
 1 

Patient stratification of clear cell renal cell carcinoma using the global transcription factor 
activity landscape derived from RNA-seq data 

 
 
Yanyan Zhu1, Shundong Cang1, Bowang Chen2,3, Yue Gu4,5,6, Miaomiao Jiang2,3, Junya Yan1,  Fengmin 

Shao4,5,6,7#,  Xiaoyun Huang2,3,7,8# 

 
1 Department of Oncology，Henan Provincial People’s Hospital; Zhengzhou University People’s 
Hospital, Zhengzhou, Henan, 450003, China. 
2 Research and Development, Zhiyu Inc, Shenzhen, China 
3 Zhiyu Center for Systems Biology, Shenzhen, China 
4 Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, 
Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital, Zhengzhou, Henan, 
450003, China. 
5 Blood Purification Center, Henan Provincial People’s Hospital; Zhengzhou University People’s 
Hospital, Zhengzhou, Henan, 450003, China. 
6 Institute of Nephrology, Henan , China. 
 
Author footnote: 
7senior author 
8lead contact 
 
 
#Correspondence should be addressed to Xiaoyun Huang (stemidea@gmail.com) and Fengmin Shao 
(fmshaoscience@163.com) 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2019. ; https://doi.org/10.1101/829796doi: bioRxiv preprint 

https://doi.org/10.1101/829796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 
Clear cell renal cell carcinoma represents the most common type of kidney cancer. Precision 

medicine approach to ccRCC requires an accurate stratification of patients that can predict 

prognosis and guide therapeutic decision. Transcription factors are implicated in the initiation 

and progression of human carcinogenesis.  However, no comprehensive analysis of 

transcription factor activity has been proposed so far to realize patient stratification. Here we 

propose a novel approach to determine the subtypes of ccRCC patients based on global 

transcription factor activity landscape. Using the TCGA cohort dataset, we identified different 

subtypes that have distinct upregulated biomarkers and altered biological pathways. More 

important, this subtype information can be used to predict the overall survival of ccRCC 

patients. Our results suggest that transcription factor activity can be harnessed to perform 

patient stratification. 
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Introduction 
Kidney cancer is one major solid cancer, with an estimated 403262 new cases and 175098 

deaths in 2018[1]. Renal cell carcinoma accounts for around 90% of kidney cancer, with clear 

cell renal cell carcinoma being one of the most frequent subtypes.  Despite recent advances 

in targeted therapy and immunotherapy, there is still a large gap to be filled for the clinical 

management of patients diagnosed with clear cell renal cell carcinoma.  

Transcription factors are implicated in the initiation and progression of human carcinogenesis.  

The  c-myc oncogene encodes a transcription factor that regulates the transcription of 

hundreds of genes. It has been well established that transcription factors are situated in the 

hubs of a complex network shaping the hallmarks of human cancer. Thus, it is intriguing to 

develop strategies to target transcription factors, especially a combination targeting strategy 

designed to destroy cancer cell dependency[2]. Small molecules with the capacity to 

reactivate mutant p53 are now being evaluated in clinical trials[3]. Furthermore, transcription 

factors can be harnessed to develop combination strategy aiming to defeat the intratumor 

heterogeneity. For example, combination treatment with STAT3 and BCL6 inhibitors were 

shown to reduce the growth of xenografted tumors[4]. 

An accurate determination of the subtypes of clear cell renal cell carcinoma is essential to 

develop personalized therapy for ccRCC patients. ccRCC has been stratified previously with 

genomic and transcriptomic information[5, 6]. However, no studies have focused on 

transcription factor. Considering the fact that various transcription factors play an important 

role in metabolic rewiring[7], growth and metastasis[8] of ccRCC cells, it is tempting to 

approach the molecular stratification of ccRCC using the landscape of transcription factor 

activity. Here we construct a comprehensive atlas of transcription factor profiles using dataset 

available in the TCGA cohort comprising of 603 samples. 

Method 
Download TCGA level 3 data 
TCGA level 3 expression data were downloaded from the Pan-Cancer Atlas datasets hosted at 

Genomic Data Commons (https://gdc.cancer.gov/node/905/). In total, gene expression 

profiles for 531 ccRCC primary cancer tissues and 72 solid normal tissues were extracted from 

the Pan-Cancer Atlas. 

