

1 **Microglia control small vessel calcification via TREM2**

2

3 Yvette Zarb^{1,2}, Sina Nassiri³, Sebastian Guido Utz⁴, Johanna Schaffenrath^{1,2}, Elisabeth J.
4 Rushing⁵, K. Peter R. Nilsson⁶, Mauro Delorenzi³, Marco Colonna⁷, Melanie Greter⁴, Annika
5 Keller^{1,2*}

6

7 ¹Dept. of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University,
8 Zürich, Switzerland

9 ²Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland

10 ³Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland

11 ⁴Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland

12 ⁵Institute of Neuropathology, Zurich University Hospital, Zurich, Switzerland

13 ⁶Department of Chemistry, Linköping University, Linköping, Sweden

14 ⁷Department of Pathology and Immunology, Washington University School of Medicine, St.
15 Louis, USA

16

17 *Corresponding author – e-mail: Annika.Keller@usz.ch; tel: +41 44 255 4036; fax: +41 44 255
18 4505

19

20 **Keywords:** astrocyte, dystrophic neurite, neurovascular unit, microglia, PDGFB, primary
21 familial brain calcification, PLX5622, TREM2, vascular calcification

22

23 **Abstract**

24 Microglia participate in CNS development and homeostasis and are often implicated in
25 modulating disease processes in the CNS. However, less is known about the role of microglia
26 in the biology of the neurovascular unit (NVU). In particular, data are scant on whether
27 microglia are involved in CNS vascular pathology. In this study, we use a mouse model of
28 primary familial brain calcification (PFBC) – *Pdgfb*^{ret/ret} to investigate the role of microglia in
29 calcification of the NVU. We report that microglia enclosing vessel-calcifications, coined
30 calcification-associated microglia (CAM), display a distinct activation signature.
31 Pharmacological ablation of microglia with the CSF1R inhibitor - PLX5622 leads to aggravated
32 vessel calcification. Additionally, depletion of microglia in wild-type and *Pdgfb*^{ret/ret} mice
33 causes the development of bone protein (osteocalcin, osteopontin) containing axonal spheroids
34 in the white matter. Mechanistically, we show that microglia require functional TREM2 for
35 controlling vessel-associated calcification. In conclusion, our results demonstrate that
36 microglial activity in the setting of pathological vascular calcification is beneficial. In addition,
37 we identify a new, previously unrecognized function of microglia in halting the expansion of
38 ectopic calcification.

39

40 Introduction

41 Microglia participate in CNS development and homeostasis by regulating neural cell numbers,
42 migration of interneurons as well as promoting connectivity, synapse formation and pruning ¹.
43 Microglia are considered the first line of immune defence in the brain by monitoring brain
44 parenchyma under homeostatic conditions and resolving cerebral insults ^{2,3}. However, less is
45 known about the function of microglia at the neurovascular unit (NVU), which is composed of
46 vascular cells (endothelial and mural cells, as well as perivascular fibroblasts and
47 macrophages), associated neurons, and glia ⁴. Microglia have been implicated in shaping brain
48 vasculature by inducing anastomosis of vascular sprouts ⁵. In adults, microglial processes
49 directly contact the endothelial basement membrane at the NVU ⁶; however, the functional
50 importance of these contacts is poorly understood. Microglia protect against intrinsic (e.g.
51 aggregated, mutated proteins, tumour cells) and extrinsic (e.g. pathogens) injury ⁷. During the
52 course of brain diseases, microglia lose the homeostatic signature and acquire a
53 neurodegenerative signature that is partially shared by diseases such as Alzheimer's disease
54 (AD), multiple sclerosis and amyotrophic lateral sclerosis ⁸⁻¹⁰. Disruption of the NVU is
55 common to many neurodegenerative diseases ⁴, but studies on microglial function have mainly
56 focused on brain parenchyma and not the NVU. In normal mouse brain, laser-induced vascular
57 injury results in microglial activation with the rapid development of processes that shield a
58 lesioned blood vessel section and phagocytose debris ². These findings support the important
59 role of microglia in vascular repair.

60 Optimal functioning of the NVU, which mediates hyperaemia, is crucial for cerebral
61 perfusion ⁴. Blood vessels play an integral role in brain development and provide a niche for
62 brain stem cells. In addition, cerebral vasculature senses the environment and communicates
63 changes to neural tissue, participates in glymphatic clearance, and controls immune quiescence
64 in the CNS ¹¹⁻¹⁵. Accordingly, dysfunction of the NVU accompanies or may even represent a
65 primary cause of many neurodegenerative diseases ^{4,16}. In the case of the primary familial brain
66 calcification (PFBC), bilateral basal ganglia calcification of blood vessels is a key diagnostic
67 criterion. The pathogenic mechanism points to a compromised NVU ¹⁷⁻²⁰. PFBC is a clinically
68 and genetically heterogenous disease caused by mutations in at least in five genes – *MYORG*,
69 *PDGFB*, *PDGFRB*, *SLC20A2* and *XPR1* ²¹⁻²⁵. Of note, recent studies have estimated the
70 minimal prevalence of PFBC ranges from 4-6 p. 10,000, depending of the causative gene
71 mutation, thus suggesting that PFBC is not a rare disorder and is likely underdiagnosed ^{26,27}. In
72 addition, basal ganglia calcification is a common radiological finding, estimated in up to 20%

73 of patients undergoing CT imaging^{28,29}. Although the effect of cerebral calcification on the
74 NVU and brain parenchyma is unknown, peripheral vascular calcification can lead to
75 cardiovascular morbidity and mortality³⁰.

76 Leukodystrophies and interferonopathies linked to microglial dysfunction are associated
77 with brain calcifications. In addition to cerebral atrophy, patients with Nasu-Hakola disease,
78 caused by mutations in triggering receptor expressed on myeloid cell 2 (*TREM2*)³¹ and TYRO
79 protein tyrosine kinase binding protein (*TYROBP*)³² exhibit vascular calcification in the basal
80 ganglia³³⁻³⁵. Furthermore, mice lacking *Usp18* in microglia, a protein negatively regulating
81 interferon signalling, develop basal ganglia calcification³⁶. Additionally, *USP18* deficiency
82 was reported to cause type 1 interferonopathy, a group of monogenic autoimmune disorders
83 presenting frequently with cerebral calcification³⁷. Interestingly, patients with mutations in
84 other genes implicated in microglial development and function (e.g. *IRF8*, *CSF1R*) develop
85 intracerebral calcifications³⁸⁻⁴⁰. Thus, cell-autonomous defects in microglia lead to the
86 formation of brain calcifications. The precise role of microglia in the pathology of brain
87 vascular calcifications remains to be determined.

88 In this study, we investigated the role of microglia in vascular calcification using a mouse
89 model of PFBC. Previously, we described that mouse platelet-derived growth factor B (*Pdgfb*)
90 hypomorphs (*Pdgfb^{ret/ret}*) develop brain vessel-associated calcifications similar to human PFBC
91²². Vascular calcification in human PFBC and mouse models of PFBC were conspicuously
92 encircled by activated microglia^{18,19,22,41,42} and demonstrated an osteogenic environment with
93 the surrounding cells expressing osteoclast markers¹⁸. This observation raised the question of
94 the cellular origin and function of osteoclast-like cells. Another aspect to be clarified is whether
95 microglia participate in the development of NVU calcification in PFBC.

96 We characterize transcriptome changes in calcified tissue in *Pdgfb^{ret/ret}* mice and
97 demonstrate that microglia encircling vascular calcifications, coined “calcification-associated
98 microglia” (CAM), express a distinct activation signature. Pharmacological ablation of
99 microglia in *Pdgfb^{ret/ret}* mice leads to aggravated calcification of the NVU. Additionally, we
100 show in wild-type mice and a mouse model of PFBC that ablation of microglia leads to the
101 development of axonal spheroids containing bone proteins (osteocalcin, osteopontin) in the
102 white matter. Mechanistically, we show that microglia require functional TREM2 for
103 controlling vessel-associated calcifications, as genetic deletion of *Trem2* in *Pdgfb^{ret/ret}* mice
104 exacerbates calcification. In conclusion, our study shows for the first time that microglia play
105 an important role in modifying vascular calcification in the brain, and identifies microglia as a
106 potential therapeutic target in PFBC.

