traits
264 which had no direct-effect-only SNPs (percentage fat in milk, fortified wine and adding spread to
265 bread) were left out of the analysis. For each exposure-outcome pair, four types of analyses were
266 performed, selecting instrumental variables with or without filtering by CRR or using corrected or
267 uncorrected betas. We considered as the main analysis the CRR-filtered analysis using
268 uncorrected betas and used the others for comparison. Finally we considered as significant the
269 exposure-outcome pairs after multiple test correction of the main analysis using Storey's q-value at

270 q<0.05. Table 1 reports the significant results, while all results can be found in table S18 and are
271 available through a shiny app https://npirastu.shinyapps.io/Food_MR/.

272

273
274
275
276
277
278
279
280
281
282
283
284
285
286

Fig 5. Significant effects of food choice on disease. (a) Heatmap of the loadings of each food trait on the PC traits. Red reflects a positive loading while blue a negative one. (b) Network representation of all the significant exposure-outcome pairs. The green nodes represent the food traits used as exposures while the yellow ones represent the outcome traits. Arrows represent the causal relationships detected through the MR analysis, they are directed to reflect the exposure -> outcome relationship and the colour reflects the direction of effect: blue, decrease; red, increase. Clearly, All PC1 (which reflects what is generally considered a healthy vs unhealthy diet) is the trait with most putatively causal associations, which range from an improved blood lipid profile to protection from both myocardial infarction and lung cancer. Blood triglyceride (TG) levels seem to be the outcome influenced by the largest number of food traits, being lowered by All PC2 and PC3, Healthy PC1, Fruit PC1, and Oily fish. Abbreviations: WC, waist circumference; Hip, hip circumference; CHD, coronary heart disease; Hb, Hemoglobin concentration; MI, myocardial infarction; LDL, low density lipoproteins; TC, total cholesterol; Serous ovarian cancer (1), High grade and low grade serous ovarian cancer; Serous ovarian cancer (2), Serous ovarian cancer: low grade and low malignant potential; Edu, Educational attainment; BMI, body mass index; WHR, waist to hip ratio; WHR|BMI, waist to hip ratio BMI adjusted; PLT, platelet; Celiac, celiac disorder.



287
288

289
290
291
292
293

Table 1. Significant Food-Outcome relationships. Results are presented for the associations with $FDR < 0.05$. The Method column refers to the primary analysis method (either IVW fixed effect (FE) or random effect (RE) or Wald ratio in case of a single SNP IV). The other columns report effect sizes, standard errors and p-values for the main analysis and the two methods used as sensitivity analyses (MR-RAPS and MR Median). Finally the p-value for heterogeneity in the main analysis is reported.