Transcription factor scoring 
For each transcription factor, the target genes with known regulation modes were extracted 

from TTRUST database[9], resulting in a list of genes activated by the transcription factor and 
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a list of genes repressed by the transcription factor. The ratio between the median expression 

level of activated target gene and the median expression level of repressed target gene was 

calculated for each transcription factor and log2 transformed to obtain a final transcription 

factor score. 

k-means clustering 
k-means clustering was performed to unbiasedly analyse the structures in the dataset. Only 

those transcription factors which have no NAs were included in the clustering analysis. In total, 

238 transcription factors were analysed. Subpopulations of patients were estimated using 

only the transcription factor score matrix. The optimal number of k was determined by gap 

statistic. 

Differential expressed genes 
The unique biomarkers characterizing one cluster was determined by statistical test 

comparing samples within that particular cluster and the rest of all other samples. “bonferroni” 

correction was employed to reduce false hits in multiple comparisons. Adjusted p-value less 

than 0.05 was considered as statistically significant. Genes with fold change greater than 1.5 

were selected as candidate genes for downstream analysis. 

Gene list analysis 
Gene list analysis was performed using metascape[10]. Four major steps were included in the 

pipeline: ID conversion, Annotation, Membership determination and Enrichment analysis. 

Differentially expressed gene list was input into the online tool and analysed using default 

parameters. Statistically enriched terms were identified and filtered. Remaining significant 

terms were then hierarchically clustered into a tree based on Kappa-statistical similarities 

among their gene memberships.  A subset of representative terms was selected from the full 

cluster and converted into a network layout.  More specifically, each term is represented by 

a circle node, where its size is proportional to the number of input genes fall into that term, 

and its color represent its cluster identity.  Terms with a similarity score > 0.3 are linked by an 

edge (the thickness of the edge represents the similarity score).  The network is visualized 

with Cytoscape (v3.1.2) with “force-directed” layout and with edge bundled for clarity.  One 

term from each cluster is selected to have its term description shown as label. 

Protein-protein interaction 
All protein-protein interactions (PPI) among each input gene list were extracted from PPI 

databases and formed a PPI network. GO enrichment analysis was applied to the original PPI 

network and its MCODE network components to assign biological “meanings”, where top 
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three best p-value terms were retained. All input gene lists were also merged into one list and 

resulted in a PPI network.  MCODE components  were identified from the merged network. 

Each MCODE network is assigned a unique color.  Network nodes are also displayed as pies.   

Color code for pie sector represents a gene list. 

Survival analysis 
Kaplan Meier analysis was used for survival curve analysis. It measures the percent of patients 

surviving with time. 

Statistical method 
All statistical analyses were performed using R. p-value < 0.05 was considered statistically 

significant. All plots were generated with R. 

Result 
Establishment of an analytical framework to quantify the global transcription factor activity 
One typical transcription factor regulates the expression of hundreds of downstream gene 

either positively or negatively. To quantify the activity of one transcription factor, the 

expression of both the activated genes and the repressed genes should be taken into 

consideration. A metric was devised to incorporate both into one score, through which a 

comprehensive landscape of transcription factor activity was established (Figure 1A). Globally, 

all transcription factors were grouped into “activated” and “repressed” states. To further gain 

insights into the patterns in the transcription factor landscape, the correlation matrix was 

visualized with a heatmap. It was shown that all samples fell into two apparent groups and 

the larger group harbored finer structures (Figure 1B).  

Patient stratification based on global transcription factor activity 
To estimate the number of clusters in the samples, gap statistic was employed. It was found 

that four clusters could contain more than 88% of the information in the TCGA dataset (Figure 

2A). To identify the clusters, k-means clustering was performed using all the samples in the 

TCGA dataset, which included 531 cancer samples and 72 normal tissues (Figure 2B). Of note, 

all normal samples were grouped together as Subtype_3. No normal samples were in the 

other clusters, while there were also some cancer samples in Subtype_3. Those cancer 

samples were normal like in the transcription factor activity. 