107

108 Materials and Methods

109 *Mice*

110 Mice used in this study were 1 to 5 months old. The following mouse strains were used:
111 C57BL6/J (Charles River), B6.Pdgfb^{tm3Cbet} (*Pdgfb*^{ret/ret})^{22,43}, *Cx3cr1*-CreER^{T2}⁴⁴, *Sall1*-
112 CreER^{T2}⁴⁵, B6.Cg-Gt(ROSA)26Sor^{tm14(CAG-tdTomato)Hze}/J (Ai14) (Jackson Stock # 007914),
113 APP/PS1⁴⁶ and *Trem2*^{-/-}⁴⁷. This study was carried out in accordance with study protocols
114 approved by the Cantonal Veterinary Office Zurich (permit numbers: ZH196/2014,
115 ZH151/2017).

116

117 *In vivo treatments*

118 *Tamoxifen treatment for the genetic labelling of Cx3Cr1 and Sall1 -expressing cells*
119 For tamoxifen-inducible labelling of *Cx3cr1* and *Sall1* expressing cells in respective genotypes
120 (*Cx3cr1*-CreER^{T2}; Ai14^{Tg/wt}; *Pdgfb*^{ret/ret} or *Pdgfb*^{ret/wt} and *Sall1*-CreER^{T2}; Ai14^{Tg/wt}; *Pdgfb*^{ret/ret}
121 or *Pdgfb*^{ret/wt}), 4 week-old animals were treated for five consecutive days via oral gavage with
122 2 mg of tamoxifen (Sigma-Aldrich, cat # T5648) dissolved in corn oil. Mice were sacrificed at
123 4 months of age.

124

125 *Pharmacological ablation of microglia*

126 Oral CSF1R inhibitor, PLX5622 (Plexxikon Inc.)^{48,49}, was formulated in AIN-76A standard
127 chow by Research Diets (New Brunswick, NJ) at 1200 ppm. Control mice received AIN-76A
128 chow without PLX5622. PLX5622 chow and control chow were provided by Plexxikon, Inc.
129 under a Materials Transfer Agreement. One-month-old mice were fed with chow containing
130 PLX5622 or control chow for 2 months and sacrificed at the age of 3 months.

131

132 *Edu treatment*

133 Three-month-old mice were injected with Edu (50 mg/kg, Sigma-Aldrich, cat # 900584) intra-
134 peritoneally for three consecutive days and sacrificed on the following day.

135

136 *Antibodies*

137 Primary antibodies used for immunofluorescence staining are listed in Supplementary Table 1.
138 All secondary antibodies (suitable for multiple labelling) labelled with various fluorophores
139 (Alexa 488, Cy3, DyLight 649) made in donkey (anti-rabbit, anti-rat and anti-goat) or in goat

140 (anti-chicken Cy3) were purchased from Jackson Immunoresearch. Antibodies used for flow
141 cytometry analysis are listed in Supplementary Table 2.

142

143 ***Histochemistry and immunohistochemistry***

144 Immunohistochemistry was performed according to methods described previously ¹⁸. For Edu
145 detection, the Click iT™ Edu Alexa Fluor™ 555 imaging kit (Thermo Fischer) was used and
146 slices were treated according to the manufacturer's instructions. Immunohistochemical
147 stainings were imaged with a confocal microscope (Leica SP5, 20x numerical aperture (NA):
148 0.7, 40x NA: 1.25, 63x NA: 1.4) or stereomicroscope (Zeiss Axio Zoom.V16, 1x NA: 0.25).
149 For stains that exhibited salt-and-pepper noise, a median filter of 5 x 5 x 5 was applied to
150 eliminate noise. Images were analysed using the image-processing software Imaris 9.2.0.
151 (Bitplane) and Adobe Illustrator CS6.

152 For histochemistry, mouse brains were collected and embedded in paraffin. Two μ m thick
153 tissue sections were stained with periodic acid-Schiff (PAS) or the Bielschowsky silver stain
154 using standard protocols. For alizarin red staining, sections were deparaffinised and rehydrated,
155 incubated for 1 hour in 1% alizarin red solution (pH 9.0) followed by 1 hour in 1% alizarin red
156 solution (pH 6.4) at room temperature. Stained paraffin sections were scanned with
157 NanoZoomer HT (Hamamatsu Photonics), equipped with a 20 \times objective (UPlanSapo, NA:
158 0.75, Olympus). Images were analysed using Digital Image Hub software (SlidePath) and
159 Adobe Illustrator CS6.

160

161 ***Detection of aggregated proteins***

162 Paraffin embedded 6 μ m thick brain sections were used from *Pdgfb^{ret/ret}* and controls of 1 year
163 of age or older. As a positive control, paraffin embedded sections from APP/PS1 mice ⁴⁶ were
164 used. Sections were deparaffinized and hydrated, followed by a 30-minute incubation with
165 luminescent-conjugated oligothiophene (LCO) h-HTAA ⁵⁰ at room temperature. For Thioflavin
166 T (Sigma Aldrich, T3516) staining, deparaffinized sections were processed according to the
167 manufacturer's instructions. Congo red staining was performed according to standard protocol.
168 Stained sections were imaged with a confocal microscope (Leica SP5, 20x, NA: 0.7) or
169 Axioplant (Zeiss, 20x, NA: 0.5). Images were analyzed with image-processing software Imaris
170 (Bitplane).

171

172 ***Quantification of immunofluorescent stainings***

173 Images for quantification of brain calcifications, cathepsin K intensity and astrocyte reactivity
174 were acquired using a 20x objective (NA: 0.7, Leica SP5) 42 z-stacks with a 1.48 μ m step,
175 512x512 pixel resolution. For quantification of total brain calcification, z-stacks of APP
176 staining and osteocalcin were summed in Fiji (ImageJ)⁵¹. Imaris software was used to quantify
177 calcification using the function “surfaces”. Quantification of calcifications was performed in
178 mid-midbrain, which shows the smallest inter-individual variation in calcification load¹⁸.
179 Cathepsin K intensity density was calculated using Fiji (ImageJ) software. Astrocyte reactivity
180 was quantified using GFAP, podoplanin, LCN2, C3 staining in Fiji (ImageJ). The LCN2 and
181 C3 signal intensity was first masked to GFAP staining to eliminate non-astrocytic
182 expression/deposition. Signal intensity was then normalized to the GFAP signal. Two technical
183 replicates were quantified for each animal.

184 Microglia were quantified on images acquired using a 20x objective (NA: 0.7, Leica SP5),
185 41 z-stacks with a 0.64 μ m step, 1024x1024 pixel resolution. Quantification of microglia was
186 performed using the morpholibJ package⁵² in Fiji, with minor modifications as described
187 previously⁵³.

188

189 ***Flow cytometry analysis***

190 Mice were deeply anaesthetized using a mixture of ketamine and xylazine and perfused
191 transcardially using ice-cold PBS. Subsequently, mouse brains were dissected into non-
192 calcification-prone brain regions, i.e., cortex, hippocampus and cerebellum, and calcification-
193 prone regions, i.e., thalamus, midbrain and pons. Brain cell suspensions were prepared by
194 cutting the tissue into small pieces, followed by collagenase type IV treatment. Dissociated
195 tissue was passed through an 18G syringe to obtain a homogeneous cell suspension and further
196 enriched with a Percoll gradient. Samples were then passed through a 70 μ m filter, followed by
197 red blood cell lysis and antibody staining. Flow cytometric analysis was carried using
198 FACSymphony (BD Biosciences) and analysed with FlowJo and R software.

199

200 ***High-dimensional analysis***

201 Raw data was pre-analysed with FlowJo, subsequently transformed in Matlab using cyt3 and
202 percentile normalized in R. Dimensionality reduction was achieved by uniform manifold
203 approximation and projection (UMAP). FlowSOM was used for automated and expert-guided
204 cell clustering⁵⁴. Mean marker expression was projected onto UMAP in order to generate a
205 heatmap of median expression values⁵⁵.