Exposure	Outcome	Method	N SNPs	IVW (wald ratio)		MR-RAPS		MR Median		Heterogeneity p-value
				beta (se)	p-value	beta (se)	p-value	beta (se)	p-value	
All PC.1	Body fat	IVW (FE)	123	-0.08 (0.022)	3.2E-04	-0.074 (0.028)	7.5E-03	-0.02 (0.035)	5.7E-01	1.1E-03
All PC.1	BMI	IVW (RE)	120	-0.087 (0.021)	8.1E-05	-0.087 (0.021)	4.2E-05	-0.056 (0.022)	1.3E-02	1.5E-12
All PC.1	CHD	IVW (FE)	128	-0.059 (0.016)	2.2E-04	-0.065 (0.019)	5.6E-04	-0.066 (0.027)	1.5E-02	2.2E-02
All PC.1	Hb	IVW (FE)	124	-0.074 (0.021)	6.7E-04	-0.071 (0.027)	8.3E-03	-0.066 (0.035)	6.1E-02	4.5E-03
All PC.1	Height	IVW (RE)	117	0.094 (0.025)	2.2E-04	0.092 (0.028)	9.7E-04	0.122 (0.026)	2.2E-06	2.0E-19
All PC.1	Knee osteoarthritis	IVW (FE)	122	-0.257 (0.067)	1.8E-04	-0.271 (0.078)	5.4E-04	-0.259 (0.105)	1.3E-02	1.9E-01
All PC.1	LDL	IVW (FE)	121	-0.061 (0.017)	6.4E-04	-0.062 (0.02)	1.8E-03	-0.057 (0.029)	4.9E-02	1.7E-01
All PC.1	Lung adenocarcinoma	IVW (FE)	128	-0.176 (0.05)	6.2E-04	-0.188 (0.056)	8.2E-04	-0.133 (0.086)	1.2E-01	1.4E-01
All PC.1	Lung cancer	IVW (FE)	127	-0.278 (0.044)	3.5E-09	-0.287 (0.054)	1.1E-07	-0.275 (0.074)	2.0E-04	1.6E-02
All PC.1	MI	IVW (FE)	128	-0.056 (0.016)	6.7E-04	-0.055 (0.02)	6.0E-03	-0.049 (0.028)	8.3E-02	1.4E-02
All PC.1	TC	IVW (FE)	121	-0.07 (0.017)	6.0E-05	-0.063 (0.019)	1.2E-03	-0.05 (0.028)	7.3E-02	3.7E-02
All PC.1	WC	IVW (RE)	123	-0.113 (0.025)	1.5E-05	-0.122 (0.022)	5.4E-08	-0.071 (0.03)	1.9E-02	1.4E-06
All PC.1	WHR	IVW (RE)	124	-0.104 (0.021)	2.4E-06	-0.109 (0.021)	3.4E-07	-0.074 (0.027)	6.7E-03	2.0E-04
All PC.1	WHR BMI	IVW (RE)	124	-0.078 (0.022)	4.9E-04	-0.08 (0.022)	3.6E-04	-0.069 (0.026)	8.3E-03	3.5E-06
All PC.1	Edu	IVW (RE)	123	0.086 (0.019)	1.3E-05	0.084 (0.018)	2.7E-06	0.059 (0.022)	7.2E-03	6.0E-05
All PC.2	TG	IVW (FE)	114	0.092 (0.022)	6.2E-05	0.077 (0.031)	1.3E-02	0.023 (0.036)	5.2E-01	6.7E-04
All PC.2	WHR BMI	IVW (FE)	116	0.116 (0.02)	3.7E-08	0.108 (0.026)	3.6E-05	0.093 (0.03)	2.3E-03	5.6E-03
All PC.3	Age at menarche	IVW (FE)	117	0.118 (0.026)	1.3E-05	0.108 (0.034)	1.5E-03	0.093 (0.041)	2.1E-02	7.0E-04
All PC.3	TG	IVW (FE)	118	0.147 (0.028)	6.3E-07	0.151 (0.037)	3.9E-05	0.15 (0.047)	1.4E-03	4.9E-03
Beef	Height	IVW (FE)	2	0.516 (0.114)	6.4E-06	NA (NA)	NA	NA (NA)	NA	3.8E-01
Champ/Wh wine	Celiac	Wald ratio	1	1.129 (0.326)	5.3E-04	NA (NA)	NA	NA (NA)	NA	NA

