

2 Differential effects of ethanol on behavior and GABA_A receptor subunit expression in zebrafish

3 (Danio rerio) with alternative stress coping styles

4 Alexander C. Goodman and Ryan Y. Wong

5 University of Nebraska at Omaha

7 *Keywords:* Zebrafish, ethanol, GABA_A agonist, GABA_A receptor subunits

9 Author Note

10 Alexander C. Goodman and Ryan Y. Wong, Department of Biology, University of

11 Nebraska at Omaha

12 Correspondence concerning this article should be addressed to Alexander C. Goodman,

13 and Dr. Ryan Y. Wong at the Department of Biology, University of Nebraska at Omaha, Omaha,

14 NE 68182. E-mail: alexander.c.goodman@gmail.com and rwong@unomaha.edu. Telephone:

15 (402) 554-4473. Fax: (402) 554-3121

16 Date of submission: November 4, 2019

17 Number of words: 4247

18 Abstract: 175

19 Introduction: 604

20 Discussion: 1251

21 **Abstract**

22 Variation in stress responses between individuals is linked to factors ranging from stress coping
23 styles to sensitivity of neurotransmitter systems. Many anxiolytic compounds (e.g. ethanol) can
24 increase stressor engagement through modulation of neurotransmitter systems and are used to
25 investigate stress response mechanisms. Here we assessed the role of the GABA_A system on the
26 variation of the behavioral stress response by comparing individuals differing in stress coping
27 styles that were chronically treated with ethanol. Specifically, we investigated resulting changes
28 in stress-related behavior and whole-brain GABA_A receptor subunits (*gabra1*, *gabra2*, *gabrd*, &
29 *gabrg2*) in response to a novelty stressor. There were significant main and interaction effects on
30 two stress-related behaviors, where the ethanol-treated proactive individuals showed lower
31 stress-related behaviors than their reactive counterparts. Proactive individuals showed
32 significantly higher expression of *gabra1*, *gabra2*, and *gabrg2* compared to reactive individuals
33 and ethanol treatment resulted in upregulation of *gabra1* and *gabrg2* in both stress coping styles.
34 These results show that differences in stress-related behaviors between stress coping styles may
35 be facilitated in part by expression of select GABA_A receptor subunits.

36 **Introduction**

37 While an organism's stress response is essential to its survival, not all conspecifics
38 exhibit similar responses and often differ both behaviorally and physiologically^{1–5}. Across many
39 taxa there exists two alternative correlated suites of behavioral and physiological responses to
40 stressors known as the proactive and reactive stress coping styles^{2,3,5–7}. Proactive individuals
41 actively engage stressors and characteristically exhibit a lower whole-body cortisol response
42 compared to reactive individuals in response to novelty^{2,3,5,8–10}. Additionally, proactive and
43 reactive individuals differ in expression of key neurotransmitter receptors related to stress and
44 anxiety, such as serotonin, dopamine, and GABA (γ -amino butyric acid) receptors^{2,3,11,12}. Drugs
45 designed to target such systems are often employed to study a neurotransmitter's influence on
46 stress-related behaviors^{13–15}. Therefore, pharmaceuticals can be used to investigate underlying
47 differences in the molecular mechanisms between stress coping styles.

48 Dysregulation of the GABAergic, serotonergic, and the glutamatergic systems often
49 contribute to a disproportional behavioral stress response^{13,16}, which, if sustained over an
50 extended period of time, can be classified as an anxiety disorder^{17,18}. GABAergic system
51 dysfunction is thought to contribute to the underlying etiology of anxiety-related disorders^{19,20}.
52 GABA_A receptor (GABA_{AR}) agonists, such as ethanol, allow for positive modulation of the
53 GABAergic system to produce an anxiolytic response, while antagonists result in an anxiogenic
54 response^{13,16,21–28}. GABA-acting drugs influence the expression of the protein subunits that make
55 up the receptor subtype as well^{29,30}. For example, rodents exposed to GABA_A agonists show an
56 increase in expression of the α_1 -, α_2 -, and δ -subunits of the GABA_{AR}, while expression of the
57 γ_2 -subunit decreases^{31–34}. Studies utilizing zebrafish similarly show that ethanol administration
58 produces anxiolytic behavioral effects^{13,23,24,26,35,36}. While there are baseline differences in

59 mRNA expression of both GABA_A and GABA_B receptors between zebrafish with the proactive
60 or reactive stress coping style¹², how these drugs differentially influence both the behavior and
61 GABAergic response while taking into account an individual's stress coping style is not
62 understood.

63 Zebrafish (*Danio rerio*) is a widely used model to understand the effects of
64 pharmaceuticals on stress and anxiety-related behaviors and physiology due in part to their
65 conserved behavioral, neuroanatomical, pharmacological and transcriptional stress responses
66 with mammals and other species^{13–15,24,37–41}. Furthermore, wild and laboratory strains of
67 zebrafish show the proactive and reactive stress coping styles^{5,6}. These coping styles in zebrafish
68 display differences in genetic backgrounds, behavior and neuroendocrine responses to stressors
69 that are consistent with what has been documented in birds and mammals^{42–44}. Only recently are
70 studies beginning to demonstrate the roles of synaptic plasticity and neurotransmitter system
71 regulation in facilitating the display of alternative stress coping styles in zebrafish^{5,7,12,45–47}.
72 Hence zebrafish can serve as a useful system to study the neuromolecular variations between
73 stress coping styles through the use of GABA-acting drugs.

74 In this study, we assessed the effects of ethanol treatment on stress-related behavior and
75 GABA_{AR} subunit gene expression in two zebrafish lines selectively bred to display the proactive
76 and reactive stress coping styles. Specifically, we quantified expression of four genes encoding
77 for the α_1 -, α_2 -, δ -, and γ_2 -subunits of the GABA_{AR} (*gabra1*, *gabra2*, *gadrd*, and *gabrg2*,
78 respectively;⁴⁸ We hypothesized that ethanol treatment will reduce stress-related behaviors (e.g.
79 exploratory behavior) in both lines of zebrafish with a greater anxiolytic response for the reactive
80 line. Additionally, based on previous literature we predicted to see an increase in mRNA

81 expression of α_1 -, α_2 -, δ -subunits and decrease expression of the γ_2 -subunit for both lines but the
82 magnitude of the effect would be greater in the reactive line³¹⁻³⁴. Understanding how a GABA_AR
83 agonist impacts GABA neurotransmission between the two coping styles will give insight into
84 one mechanism that may explain differences in their stress and anxiety-related behavioral
85 responses.

86 Materials and Methods

87 *Subjects.* In this study, we used the high-stationary behavior (HSB) and low-stationary behavior
88 (LSB) lines of zebrafish (*Danio rerio*). These two lines exhibit differences in stress-related
89 behaviors across multiple behavioral assays, learning and memory, glucocorticoid responses,
90 neurotranscriptome profiles, and morphology consistent with the reactive and proactive stress
91 coping styles^{5,6,10,12,45,47,49,50}. Therefore, we consider any fish from the HSB or LSB lines to have
92 the reactive or proactive stress coping style, respectively. Lines were generated starting from a
93 wild-caught population from Gaighata in West Bengal, India and are maintained through a
94 bidirectional selective breeding paradigm on behavioral stress response to a novelty stressor ⁵.
95 Both lines were 12 to 15 months post-fertilization when testing began and underwent 11
96 generations of selective breeding. Prior to testing, fish were housed in 40-liter mixed-sex tanks
97 on a recirculating system. Water temperature was set at 27°C. Fish were kept on a 14:10 L/D
98 cycle and fed twice daily with Tetramin Tropical Flakes (Tetra, USA). All procedures and
99 experiments were approved by the Institutional Animal Care and Use Committee of the
100 University of Nebraska at Omaha/University of Nebraska Medical Center (17-070-09-FC).

101 *Pharmacological manipulation.* To identify a biologically relevant ethanol dose, we conducted a
102 pilot dose-response study. We chronically administered ethanol of varying concentrations and

103 durations to both lines followed by a behavioral stress assay (Novel Tank Diving Test) to
104 measure anxiety-related behaviors (see below). Ethanol treatment began at 0.25% v/v over a
105 period of seven days. Concentration and duration were progressively increased until an
106 anxiolytic effect was observed in both lines of zebrafish without drug-impaired locomotion (i.e.
107 significant change in depth preference with no significant difference or decrease in distance
108 traveled and stationary time relative to control fish). We used total distance traveled and total
109 stationary time during the trials as proxies for locomotion to ensure the chosen concentration of
110 ethanol was not impairing the fish's ability to swim. We tested treatment durations from 7 days
111 (0.25%, 0.4%, 0.5%, 0.75%, 1%, 1.15%, 1.25%, and 1.5% ethanol), 10 days (0.5% ethanol), up
112 to 14 days (0.5% and 0.75% ethanol) (Figure S1, Tables S1-S4). There were significant main
113 effects of ethanol concentration on time spent in the top half of the tank for both the HSB and
114 LSB lines at the 14-day duration (HSB: $\chi^2(2) = 19.293, p \leq 0.001$; LSB: $\chi^2(2) = 11.330, p \leq$
115 0.01). Post-hoc analysis revealed fish treated with 0.75% ethanol concentration showed an
116 increase in time spent in the top half of the tank compared to 0.0% concentration for both the
117 HSB and LSB line (HSB: $U = 18.000, p \leq 0.001$; LSB: $U = 49.500, p \leq 0.001$; Table S4) with no
118 drug-impaired locomotion. Therefore, we selected the 0.75% ethanol for two weeks treatment
119 regime for this study.