206

207 ***Isolation of vessel calcifications and RNA sequencing***

208 Mice were deeply anaesthetized and transcardially perfused with ice-cold PBS. Brains were
209 removed, placed in *RNAlater*™ Stabilization Solution (Thermo Fischer Scientific, Cat #
210 AM7020) and 1 mm coronal sections were cut using a brain matrix (RBMA-200C, World
211 Precision Instruments). Calcifications were detected based on their auto-fluorescence ²² using
212 a fluorescent stereomicroscope (Zeiss Axio Zoom.V16) and were surgically removed together
213 with surrounding tissue. Cortical sections were also removed as examples of non-calcification
214 prone regions. RNA was isolated with a micro RNA kit (Qiagen) according to the
215 manufacturer's instructions. The concentration of RNA and sample purity were assessed using
216 a 2100 Bioanalyzer (Agilent) and RNA 6000 Pico Kit (Agilent). RNA samples were polyA-
217 enriched, and libraries were prepared using the Illumina TruSeq® Stranded RNA kit. RNA was
218 sequenced on an Illumina platform Hi-Seq 4000 at the Functional Genomic Centre Zurich
219 (UZH, ETH). The Illumina single read approach (1×125 bp) was used to generate raw
220 sequencing reads with a depth of 20–30 million reads per sample.

221

222 ***Bioinformatics analysis***

223 Quantification of RNA-seq data was performed using kallisto ⁵⁶. In brief, target transcript
224 sequences were obtained from ENSEMBLE (GRCm38.p6), and the abundance of transcripts
225 was quantified using kallisto 0.44.0 with sequence-based bias correction. All other parameters
226 were set to default when running kallisto. Kallisto's transcript-level estimates were further
227 summarized at the gene-level using tximport 1.8.0 from Bioconductor ⁵⁷.

228 For downstream analysis, genes of low abundance were filtered out and unwanted
229 variation was estimated using the RUVr functionality from the RUVseq 1.16.0 package within
230 Bioconductor ⁵⁸. The number of factors of unwanted variation estimated from the data was set
231 to 3, and the genes_by_samples matrix of residuals was obtained from a first-pass quasi-
232 likelihood negative binomial generalized log-linear regression of the counts on biological
233 covariates using the edgeR package from Bioconductor ⁵⁹.

234 Differential expression analysis was performed using DESeq2 1.22.0 from Bioconductor
235 ⁶⁰, with estimated factors of unwanted variation included as additional covariates in the design
236 formula. Significant genes were identified using FDR<0.05 and foldchange>2.

237 Co-expression network analysis was performed using WGCNA R package. Briefly,
238 normalized count data obtained from RUVseq were first adjusted for mean-variance trend using
239 the regularized log transformation of DESeq2 1.22.0 from Bioconductor ⁶⁰. To exclude
240 uninformative genes from co-expression analysis in an unbiased manner, 867 highly variable

241 genes were selected based on the overall distribution of coefficients of variation. Subsequently,
242 a signed weighted network of highly variable genes was constructed using biweight
243 midcorrelation with beta=23 as soft thresholding power. Hierarchical clustering of the
244 topological overlap matrix dissimilarity further revealed 6 modules of positively correlated
245 genes. In order to identify hub genes associated with brain calcification, we computed module
246 membership and gene significance for each gene belonging to the module associated with brain
247 calcification.

248 Gene Set Enrichment Analysis (GSEA) was performed using fgsea 1.8.0 package from
249 Bioconductor ⁶¹ with signal to noise ratio as defined by ⁶² as gene-level statistic. Prior to GSEA,
250 mouse genes were converted to human orthologs using biomaRt 2.38.0 from Bioconductor ⁶³.
251 If a human ortholog was associated with more than one mouse gene, the mouse gene with
252 maximum mean expression was selected using the collapseRows functionality within the
253 WGCNA R package ⁶⁴. Signaling pathways analyzed by GSEA were obtained from the
254 Hallmark gene sets of the MSigDB ⁶⁵. Gene signature of disease-associated microglia (DAM
255 and proliferative-region-associated microglia (PAM) were obtained from literature ^{8,66}.
256 Heatmaps were generated using the pheatmap R Package ⁶⁷, with clustering distance and
257 method set to Euclidean and ward.D2, respectively.

258 RNA sequencing data, both raw data and gene-by-sample matrix of estimated counts were
259 deposited in Gene Expression Omnibus (GEO) under accession number GSE135449.

260

261 ***Statistical analysis***

262 Quantified values are represented as mean \pm SEM. The following statistical tests were
263 performed with Prism8 software (GraphPad). Normality was assessed using a Shapiro-Wilk
264 test. Following tests were used to calculate statistical significance: student's t-test (unpaired,
265 two tailed), one-way ANOVA with Dunnett's multiple comparison or Mann-Whitney two-
266 tailed test. P-values < 0.05 were considered significant.

267

268 **Results**

269

270 ***Brain vessel-associated calcifications trigger an inflammatory environment***

271 Vascular calcification in PFBC elicits a conspicuous glial reaction ^{18,19,22,41}. In order to gain
272 insights into inflammatory changes accompanying vessel calcifications, we performed
273 transcriptome analysis using RNA sequencing (RNA-seq) on tissue enriched with vessel-
274 associated calcifications isolated from brains of *Pdgfb^{ret/ret}* mice - a mouse model of PFBC.

275 Brain calcifications are autofluorescent²², which we exploited to isolate calcifications manually
276 from brains of *Pdgfb*^{ret/ret} animals under a fluorescent stereomicroscope. Non-calcified tissue
277 from the same anatomical region (thalamus/midbrain) was also collected from control animals
278 (*Pdgfb*^{ret/wt}). This brain region is referred to as a “calcification-prone region” (Fig. 1A). We also
279 isolated tissue from the cortex (referred to as a “non-calcification-prone region”) of both
280 *Pdgfb*^{ret/ret} and control animals (Fig. 1A). Principal component analysis (PCA) of transcriptomic
281 data showed that the first PC accounts for variability due to anatomical differences
282 (thalamus/midbrain vs. cortex), while the second PC accounts for differences between
283 genotypes (Suppl Fig. 1A). When comparing calcification- and non-calcification-prone brain
284 regions of *Pdgfb*^{ret/ret} and control animals, we detected 92 and 94 deregulated genes,
285 respectively (false discovery rate (FDR) <0.05 and fold change >2, Fig. 1B, Suppl Fig. 1B,
286 Suppl Table 3 and 4). Contrasting differentially expressed genes (DEGs) in non-calcification
287 prone and calcification-prone region between *Pdgfb*^{ret/ret} and control animals showed that 74
288 genes were deregulated only in a calcification-prone region (thalamus/midbrain), and 60 genes
289 were deregulated only in a non-calcification-prone region (cortex) (Fig. 1C, D, Suppl. table 5).
290 The remaining 26 deregulated genes detected in both regions (Fig. 1C, D, Suppl. table 5) concur
291 with previously reported vascular transcriptional alterations due to reduced pericyte numbers
292 in *Pdgfb*^{ret/ret} mice⁶⁸. Enrichment analysis of hallmark pathways showed that several
293 inflammatory pathways, such as interferon gamma and alpha pathways, the reactive oxygen
294 species pathway, and the inflammatory response pathway are enriched in *Pdgfb*^{ret/ret} mice
295 compared to controls (Fig. 1E). Several pathways were enriched only in calcification-prone
296 regions, such as IL2-STAT5 signalling, unfolded protein response and TNFA signalling via
297 NF- κ b (Suppl Fig. 1C). Various significantly deregulated hallmark pathways (Fig. 1E, Suppl
298 Fig. 1C) have been associated with activated microglia (e.g. interferon-related, complement-
299 related) or microglia quiescence (e.g. TGF-beta-related)^{69,70}. Notably, *Cst7*, which encodes a
300 cysteine protease inhibitor and expressed in activated microglia^{8,71,72}, was the top upregulated
301 gene (3.7 fold) in brain regions with calcifications (Fig. 1B, Suppl Table 3). The expression of
302 *Cst7* was not detected in either genotype in a non-calcification-prone brain region (cortex) or
303 in the calcification-prone region of control animals (Suppl Fig. 1D, Suppl Table 3, 4). To further
304 explore the gene signature associated with vascular calcification, we performed co-expression
305 network analysis on highly variable genes in the RNA-seq dataset (Suppl Fig. 1E) and identified
306 six modules of positively correlated genes (Suppl Fig. 1F, Suppl Table 6). We found that only
307 one module (turquoise) was associated with the calcified brain region in the *Pdgfb*^{ret/ret} mice
308 (Fig. 1F). Interestingly, among the hub genes within the turquoise module we identified *Cst7*