<i>Fish PC.1</i>	Serous ovarian cancer	<i>Wald ratio</i>	1	-1.7 (0.436)	9.8E-05	NA (NA)	NA	NA (NA)	NA	NA
<i>Fish PC.1</i>	Serous ovarian cancer(2)	<i>Wald ratio</i>	1	-1.146 (0.327)	4.6E-04	NA (NA)	NA	NA (NA)	NA	NA
<i>Fruit PC.1</i>	<i>Hip</i>	<i>IVW (FE)</i>	31	-0.13 (0.034)	6.3E-04	-0.113 (0.04)	4.5E-03	-0.093 (0.052)	7.4E-02	1.2E-01
<i>Fruit PC.1</i>	<i>TG</i>	<i>IVW (FE)</i>	32	-0.142 (0.038)	7.4E-04	-0.154 (0.045)	5.7E-04	-0.15 (0.057)	8.9E-03	1.6E-01
<i>Fruit PC.1</i>	<i>WC</i>	<i>IVW (FE)</i>	32	-0.162 (0.034)	3.8E-05	-0.155 (0.046)	6.9E-04	-0.163 (0.054)	2.4E-03	1.6E-02
<i>Healthy PC.1</i>	<i>TG</i>	<i>IVW (FE)</i>	58	0.143 (0.029)	6.6E-06	0.14 (0.036)	1.2E-04	0.095 (0.047)	4.3E-02	2.6E-02
<i>Healthy PC.1</i>	<i>WHR</i>	<i>IVW (FE)</i>	58	0.115 (0.026)	3.3E-05	0.112 (0.034)	8.2E-04	0.122 (0.042)	4.1E-03	1.3E-02
<i>Healthy PC.1</i>	<i>WHR BMI</i>	<i>IVW (FE)</i>	58	0.126 (0.026)	8.0E-06	0.116 (0.033)	3.6E-04	0.11 (0.041)	7.7E-03	1.7E-02
<i>Healthy PC.1</i>	<i>Edu</i>	<i>IVW (FE)</i>	59	-0.079 (0.022)	7.1E-04	-0.072 (0.03)	1.5E-02	-0.096 (0.038)	1.0E-02	4.9E-03
<i>Healthy PC.2</i>	<i>Hip</i>	<i>IVW (FE)</i>	58	0.197 (0.037)	2.3E-06	0.174 (0.053)	1.0E-03	0.141 (0.06)	2.0E-02	9.4E-04
<i>Healthy PC.3</i>	<i>Body fat</i>	<i>IVW (FE)</i>	57	-0.338 (0.089)	3.8E-04	-0.339 (0.119)	4.2E-03	-0.282 (0.13)	3.0E-02	2.5E-02
<i>Healthy PC.3</i>	<i>BMI</i>	<i>IVW (FE)</i>	50	-0.197 (0.052)	3.8E-04	-0.167 (0.074)	2.5E-02	-0.202 (0.083)	1.5E-02	5.9E-03
<i>Healthy PC.3</i>	<i>WHR</i>	<i>IVW (FE)</i>	57	-0.218 (0.06)	5.9E-04	-0.195 (0.089)	2.8E-02	-0.211 (0.095)	2.6E-02	2.7E-03
<i>Non-oily Fish</i>	<i>PLT</i>	<i>IVW (FE)</i>	2	-0.016 (0.004)	9.2E-05	NA (NA)	NA	NA (NA)	NA	5.1E-01
<i>Oily Fish</i>	<i>Height</i>	<i>IVW (FE)</i>	21	0.196 (0.035)	1.6E-05	0.177 (0.054)	9.6E-04	0.174 (0.053)	1.1E-03	8.4E-04
<i>Oily Fish</i>	Serous ovarian cancer	<i>Wald ratio</i>	1	-1.518 (0.39)	9.8E-05	NA (NA)	NA	NA (NA)	NA	NA
<i>Oily Fish</i>	Serous ovarian cancer(2)	<i>Wald ratio</i>	1	-1.02 (0.291)	4.6E-04	NA (NA)	NA	NA (NA)	NA	NA
<i>Oily Fish</i>	<i>TRG</i>	<i>IVW (FE)</i>	21	-0.175 (0.042)	5.1E-04	-0.156 (0.056)	5.2E-03	-0.084 (0.061)	1.7E-01	7.3E-02
<i>Psyco PC.1</i>	<i>BMI</i>	<i>IVW (FE)</i>	21	-0.064 (0.016)	8.5E-04	-0.058 (0.024)	1.7E-02	-0.047 (0.024)	5.1E-02	2.0E-03
<i>Salad</i>	<i>Age at menarche</i>	<i>IVW (FE)</i>	14	-0.298 (0.065)	5.3E-04	-0.28 (0.079)	4.2E-04	-0.251 (0.095)	8.5E-03	1.7E-01
<i>Water Coffee</i>	<i>Edu</i>	<i>IVW (FE)</i>	24	0.162 (0.035)	1.3E-04	0.169 (0.048)	4.4E-04	0.162 (0.052)	1.7E-03	8.4E-03

294

295

296 Looking at the significant MR results, we detected no sign of directional pleiotropy using the MR-

297 Egger test (results in table S18). In some cases, we did detect strong heterogeneity of effect,

298 especially with All PC1 and in general with PC-food exposures which included several diverse

299 items. Considering more specific results, all PC.1 differentiates those eating more meat and salt

300 while drinking more alcohol and coffee from those who eat more fruit and vegetables, thus it