120 Using a modified protocol for chronic ethanol administration in zebrafish²⁴, groups of six
121 fish were housed in a 3-liter trapezoidal tank (15.2 height x 27.9 top x 22.5 bottom x 11.4 cm
122 width; Pentair Aquatic Ecosystems) throughout the treatment period. The tank contained either
123 2-liters of 0.75% ethanol (v/v; Sigma-Aldrich) or 2-liters of system water as a control over the
124 span of 14 days. Every two days we replaced the entire water in each tank with fresh ethanol or
125 system water. At the end of 14 days, a group of fish was used for either behavioral testing or for

126 quantification of whole-brain GABA_AR subunit mRNA expression. We randomly selected 36
127 individuals from each of the HSB and LSB lines to be behaviorally tested ($N = 18$ for each
128 treatment group). We used a different set of 36 individuals from each line ($N = 18$ for each
129 treatment group) for quantification of GABA_AR subunit expression. Some fish were lost during
130 the treatment period resulting in final sample sizes of 32 individuals from the HSB ($N = 15$
131 treated, 17 control; *Female* = 13, *Male* = 19) line and 33 from the LSB ($N = 16$ treated, 17
132 control; *Female* = 14, *Male* = 19) that were behaviorally tested using the NTDT. A total of 34
133 individuals from the HSB ($N = 17$ treated, 17 control; *Female* = 15, *Male* = 19) line and 35 from
134 the LSB ($N = 17$ treated, 18 control; *Female* = 18, *Male* = 17) were used for GABA_AR subunit
135 quantification.

136 *Behavioral Testing.* Following the 14th day of treatment, fish were exposed to a novelty stressor
137 by placing them into the Novel Tank Diving Test (NTDT) assay following established
138 procedures^{5,10,49}. Reduced transitions to and time spent in the top half of the tank are indicators
139 of heightened stress and anxiety^{5,24,51}. In brief, fish were netted from their treatment tanks and
140 individually placed in a clear 3-liter trapezoidal tank (15.2 height x 27.9 top x 22.5 bottom x 11.4
141 cm width; Pentair Aquatic Ecosystems) filled with 2-liters of system water. We video-recorded
142 the fish for six minutes and quantified behaviors using an automated tracking software (Noldus
143 Ethovision XT, Wageningen, Netherlands) as previously described⁶. Specifically, we used the
144 software to virtually partition the tank into top and bottom halves to measure the number of
145 transitions to the top portion of the tank, time spent in the top portion of the tank (s), total
146 distance traveled (cm), and stationary time (s). The subject was considered stationary if it was
147 moving less than 0.5 cm/s. Stationary time and distance travels were used as proxies for

148 locomotor activity to assess whether or not ethanol treatment impaired general locomotor
149 activity. Testing occurred between 0800-1700 hours.

150 *Quantification of GABA_AR subunit expression.* We quantified whole-brain expression of four
151 genes that encode for GABA_A receptor subunits (*gabra1*, *gabra2*, *gadrd*, and *gabrg2*; Table S5),
152 and one housekeeping gene (*efla*) using quantitative reverse transcriptase PCR (qRT-PCR)
153 following established protocols^{12,49,50}. In brief, whole brains were homogenized with 50-100 µL
154 of zirconium oxide beads (Bullet Blender, Next Advanced) in Tri Reagent (Sigma-Aldrich).
155 Then, we extracted RNA and removed genomic DNA using column filtration (PureLink RNA
156 Mini Kit, Ambion). We subsequently synthesized cDNA using both random hexamers and
157 oligo(dT)₂₀ primers. (SuperScript IV First-Strand Synthesis System for qRT-PCR (Invitrogen).
158 Finally, we purified the cDNA using Amicon Ultracentrifugal filters (Millipore). We carried out
159 all protocols according to each manufacturers' protocol.

160 We ran the qRT-PCR on QuantStudio 7 Flex Real-Time PCR System (Applied
161 Biosystems) using SYBR green detection chemistry (PowerUp SYBR Green Master Mix,
162 Applied Biosystems). The primers were designed using Primer-Blast⁵² with chosen primers
163 either spanning exon-exon junctions or with the amplicon spanning exons where the intron
164 region was over one kilobase (Table S5). Primer concentrations were 5 pmol for all genes.
165 Reaction parameters for all genes were as follows: 2 minutes at 50°C, 2 minutes at 95°C,
166 followed by 40 cycles at 95°C for 15 seconds then 60°C for 1 minute. We ran each sample in
167 triplicate. We quantified expression using the relative standard curve method and normalized
168 expression to an endogenous reference gene (*efla*). *efla* expression is stable across sex, tissue
169 types, age, and chemical treatment in zebrafish⁵³.

170 *Statistical Analysis.* We used a generalized linear model (GLZ) in SPSS (Version 24) to assess
171 changes in behaviors and gene expression because the data was not normally distributed. Line
172 (HSB, LSB), sex (male, female) and treatment group (0.75% ethanol, control) were used as
173 between-subject variables. As the relationship between body size and locomotion is well
174 documented^{45,54–56}, we included standard length as a covariate. Since we did not find a
175 significant main effect of sex on behavior (top transitions: $\chi^2(1) = 2.385, p = 0.123$; top time:
176 $\chi^2(1) = 0.852, p = 0.356$; distance: $\chi^2(1) = 0.682, p = 0.409$; and stationary time: $\chi^2(1) = 0.092, p$
177 = 0.762) or gene expression (*gabra1*: $\chi^2(1) = 0.036, p = 0.850$; *gabra2*: $\chi^2(1) = 0.382, p = 0.536$;
178 *gadrd*: $\chi^2(1) = 1.942, p = 0.163$; *gabrg2*: $\chi^2(1) = 1.426, p = 0.232$), we removed that variable
179 from the analyses and used a simpler GLZ with line and treatment group as the only between-
180 subject variables. For the post-hoc comparisons, we ran Mann-Whitney U tests and applied a
181 Benjamini-Hochberg correction to correct for multiple comparisons⁵⁷. As our pilot and multiple
182 other studies show that ethanol results in the decrease of stress and anxiety-related
183 behavior^{13,16,21–26}, we assessed significant differences in post-hoc comparisons of stress-related
184 behaviors between treatment and control groups using one-tailed p-values. Significance of all
185 other post-hoc comparisons used two-tailed p-values.

186 **Results**

187 *Greater anxiolytic effect of ethanol on behavior in the LSB line.* There were significant main
188 effects of line on both top transitions ($\chi^2(1) = 12.579, p \leq 0.001$) and time spent in the top half of
189 the tank ($\chi^2(1) = 10.215, p \leq 0.001$). LSB fish transitioned to ($U = 281.500, p \leq 0.001$; Figure
190 1a) and spent significantly more time in the top half of the tank ($U = 297.000, p \leq 0.01$; Figure
191 1b) than HSB fish. There were also significant main effects of treatment on both top transitions

192 $(\chi^2(1) = 28.054, p \leq 0.001)$ and time spent in the top half of the tank $(\chi^2(1) = 32.659, p \leq 0.001)$.
193 Ethanol-treated fish transitioned to $(U = 234.500, p_{one-tail} \leq 0.001)$ and spent significantly more
194 time in the top half of the tank $(U = 236.000, p_{one-tail} \leq 0.001)$ than control fish. There was a
195 significant line by treatment interaction effect for transitions to the top half of the tank $(\chi^2(1) =$
196 $6.788, p \leq 0.001)$ and time spent in the top half of the tank $(\chi^2(1) = 8.182, p \leq 0.01)$. Ethanol-
197 treated LSB fish exhibited the most top transitions compared to the control HSB $(U = 11.500, p$
198 $\leq 0.001)$, control LSB $(U = 28.000, p_{one-tail} \leq 0.001)$, and ethanol-treated HSB fish $(U = 48.500, p$
199 $\leq 0.01)$. This pattern was also found for time spent in the top half with ethanol-treated LSB
200 exhibiting the most time spent in the top half of the tank compared to control HSB $(U = 15.000,$
201 $p \leq 0.01)$, control LSB $(U = 27.500, p_{one-tail} \leq 0.001)$, and ethanol-treated HSB fish $(U = 49.000,$
202 $p \leq 0.01)$.