309 and *Itgax* (Fig. 1G), genes induced in microglia in neurodegenerative diseases - termed DAM
310 (disease-associated microglia) and in aging^{8,71}. Furthermore, in addition to *Cst7* and *Itgax*,
311 several other genes associated to reactive microglia or the DAM signature (e.g. *Cd68*, *Clec7a*,
312 *Lpl*) were significantly upregulated in calcified brain regions of *Pdgfb^{ret/ret}* mice (Fig. 1B, 2A).
313 However, when comparing upregulated genes in calcification-prone regions in *Pdgfb^{ret/ret}* mice
314 using stringent criteria (FDR <0.05 and fold change >2) with the DAM signature, we found an
315 overlap of only six genes (*Lpl*, *Cd68*, *Tyrobp*, *Itgax*, *Cst7*, *Clec7a*) (Suppl Fig. 1G). The DAM
316 signature was recently reported to overlap with the “proliferative-region associated microglia”
317 (PAM) signature that defines a subset of microglia found in white matter during development
318⁶⁶. By comparing the PAM signature with our dataset using the same criteria as for the DAM
319 genes, an overlap of seven genes (*Hmox1*, *Lpl*, *Cd68*, *Slc16a3*, *Lag3*, *Tyrobp*, *Clec7a*) was
320 found (Suppl Fig. 1H). We validated the expression of DAM/PAM-signature genes TIMP2
321 (Fig. 2B), CD68 (Fig. 2C) and CLEC7A (Fig. 2D) in microglia surrounding vessel-associated
322 calcifications with immunohistochemistry. Thus, CAM exhibited an activation profile
323 overlapping with microglia during aging, neurodegenerative proteinopathies and development.
324

325 ***Brain vessel-associated calcifications contain protein aggregates***

326 Since CAM resemble amyloid β plaque-associated microglia in AD⁸ (Fig. 2A-D) with protein
327 deposits such as amyloid beta precursor protein (APP) and amyloid precursor-like protein
328 (APLP2)⁴², we next asked whether protein aggregation also occurs in brain calcifications. In
329 order to investigate this possibility, we used Thioflavin T and Congo red, standard stains to
330 detect amyloid fibrils in amyloid β plaques, and a recently developed amyloid interacting
331 luminescent conjugated oligothiophene (LCO) - *h*-HTAA. Vessel-associated calcifications
332 were Thioflavin T and Congo red (Suppl Fig. 2A) negative but positive for *h*-HTAA (Suppl
333 Fig. 2B) that binds protein aggregates prior to the formation of amyloid fibrils recognised by
334 Thioflavin T⁵⁰. Thus, vessel-associated calcifications contained aggregated proteins, which
335 lack the β-pleated sheet conformation and structural regularity recognized by Thioflavin T or
336 Congo red.
337

338 ***Calcification-associated microglia (CAM) exhibit a distinct signature from DAM***

339 Osteopontin (OPN, *Spp1*), one of the signature genes defining PAM and DAM^{8,73,74}, is
340 deposited in brain calcifications in human PFBC and animal models of PFBC¹⁸. Thus, we
341 investigated if microglia surrounding calcifications express osteopontin and contribute to the
342 previously reported deposition of osteopontin in brain calcifications¹⁸. Immunohistochemical

343 visualisation of microglia using anti-Iba1 and co-staining with osteopontin did not confirm
344 osteopontin expression by microglia (Suppl Fig. 3A). Instead, osteopontin was expressed by a
345 subset of GFAP-positive, reactive astrocytes surrounding or adjacent to calcifications (Suppl
346 Fig. 3B). Hydroxyapatite, found in vessel-associated calcifications ¹⁸, and A β plaques induce
347 formation of the inflammasome in macrophages and microglia, respectively ^{75,76}. We therefore
348 investigated whether microglia around calcifications express ASC, an adaptor protein for
349 inflammasome mediated caspase-1 activation. We could not find ASC positivity in microglia
350 surrounding vessel calcifications in *Pdgfb^{ret/ret}* animals (Suppl Fig. 3C), indicating that vessel-
351 associated calcifications do not lead to inflammasome activation in microglia. Thus, CAM are
352 distinct from DAM, although they share selected signature genes (Fig. 2A-D).

353

354 ***Microglia proliferate around vessel-associated calcifications***

355 In order to further characterize microglia in *Pdgfb^{ret/ret}* mice, we performed flow cytometry
356 analysis on calcification-prone brain regions using a multi-colour flow cytometry panel to
357 distinguish immune cells and activated microglia from normal microglia. We detected eight
358 immune cell clusters both in control and *Pdgfb^{ret/ret}* mice as visualized by a dimension reduction
359 algorithm Uniform Manifold Approximation and Projection (UMAP) ⁷⁷ (Fig. 3A, Suppl Fig.
360 4A, B). Within the microglial cluster, we defined three sub-clusters (microglia, reactive
361 microglia, and Ki67 $^+$ microglia) of microglia based on median marker expression of seven
362 markers (CD11b, Ki67, F4/80, CD64, CX3CR1, CCR5, MerkTK) (Fig. 3B, C). Overall changes
363 in *Pdgfb^{ret/ret}* microglia compared to controls included increased expression of CX3CR1 and
364 reduced CCR5 expression (Suppl Fig. 4C). We also detected an increase in Ki67 $^+$ microglia
365 and the emergence of CX3CR1 $^{\text{high}}$, MerTK $^{\text{high}}$ microglia (reactive microglia) in *Pdgfb^{ret/ret}*
366 animals (Fig. 3B, C). Using immunohistochemical staining for the proliferation marker Ki67,
367 we confirmed the presence of proliferating CD45 $^{\text{high}}$ cells calcifications (Fig. 3D), while other
368 cell types of the NVU (endothelial cells, pericytes, astrocytes) were Ki67 negative (Suppl Fig.
369 4D-F). Since Ki67 staining *ex vivo* can miss rarely proliferating cells, we performed *in vivo*
370 labelling of proliferating cells using 5-ethynyl-2'-deoxyuridine (EdU) ⁷⁸ in control and
371 *Pdgfb^{ret/ret}* mice. EdU positivity was only detected in microglial cells around calcifications (Fig.
372 3E). Thus, vessel calcifications evoke a proliferation of CAM, but not other cells at the NVU.

373

374 ***Microglia give rise to cathepsin K-expressing cells around vessel calcifications***

375 We have reported that a subset of cells surrounding calcifications express osteoclast-associated
376 markers - RANK and cathepsin K ¹⁸. In addition, cathepsin K, which is a principal collagen I

377 degrading protease in bone, is deposited in brain calcifications ¹⁸. Here we show that RANK-
378 expressing cells around calcifications are positive for the microglial marker Iba1 (Suppl Fig.
379 5). In order to investigate if resident microglia give rise to osteoclast-like cells around vessel-
380 associated brain calcifications in *Pdgfb*^{ret/ret} mice, we crossed two inducible Cre-lines (*Sall1*-
381 CreER^{T2} and *Cx3cr1*-CreER^{T2}) and a reporter line expressing tdTomato under the Rosa26
382 promoter (Ai14) with *Pdgfb*^{ret/ret} animals to genetically label microglia. The *Cx3cr1*-CreER^{T2}
383 line targets CX3CR1+ macrophages including microglia and “border-associated” macrophages
384 in the CNS ⁷⁹, whereas the *Sall1*-CreER^{T2} line targets resident microglia, but not infiltrating
385 immune cells or brain perivascular macrophages ⁴⁵. Mice were treated with tamoxifen at one
386 month of age to induce tdTomato expression and sacrificed at four months of age (Fig. 4A).
387 Immunostaining with cathepsin K and Iba1 showed a co-localization with tdTomato both when
388 using *Cx3cr1*-CreER^{T2} (Fig. 4B) or *Sall1*-CreER^{T2} (Fig. 4C) lines, indicating that resident
389 microglia respond to calcifications by expressing and depositing cathepsin K into vascular
390 calcifications.