301 describes a general healthy-unhealthy diet continuum. All PC1 showed the largest number of
302 associations (15; Fig.S22a), with a healthy value of All PC1 lowering most risk factors linked to
303 obesity and lipid profile (and likely consequently lowering cardiovascular disease risk) and having a
304 positive effect on height and education. With the exception of educational attainment, these results
305 may not be surprising as they broadly overlap with general dietary advice. However, when we
306 decompose these effects into food groups or single foods, we detect differences amongst traits.
307 For example, All PC 1 leads to very similar effects across different obesity/adiposity measures :
308 body fat % ($\beta=-0.080, p=3.2 \times 10^{-4}$), body mass index ($\beta= -0.087, p=8.1 \times 10^{-5}$), waist-to-hip ratio ($=-0.104, p=2.4 \times 10^{-6}$) and BMI-adjusted waist-to-hip ratio ($\beta=-0.078, p=2.9 \times 10^{-4}$). Figure S23 shows
310 the comparative effects of each food on the four obesity measures: generally, the individual foods
311 affect all four in very similar ways showing that the estimates are stable regardless of the outcome.
312 However, there are some exceptions, for example, both Fresh Fruit and Oily Fish affect Body Fat
313 and both waist:hip ratio measures but not BMI, suggesting that their effect is specifically on
314 adiposity and not body size.

315
316 As a whole, alcohol does not seem to impact any of the four obesity traits, with a very small effect
317 on waist-to-hip ratios. However, looking at each alcoholic beverage individually, beer has a
318 substantial and specific effect on BMI not seen for the other alcoholic beverages, suggesting that
319 this effect is independent of alcohol content.

320
321 Another notable result is the association of oily fish consumption with height ($\beta= 0.2, p=1.76 \times 10^{-8}$)
322 (Fig S22c). It is unclear, however, if this is the result of general healthy eating or if it is the effect of
323 a specific food. In particular if we look at the effects of All PC1-3, we see that a height-raising of
324 PC1 (higher healthy foods, less alcohol/coffee and meat $\beta= 0.09, p=1.35 \times 10^{-4}$), a height-lowering
325 effect PC2 (lower healthy food and meat and higher alcohol/coffee $\beta= -0.1, p=1.34 \times 10^{-3}$), but no
326 effect of PC3 (higher meat and less alcohol/coffee and healthy foods $\beta=-0.02, p=0.65$) suggesting

327 that the effect on height is lead by healthy foods and alcohol/coffee but independent of meat.
328 Looking at the associations of *Healthy PC1-3*, we see association only with the first which
329 represents the overall consumption of fish, fruit and vegetables. Finally, comparing these three we
330 find that both higher consumption of vegetables and fish are associated with being taller, with
331 similar effect sizes (*Fish PC1*, $\beta=0.17$, $p=4.99\times10^{-4}$ and *Vegetables PC1*, $\beta=0.15$, $p=1.30\times10^{-3}$),
332 while fruit has no effect ($\beta= 0$, $p= 0.96$), which makes the effects of fish and vegetables
333 indistinguishable.

334
335 Several associations seem to be masked by the confounding effects, for example if we look at
336 genetically-determined beef intake, the CRR-corrected instruments show a significant association
337 with being taller ($\beta= 0.51$ SD adjusted vs. $\beta= -0.01$ unadjusted) and with other anthropometric
338 traits such as hip and waist circumference. None of these associations were recovered using the
339 raw instruments with estimated effects extremely close to 0, showing that the problems arising
340 from using the unadjusted set of instruments are not limited to false positive results but also can
341 generate false negatives, depending on the biases involved.