203 *No impaired locomotion from ethanol-treatment for both lines.* There were significant line
204 effects for total distance swam $(\chi^2(1) = 11.378, p \leq 0.001)$ and stationary time $(\chi^2(1) = 18.173, p$
205 $\leq 0.001)$. LSB fish swam a significantly farther distance $(U = 280.000; p \leq 0.001$; Figure 1c) and
206 spent significantly less time stationary $(U = 216.000; p \leq 0.001$; Figure 1d) than HSB fish. We
207 also found significant treatment effects for total distance swam $(\chi^2(1) = 5.729, p \leq 0.05)$ and
208 stationary time $(\chi^2(1) = 7.831, p \leq 0.01)$. Ethanol-treated fish traveled farther $(U = 360.000; p \leq$
209 $0.05)$ and spent less time stationary $(U = 364.000; p \leq 0.05)$ than control fish. There were not any
210 significant line by treatment interaction effects for total distance travelled $(\chi^2(1) = 1.391, p =$
211 $0.238)$ or stationary time $(\chi^2(1) = 2.639, p = 0.104)$.

212 *Ethanol-treatment increases expression of α_1 and γ_2 GABA_AR subunits.* We found significant
213 main effects of line on expression of *gabra1* $(\chi^2(1) = 7.310, p \leq 0.01)$, *gabra2* $(\chi^2(1) = 8.235, p$

214 ≤ 0.01), and *gabrg2* ($\chi^2(1) = 5.929, p \leq 0.05$), but not *gabrd* ($\chi^2(1) = 0.023, p = 0.880$). The LSB
215 fish showed higher expression of the α_1 - ($U = 372.000; p \leq 0.05$), α_2 - ($U = 393.000; p \leq 0.05$),
216 and γ_2 -subunit ($U = 365.000; p \leq 0.05$) than the HSB fish (Figure 2a, 2b, and 2d). There were
217 significant main effects of treatment on expression of *gabra1* ($\chi^2(1) = 6.507, p \leq 0.05$) and
218 *gabrg2* ($\chi^2(1) = 7.220, p \leq 0.05$) but not *gabra2* ($\chi^2(1) = 0.648, p = 0.421$) or *gabrd* ($\chi^2(1) =$
219 $2.042, p = 0.153$). Ethanol-treated fish showed greater expression of the α_1 - ($U = 393.500; p \leq$
220 0.05) and γ_2 -subunit ($U = 386.000; p \leq 0.05$) than control fish. There were no significant line by
221 treatment interaction effects for any of the four subunits (*gabra1*: $\chi^2(1) = 1.339, p = 0.247$;
222 *gabra2*: $\chi^2(1) = 0.073, p = 0.787$; *gabrd*: $\chi^2(1) = 0.832, p = 0.362$; *gabrg2*: $\chi^2(1) = 0.659, p =$
223 0.417).

224 **Discussion**

225 GABA_A agonists, such as ethanol, produce an anxiolytic response across many
226 taxa^{13,16,21–26,58}. Through the use of these stress-reducing compounds, we can investigate the role
227 of the GABAergic system in facilitating the expression of a stress coping style. In this study, we
228 assessed both the behavioral and molecular responses of ethanol treatment between proactive
229 (LSB) and reactive (HSB) lines of zebrafish. We found that while chronic ethanol treatment
230 decreased stress-related behaviors in both lines, ethanol treatment had a greater anxiolytic effect
231 on LSB line. The differences in stress-related behavior are linked to differential GABA_{AR}
232 receptor subunit expression between the lines (α_1 -, α_2 -, and γ_2 -subunits) or in response to ethanol
233 treatment (α_1 -, and γ_2 -subunits). The results suggest molecular differences in the GABAergic
234 neurotransmitter system contribute to the variation in stress-related behaviors between the two
235 stress coping styles.

236 The anxiolytic behavioral response to ethanol in zebrafish is well documented^{13,24,26,35,36},
237 but the effect of an individual's stress coping style on the response to GABA_{AR} agonists has
238 only been recently investigated. We predicted that treatment with a GABA agonist would have a
239 greater anxiolytic effect on both stress-related behaviors and GABA_{AR} receptor subunit
240 expression in the reactive stress coping style than the proactive stress coping style. As expected,
241 we found that both the LSB (proactive) and HSB (reactive) lines of zebrafish displayed a
242 decrease in anxiety-related behaviors following ethanol treatment. Surprisingly, the proactive
243 individuals showed a greater anxiolytic response than the reactive individuals. To our
244 knowledge, only one other study accounted for stress coping style when examining the anxiolytic
245 effects of ethanol in zebrafish⁵⁹. In that study, acute ethanol treatment resulted in a greater
246 anxiolytic effect (fish spent more time in an area of the tank furthest from conspecifics) on
247 reactive fish, while proactive fish increased their stress-related behaviors⁵⁹. We speculate the
248 opposing observations between our studies could be due to differences in treatment length (60
249 minutes vs. 2 weeks), social stress buffering (social vs. isolation), and assignment of stress
250 coping style (behavioral screen vs. selectively bred lines). Regardless, ethanol is known to have
251 an anxiolytic effect and the behavioral results from the prior and current studies suggest that an
252 individual's stress coping style can modulate the magnitude of the effect.

253 More generally, the line-specific responses to ethanol treatment we observed are
254 consistent with other studies in zebrafish and rodents⁶⁰⁻⁶⁵. We found that the LSB line of
255 zebrafish showed the greatest increase in transitions to and time spent in the top half of the tank
256 during the NTDT compared to the HSB line. This line-specific response can be seen in other
257 zebrafish studies. Laboratory lines of zebrafish require a higher concentration of ethanol to
258 match exploratory behavior of wild-caught lines, while wild-caught lines exhibit abolishment of

259 shoaling behavior at higher concentrations of ethanol⁶⁰⁻⁶². Rodents selectively bred to exhibit
260 diverging novelty-seeking behaviors show differing levels of responsiveness to ethanol⁶³⁻⁶⁵.
261 Maintaining laboratory and selectively bred lines of animals simultaneously results in line-
262 specific genetic backgrounds. For example, the HSB and LSB zebrafish lines used here show
263 distinct whole-brain transcriptome profiles^{12,50} and the divergent novelty-seeking rodent lines
264 differ in neuropeptide gene expression relating to the dopaminergic system^{64,65}, suggesting that
265 an individual's behavioral response can be influenced by its genetic profile and underlying
266 expression of neurotransmitters. Altogether our results show that differences in molecular
267 mechanisms can contribute to the alternative behavioral stress-response between stress coping
268 styles.

269 Unexpectedly, the proactive line (LSB) showed a greater anxiolytic behavioral response
270 to ethanol than the reactive stress coping style line (HSB). It is possible that the higher
271 expression of α_1 -, α_2 -, and γ_2 -subunits GABA_A receptor subunits we observed in this study in the
272 proactive zebrafish facilitated a greater anxiolytic response to ethanol treatment. In rodents,
273 removal of the α_2 -subunit results in the abolishment of the anxiolytic effect for both ethanol and
274 other benzodiazepines^{66,67}, suggesting this is a critical subunit needed for ethanol's anxiolytic
275 effect. We hypothesize that higher expression of these subunits in our proactive line may allow
276 for greater sensitivity of GABA_A receptor ligands leading to a greater anxiolytic response.

277 In addition to being differentially expressed between the two lines, expression of the α_1 -,
278 and γ_2 -subunits increased as a result of ethanol treatment. These results are consistent with
279 previous studies in rodents where α_1 -subunit increased expression with ethanol treatment³¹⁻³⁴.
280 This suggests that ethanol-induced modulation of this subunit may be a conserved response

281 across taxa. Prior studies examining the change in the γ_2 -subunit expression to ethanol treatment
282 show conflicting information^{68–70}. While our results are consistent with studies showing lower
283 expression of this particular subunit decreases stress-related behaviors, other studies have shown
284 increased expression similarly leading to a reduction in stress-related behaviors. It has been
285 hypothesized that the γ_2 -subunit increases the overall responsiveness of the GABA
286 neurotransmitter system^{70,71}. Our results are consistent with this hypothesis as the proactive line
287 showed higher expression of the γ_2 -subunit and had a greater change in the anxiolytic behavioral
288 response from a GABA_A receptor agonist (ethanol). Interestingly, knockouts of either the α_1 - or
289 γ_2 -subunits do not abolish ethanol's anxiolytic effect. Both wild type and α_1 -subunit knockout
290 rodents display an anxiolytic response to GABA_A receptor agonists, but rodents with the
291 knockout display a greater decrease in anxiety-related behaviors, such as time spent in the open
292 and number of open arm entries in the elevated plus maze^{72–74}. Results of previous studies
293 assessing γ_2 -subunit knockouts on stress-related behaviors are inconsistent. Some studies found
294 partial knockout of this receptor subtype decreases exploratory behavior in an open field test (i.e.
295 increasing anxiety)^{68,69}, while a more recent study found complete knockout of the subunit in
296 dopaminergic neurons increases exploratory behavior⁷⁰. While removal of the α_1 - or γ_2 -subunits
297 alter behavior in the rodent animal model, the anxiolytic effect of GABA_A agonist is still present
298 regardless of the presence in the GABA_A receptor. This suggests that the α_1 - and γ_2 -subunits
299 particular subunits are sufficient but not necessary for the anxiolytic response and their increased
300 expression in the current study may have facilitated the reduction of stress-related behavioral
301 displays in both lines.