391

392 ***Pharmacological ablation of microglia intensifies vessel calcification***

393 After establishing that cathepsin K-expressing cells surrounding vascular calcifications are
394 derived from resident microglia (Fig. 4, Suppl Fig. 5), we asked if microglia actively participate
395 in calcification-associated pathology. To this end, we depleted microglia in *Pdgfb*^{ret/ret} and
396 control animals for two months by using the colony stimulating factor 1 receptor (CSF1R)
397 inhibitor, PLX5622 (Fig. 5A). In contrast to mice fed with control chow, mice fed with chow
398 containing PLX5622 showed a reduction in the number of microglia (Suppl Fig. 6A, B). We
399 used two markers, osteocalcin and APP, to detect and quantify vascular calcification (Fig. 5B).
400 We previously reported that cerebral vascular calcifications are positive for bone matrix
401 proteins, including osteocalcin ¹⁸. Moreover, a recent study identified that several non-bone
402 proteins, including APP, are enriched in vessel-associated calcifications ⁴². A noticeable
403 increase in vascular calcification (approx. 4 fold) in *Pdgfb*^{ret/ret} mice was seen two months after
404 microglial depletion (Fig. 5B, D). In addition, calcifications appeared heterogenous in size and
405 shape in PLX5622-chow fed compared to control-chow fed *Pdgfb*^{ret/ret} mice (Fig. 5B). In
406 microglia-depleted *Pdgfb*^{ret/ret} mice, the staining pattern of APP and osteocalcin was altered.
407 APP and osteocalcin immunostaining was stronger along the periphery and weaker within
408 calcifications. Some calcifications only stained for APP, whereas others immunolabeled only
409 with osteocalcin (Fig. 5B, arrowheads). However, the ratio of APP and osteocalcin positive
410 calcifications between PLX5622-treated and control chow-treated *Pdgfb*^{ret/ret} mice was not

411 statistically significant (Fig. 5C). CAM express cathepsin K (Fig. 4B, C). Accordingly, long-
412 term microglial ablation should eliminate cathepsin K expression and deposition into
413 calcifications. In fact, microglial depletion reduced cathepsin K deposition in calcifications
414 (Fig. 5E, F). Consistent with our observation that activated microglia-encircling calcifications
415 do not express osteopontin (Suppl Fig. 3), osteopontin is still deposited in calcifications in
416 *Pdgfb^{ret/ret}* mice after microglial depletion (Suppl Fig. 6C). Altogether, these results provide
417 additional evidence that microglia are the principal cell type giving rise to osteoclast-like cells
418 surrounding calcifications. In addition, our data show that microglial depletion aggravates the
419 vessel-associated calcification phenotype, indicating that microglial activity could modify the
420 pathophysiology of PFBC.

421

422 ***Microglia ablation leads to bone protein containing axonal spheroids in white matter***

423 After two months of chronic microglial depletion in control (C57BL6, *Pdgfb^{ret/+}*) and *Pdgfb^{ret/ret}*
424 mice, (Fig. 5A), we observed conspicuous osteocalcin staining, indicative of calcification in the
425 internal capsule, thalamus and striatum adjacent to white matter fiber tracts (Fig. 6A, dotted
426 yellow area). However, linear osteocalcin-positive structures were not vessel-associated (Fig.
427 6B, Suppl Video 1). Negativity for alizarin red indicated that the observed white matter deposits
428 were not calcified in three-month-old mice (Suppl Fig. 6D, upper pink panel). However, this
429 result could be due the young age of the mice. We previously showed that vascular
430 calcifications in *Pdgfb^{ret/ret}* mice do not bind alizarin (i.e., are calcified) until four months of
431 age ²². Accordingly, spheroidal deposits on vessels in the thalamus were alizarin red negative
432 (Suppl Fig. 6D, mid blue panel, arrowheads), whereas occasional spheroids in the midbrain
433 showed alizarin red positivity (Suppl Fig. 6D, lower orange panel). We further characterized
434 deposits in white matter that appeared after microglial depletion using classical histochemical
435 stains. Deposits were PAS positive, indicating the presence of glycoproteins (Fig. 6C, black
436 arrowheads). The Bielschowsky silver stain revealed the presence of brown to black spheroids
437 in white matter indicative of degenerating neurites (Fig. 6D, white arrowheads). In addition,
438 co-staining of osteocalcin with APP, a marker for neuronal injury, and with myelin basic protein
439 (MBP) showed co-localization within axonal spheroids (Fig. 6E, F). Furthermore, APP positive
440 spheroids in white matter were also positive for another bone protein – osteopontin (Fig. 6G).
441 Thus, microglial depletion leads to white matter injury, characterized by the formation of axonal
442 spheroids, which immunolabel with APP and MBP as well as osteopontin, indicating the
443 accumulation of bone proteins.

444

445 ***Microglia control vascular calcification in a TREM2-dependent manner***

446 In addition to microglial depletion using a pharmacological CSF1R inhibitor, we used a genetic
447 approach to impair microglial function in *Pdgfb*^{ret/ret} mice by crossing *Pdgfb*^{ret/ret} mice with
448 *Trem2*^{-/-} mice. Deletion of TREM2 leads to reduced microglial functionality⁸⁰. Furthermore,
449 TREM2 expression is necessary for microglia to achieve the full DAM signature in a mouse
450 model of AD⁸. We noticed an altered pattern of calcification in *Pdgfb*^{ret/ret}; *Trem2*^{-/-} mice with
451 vessels frequently encrusted with multiple osteocalcin-positive nodules (Fig. 7A, lower panels),
452 yielding the ‘pearls-on-a-string’ phenotype reminiscent of human PFBC¹⁹. This pattern was
453 particularly evident in rostral thalamic regions that show less calcification than caudal thalamus
454 and midbrain. Calcifications in *Pdgfb*^{ret/ret}; *Trem2*^{+/+} animals appeared as single nodules (Fig.
455 7A, upper panels) in accordance with the reported phenotype of calcifications in *Pdgfb*^{ret/ret}
456 mice^{18,22,42}. In addition to the altered pattern, vascular calcification was markedly aggravated
457 in *Pdgfb*^{ret/ret}; *Trem2*^{-/-} and *Pdgfb*^{ret/ret}; *Trem2*^{+/+} mice (Fig. 7B). Similar to microglia depletion
458 experiments, we observed altered APP and osteocalcin immunostaining of calcifications in
459 *Pdgfb*^{ret/ret} mice in the absence of one or two *Trem2* alleles (Fig. 7B). In *Pdgfb*^{ret/ret}; *Trem2*^{+/+}
460 mice, calcifications stain uniformly with both antibodies used to visualize calcifications
461 (osteocalcin and APP), whereas in *Pdgfb*^{ret/ret}; *Trem2*^{+/+} and *Pdgfb*^{ret/ret}; *Trem2*^{-/-} animals,
462 calcifications showed weak APP or osteocalcin immunopositivity, respectively (Fig. 7B, D).
463 Quantification of vascular calcifications (using both positivity for APP and OCN) in the
464 midbrain of *Pdgfb*^{ret/ret}; *Trem2*^{-/-} and *Pdgfb*^{ret/ret}; *Trem2*^{+/+} mice showed an increased
465 calcification (4-6 fold) compared to *Pdgfb*^{ret/ret}; *Trem2*^{+/+} mice (Fig. 7D). Thus, functional
466 TREM2 in microglia is necessary to limit the formation of vessel calcifications in *Pdgfb*^{ret/ret}
467 mice. The lack of *Trem2* in control mice does not lead to brain calcification (Suppl Fig. 7A).
468 Additionally, we observed that microglia surrounding calcifications express CLEC7A, a DAM-
469 associated protein dependent on *Trem2*, in *Pdgfb*^{ret/ret}; *Trem2*^{-/-} animals (Suppl Fig. 7B).
470 Interestingly, cathepsin K deposition into calcifications is TREM2-dependent, *Pdgfb*^{ret/ret};
471 *Trem2*^{+/+} and *Pdgfb*^{ret/ret}; *Trem2*^{-/-} mice displayed a strongly reduced cathepsin K deposition into
472 calcifications (Fig. 7E, F). In summary, these data show that cathepsin K expression by CAM
473 is TREM2-dependent and further corroborate that microglia control the growth of vascular
474 calcifications in brain.

