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Abstract
Clear cell renal cell carcinoma represents the most common type of kidney cancer. Precision

medicine approach to ccRCC requires an accurate stratification of patients that can predict
prognosis and guide therapeutic decision. Transcription factors are implicated in the initiation
and progression of human carcinogenesis. However, no comprehensive analysis of
transcription factor activity has been proposed so far to realize patient stratification. Here we
propose a novel approach to determine the subtypes of ccRCC patients based on global
transcription factor activity landscape. Using the TCGA cohort dataset, we identified different
subtypes that have distinct upregulated biomarkers and altered biological pathways. More
important, this subtype information can be used to predict the overall survival of ccRCC
patients. Our results suggest that transcription factor activity can be harnessed to perform

patient stratification.
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Introduction
Kidney cancer is one major solid cancer, with an estimated 403262 new cases and 175098

deaths in 2018[1]. Renal cell carcinoma accounts for around 90% of kidney cancer, with clear
cell renal cell carcinoma being one of the most frequent subtypes. Despite recent advances
in targeted therapy and immunotherapy, there is still a large gap to be filled for the clinical
management of patients diagnosed with clear cell renal cell carcinoma.

Transcription factors are implicated in the initiation and progression of human carcinogenesis.
The c-myc oncogene encodes a transcription factor that regulates the transcription of
hundreds of genes. It has been well established that transcription factors are situated in the
hubs of a complex network shaping the hallmarks of human cancer. Thus, it is intriguing to
develop strategies to target transcription factors, especially a combination targeting strategy
designed to destroy cancer cell dependency[2]. Small molecules with the capacity to
reactivate mutant p53 are now being evaluated in clinical trials[3]. Furthermore, transcription
factors can be harnessed to develop combination strategy aiming to defeat the intratumor
heterogeneity. For example, combination treatment with STAT3 and BCL6 inhibitors were
shown to reduce the growth of xenografted tumors[4].

An accurate determination of the subtypes of clear cell renal cell carcinoma is essential to
develop personalized therapy for ccRCC patients. ccRCC has been stratified previously with
genomic and transcriptomic information[5, 6]. However, no studies have focused on
transcription factor. Considering the fact that various transcription factors play an important
role in metabolic rewiring[7], growth and metastasis[8] of ccRCC cells, it is tempting to
approach the molecular stratification of ccRCC using the landscape of transcription factor
activity. Here we construct a comprehensive atlas of transcription factor profiles using dataset

available in the TCGA cohort comprising of 603 samples.

Method

Download TCGA level 3 data
TCGA level 3 expression data were downloaded from the Pan-Cancer Atlas datasets hosted at

Genomic Data Commons (https://gdc.cancer.gov/node/905/). In total, gene expression

profiles for 531 ccRCC primary cancer tissues and 72 solid normal tissues were extracted from

the Pan-Cancer Atlas.

Transcription factor scoring
For each transcription factor, the target genes with known regulation modes were extracted

from TTRUST database[9], resulting in a list of genes activated by the transcription factor and
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a list of genes repressed by the transcription factor. The ratio between the median expression
level of activated target gene and the median expression level of repressed target gene was
calculated for each transcription factor and log2 transformed to obtain a final transcription

factor score.

k-means clustering
k-means clustering was performed to unbiasedly analyse the structures in the dataset. Only

those transcription factors which have no NAs were included in the clustering analysis. In total,
238 transcription factors were analysed. Subpopulations of patients were estimated using
only the transcription factor score matrix. The optimal number of k was determined by gap

statistic.

Differential expressed genes
The unique biomarkers characterizing one cluster was determined by statistical test

comparing samples within that particular cluster and the rest of all other samples. “bonferroni”
correction was employed to reduce false hits in multiple comparisons. Adjusted p-value less
than 0.05 was considered as statistically significant. Genes with fold change greater than 1.5

were selected as candidate genes for downstream analysis.

Gene list analysis
Gene list analysis was performed using metascape[10]. Four major steps were included in the

pipeline: ID conversion, Annotation, Membership determination and Enrichment analysis.
Differentially expressed gene list was input into the online tool and analysed using default
parameters. Statistically enriched terms were identified and filtered. Remaining significant
terms were then hierarchically clustered into a tree based on Kappa-statistical similarities
among their gene memberships. A subset of representative terms was selected from the full
cluster and converted into a network layout. More specifically, each term is represented by
a circle node, where its size is proportional to the number of input genes fall into that term,
and its color represent its cluster identity. Terms with a similarity score > 0.3 are linked by an
edge (the thickness of the edge represents the similarity score). The network is visualized
with Cytoscape (v3.1.2) with “force-directed” layout and with edge bundled for clarity. One

term from each cluster is selected to have its term description shown as label.

Protein-protein interaction
All protein-protein interactions (PPI) among each input gene list were extracted from PPI

databases and formed a PPl network. GO enrichment analysis was applied to the original PPI

Ill

network and its MCODE network components to assign biological “meanings”, where top
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three best p-value terms were retained. All input gene lists were also merged into one list and
resulted in a PPl network. MCODE components were identified from the merged network.
Each MCODE network is assigned a unique color. Network nodes are also displayed as pies.