342
343 **Discussion**
344 Our results emphasise how complicated relationships among dietary traits are. We have clearly
345 shown that the causal path between food and health is not unidirectional and that in fact genes
346 may affect food behaviours in many different and unexpected ways. Understanding the origins of
347 these effects is fundamental not only for prioritizing loci for functional follow up, but also for
348 understanding why genetic correlations and GWAS results change when different datasets or
349 populations are used. In fact, given that many of the effects we see are likely due to confounding, if
350 the health advice in different populations changes this could alter the architecture of the studied
351 trait and thus the GWAS results, which would appear as allelic heterogeneity.
352 It is unclear whether these effects are limited to dietary phenotypes or if they extend to other traits
353 and further studies are needed to resolve this issue. Recent similar studies^{10,11} on the genetic

354 bases of dietary patterns reported having detected no reverse causality. We believe that this
355 difference is due to our novel approach, which is not based on using the potential confounders as
356 covariates, but rather exploits MR, which should be able to distinguish the forward and reverse
357 effects when the causal relationship is bidirectional. Nevertheless, extreme care is required when
358 claiming causal relationships between food and health as the level and complexity of the biases
359 and confounding is so high that it affects even MR, which is known to be more robust than other
360 approaches to these types of effects.

361

362 In a classic dietary analysis, investigators evaluate macronutrient compositions. In this study, we
363 did not see similar effects from foods which have similar macronutrient composition. For example,
364 if we look at cheese and meat, which are both relatively high in saturated fat and protein, we see
365 no association of eating either with blood lipid profile (triglycerides, LDL or total cholesterol), while
366 they have opposite effects on BMI (cheese lowering it and meat increasing it) (Fig S22e.). While
367 the findings require further investigations in mechanisms and related behaviours, our genetic
368 evidence lends the support for the importance of food consumption and dietary patterns, not only
369 intakes of specific nutrients²⁶.

370

371 If we look at which foods have the greatest effect on triglycerides, it is fruit, vegetables and fish; all
372 with lowering effects (Fig S22f), not sources of carbohydrates or alcohol, known drivers of de novo
373 lipogenesis. This seems to be confirmed by looking at the results with the overall PC traits (*All-*
374 *PC1, -PC2, -PC3*) in which a higher consumption of fruit, vegetables and fish is always associated
375 with lower triglycerides regardless of the loading on other food groups. It is impossible, however, to
376 separate the effects of fruit, vegetables and fish from each other, in fact, if we look at the *Healthy*
377 *PC* traits (see fig 5 panel A), only PC1, which summarises a higher consumption of all three is
378 associated with lower triglycerides, suggesting the combined effects of all the three dietary factors
379 or unmeasured correlated dietary behaviours or healthful habits.

380 This example shows that when considering the effect of food on health it is sometimes hard to
381 separate the effect of single foods (although we have shown some examples) from those which

382 are usually consumed together in a pattern. In this case, although fish and fruit and vegetables
383 have a very different macronutrient composition it is impossible to separate their effect on
384 triglycerides. This has been implied in previous studies including the European study on lactase
385 persistence gene⁹. There, while the MR relating lactase-persistence gene to diabetes incidence
386 supported no causal evidence of milk consumption, the secondary analyses identified the lactase-
387 persistence variant would relate to consumption of potatoes, poultry, and cereals. These pieces of
388 genetic evidence highlight the importance of a dietary pattern rather than single foods or nutrients.
389 Any health claim from observational studies regarding one or the other should always take into
390 account these facts. For further details of specific results, our online app allows exploration of
391 hypotheses.

392

393 Our study was limited by the number of items available in the dietary questionnaire in the UK
394 BioBank and thus has not explored the full extent of human nutrition, unfortunately apart from
395 bread consumption no carbohydrate or sugar sources were measured, limiting our ability to
396 explore these macronutrients and thus capture the overall diet. Nonetheless, this limitation is
397 unlikely to turn over the abovementioned cautionary interpretation of the dietary MR results.
398 Another important limitation is that effect sizes could be inflated because of the underestimation of
399 the SNP effects on the food traits which will increase MR estimate effects. This under-estimation is
400 due to the noise in the questionnaire responses, which warrant further statistical investigations. Of
401 note, as we have no rationale to consider non-random measurement error, it is unlikely to hinder
402 the detection of a causal effect or its direction, but further studies are needed to assess the precise
403 effect sizes. Before translation of our findings into policy, more studies using different
404 methodologies will be required.

405

406 In conclusion, we have developed an important framework and new tools to help illuminate the
407 effects of nutrition on health and have shown that despite the existing belief that certain dietary
408 assessment provides low-quality data, it is still possible to extract useful information using our
409 methods. It will be interesting to learn to what degree the confounding of food choice reporting by

410 educational attainment and disease risk factors observed here is seen in other settings with
411 different food cultures and social stratification to the UK.