475

476 ***Microglia depletion or functional modulation alters astrocyte reactivity but not the***
477 ***neurotoxic profile around calcifications***

478 We next explored whether microglia also modify the strong astrocyte reactivity around
479 calcifications^{18,22}. We had shown previously that astrocytes encircling brain calcifications
480 exhibit a neurotoxic response (e.g., C3, LCN2 expression) as well as an unusual reactive
481 phenotype (e.g., podoplanin expression)¹⁸. We investigated if astrocyte reactivity and the
482 expression of neurotoxic markers is altered after modifying the number and function of
483 microglia in *Pdgfb^{ret/ret}* mice. Microglia ablation using PLX5622 or compromised function
484 (*Trem2* genotype) in *Pdgfb^{ret/ret}* mice resulted in an altered staining pattern of GFAP and
485 podoplanin, proteins expressed by reactive astrocytes surrounding calcifications (Fig. 8A, B).
486 In *Pdgfb^{ret/ret}* mice treated with PLX5622, GFAP reactivity showed a diffuse pattern, most likely
487 because of an increased density of calcifications, compared to mice that received control chow
488 (Fig. 8A, E, G). Furthermore, similar alterations in GFAP staining were observed in *Pdgfb^{ret/ret}*
489 mice with impaired microglial function: *Pdgfb^{ret/ret}*; *Trem2^{+/−}* and *Pdgfb^{ret/ret}*; *Trem2^{−/−}* (Fig. 8B).
490 Podoplanin staining in reactive astrocytes surrounding calcifications was markedly reduced
491 (Fig. 8A, B). We quantified podoplanin and GFAP staining intensity and calculated the staining
492 intensity ratio, which showed a trend towards a reduction in *Pdgfb^{ret/ret}* mice treated with
493 PLX5622 (Fig. 8C) and a significant reduction in *Pdgfb^{ret/ret}*; *Trem2^{+/−}* and *Pdgfb^{ret/ret}*; *Trem2^{−/−}*
494 mice (Fig. 8D) compared to *Pdgfb^{ret/ret}* mice. Notably, we did not detect a reduction in the
495 expression of neurotoxic signature markers – LCN2 and C3 by reactive astrocytes surrounding
496 calcifications after microglia depletion in *Pdgfb^{ret/ret}* mice (Fig. 8E, F). We quantified LCN2
497 and C3, and GFAP staining intensity and calculated the staining intensity ratio, which showed
498 no significant difference between PLX5622-treated and non-treated *Pdgfb^{ret/ret}* mice (Fig. 8G,
499 H). Altogether, these results indicate that microglia modulate astrocyte reactivity but not
500 required to evoke a neurotoxic astrocyte phenotype in response to vessel calcification.

501

502 **Discussion**

503 Our results demonstrate that in addition to already known microglial functions, microglial
504 activity in the context of vascular calcification is beneficial by identifying incipient harmful
505 calcification (Fig. 9). We have used a pharmacological approach in a mouse model for PFBC
506 to modify microglial numbers and a genetic approach to modify microglial function. Both
507 approaches enhance calcification of the NVU (Fig. 5, 7). Vascular calcification, resulting in
508 increased pulse wave velocity and decreased end-organ perfusion and damage, is very common
509 with aging as a major risk factor⁸¹. Surprisingly, studies investigating vascular calcifications
510 in the brain are rare⁸². Therefore, the consequences of calcification on vascular function at the

511 NVU, including the neurovascular coupling, have not been studied. As noted, brain calcification
512 is a common incidental CT finding ^{28,29}. It is plausible that under homeostatic conditions, i.e.,
513 without underlying vascular pathology, microglia limit vascular calcification during aging (Fig.
514 9), which should be addressed by future studies. Vascular calcification is commonly observed
515 in neurodegenerative diseases such as AD ⁸³, which warrants further investigation to determine
516 whether microglial dysfunction contributes to vascular pathology in AD. Thus, in addition to
517 parenchymal surveillance and the removal of various injurious stimuli, microglia could remove
518 calcium phosphate precipitates and halt calcification of the NVU (Fig. 9).

519 Microglial activation is insult-dependent ⁷⁰; however, some microglial activation gene
520 signatures are shared (e.g. *Spp1*, *Clec7a*) by several neurodegenerative proteinopathies,
521 developmental stages and aging-related changes ^{8,10,66,70}. We observed that CAMs express
522 CLEC7A (Fig. 2 D), but not osteopontin (OPN, gene name: *Spp1*) (Suppl Fig. 3A) indicating
523 that calcifications elicit a microglial response similar to but distinct from DAM/PAM and aging
524 microglia. CLEC7A is still expressed by CAMs in the absence of *Trem2* (Suppl Fig. 7B), which
525 is necessary for the induction of the DAM signature in microglia ⁸. Furthermore, osteopontin is
526 deposited in vessel calcifications after microglial depletion (Suppl Fig. 6C). We detected
527 osteopontin expression in a subset of GFAP-positive astrocytes surrounding calcifications
528 (Suppl Fig. 3B), similar to osteopontin expression in reactive astrocytes after a stab wound
529 injury ⁸⁴. Osteopontin is highly expressed in injured tissues, including brain diseases (e.g.,
530 Parkinson disease, multiple sclerosis) ⁸⁵⁻⁸⁹. One of the biological functions of osteopontin is to
531 act as a hydroxyapatite binding mineral chaperone to inhibit the formation of hydroxyapatite
532 crystals ⁹⁰. The induction of osteopontin by different cells (e.g. microglia, astrocytes, neurons)
533 in response to various brain insults ^{84,87,91,92} could prevent injury and ectopic calcification in
534 the parenchyma or at the NVU. Ectopic soft-tissue calcifications in the periphery and in brain,
535 which are induced by excitotoxic insults, have a similar lamellar structure with darker appearing
536 lamellae rich in osteopontin ^{86,93}. Notably, *Spp1*^{-/-} mice develop severe secondary
537 neurodegeneration accompanied by increased brain calcification in response to excitotoxic
538 insults ⁹⁴.

539 We show that cathepsin K deposition in vascular calcifications is decreased after altering
540 microglial numbers or function in *Pdgfb*^{ret/ret} mice (Fig. 5E and 7E). Accordingly, cathepsin K-
541 expressing cells surrounding vessel calcifications derive from resident microglia (Fig. 4B, C).
542 In bone, cathepsin K is expressed and secreted by osteoclasts and represents the primary
543 enzyme for degrading type I collagen ⁹⁵. Our work and that of others have documented collagen
544 I in brain calcifications ^{18,96}. Thus, cathepsin K activity could be necessary for degrading the

545 extracellular matrix (ECM) required for calcium phosphate precipitation. Microglia-specific
546 modification of cathepsin K expression should clarify the role of cathepsin K in vascular
547 calcification. Microglial activity that impedes vessel calcification could trigger a coordinated
548 activation of several pathways in protein and hydroxyapatite degradation. However, it is
549 currently unclear if microglia remove hydroxyapatite present in vascular calcifications ¹⁸.
550 Macrophages have been shown to remove various crystals, including hydroxyapatite, which
551 leads to activation of the NLRP3 inflammasome pathway ⁹⁷. Our studies show that although
552 vessel calcifications elicit strong microglial reactivity *in vivo*, they do not activate the
553 inflammasome (Suppl Fig. 3C). Further studies are needed to understand how microglia sense
554 and remove vascular calcification and whether this activates intracellular pathways as those
555 evoked by self-derived damage-associated molecular patterns (DAMPs) via pattern recognition
556 receptors. In addition to altered cathepsin K deposition, we observed an altered deposition of
557 APP and osteocalcin into calcifications in *Pdgfb^{ret/ret}* crossed with *Trem2^{-/-}* or *Trem2^{+/+}* or after
558 microglia depletion (Fig. 5B, 7B). This finding indicates that microglial activity not only
559 impedes the growth of calcifications but also modifies matrix composition of calcifications.