Color code for pie sector represents a gene list.

Survival analysis
Kaplan Meier analysis was used for survival curve analysis. It measures the percent of patients

surviving with time.

Statistical method
All statistical analyses were performed using R. p-value < 0.05 was considered statistically

significant. All plots were generated with R.

Result

Establishment of an analytical framework to quantify the global transcription factor activity
One typical transcription factor regulates the expression of hundreds of downstream gene

either positively or negatively. To quantify the activity of one transcription factor, the
expression of both the activated genes and the repressed genes should be taken into
consideration. A metric was devised to incorporate both into one score, through which a
comprehensive landscape of transcription factor activity was established (Figure 1A). Globally,
all transcription factors were grouped into “activated” and “repressed” states. To further gain
insights into the patterns in the transcription factor landscape, the correlation matrix was
visualized with a heatmap. It was shown that all samples fell into two apparent groups and

the larger group harbored finer structures (Figure 1B).

Patient stratification based on global transcription factor activity
To estimate the number of clusters in the samples, gap statistic was employed. It was found

that four clusters could contain more than 88% of the information in the TCGA dataset (Figure
2A). To identify the clusters, k-means clustering was performed using all the samples in the
TCGA dataset, which included 531 cancer samples and 72 normal tissues (Figure 2B). Of note,
all normal samples were grouped together as Subtype_3. No normal samples were in the
other clusters, while there were also some cancer samples in Subtype_3. Those cancer
samples were normal like in the transcription factor activity.

Next, differential gene expression analysis was performed using statistical test. Each subtype
identified previously was compared with the rest of all subtypes, resulting a list of genes
whose expression is characteristic for that subtype. Top 10 up-regulated genes for each

subtype were visualized with heatmap (Figure 3A). The up-regulated genes with the
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Subtype_3 included genes essential for the normal functionality of kidney cells, while the
other three subtypes over-expressed genes with known roles in carcinogenesis. Alteration of
angiogenesis is common in ccRCC and this typically involves the VEGF (Figure 3B). Not
surprising, cancer clusters expressed significantly higher level of VEGF. Besides an
upregulated angiogenesis, expression of PD-1 on cancer cells were correlated with the ability
of cancer cells to evade the immune systems. Consistently with previous observations, cancer

clusters upregulated the expression of PD-1(Figure 3B).

Different patient groups have distinct pathway alterations
To investigate what pathways or biological processes were uniquely altered for the different

subtypes, GO analysis was performed. Interestingly, the Subtype_3 stood out while the other
three subtypes were grouped together after hierarchical clustering of the enriched GO terms
(Figure 4A). GO terms uniquely enriched in the Subtype_3 included lipid biosynthetic process,
TCA cycle, monovalent inorganic cation homeostasis, mitochondrion organization,
metabolism of vitamins and cofactors, suggesting the downregulation of the normal kidney
functions in the other subtypes. The fact that only a few cancer samples were in Subtype_3
indicates that most ccRCC cancer cells tune down normal processes exerted by normal kidney
cells during carcinogenesis. Subtype_1 and Subtype_2 have altered T cell signaling pathways,
such as adaptive immune response, cytokine production, cell activation in the immune system
and T cell selection. It was consistent with some previous reports showing that cancer rewired
the tumor microenvironment to become immune suppressive environment. Subtype 4
preserved some of the functionality of normal kidney cells, such as regulation of ion transport.
Of note, Subtype_2 have significantly altered cell division, mitotic nuclear division and cellular
response to lipids, unlike any other subtypes. Globally, regulation of cell adhesion was altered

in Subtype_1 and Subtype_2 (Figure 4B).

Immunity related networks are up-regulated in Subtype 1 and Subtype 2
Using public databases with protein-protein interaction information, MCODE motifs in the

regulated genes were extracted (Figure 5A). Subtype_1 and Subtype_2 shared MCODE
networks in T cell signaling pathways, suggesting an important role played by the immune
systems. To consider the contribution of genes for the identified MCODE, it was found that
Subtype_2 was the only cluster that contributes to all identified MCODE (Figure 5B). Besides

two MCODE related to immunity, there was one MCODE consisting of three players: NOTCH1,
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NOTCH3, and SMARCD3. SMARCD3 is an essential component of the SWI/SNF chromatin-

remodeling complex, which epigenetically modulates the expression of downstream genes.

Prognostic value of the proposed transcription factor stratification
The transcription factor landscape is sufficient to divide the cancer patients into subtypes,

with distinct biomarker and altered pathways. We then ask whether different subtypes have
different overall survival. The survival information was downloaded to devise the survival
curves for different subtypes(Figure 6). Here we used only the cancer samples in the dataset.
For the three cancer only subtypes, Subtype_2 has the worse OS as compared with all the
other subtypes. Subtype_4 has the longest OS in the three cancer only subtypes. Interestingly,
the normal like Subtype_3 did not have significantly better OS compared with Subtype_1and
Subtype_4.