Next, differential gene expression analysis was performed using statistical test. Each subtype 

identified previously was compared with the rest of all subtypes, resulting a list of genes 

whose expression is characteristic for that subtype. Top 10 up-regulated genes for each 

subtype were visualized with heatmap (Figure 3A). The up-regulated genes with the 
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Subtype_3 included genes essential for the normal functionality of kidney cells, while the 

other three subtypes over-expressed genes with known roles in carcinogenesis. Alteration of 

angiogenesis is common in ccRCC and this typically involves the VEGF (Figure 3B). Not 

surprising, cancer clusters expressed significantly higher level of VEGF. Besides an 

upregulated angiogenesis, expression of PD-1 on cancer cells were correlated with the ability 

of cancer cells to evade the immune systems. Consistently with previous observations, cancer 

clusters upregulated the expression of PD-1(Figure 3B).  

Different patient groups have distinct pathway alterations 
To investigate what pathways or biological processes were uniquely altered for the different 

subtypes, GO analysis was performed. Interestingly, the Subtype_3 stood out while the other 

three subtypes were grouped together after hierarchical clustering of the enriched GO terms 

(Figure 4A). GO terms uniquely enriched in the Subtype_3 included lipid biosynthetic process, 

TCA cycle, monovalent inorganic cation homeostasis, mitochondrion organization, 

metabolism of vitamins and cofactors, suggesting the downregulation of the normal kidney 

functions in the other subtypes. The fact that only a few cancer samples were in Subtype_3 

indicates that most ccRCC cancer cells tune down normal processes exerted by normal kidney 

cells during carcinogenesis. Subtype_1 and Subtype_2 have altered T cell signaling pathways, 

such as adaptive immune response, cytokine production, cell activation in the immune system 

and T cell selection. It was consistent with some previous reports showing that cancer rewired 

the tumor microenvironment to become immune suppressive environment. Subtype_4 

preserved some of the functionality of normal kidney cells, such as regulation of ion transport. 

Of note, Subtype_2 have significantly altered cell division, mitotic nuclear division and cellular 

response to lipids, unlike any other subtypes. Globally, regulation of cell adhesion was altered 

in Subtype_1 and Subtype_2 (Figure 4B). 

Immunity related networks are up-regulated in Subtype_1 and Subtype_2 
Using public databases with protein-protein interaction information, MCODE motifs in the 

regulated genes were extracted (Figure 5A). Subtype_1 and Subtype_2 shared MCODE 

networks in T cell signaling pathways, suggesting an important role played by the immune 

systems. To consider the contribution of genes for the identified MCODE, it was found that 

Subtype_2 was the only cluster that contributes to all identified MCODE (Figure 5B). Besides 

two MCODE related to immunity, there was one MCODE consisting of three players: NOTCH1, 
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NOTCH3, and SMARCD3. SMARCD3 is an essential component of the SWI/SNF chromatin-

remodeling complex, which epigenetically modulates the expression of downstream genes. 

Prognostic value of the proposed transcription factor stratification 
The transcription factor landscape is sufficient to divide the cancer patients into subtypes, 

with distinct biomarker and altered pathways. We then ask whether different subtypes have 

different overall survival. The survival information was downloaded to devise the survival 

curves for different subtypes(Figure 6). Here we used only the cancer samples in the dataset. 

For the three cancer only subtypes, Subtype_2 has the worse OS as compared with all the 

other subtypes. Subtype_4 has the longest OS in the three cancer only subtypes. Interestingly, 

the normal like Subtype_3 did not have significantly better OS compared with Subtype_1 and 

Subtype_4. 

Discussion 
Patient stratification is key to personalized therapy of cancer patients. One milestone 

paper[11] divided ccRCC into two major subtypes: clear cell type A (ccA) and clear cell type B 

(ccB). Subtype ccB was correlated with poor survival compared with subtype ccA. Pathway 

analysis suggested that ccA group overexpressed genes associated with hypoxia, angiogenesis 

and metabolism, while ccB group overexpressed genes involved in EMT, cell cycle and wound 

healing.  Unsupervised clustering of the TCGA ccRCC cohort revealed four stable subtypes 

using RNA expression data designated m1-m4[6].  The subtype m1 corresponded to the ccA 

group mentioned earlier while the subtype m2 and m3 corresponded to the ccB group. The 

remaining subtype m4 represented a previously uncharacterized subtype with a frequency of 

around 15%. The m1 subtype was characterized by upregulation of genes involved in 

chromatin remodeling. 

Transcription factors regulates the transfer of genetic information from DNA to RNA. 