302 Of note, we did not observe any significant line by treatment interaction effects on
303 expression of any of the examined GABA_A receptor subunits. It is possible that by looking at
304 whole-brain expression levels, we masked brain-region specific responses that may have shown
305 interaction effects. As the GABAergic system can be differentially modulated depending on
306 length (acute vs chronic) of ethanol exposure^{58,62,75}, we also cannot rule out the possibility that
307 our results may change with acute ethanol exposure. Another interpretation is that the
308 GABAergic system does not play a significant role in the differentiated anxiolytic behavioral
309 effects of chronic ethanol exposure between stress coping styles in zebrafish. Rather, the
310 anxiolytic effects could be mediated by another neurotransmitter system such as the
311 dopaminergic or serotonergic system. Prior studies in fish and rodents have documented that
312 administration of ethanol and other anxiolytic compounds alter several neurotransmitter systems
313 in addition to the target system^{49,76-81}. Of note, a prior study showed that the proactive (LSB) line
314 showed higher baseline expression of the DRD2 receptor compared to the reactive (HSB) line¹².
315 Given this receptor's role in ethanol-induced activation of the mesolimbic dopaminergic reward
316 pathway of the brain and drug-seeking and novelty exploration behaviors⁸²⁻⁸⁴, we speculate that
317 the differences in the magnitude of the anxiolytic effects of chronic ethanol on behavior between
318 the two stress coping style lines involve the dopaminergic system. Future studies are needed to
319 assess the extent of ethanol effects on neurotransmitter systems beyond the GABA_A system
320 between the two stress coping styles.

321 **Conclusions**

322 In this study, we showed significant main effects of line on anxiety-related behaviors and
323 GABA_AR subunit expressions where individuals with the proactive stress coping style (LSB

324 line) had lower anxiety-related behaviors and higher expression of the α_1 , α_2 , and γ_2 -subunits
325 relative to reactive (HSB) individuals. This demonstrates that variation in behavioral responses
326 to a novelty stressor may be explained by differences in the GABAergic system (e.g. GABA_{AR}
327 subunit expression) between the two stress coping styles. Intriguingly we observed a significant
328 line by ethanol treatment interaction effects on stress and anxiety-related behaviors. Chronic
329 ethanol treatment had a surprisingly greater anxiolytic effect on proactive individuals, which
330 suggests that ethanol alters the underlying neuromolecular mechanisms in a coping style-specific
331 manner. However, the lack of an interaction effect between line and treatment on any of the four
332 measured GABA_{AR} subunits leads us to speculate that the differences in the magnitude of effect
333 between the lines induced by chronic ethanol treatment may be mediated by a neurotransmitter
334 system other than the GABAergic system. More broadly, this study shows that differences in
335 stress and anxiety-related behaviors between the proactive and reactive stress coping styles are
336 due in part to differences in the GABAergic system but any coping-style specific anxiolytic
337 behavioral effects of chronic ethanol exposure likely involve other neurotransmitter systems.

338 **References**

- 339 1. Demin KA, Lakstygal AM, Alekseeva PA, et al. The role of intraspecies variation in fish
340 neurobehavioral and neuropharmacological phenotypes in aquatic models. *Aquat Toxicol.*
341 2019;44-55. doi:10.1016/j.aquatox.2019.02.015
- 342 2. Koolhaas JM, de Boer SF, Coppens CM, Buwalda B. Neuroendocrinology of coping
343 styles: Towards understanding the biology of individual variation. *Front Neuroendocrinol.*
344 2010;31(3):307-321. doi:10.1016/j.yfrne.2010.04.001
- 345 3. Øverli Ø, Sørensen C, Pulman KGT, et al. Evolutionary background for stress-coping
346 styles: Relationships between physiological, behavioral, and cognitive traits in non-
347 mammalian vertebrates. *Neurosci Biobehav Rev.* 2007;31(3):396-412.
348 doi:10.1016/j.neubiorev.2006.10.006
- 349 4. Slater PJB. Individual Differences in Animal Behavior. In: *Perspectives in Ethology*.
350 Boston, MA: Springer US; 1981:35-49. doi:10.1007/978-1-4615-7575-7_2
- 351 5. Wong RY, Perrin F, Oxendine SE, et al. Comparing behavioral responses across multiple
352 assays of stress and anxiety in zebrafish (*Danio rerio*). *Behaviour*. 2012;149(10-12):1205-
353 1240. doi:10.1163/1568539X-00003018
- 354 6. Baker MR, Goodman AC, Santo JB, Wong RY. Repeatability and reliability of
355 exploratory behavior in proactive and reactive zebrafish, *Danio rerio*. *Sci Rep.*
356 2018;8(1):12114. doi:10.1038/s41598-018-30630-3
- 357 7. Baker MR, Hofmann HA, Wong RY. Neurogenomics of Behavioural Plasticity in
358 Socioecological Contexts. *eLS*. 2017:1-11. doi:10.1002/9780470015902.a0026839
- 359 8. Schjolden J, Backstrom T, Pulman KG, Pottinger TG, Winberg S. Divergence in
360 behavioural responses to stress in two strains of rainbow trout (*Oncorhynchus mykiss*)
361 with contrasting stress responsiveness. *Horm Behav*. 2005;48(5):537-544.
- 362 9. Evans MR, Roberts ML, Buchanan KL, Goldsmith AR. Heritability of corticosterone
363 response and changes in life history traits during selection in the zebra finch. *J Evol Biol.*
364 2006;19(2):343-352. doi:10.1111/j.1420-9101.2005.01034.x
- 365 10. Wong RY, French J, Russ JB. Differences in stress reactivity between zebrafish with
366 alternative stress coping styles. *R Soc Open Sci.* 2019;6(5). doi:10.1098/rsos.181797
- 367 11. Koolhaas JM, de Boer SF, Buwalda B, van Reenen K. Individual Variation in Coping with
368 Stress: A Multidimensional Approach of Ultimate and Proximate Mechanisms. *Brain*
369 *Behav Evol.* 2007;70(4):218-226. doi:10.1159/000105485
- 370 12. Wong RY, Lamm MS, Godwin J. Characterizing the neurotranscriptomic states in
371 alternative stress coping styles. *BMC Genomics*. 2015;16(1):1-11. doi:10.1186/s12864-
372 015-1626-x
- 373 13. Stewart A, Wu N, Cachat J, et al. Pharmacological modulation of anxiety-like phenotypes
374 in adult zebrafish behavioral models. *Prog Neuro-Psychopharmacol Biol Psychiatry*.
375 2011;35(6):1421-1431. doi:10.1016/j.pnpbp.2010.11.035
- 376 14. Kalueff A V, Echevarria DJ, Homechaudhuri S, et al. Zebrafish neurobehavioral
377 phenomics for aquatic neuropharmacology and toxicology research. *Aquat Toxicol.*
378 2016;170:297-309. doi:10.1016/j.aquatox.2015.08.007
- 379 15. Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff A V. Modeling anxiety using
380 adult zebrafish: A conceptual review. *Neuropharmacology*. 2012;62(1):135-143.
381 doi:10.1016/J.NEUROPHARM.2011.07.037

382 16. Durant C, Christmas D, Nutt D. The Pharmacology of Anxiety. In: Springer, Berlin,
383 Heidelberg; 2009:303-330. doi:10.1007/7854_2009_8

384 17. American Psychiatric Association. *Diagnostic and Statistical Manual of Mental*
385 *Disorders*. 5th ed.; 2013. doi:10.1176/appi.books.9780890425596.744053

386 18. Craske MG, Stein MB. Anxiety. *Lancet*. 2016;388(10063):3048-3059.
387 doi:10.1016/S0140-6736(16)30381-6

388 19. Lydiard RB. The role of GABA in anxiety disorders. *J Clin Psychiatry*. 2003;64 Suppl
389 3:21-27. <http://www.ncbi.nlm.nih.gov/pubmed/12662130>. Accessed September 10, 2019.

390 20. Nemeroff CB. The role of GABA in the pathophysiology and treatment of anxiety
391 disorders. *Psychopharmacol Bull*. 2003;37(4):133-146.
<http://www.ncbi.nlm.nih.gov/pubmed/15131523>. Accessed September 10, 2019.

393 21. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on
394 anxiety-like behaviors: A review. *Eur J Pharmacol*. 2003;463(1-3):3-33.
395 doi:10.1016/S0014-2999(03)01272-X

396 22. Kalouff A V., Nutt DJ. Role of GABA in anxiety and depression. *Depress Anxiety*.
397 2007;24(7):495-517. doi:10.1002/da.20262

398 23. Bencan Z, Sledge D, Levin ED. Buspirone, chlordiazepoxide and diazepam effects in a
399 zebrafish model of anxiety. *Pharmacol Biochem Behav*. 2009;94(1):75-80.
400 doi:10.1016/J.PBB.2009.07.009

401 24. Egan RJ, Bergner CL, Hart PC, et al. Understanding behavioral and physiological
402 phenotypes of stress and anxiety in zebrafish. *Behav Brain Res*. 2009;205(1):38-44.
403 doi:10.1016/j.bbr.2009.06.022

404 25. Koen N, Stein DJ. Pharmacotherapy of anxiety disorders: A critical review. *Dialogues*
405 *Clin Neurosci*. 2011;13(4):423-437.