560 In this study, we observed that functional TREM2 is required to halt vessel-calcification
561 in a mouse model of PFBC (Fig. 7). TREM2 deficiency also leads to an altered vessel
562 calcification pattern in *Pdgfb^{ret/ret}* mice (Fig. 7A), similar to that described in human autopsy
563 cases. Vascular calcification in PFBC is sometimes described as ‘pearls on a string’ due to
564 numerous, tiny spherical calcifications that encrust almost the entire abluminal side of
565 capillaries ^{19,98}. Interestingly, calcifications appear as single nodules ^{18,20,22,24,42} in mouse
566 models of PFBC. Variants in a microglia-specific gene, *TREM2*, have been associated with an
567 increased risk for AD ⁹⁹. Studies in mouse models of AD have linked functional TREM2 to the
568 development of a specific microglia activation state - DAM ^{8,9}, and to maintaining microglial
569 metabolic fitness as well as a sustained microglial response to A β -plaque-induced pathology
570 ¹⁰⁰. It has been proposed that even though microglia are efficient in phagocytosing protein
571 aggregates in the early stages of AD, over time they lose their efficiency ¹⁰¹. Therefore, it is
572 plausible that by crossing *Pdgfb^{ret/ret}* with *Trem2^{+/+}* or *Trem2^{-/-}*, vascular calcification is
573 accelerated due to microglial exhaustion ¹⁰¹. It is noteworthy that microglia encircling
574 calcifications contain numerous phagocytotic vesicles ⁴². Further studies are needed to
575 understand whether TREM2-driven microglial function is initiated due to altered proteostasis
576 and calcification at the NVU or neuronal death occurring due to altered vessel function. These
577 processes, however, are not necessarily mutually exclusive.

578 Several lines of evidence indicate that cell-autonomous defects in microglia lead to brain
579 disease and cerebral calcification ^{31,32,37,38,40}. Microglia have also emerged as a disease modifier
580 in a wide range of neurodegenerative diseases (e.g. AD, FTD) ^{99,101,102}. Of five genes implicated
581 in PFBC (*PDGFB*, *PDGFRB*, *SLC20A2*, *XPR1*, *MYORG*), microglia express *PDGFB*,
582 *SLC20A2*, *XPR1* ^{10,66}. Although microglia express *PDGFB*, they do not express the receptor –
583 *PDGFRB*. Thus, it is unlikely that *PDGFB* or *PDGFRB* haploinsufficiency in PFBC causes
584 cell-autonomous microglial dysfunction. Phosphate importer *SLC20A2* and exporter *XPR1* are
585 expressed ubiquitously in the brain ¹⁰³⁻¹⁰⁶ and their specific role in microglia has not been
586 investigated. However, it has been reported that in zebrafish - *xpr1b*, an orthologue of *XPR1*, is
587 crucial for the differentiation of tissue-resident macrophages and microglia ¹⁰⁷. In mice, the full
588 knockout of *Xpr1* is embryonic lethal ¹⁰⁸, but the embryonic phenotype has not been
589 characterized. Thus, further studies are needed to dissect the role of PFBC genes in microglial
590 function.

591 In this study, based on positivity for osteocalcin, we found by serendipity that microglial
592 reduction by chronic CSF1R inhibition using PLX5622 for two months resulted in localized
593 axonal damage to fiber tracts of the internal capsule and adjacent thalamic and striatal areas
594 (Fig. 6). Positive staining for osteocalcin and osteopontin coincided with the presence of
595 dystrophic neurites exhibiting spheroid formation (Fig. 6E-G), similar to the pathology
596 described in patients with leukoencephalopathy caused by *CSF1R* mutations ¹⁰⁹. Interestingly,
597 these patients exhibit brain calcification in white matter regions ⁴⁰ as well as a reduction in
598 microglia in affected regions ¹¹⁰. It is plausible that axonal spheroids become calcified during
599 the course of the disease. Further studies are needed to understand the relationship between the
600 appearance of axonal spheroids positive for bone proteins and white matter calcification. We
601 observed that inclusions within dystrophic neurites stain positive for MBP (Fig. 6G), a protein
602 secreted by oligodendrocytes, indicating a disrupted homeostasis in oligodendrocytes. Previous
603 studies on white matter microglia have shown that microglia promote myelinogenesis during
604 early development, providing evidence for a role in optimizing oligodendrocyte function ^{111,112}.
605 Thus, further studies are needed to ascertain whether axonal damage is directly caused by a
606 reduction in microglia or the absence of microglia has an effect on another cell type (e.g.
607 oligodendrocytes), which may enhance spheroid formation in neurites.

608 In conclusion, we describe a novel, unrecognized role of microglia in brain vascular
609 calcification. In addition, we show that functional microglia are important to prevent
610 calcification of the NVU in neurodegenerative diseases with a compromised NVU. Proposed
611 mechanisms by which microglia control vascular calcification include the removal of apoptotic

612 cells and spontaneous calcium-phosphate precipitates as well as the prevention of nucleation of
613 hydroxyapatite by controlling proteostasis of the ECM, and/or the secretion of anti-calcifying
614 proteins or molecules.

615

616 **Acknowledgements**

617 This work was supported by the Swiss National Science Foundation (grants 31003A_159514
618 to AK, PP00P3_170626 and BSGI0_155832 to MG), the Synapsis Foundation, Fonds zur
619 Förderung des akademischen Nachwuchses (Zurich University), the Leducq Foundation
620 (SphingoNet), the Swiss Heart Foundation, The Swiss Cancer League to AK, and
621 Forschungskredit und Stiftung für Forschung an der Medizinischen Fakultät der Universität
622 Zürich (grant no. FK-16-034) to YZ. Imaging was performed with equipment maintained by
623 the Center for Microscopy and Image Analysis, University of Zurich and RNA sequencing was
624 performed at the Functional Genomics Center Zurich, University of Zurich and ETH. We thank
625 Plexxikon for providing PLX5622, F. Franzoso for technical help and S. Hornemann for
626 discussions.

627

628 **References**

629

630 1 Thion, M. S., Ginhoux, F. & Garel, S. Microglia and early brain development: An
631 intimate journey. *Science* **362**, 185-189, doi:10.1126/science.aat0474 (2018).

632 2 Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly
633 dynamic surveillants of brain parenchyma in vivo. *Science* **308**, 1314-1318,
634 doi:10.1126/science.1110647 (2005).

635 3 Bernier, L. P. *et al.* Nanoscale Surveillance of the Brain by Microglia via cAMP-
636 Regulated Filopodia. *Cell Rep* **27**, 2895-2908 e2894, doi:10.1016/j.celrep.2019.05.010 (2019).

637 4 Iadecola, C. The Neurovascular Unit Coming of Age: A Journey through
638 Neurovascular Coupling in Health and Disease. *Neuron* **96**, 17-42,
639 doi:10.1016/j.neuron.2017.07.030 (2017).

640 5 Fantin, A. *et al.* Tissue macrophages act as cellular chaperones for vascular
641 anastomosis downstream of VEGF-mediated endothelial tip cell induction. *Blood* **116**, 829-
642 840, doi:10.1182/blood-2009-12-257832 (2010).

643 6 Mathiisen, T. M., Lehre, K. P., Danbolt, N. C. & Ottersen, O. P. The perivascular
644 astroglial sheath provides a complete covering of the brain microvessels: an electron
645 microscopic 3D reconstruction. *Glia* **58**, 1094-1103, doi:10.1002/glia.20990 (2010).