Traditionally, transcription factors were considered as undruggable. However, a shift of 

paradigm is realized as multiple approaches to modulate the activity of transcription factors 

have been demonstrated both preclinically and clinically[12]. Targeting transcription factors 

can be an effective strategy against RCC. It has been demonstrated that STAT3 inhibitor 

WP1066 inhibited the growth of renal cancer cell lines or xenografted renal cancer cells[13]. 

Checkpoint inhibition is emerging as a promising therapy for ccRCC patients, with a subset of 

patients responding to anti-PD-1 monotherapy extremely well. Gene expression analysis 

uncovered an altered transcriptional output in Janus kinase-signal transducers and activators 
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of transcription (JAK-STAT) signaling[14]. It was shown that alteration of transcription factor 

activity can influence the response to checkpoint inhibitors. 

Large cancer genome programs such as TCGA has generated an enormous amount of data 

that is publicly available to the cancer research community. Mining those datasets have 

enabled novel insights into cancer biology[15-19]. Our analysis suggests that predictive 

models can be derived from those massive data and used to assign patients to distinctive 

subtypes. 

Our study can be extended by proof-of-concept experiments to  establish the feasibility of 

predicting drug sensitivity based on the proposed patient stratification. For example, 

experiments can be carefully designed to investigate the effect of CDK4/CDK6 inhibitors in 

treating Subtype_2 cancer patients, using in vitro cancer cell line model, ex vivo or in vivo 

cancer models. One popular model to test is the patient derived organoids[20]. Subtyping can 

be performed with transcriptomic analysis using RNA-seq and the organoids can be perturbed 

with drug treatments to show proof-of-concept that optimal treatment strategy can be 

predicted with transcription factor activity based ccRCC subtyping. 

Conclusion 
In conclusion, we have resisted the molecular stratification of clear cell renal cancer by 

integrative analysis of multiple publicly available datasets with a focus in the landscape of 

transcription factor activity. We demonstrated how a deep understanding of ccRCC subtypes 

can be obtained by a comprehensive and integrative reanalysis of publicly available datasets. 

Conflict of Interest 
The authors declare no conflicts of interest. 

Author Contribution 
YZ, BC, MJ, and XH performed the analysis. YZ, SC, YG, JY and XH interpreted the results. XH 

and FS conceived and supervised the study. All authors read and approved the manuscript. 

Acknowledgement 
This study is partially supported by Henan Provincial Medical Science and Technology 

Advancement Program (201702161). 

Reference 
1. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and 

mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 
394-424. 

2. Bhagwat, A.S. and C.R. Vakoc, Targeting Transcription Factors in Cancer. Trends 
Cancer, 2015. 1(1): p. 53-65. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2019. ; https://doi.org/10.1101/829796doi: bioRxiv preprint 

https://doi.org/10.1101/829796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

3. Oren, M., P. Tal, and V. Rotter, Targeting mutant p53 for cancer therapy. Aging (Albany 
NY), 2016. 8(6): p. 1159-60. 

4. Deb, D., et al., Combination Therapy Targeting BCL6 and Phospho-STAT3 Defeats 
Intratumor Heterogeneity in a Subset of Non-Small Cell Lung Cancers. Cancer Res, 2017. 
77(11): p. 3070-3081. 

5. Beuselinck, B., et al., Molecular subtypes of clear cell renal cell carcinoma are 
associated with sunitinib response in the metastatic setting. Clin Cancer Res, 2015. 
21(6): p. 1329-39. 

6. Cancer Genome Atlas Research, N., Comprehensive molecular characterization of clear 
cell renal cell carcinoma. Nature, 2013. 499(7456): p. 43-9. 

7. Bleu, M., et al., PAX8 activates metabolic genes via enhancer elements in Renal Cell 
Carcinoma. Nat Commun, 2019. 10(1): p. 3739. 

8. Lin, Z.Z., et al., KMT5A promotes metastasis of clear cell renal cell carcinoma through 
reducing cadherin-1 expression. Oncol Lett, 2019. 17(6): p. 4907-4913. 

9. Han, H., et al., TRRUST v2: an expanded reference database of human and mouse 
transcriptional regulatory interactions. Nucleic Acids Res, 2018. 46(D1): p. D380-D386. 

10. Zhou, Y., et al., Metascape provides a biologist-oriented resource for the analysis of 
systems-level datasets. Nat Commun, 2019. 10(1): p. 1523. 