406 26. Magno LDP, Fontes A, Gonçalves BMN, Gouveia A. Pharmacological study of the
407 light/dark preference test in zebrafish (*Danio rerio*): Waterborne administration.
408 *Pharmacol Biochem Behav*. 2015;135:169-176. doi:10.1016/J.PBB.2015.05.014

409 27. Mueller T, Vernier P, Wullimann MF. The adult central nervous cholinergic system of a
410 neurogenetic model animal, the zebrafish *Danio rerio*. *Brain Res*. 2004;1011(2):156-169.
411 doi:10.1016/J.BRAINRES.2004.02.073

412 28. Panula P, Sallinen V, Sundvik M, et al. Modulatory Neurotransmitter Systems and
413 Behavior: Towards Zebrafish Models of Neurodegenerative Diseases. *Zebrafish*.
414 2006;3(2):235-247. doi:10.1089/zeb.2006.3.235

415 29. Rudolph U, Crestani F, Möhler H. GABAA receptor subtypes: Dissecting their
416 pharmacological functions. *Trends Pharmacol Sci*. 2001;22(4):188-194.
417 doi:10.1016/S0165-6147(00)01646-1

418 30. von Blankenfeld G, Ymer S, Pritchett DB, et al. Differential benzodiazepine
419 pharmacology of mammalian recombinant GABAA receptors. *Neurosci Lett*. 1990;115(2-
420 3):269-273. doi:10.1016/0304-3940(90)90467-N

421 31. Devaud LL, Fritschy J-M, Sieghart W, Morrow AL. Bidirectional Alterations of GABAA
422 Receptor Subunit Peptide Levels in Rat Cortex During Chronic Ethanol Consumption and
423 Withdrawal. *J Neurochem*. 2002;69(1):126-130. doi:10.1046/j.1471-
424 4159.1997.69010126.x

425 32. Wafford KA. GABAA receptor subtypes: any clues to the mechanism of benzodiazepine
426 dependence? *Curr Opin Pharmacol*. 2005;5(1):47-52. doi:10.1016/J.COPH.2004.08.006

427 33. Francesca PF, Giuseppe B, Luca T, Mariangela M, Enrico S, Biggio SG. Neurosteroids,

428 GABA A receptors, and ethanol dependence. *Psychopharmacology (Berl)*. 2006;186:267-
429 280. doi:10.1007/s00213-005-0126-0

430 34. Rudolph U, Knoflach F. Beyond classical benzodiazepines: novel therapeutic potential of
431 GABA_A receptor subtypes. *Nat Rev Drug Discov*. 2011;10(9):685-697.
432 doi:10.1038/nrd3502

433 35. Blaser R, Gerlai R. Behavioral phenotyping in zebrafish: Comparison of three behavioral
434 quantification methods. *Behav Res Methods*. 2006;38(3):456-469.
435 doi:10.3758/BF03192800

436 36. Sackerman J, Donegan JJ, Cunningham CS, et al. Zebrafish Behavior in Novel
437 Environments: Effects of Acute Exposure to Anxiolytic Compounds and Choice of Danio
438 rerio Line. *Int J Comp Psychol*. 2010;23(1):43-61.
439 http://www.ncbi.nlm.nih.gov/pubmed/20523756. Accessed September 10, 2019.

440 37. Gerlai R. Using Zebrafish to Unravel the Genetics of Complex Brain Disorders. In:
441 Springer, Berlin, Heidelberg; 2011:3-24. doi:10.1007/7854_2011_180

442 38. Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff A V. Zebrafish models for
443 translational neuroscience research: from tank to bedside. *Trends Neurosci*.
444 2014;37(5):264-278. doi:10.1016/J.TINS.2014.02.011

445 39. Grunwald DJ, Eisen JS. Headwaters of the zebrafish — emergence of a new model
446 vertebrate. *Nat Rev Genet*. 2002;3(9):717-724. doi:10.1038/nrg892

447 40. Key B, Devine CA. Zebrafish as an experimental model: strategies for developmental and
448 molecular neurobiology studies. *Methods Cell Sci*. 2003;25(1/2):1-6.
449 doi:10.1023/B:MICS.0000006849.98007.03

450 41. Rinkwitz S, Mourrain P, Becker TS. Zebrafish: An integrative system for neurogenomics
451 and neurosciences. *Prog Neurobiol*. 2011;93(2):231-243.
452 doi:10.1016/J.PNEUROBIO.2010.11.003

453 42. Levin ED. Zebrafish assessment of cognitive improvement and anxiolysis: filling the gap
454 between in vitro and rodent models for drug development. *Rev Neurosci*. 2011;22(1):75-
455 84. doi:10.1515/RNS.2011.009

456 43. Steenbergen PJ, Richardson MK, Champagne DL. The use of the zebrafish model in stress
457 research. *Prog Neuro-Psychopharmacology Biol Psychiatry*. 2011;35(6):1432-1451.
458 doi:10.1016/J.PNPBP.2010.10.010

459 44. Stewart A, Wu N, Cachat J, et al. Pharmacological modulation of anxiety-like phenotypes
460 in adult zebrafish behavioral models. *Prog Neuro-Psychopharmacology Biol Psychiatry*.
461 2011;35(6):1421-1431. doi:10.1016/J.PNPBP.2010.11.035

462 45. Kern EMA, Robinson D, Gass E, Godwin J, Langerhans RB, Keck WM. Correlated
463 evolution of personality, morphology and performance HHS Public Access. *Anim Behav*.
464 2016;117:79-86. doi:10.1016/j.anbehav.2016.04.007

465 46. Thörnqvist P-O, McCarrick S, Ericsson M, Roman E, Winberg S. Bold zebrafish (Danio
466 rerio) express higher levels of delta opioid and dopamine D2 receptors in the brain
467 compared to shy fish. *Behav Brain Res*. 2019;359:927-934. doi:10.1016/j.bbr.2018.06.017

468 47. Baker MR, Wong RY. Contextual fear learning and memory differ between stress coping
469 styles in zebrafish. *Sci Rep*. 2019;9(1):9935. doi:10.1038/s41598-019-46319-0

470 48. Horzmann K, Freeman J. Zebrafish Get Connected: Investigating Neurotransmission
471 Targets and Alterations in Chemical Toxicity. *Toxics*. 2016;4(3):19.
472 doi:10.3390/toxics4030019

473 49. Wong RY, Oxendine SE, Godwin J. Behavioral and neurogenomic transcriptome changes

474 in wild-derived zebrafish with fluoxetine treatment. *BMC Genomics*. 2013;14(1):348.
475 doi:10.1186/1471-2164-14-348

476 50. Wong RY, Godwin J. Neurotranscriptome profiles of multiple zebrafish strains. *Genomics*
477 *Data*. 2015;5:206-209. doi:10.1016/J.GDATA.2015.06.004

478 51. Blaser RE, Rosemberg DB. Measures of Anxiety in Zebrafish (*Danio rerio*): Dissociation
479 of Black/White Preference and Novel Tank Test. de Polavieja GG, ed. *PLoS One*.
480 2012;7(5):e36931. doi:10.1371/journal.pone.0036931

481 52. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a
482 tool to design target-specific primers for polymerase chain reaction. *BMC Bioinformatics*.
483 2012;13(1):134. doi:10.1186/1471-2105-13-134

484 53. Mccurley AT, Callard G V. Characterization of housekeeping genes in zebrafish: male-
485 female differences and effects of tissue type, developmental stage and chemical treatment.
486 2008. doi:10.1186/1471-2199-9-102

487 54. Brown C, Braithwaite VA. Size matters: a test of boldness in eight populations of the
488 poeciliid *Brachyraphis episopi*. *Anim Behav*. 2004;68(6):1325-1329.
489 doi:10.1016/J.ANBEHAV.2004.04.004

490 55. Harris S, Ramnarine IW, Smith HG, Pettersson LB. Picking personalities apart: estimating
491 the influence of predation, sex and body size on boldness in the guppy *Poecilia reticulata*.
492 *Oikos*. 2010;119(11):1711-1718. doi:10.1111/j.1600-0706.2010.18028.x

493 56. Roy T, Bhat A. Population, sex and body size: determinants of behavioural variations and
494 behavioural correlations among wild zebrafish *Danio rerio*. *R Soc Open Sci*.
495 2018;5(1):170978. doi:10.1098/rsos.170978

496 57. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in
497 behavior genetics research. *Behav Brain Res*. 2001;125(1-2):279-284. doi:10.1016/S0166-
498 4328(01)00297-2

499 58. Förster B, Castro PA, Moraga-Cid G, Aguayo LG. Potentiation of Gamma Aminobutyric
500 Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected? *Front*
501 *Cell Neurosci*. 2016;10:114. doi:10.3389/fncel.2016.00114

502 59. Araujo-Silva H, Pinheiro-da-Silva J, Silva PF, Luchiari AC. Individual differences in
503 response to alcohol exposure in zebrafish (*Danio rerio*). Norton WH, ed. *PLoS One*.
504 2018;13(6):e0198856. doi:10.1371/journal.pone.0198856