412
413 **Author Contributions**
414 NP,JFW,JRBP,ZK,EJG,FRD,KKO contributed to the study design.
415 JFW,TE,JRBP,AR,TG,FI,KKO,FRD contributed data. NP,CMD,EJG,NM,FI,JZ,NT,KAK,MPC,
416 performed the statistical analyses. NP, JFW,ZK, JRBP, TE, NT,KF,CMD,LR,EJG,FI,KKO,FRD
417 contributed to the interpretation of the results. All authors contributed to writing and editing of the
418 text.
419
420
421

422 **Acknowledgements**

423
424 J.F.W. acknowledges support from the MRC Human Genetics Unit quinquennial programme grant
425 "QTL in Health and Disease". This research has been conducted using the UK Biobank Resource
426 under Application Number 19655. We would like to thank Erin MacDonald-Dunlop, and Pascale
427 Lubbe for help with statistical analyses.

428 EGCUT was funded by Estonian Research Council Grant IUT20-60, PUT1660 (T.E.), PUT1665
429 (K.F.), the European Union through the European Regional Development Fund grant no. 2014-
430 2020.4.01.15-0012 GENTRANSMED and 2014-2020.4.2.2, and Estonian and European Research
431 Roadmap grant no.2014-2020.4.01.16-0125. The EPIC-Norfolk study (DOI
432 10.22025/2019.10.105.00004) has received funding from the Medical Research Council
433 (MR/N003284/1, MC-PC_13048, and MC-UU_12015/1). The Fenland study (DOI:
434 10.1186/ISRCTN72077169) was funded by the Medical Research Council and the Wellcome Trust
435 (Ref: 074548). J.P., K.O., F.I., and F.R.D. were funded by the UK Medical Research Council
436 Epidemiology Unit core grant (MC-UU_12015/2, MC_UU_12015/5). T.R.G. receives funding from
437 the UK Medical Research Council (MC_UU_00011/4). Z.K. received funding from the Swiss
438 National Science Foundation (31003A_169929). We are grateful to all the participants who have
439 been part of the project and to the many members of the study teams at the University of
440 Cambridge who have enabled this research.
441

442 **Data Availability**

443 All GWAS results will be made available through GWAS catalog at the time of publication.
444 All results from the MR analyses have been shared in the additional tables.

445 **References**

446
447

- 448 1. Lis, C. G., Gupta, D., Lammersfeld, C. A., Markman, M. & Vashi, P. G. Role of nutritional
449 status in predicting quality of life outcomes in cancer – a systematic review of the
450 epidemiological literature. *Nutrition Journal* **11**, (2012).
- 451 2. Simpson, S. J. *et al.* The nutritional geometry of liver disease including non-alcoholic fatty liver
452 disease. *J. Hepatol.* **68**, 316–325 (2018).
- 453 3. Misra, A. & Khurana, L. Obesity and the Metabolic Syndrome in Developing Countries. *The
454 Journal of Clinical Endocrinology & Metabolism* **93**, s9–s30 (2008).
- 455 4. Misra, A. & Khurana, L. Obesity and the Metabolic Syndrome in Developing Countries. *The*

456 *Journal of Clinical Endocrinology & Metabolism* **93**, s9–s30 (2008).

457 5. Zheng, J. *et al.* Recent Developments in Mendelian Randomization Studies. *Curr Epidemiol
458 Rep* **4**, 330–345 (2017).

459 6. Millwood, I. Y. *et al.* Conventional and genetic evidence on alcohol and vascular disease
460 aetiology: a prospective study of 500 000 men and women in China. *Lancet* **393**, 1831–1842
461 (2019).

462 7. Cornelis, M. C. & Munafo, M. R. Mendelian Randomization Studies of Coffee and Caffeine
463 Consumption. *Nutrients* **10**, (2018).

464 8. Bergholdt, H. K. M., Nordestgaard, B. G., Varbo, A. & Ellervik, C. Milk intake is not associated
465 with ischaemic heart disease in observational or Mendelian randomization analyses in 98,529
466 Danish adults. *Int. J. Epidemiol.* **44**, 587–603 (2015).