11. Brannon, A.R., et al., Molecular Stratification of Clear Cell Renal Cell Carcinoma by 
Consensus Clustering Reveals Distinct Subtypes and Survival Patterns. Genes Cancer, 
2010. 1(2): p. 152-163. 

12. Bushweller, J.H., Targeting transcription factors in cancer - from undruggable to reality. 
Nat Rev Cancer, 2019. 19(11): p. 611-624. 

13. Horiguchi, A., et al., STAT3 inhibitor WP1066 as a novel therapeutic agent for renal cell 
carcinoma. Br J Cancer, 2010. 102(11): p. 1592-9. 

14. Miao, D., et al., Genomic correlates of response to immune checkpoint therapies in 
clear cell renal cell carcinoma. Science, 2018. 359(6377): p. 801-806. 

15. Thorsson, V., et al., The Immune Landscape of Cancer. Immunity, 2019. 51(2): p. 411-
412. 

16. Ricketts, C.J., et al., The Cancer Genome Atlas Comprehensive Molecular 
Characterization of Renal Cell Carcinoma. Cell Rep, 2018. 23(12): p. 3698. 

17. Kahles, A., et al., Comprehensive Analysis of Alternative Splicing Across Tumors from 
8,705 Patients. Cancer Cell, 2018. 34(2): p. 211-224 e6. 

18. Hoadley, K.A., et al., Cell-of-Origin Patterns Dominate the Molecular Classification of 
10,000 Tumors from 33 Types of Cancer. Cell, 2018. 173(2): p. 291-304 e6. 

19. Ellrott, K., et al., Scalable Open Science Approach for Mutation Calling of Tumor 
Exomes Using Multiple Genomic Pipelines. Cell Syst, 2018. 6(3): p. 271-281 e7. 

20. Gao, D., et al., Organoid cultures derived from patients with advanced prostate cancer. 
Cell, 2014. 159(1): p. 176-187. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2019. ; https://doi.org/10.1101/829796doi: bioRxiv preprint 

https://doi.org/10.1101/829796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

Figure Legend 

Figure 1 

(A) Each row represents one transcription factor and each column stands for one individual. 

The transcription factor score is plotted. 

(B) The sample-sample correlation matrix is visualized as a heatmap. 

 

Figure 2 

(A) Gap statistic was shown  up to 10 clusters, to determine the optimal k for k means 

clustering. 

(B) The result of k means clustering was plotted for k = 4, using all individuals. 

 

Figure 3 

(A) The top 10 biomarkers upregulated in each subtype were shown as heatmap. Each row 

represents one gene, and each column stands for one sample. The column side color bar 

labels the information about the sample. In Subtype bar, Subtype_1, Subtype_2, 

Subtype_3 and Subtype_4 are colored as black, red, green and blue respectively. In 

normal vs cancer bar, cancer tissue is labeled as black and normal tissue is labeled as green. 

(B) The expression of VEGFA and PD-1 was shown for the four subtypes: Subtype_1, 

Subtype_2, Subtype_3 and Subtype_4. 

 

Figure 4 

(A) Statistically enriched terms were identified and then hierarchically clustered into a tree 

based on Kappa-statistical similarities among their gene memberships. The heatmap cells 

are colored by their p-values, white cells indicate the lack of enrichment for that term in 

the corresponding gene list. 

(B) A subset of representative terms from the full cluster was selected and converted into a 

network layout. Each term is represented by a circle node, where its size is proportional 

to the number of genes satisfying that term and its color represents its cluster identity. 

Terms with a similarity score > 0.3 are linked by an edge where the thickness of the edge 

indicates the magnitude of similarity. The same enrichment network has its nodes 

displayed as pies.  Each pie sector is proportional to the number of hits originated from a 

gene list. 
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Figure 5 

(A) The MCODE components were identified from the merged protein-protein interaction 

network. Each MCODE network is assigned a unique color. 

(B) The same MCODE networks were displayed as in (A), where network nodes shown as pies. 

Color within pie sector indicates the subtype origin. 

 

Figure 6 

The survival curves were shown for the four subtypes. Only cancer samples were used for the 

analysis. 
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1−2: 8e−04
1−3: 0.5195
1−4: 0.0381
2−3: 0.0371
2−4: 0
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185 111 51 16 1
133 68 25 6 1
32 17 7 3 0
178 110 38 15 1
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