505 60. Dlugos CA, Rabin RA. Ethanol effects on three strains of zebrafish: model system for
506 genetic investigations. *Pharmacol Biochem Behav*. 2003;74(2):471-480.
507 doi:10.1016/S0091-3057(02)01026-2

508 61. Gerlai R, Ahmad F, Prajapati S. Differences in acute alcohol-induced behavioral
509 responses among zebrafish populations. *Alcohol Clin Exp Res*. 2008;32(10):1763-1773.
510 doi:10.1111/j.1530-0277.2008.00761.x

511 62. Gerlai R, Chatterjee D, Pereira T, Sawashima T, Krishnannair R. Acute and chronic
512 alcohol dose: Population differences in behavior and neurochemistry of zebrafish. *Genes*,
513 *Brain Behav*. 2009;8(6):586-599. doi:10.1111/j.1601-183X.2009.00488.x

514 63. Driscoll P, Escorihuela RM, Fernández-teruel A, et al. Genetic Selection and Differential
515 Stress Responses The Roman Lines/Strains of Rats. *Ann N Y Acad Sci*. 1998;851(1):501-
516 510.
517 https://s3.amazonaws.com/academia.edu.documents/39499383/Genetic_selection_and_dif-
518 ferential_stres20151028-12049-nlgbib.pdf?response-content-disposition=inline%3B
519 filename%3DGenetic_Selection_and_Differential_Stres.pdf&X-Amz-Algorithm=AWS4-

566 doi:10.1016/j.bbrc.2010.07.017
567 78. Benton CS, Miller BH, Skwerer S, et al. Evaluating genetic markers and
568 neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains.
569 *Psychopharmacology (Berl)*. 2012;221(2):297-315. doi:10.1007/s00213-011-2574-z
570 79. Huang G-J, Ben-David E, Tort Piella A, Edwards A, Flint J, Shifman S. Neurogenomic
571 Evidence for a Shared Mechanism of the Antidepressant Effects of Exercise and Chronic
572 Fluoxetine in Mice. Choi D-S, ed. *PLoS One*. 2012;7(4):e35901.
573 doi:10.1371/journal.pone.0035901
574 80. Lee J-H, Ko E, Kim Y-E, et al. Gene expression profile analysis of genes in rat
575 hippocampus from antidepressant treated rats using DNA microarray. *BMC Neurosci*.
576 2010;11(1):152. doi:10.1186/1471-2202-11-152
577 81. Mennigen JA, Martyniuk CJ, Crump K, Xiong H, Zhao E, Popesku J. Effects of fluoxetine
578 on the reproductive axis of female goldfish (*Carassius auratus*). *Physiol Genomics*.
579 2008;35(3):273-282. doi:10.1152/physiolgenomics.90263.2008
580 82. Blum K, Gold MS, Mitchell LG, Washington KW, Baron D, Thanos PK. *Global Evidence*
581 *for the Key Role of the Dopamine D2 Receptor Gene (DRD2) and DRD2 Receptors in*
582 *Alcoholism*. Vol 1.; 2017. www.ncbi.nlm.nih.gov/. Accessed September 10, 2019.
583 83. Dobbs LK, Lemos JC, Alvarez VA. Restructuring of basal ganglia circuitry and associated
584 behaviors triggered by low striatal D2 receptor expression: implications for substance use
585 disorders. *Genes, Brain Behav*. 2017;16(1):56-70. doi:10.1111/gbb.12361
586 84. Volkow ND, Wiers CE, Shokri-Kojori E, Tomasi D, Wang G-J, Baler R. Neurochemical
587 and metabolic effects of acute and chronic alcohol in the human brain: Studies with
588 positron emission tomography. *Neuropharmacology*. 2017;122:175-188.
589 doi:10.1016/J.NEUROPHARM.2017.01.012
590

591 **Acknowledgements**

592 We are grateful to D. Revers, S. Roundtree, A. Park, and N. Mohamed for zebrafish husbandry.

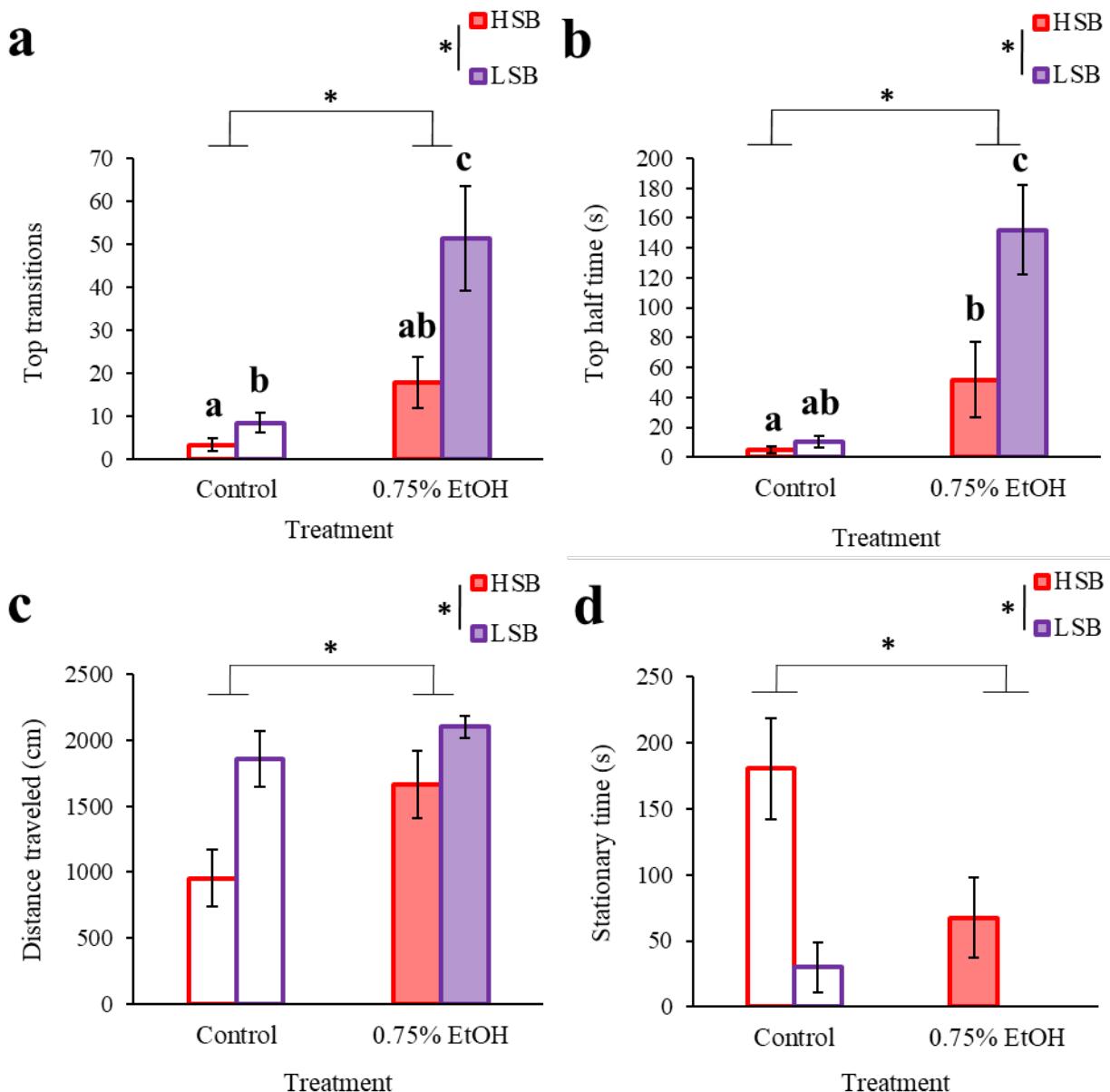
593 We thank M. Baker, K. Cullen, R. Patterson, and other members of the Wong lab for helpful

594 discussions. This study was supported by the UNO Fund for Undergraduate Scholarly