Discussion
Patient stratification is key to personalized therapy of cancer patients. One milestone

paper[11] divided ccRCC into two major subtypes: clear cell type A (ccA) and clear cell type B
(ccB). Subtype ccB was correlated with poor survival compared with subtype ccA. Pathway
analysis suggested that ccA group overexpressed genes associated with hypoxia, angiogenesis
and metabolism, while ccB group overexpressed genes involved in EMT, cell cycle and wound
healing. Unsupervised clustering of the TCGA ccRCC cohort revealed four stable subtypes
using RNA expression data designated m1-m4[6]. The subtype m1 corresponded to the ccA
group mentioned earlier while the subtype m2 and m3 corresponded to the ccB group. The
remaining subtype m4 represented a previously uncharacterized subtype with a frequency of
around 15%. The m1l subtype was characterized by upregulation of genes involved in
chromatin remodeling.

Transcription factors regulates the transfer of genetic information from DNA to RNA.
Traditionally, transcription factors were considered as undruggable. However, a shift of
paradigm is realized as multiple approaches to modulate the activity of transcription factors
have been demonstrated both preclinically and clinically[12]. Targeting transcription factors
can be an effective strategy against RCC. It has been demonstrated that STAT3 inhibitor
WP1066 inhibited the growth of renal cancer cell lines or xenografted renal cancer cells[13].
Checkpoint inhibition is emerging as a promising therapy for ccRCC patients, with a subset of
patients responding to anti-PD-1 monotherapy extremely well. Gene expression analysis

uncovered an altered transcriptional output in Janus kinase-signal transducers and activators
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of transcription (JAK-STAT) signaling[14]. It was shown that alteration of transcription factor
activity can influence the response to checkpoint inhibitors.

Large cancer genome programs such as TCGA has generated an enormous amount of data
that is publicly available to the cancer research community. Mining those datasets have
enabled novel insights into cancer biology[15-19]. Our analysis suggests that predictive
models can be derived from those massive data and used to assign patients to distinctive
subtypes.

Our study can be extended by proof-of-concept experiments to establish the feasibility of
predicting drug sensitivity based on the proposed patient stratification. For example,
experiments can be carefully designed to investigate the effect of CDK4/CDK6 inhibitors in
treating Subtype_2 cancer patients, using in vitro cancer cell line model, ex vivo or in vivo
cancer models. One popular model to test is the patient derived organoids[20]. Subtyping can
be performed with transcriptomic analysis using RNA-seq and the organoids can be perturbed
with drug treatments to show proof-of-concept that optimal treatment strategy can be

predicted with transcription factor activity based ccRCC subtyping.

Conclusion
In conclusion, we have resisted the molecular stratification of clear cell renal cancer by

integrative analysis of multiple publicly available datasets with a focus in the landscape of
transcription factor activity. We demonstrated how a deep understanding of ccRCC subtypes

can be obtained by a comprehensive and integrative reanalysis of publicly available datasets.
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Figure Legend

Figure 1

(A) Each row represents one transcription factor and each column stands for one individual.
The transcription factor score is plotted.

(B) The sample-sample correlation matrix is visualized as a heatmap.

Figure 2
(A) Gap statistic was shown up to 10 clusters, to determine the optimal k for k means
clustering.

(B) The result of k means clustering was plotted for k = 4, using all individuals.

Figure 3

(A) The top 10 biomarkers upregulated in each subtype were shown as heatmap. Each row
represents one gene, and each column stands for one sample. The column side color bar
labels the information about the sample. In Subtype bar, Subtype_ 1, Subtype_2,
Subtype_3 and Subtype 4 are colored as black, red, green and blue respectively. In
normal vs cancer bar, cancertissue is labeled as black and normal tissue is labeled as green.

(B) The expression of VEGFA and PD-1 was shown for the four subtypes: Subtype 1,
Subtype_2, Subtype_3 and Subtype_4.

Figure 4

(A) Statistically enriched terms were identified and then hierarchically clustered into a tree
based on Kappa-statistical similarities among their gene memberships. The heatmap cells
are colored by their p-values, white cells indicate the lack of enrichment for that term in
the corresponding gene list.

(B) A subset of representative terms from the full cluster was selected and converted into a
network layout. Each term is represented by a circle node, where its size is proportional
to the number of genes satisfying that term and its color represents its cluster identity.
Terms with a similarity score > 0.3 are linked by an edge where the thickness of the edge
indicates the magnitude of similarity. The same enrichment network has its nodes
displayed as pies. Each pie sector is proportional to the number of hits originated from a

gene list.
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Figure 5

(A) The MCODE components were identified from the merged protein-protein interaction
network. Each MCODE network is assigned a unique color.

(B) The same MCODE networks were displayed as in (A), where network nodes shown as pies.

Color within pie sector indicates the subtype origin.
Figure 6

The survival curves were shown for the four subtypes. Only cancer samples were used for the

analysis.
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