467 9. Vissers, L. E. T. *et al.* Dairy Product Intake and Risk of Type 2 Diabetes in EPIC-InterAct: A
468 Mendelian Randomization Study. *Diabetes Care* **42**, 568–575 (2019).

469 10. Meddents, S. F. W., de Vlaming, R., Bowers, P. & Burik, C. A. P. Genomic analysis of diet
470 composition finds novel loci and associations with health and lifestyle. *bioRxiv* (2018).

471 11. Cole, J. B., Florez, J. C. & Hirschhorn, J. N. Comprehensive genomic analysis of dietary
472 habits in UK Biobank identifies hundreds of genetic loci and establishes causal relationships
473 between educational attainment and healthy eating. doi:10.1101/662239

474 12. Lis, C. G., Gupta, D., Lammersfeld, C. A., Markman, M. & Vashi, P. G. Role of nutritional
475 status in predicting quality of life outcomes in cancer – a systematic review of the
476 epidemiological literature. *Nutrition Journal* **11**, (2012).

477 13. Sudlow, C. *et al.* UK biobank: an open access resource for identifying the causes of a wide
478 range of complex diseases of middle and old age. *PLoS Med.* **12**, e1001779 (2015).

479 14. Day, F. R., Loh, P.-R., Scott, R. A., Ong, K. K. & Perry, J. R. B. A Robust Example of Collider
480 Bias in a Genetic Association Study. *The American Journal of Human Genetics* **98**, 392–393
481 (2016).

482 15. Day, N. *et al.* EPIC-Norfolk: study design and characteristics of the cohort. European
483 Prospective Investigation of Cancer. *Br. J. Cancer* **80 Suppl 1**, 95–103 (1999).

484 16. Heid, I. M. *et al.* Meta-analysis identifies 13 new loci associated with waist-hip ratio and
485 reveals sexual dimorphism in the genetic basis of fat distribution. *Nat. Genet.* **42**, 949–960
486 (2010).

487 17. Mul, J. D. *et al.* Melanocortin receptor 4 deficiency affects body weight regulation, grooming
488 behavior, and substrate preference in the rat. *Obesity* **20**, 612–621 (2012).

489 18. 8 steps to a heart-healthy diet. *Mayo Clinic* (2019). Available at:
490 <https://www.mayoclinic.org/diseases-conditions/heart-disease/in-depth/heart-healthy-diet/article?artid=20047702>. (Accessed: 26th July 2019)

492 19. Iriti, M. & Varoni, E. M. Cardioprotective effects of moderate red wine consumption:
493 Polyphenols vs. ethanol. *J. Appl. Biomed.* **12**, 193–202 (2014).

494 20. Das, S., Santani, D. D. & Dhalla, N. S. Experimental evidence for the cardioprotective effects
495 of red wine. *Exp. Clin. Cardiol.* **12**, 5–10 (2007).

496 21. VanderWeele, T. J. A three-way decomposition of a total effect into direct, indirect, and
497 interactive effects. *Epidemiology* **24**, 224–232 (2013).

498 22. Frayling, T. M. *et al.* A common variant in the FTO gene is associated with body mass index
499 and predisposes to childhood and adult obesity. *Science* **316**, 889–894 (2007).

500 23. Paul, D. R., Rhodes, D. G., Kramer, M., Baer, D. J. & Rumpler, W. V. Validation of a food
501 frequency questionnaire by direct measurement of habitual ad libitum food intake. *Am. J.*
502 *Epidemiol.* **162**, 806–814 (2005).

503 24. Dehghan, M. *et al.* Association of dairy intake with cardiovascular disease and mortality in 21
504 countries from five continents (PURE): a prospective cohort study. *Lancet* **392**, 2288–2297
505 (2018).

506 25. Zheng, J. *et al.* LD Hub: a centralized database and web interface to perform LD score
507 regression that maximizes the potential of summary level GWAS data for SNP heritability and
508 genetic correlation analysis. *Bioinformatics* **33**, 272–279 (2017).

509 26. Mozaffarian, D., Rosenberg, I. & Uauy, R. History of modern nutrition science—Implications
510 for current research, dietary guidelines, and food policy. *BMJ* (2018).