595 Experiences to A.C.G. along with the National Institutes of Health (R15MH113074), Nebraska

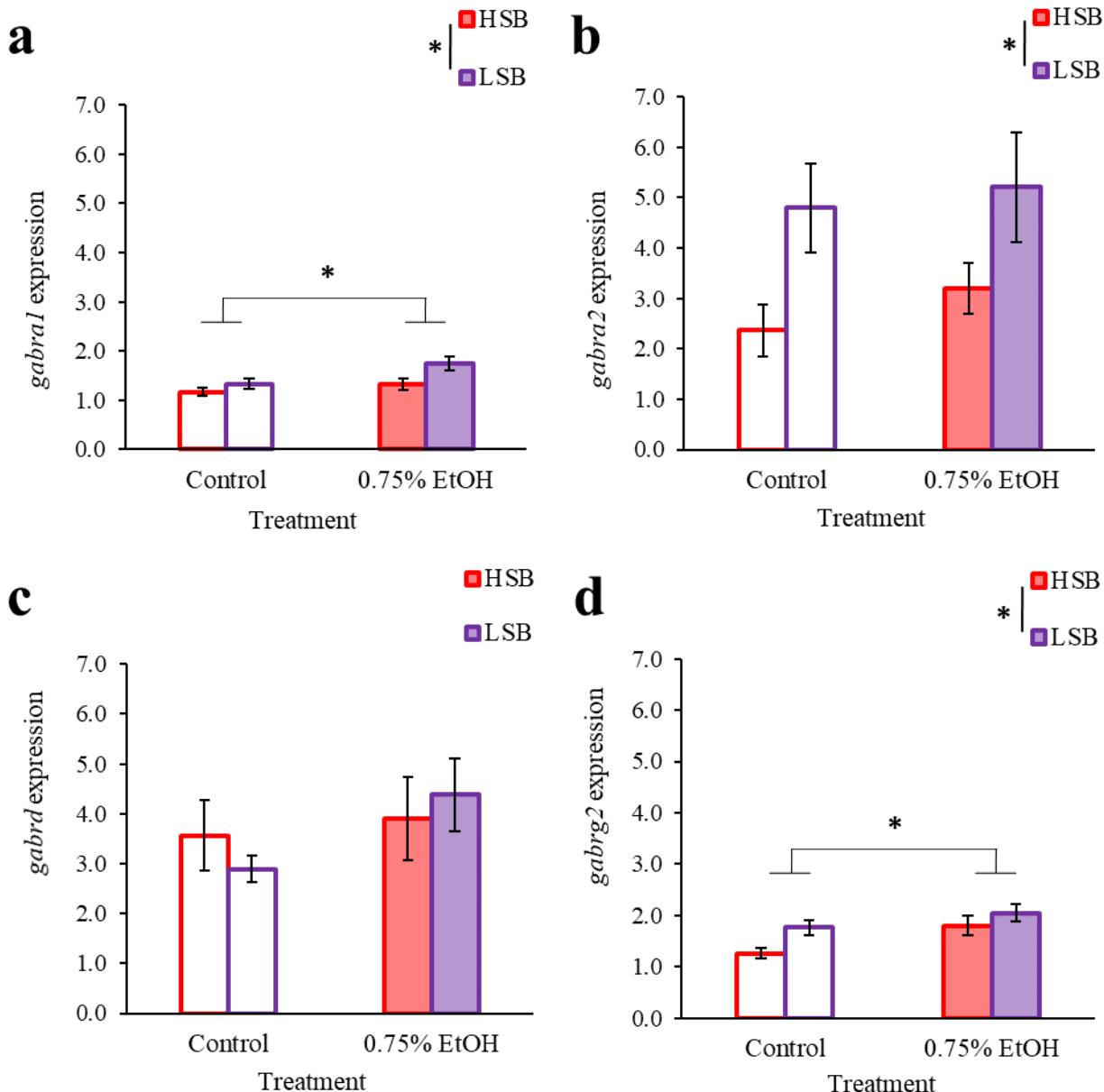
596 EPSCoR First Award (OIA-1557417), Nebraska Research Initiative, and UNO start-up funds to

597 RYW.

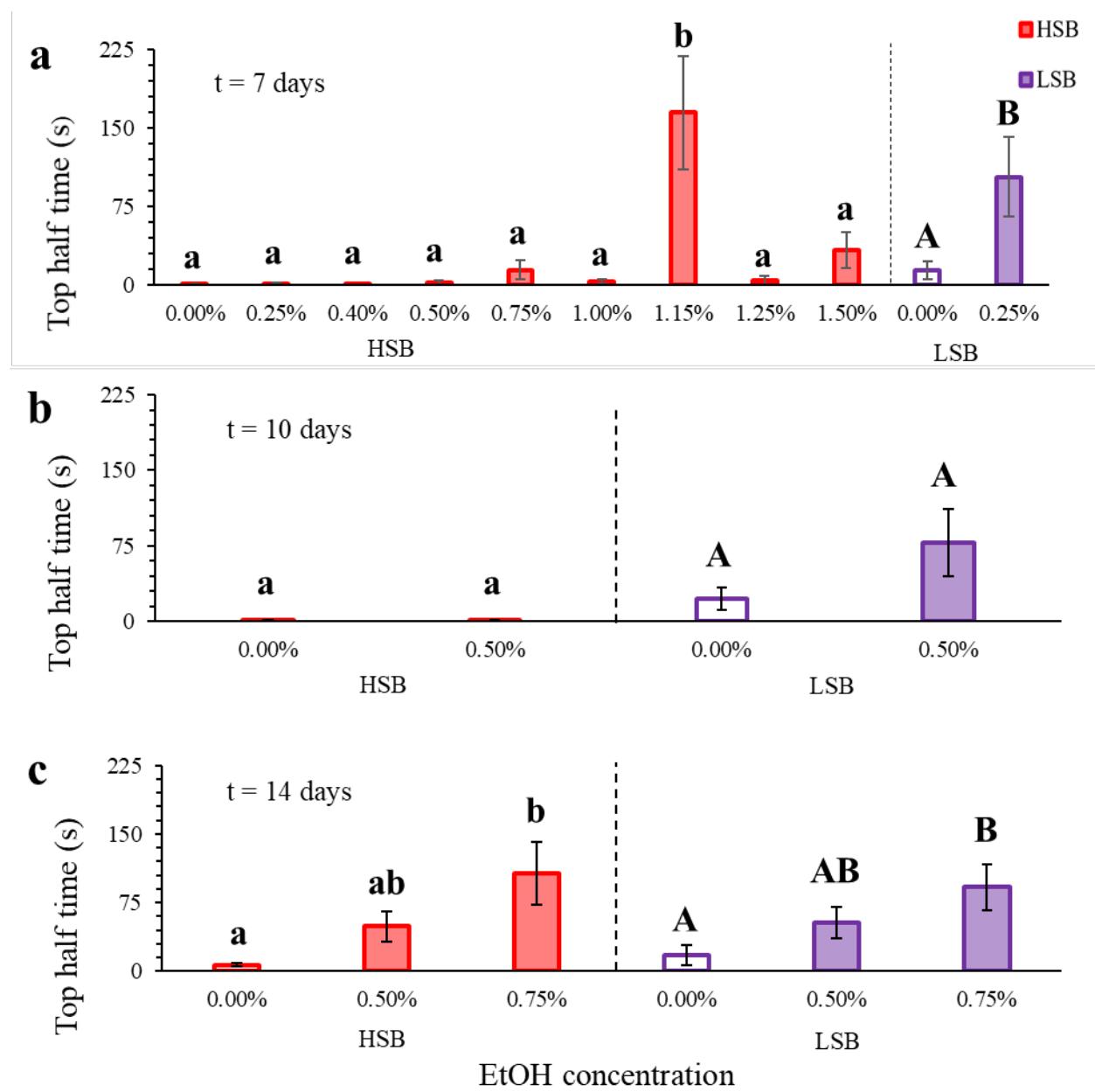

598 **Author Contributions**

599 A.C.G. and R.Y.W. conceived the study, conducted statistical analyses, and wrote the

600 manuscript. A.C.G. conducted the behavioral testing, brain extraction, gene expression


601 quantification, and data collection.

602 **Figures Legends**


603

604 **Figure 1.** Differentiated ethanol treatment effect on anxiety-related behaviors between lines
605 with no effect on locomotion. We measured top transitions (a), time in top half of the tank (b),
606 distance traveled (c), and stationary time (d) for each treatment group. Control groups are
607 represented by unfilled in bars, while ethanol-treated groups are represented by filled bars. HSB
608 and LSB are red and purple, respectively. Data shown are mean \pm 1 SEM. Significant line and
609 treatment differences are indicated by an asterisk ($p \leq 0.05$), while differences between groups
610 are indicated by different lower case letters.

611

612 **Figure 2.** Effect of line and treatment on GABA_A receptor subunits. Normalized expression of
613 *gabral1* (a), *gabra2* (b), *gabrd* (c), and *gabrg2* (d) for each treatment group following treatment.
614 Control groups are represented by unfilled bars, while ethanol-treated groups are represented
615 by filled bars. HSB and LSB are red and purple, respectively. Data shown are mean \pm 1
616 SEM. Significant differences are indicated by an asterisk ($p \leq 0.05$).

617

618 **Figure S1.** Dose response analysis of ethanol concentration on time spent in the top half of the
619 tank during NTDT. Measured time spent in the top half of the tank after 7 days (a), 10 days (b),
620 and 14 days (c) of each treatment. Control groups are represented by unfilled in bars, while
621 ethanol-treated groups are represented by filled bars. HSB and LSB are red and purple,
622 respectively. Data shown are mean \pm 1 SEM. Individual differences within the HSB line are
623 indicated by lower case letters, while differences within the LSB line are indicated by upper case
624 letters.

Generalized Linear Model (GLZ)							
Treatment Duration	Statistic	Time in Top (s)		Distance Traveled (cm)		Stationary Time (s)	
		HSB	LSB	HSB	LSB	HSB	LSB
7-Day $N_{HSB} = 94$ $N_{LSB} = 11$	\bar{X}	21.566	108.497	688.475	1913.645	228.307	18.494
	χ^2	12.196	38.323	2.418	6.932	0.000	0.000
	U	4.405	9.736	5.103	2.088	9.150	1.502
	p	0.270	≤ 0.01	≤ 0.05	0.148	≤ 0.01	0.220
10-Day $N_{HSB} = 12$ $N_{LSB} = 11$	\bar{X}	0.679	52.707	1362.251	2021.903	160.684	12.807
	χ^2	≤ 0.001	0.123	0.003	0.020	0.000	0.000
	U	0.122	2.640	41.798	0.010	87.957	0.998
	p	0.727	0.104	≤ 0.001	0.920	≤ 0.001	0.318
14-Day $N_{HSB} = 65$ $N_{LSB} = 46$	\bar{X}	39.531	45.696	1728.181	1702.775	76.896	31.155
	χ^2	0.000	0.005	0.000	0.002	0.000	0.000
	U	12.338	8.707	39.846	3.873	14.041	6.792
	p	≤ 0.001	≤ 0.01	≤ 0.001	≤ 0.05	≤ 0.001	≤ 0.01

625 **Table S1.** Summary of all generalized linear models ran for each of the ethanol treatment
626 durations during the pilot dose-response study. Comparisons were made between treatment
627 groups for each line at each duration. Abbreviations: HSB, high stationary behavior; LSB, low
628 station behavior, \bar{X} , average; $\sigma_{\bar{X}}$, standard error; χ^2 , Chi-squared, U; p , p-value.

7-Day Ethanol Treatment Period							
Ethanol Concentration	Statistic	Time in Top (s)		Distance Traveled (cm)		Stationary Time (s)	
		HSB	LSB	HSB	LSB	HSB	LSB
Control $N_{HSB} = 34$ $N_{LSB} = 5$	\bar{X}	0.840	31.417	453.697	1680.103	279.420	40.686
	$\sigma_{\bar{X}}$	0.610	15.577	110.888	310.747	19.434	40.661
0.25% EtOH $N_{HSB} = 10$ $N_{LSB} = 6$	\bar{X}	0.671	172.730	931.620	2108.263	173.697	≤ 0.001
	$\sigma_{\bar{X}}$	0.638	43.467	331.941	153.014	43.019	≤ 0.001
	U	157.000	4.000	111.000	8.000	87.000	9.000
	p	0.542	0.450	0.098	0.201	≤ 0.05	0.104
0.4% EtOH $N_{HSB} = 5$ $N_{LSB} = 0$	\bar{X}	0.087	nt	631.633	nt	275.716	nt
	$\sigma_{\bar{X}}$	0.055	nt	341.677	nt	36.151	nt
	U	65.000	nt	64.000	nt	70.000	nt
	p	0.181	nt	0.378	nt	0.529	nt
0.5% EtOH $N_{HSB} = 6$ $N_{LSB} = 0$	\bar{X}	2.314	nt	523.456	nt	269.770	nt
	$\sigma_{\bar{X}}$	2.196	nt	209.965	nt	38.061	nt
	U	81.000	nt	88.000	nt	87.000	nt
	p	0.200	nt	0.596	nt	0.570	nt
0.75% EtOH $N_{HSB} = 6$ $N_{LSB} = 0$	\bar{X}	14.676	nt	1936.743	nt	45.139	nt
	$\sigma_{\bar{X}}$	8.788	nt	279.091	nt	38.844	nt
	U	43.000	nt	18.000	nt	14.500	nt
	p	≤ 0.05	nt	≤ 0.001	nt	≤ 0.001	nt
1% EtOH $N_{HSB} = 12$ $N_{LSB} = 0$	\bar{X}	3.896	nt	1062.793	nt	163.193	nt
	$\sigma_{\bar{X}}$	2.171	nt	274.282	nt	41.211	nt
	U	129.000	nt	110.000	nt	108.500	nt
	p	≤ 0.01	nt	≤ 0.05	nt	≤ 0.05	nt
1.15% EtOH $N_{HSB} = 10$ $N_{LSB} = 0$	\bar{X}	164.901	nt	462.236	nt	231.320	nt
	$\sigma_{\bar{X}}$	54.315	nt	135.989	nt	40.515	nt
	U	77.000	nt	145.000	nt	116.500	nt
	p	≤ 0.01	nt	0.484	nt	0.134	nt
1.25% EtOH $N_{HSB} = 6$ $N_{LSB} = 0$	\bar{X}	4.527	nt	486.142	nt	231.106	nt
	$\sigma_{\bar{X}}$	4.527	nt	130.321	nt	45.216	nt
	U	95.000	nt	65.000	nt	57.000	nt
	p	0.810	nt	0.161	nt	0.088	nt
1.5% EtOH $N_{HSB} = 5$ $N_{LSB} = 0$	\bar{X}	33.326	nt	352.524	nt	259.476	nt
	$\sigma_{\bar{X}}$	17.433	nt	103.970	nt	40.661	nt
	U	38.000	nt	75.000	nt	61.000	nt
	p	≤ 0.05	nt	0.674	nt	0.313	nt

629 **Table S2.** Summary of Mann-Whitney U tests for the 7-day duration of ethanol treatment during
630 the pilot dose-response study. Comparisons were made with control for all listed ethanol
631 concentrations. Abbreviations: HSB, high stationary behavior; LSB, low station behavior, \bar{X} ,
632 average; $\sigma_{\bar{X}}$, standard error; U , Mann-Whitney U; p , p-value; nt, not tested.

10-Day Ethanol Treatment Period							
Ethanol Concentration	Statistic	Time in Top (s)		Distance Traveled (cm)		Stationary Time (s)	
		HSB	LSB	HSB	LSB	HSB	LSB
Control $N_{HSB} = 6$ $N_{LSB} = 5$	\bar{X}	0.567	21.982	327.788	2038.106	304.745	0.267
	$\sigma_{\bar{X}}$	0.486	11.234	129.727	215.263	29.910	0.027
0.5% EtOH $N_{HSB} = 6$ $N_{LSB} = 6$	\bar{X}	0.790	78.312	2396.714	2008.400	16.622	23.457
	$\sigma_{\bar{X}}$	0.500	33.436	325.668	235.971	15.425	23.457
	U	15.000	7.000	0.000	13.000	0.000	15.000
	p	0.592	0.144	≤ 0.01	0.715	≤ 0.01	1.000

633 **Table S3.** Summary of Mann-Whitney U tests for the 10-day duration of ethanol treatment
634 during the pilot dose-response study. Comparisons were made with control for all listed ethanol
635 concentrations. Abbreviations: HSB, high stationary behavior; LSB, low station behavior, \bar{X} ,
636 average; $\sigma_{\bar{X}}$, standard error; U , Mann-Whitney U; p , p-value.

14-Day Ethanol Treatment Period							
Ethanol Concentration	Statistic	Time in Top (s)		Distance Traveled (cm)		Stationary Time (s)	
		HSB	LSB	HSB	LSB	HSB	LSB
Control $N_{HSB} = 30$ $N_{LSB} = 23$	\bar{X}	7.189	17.989	1067.222	1547.742	127.707	60.541
	$\sigma_{\bar{X}}$	2.094	10.793	118.249	127.104	23.447	22.992
0.25% EtOH $N_{HSB} = 24$ $N_{LSB} = 11$	\bar{X}	49.040	53.281	2259.175	1759.733	45.476	3.695
	$\sigma_{\bar{X}}$	16.214	17.264	193.773	1120.692	17.783	3.645
	U	163.000	39.000	111.000	104.000	216.000	83.000
	p	≤ 0.001	≤ 0.001	≤ 0.001	0.408	≤ 0.01	0.067
0.4% EtOH $N_{HSB} = 11$ $N_{LSB} = 12$	\bar{X}	106.989	91.850	2372.266	1947.711	6.871	0.003
	$\sigma_{\bar{X}}$	34.732	25.571	247.109	154.496	4.090	0.003
	U	18.000	49.500	33.000	78.000	70.000	78.000
	p	≤ 0.001	≤ 0.01	≤ 0.001	≤ 0.05	≤ 0.01	≤ 0.05

637 **Table S4.** Summary of Mann-Whitney U tests for the 14-day duration of ethanol treatment
638 during the pilot dose-response study. Comparisons were made with control for all listed ethanol
639 concentrations. Abbreviations: HSB, high stationary behavior; LSB, low station behavior, \bar{X} ,
640 average; $\sigma_{\bar{X}}$, standard error; U , Mann-Whitney U; p , p-value.

Gene symbol	Forward Primer	Reverse Primer	Amplicon Length (bp)
<i>efla</i>	5'- CCTCTTGGTCGCTTGCG-3'	5'- GGTGTGATTGAGGGAAATTCA-3'	150
<i>gabra1</i>	5'-TGAGTCAGAGACAAGAGTGTTC-3'	5'- CTTCCACCCACATCATTCTC-3'	107
<i>gabra2</i>	5'- CAGACACTTCTTCATAACGG-3'	5'- TCCTCAAGATGCATTGGG-3'	145
<i>gabrd</i>	5'- AACTTTCGTCCAGGGATCGG-3'	5'- TGGTGTATTCCATGTTGGCTTC-3'	100
<i>gabrg2</i>	5'- ACGGCTATGGACCTCTCGT -3'	5'- TTTGAGGAAAAGAGCCGCAGG -3'	155

641 **Table S5.** qRT-PCR primer characteristics.