646 7 Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease.
647 *Nat Med* **23**, 1018-1027, doi:10.1038/nm.4397 (2017).

648 8 Keren-Shaul, H. *et al.* A Unique Microglia Type Associated with Restricting
649 Development of Alzheimer's Disease. *Cell* **169**, 1276-1290 e1217,
650 doi:10.1016/j.cell.2017.05.018 (2017).

651 9 Krasemann, S. *et al.* The TREM2-APOE Pathway Drives the Transcriptional
652 Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. *Immunity* **47**, 566-581
653 e569, doi:10.1016/j.jimmuni.2017.08.008 (2017).

654 10 Hammond, T. R. *et al.* Single-Cell RNA Sequencing of Microglia throughout the
655 Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. *Immunity* **50**,
656 253-271 e256, doi:10.1016/j.jimmuni.2018.11.004 (2019).

657 11 Ransohoff, R. & Engelhardt, B. The anatomical and cellular basis of immune
658 surveillance in the central nervous system. *Nature reviews. Immunology* **12**, 623-635,
659 doi:10.1038/nri3265 (2012).

660 12 Iliff, J. *et al.* A paravascular pathway facilitates CSF flow through the brain
661 parenchyma and the clearance of interstitial solutes, including amyloid β . *Science translational*
662 *medicine* **4**, doi:10.1126/scitranslmed.3003748 (2012).

663 13 Segarra, M. *et al.* Endothelial Dab1 signaling orchestrates neuro-glia-vessel
664 communication in the central nervous system. *Science* **361**, doi:10.1126/science.aoa2861
665 (2018).

666 14 Yousef, H. *et al.* Aged blood impairs hippocampal neural precursor activity and
667 activates microglia via brain endothelial cell VCAM1. *Nat Med*, doi:10.1038/s41591-019-
668 0440-4 (2019).

669 15 Rafii, S., Butler, J. M. & Ding, B. S. Angiocrine functions of organ-specific
670 endothelial cells. *Nature* **529**, 316-325, doi:10.1038/nature17040 (2016).

671 16 Keller, A. Breaking and building the wall: the biology of the blood-brain barrier
672 in health and disease. *Swiss Med Wkly* **143**, w13892, doi:10.4414/smw.2013.13892 (2013).

673 17 Westenberger, A., Balck, A. & Klein, C. Primary familial brain calcifications:
674 genetic and clinical update. *Curr Opin Neurol* **32**, 571-578,
675 doi:10.1097/WCO.0000000000000712 (2019).

676 18 Zarb, Y. *et al.* Ossified blood vessels in primary familial brain calcification elicits
677 a neurotoxic astrocyte response. *Brain* **142**, 885-902 (2019).

678 19 Miklossy, J. *et al.* Severe vascular disturbance in a case of familial brain
679 calcinosis. *Acta Neuropathol* **109**, 643-653, doi:10.1007/s00401-005-1007-7 (2005).

680 20 Wallingford, M. C. *et al.* SLC20A2 Deficiency in Mice Leads to Elevated
681 Phosphate Levels in Cerebrospinal Fluid and Glymphatic Pathway-Associated Arteriolar

682 21 Calcification, and Recapitulates Human Idiopathic Basal Ganglia Calcification. *Brain Pathol*
683 **27**, 64-76, doi:10.1111/bpa.12362 (2017).

684 22 Legati, A. *et al.* Mutations in XPR1 cause primary familial brain calcification
685 associated with altered phosphate export. *Nat Genet* **47**, 579-581, doi:10.1038/ng.3289 (2015).

686 23 Keller, A. *et al.* Mutations in the gene encoding PDGF-B cause brain
687 calcifications in humans and mice. *Nat Genet* **45**, 1077-1082, doi:10.1038/ng.2723 (2013).

688 24 Nicolas, G. *et al.* Mutation of the PDGFRB gene as a cause of idiopathic basal
689 ganglia calcification. *Neurology* **80**, 181-187, doi:10.1212/WNL.0b013e31827ccf34 (2013).

690 25 Yao, X. P. *et al.* Biallelic Mutations in MYORG Cause Autosomal Recessive
691 Primary Familial Brain Calcification. *Neuron*, doi:10.1016/j.neuron.2018.05.037 (2018).

692 26 Zhang, Y., Guo, X. & Wu, A. Association between a novel mutation in SLC20A2
693 and familial idiopathic basal ganglia calcification. *PloS one* **8**,
694 doi:10.1371/journal.pone.0057060 (2013).

695 27 Nicolas, G., Charbonnier, C., Campion, D. & Veltman, J. A. Estimation of
696 minimal disease prevalence from population genomic data: Application to primary familial
697 brain calcification. *Am J Med Genet B Neuropsychiatr Genet* **177**, 68-74,
698 doi:10.1002/ajmg.b.32605 (2018).

699 28 Chen, S. *et al.* Underestimated disease prevalence and severe phenotypes in
700 patients with biallelic variants: A cohort study of primary familial brain calcification from
701 China. *Parkinsonism Relat Disord* **64**, 211-219, doi:10.1016/j.parkreldis.2019.04.009 (2019).

702 29 Deng, H., Zheng, W. & Jankovic, J. Genetics and molecular biology of brain
703 calcification. *Ageing Res Rev* **22**, 20-38, doi:10.1016/j.arr.2015.04.004 (2015).

704 29 Yamada, M. *et al.* High frequency of calcification in basal ganglia on brain
705 computed tomography images in Japanese older adults. *Geriatr Gerontol Int* **13**, 706-710,
706 doi:10.1111/ggi.12004 (2013).

707 30 Chen, N. X. & Moe, S. M. Vascular calcification: pathophysiology and risk
708 factors. *Curr Hypertens Rep* **14**, 228-237, doi:10.1007/s11906-012-0265-8 (2012).

709 31 Paloneva, J. *et al.* Mutations in two genes encoding different subunits of a receptor
710 signaling complex result in an identical disease phenotype. *Am J Hum Genet* **71**, 656-662,
711 doi:10.1086/342259 (2002).

712 32 Paloneva, J. *et al.* Loss-of-function mutations in TYROBP (DAP12) result in a
713 presenile dementia with bone cysts. *Nat Genet* **25**, 357-361, doi:10.1038/77153 (2000).

714 33 Kalimo, H., Sourander, P., Jarvi, O. & Hakola, P. Vascular changes and blood-
715 brain barrier damage in the pathogenesis of polycystic lipomembranous osteodysplasia with
716 sclerosing leukoencephalopathy (membranous lipodystrophy). *Acta Neurol Scand* **89**, 353-361
717 (1994).

718 34 Coomans, C. *et al.* Early-onset dementia, leukoencephalopathy and brain
719 calcifications: a clinical, imaging and pathological comparison of ALSP and PLOSL/Nasu
720 Hakola disease. *Acta Neurol Belg* **118**, 607-615, doi:10.1007/s13760-018-1023-8 (2018).

721 35 Xing, J., Titus, A. R. & Humphrey, M. B. The TREM2-DAP12 signaling pathway
722 in Nasu-Hakola disease: a molecular genetics perspective. *Res Rep Biochem* **5**, 89-100,
723 doi:10.2147/RRBC.S58057 (2015).

724 36 Goldmann, T. *et al.* USP18 lack in microglia causes destructive interferonopathy
725 of the mouse brain. *EMBO J* **34**, 1612-1629, doi:10.15252/embj.201490791 (2015).

726 37 Meuwissen, M. E. *et al.* Human USP18 deficiency underlies type 1
727 interferonopathy leading to severe pseudo-TORCH syndrome. *J Exp Med* **213**, 1163-1174,
728 doi:10.1084/jem.20151529 (2016).

729 38 Konno, T. *et al.* Diagnostic Value of Brain Calcifications in Adult-Onset
730 Leukoencephalopathy with Axonal Spheroids and Pigmented Glia. *AJNR Am J Neuroradiol* **38**,
731 77-83, doi:10.3174/ajnr.A4938 (2017).

732 39 Bigley, V. *et al.* Biallelic interferon regulatory factor 8 mutation: A complex
733 immunodeficiency syndrome with dendritic cell deficiency, moncytopenia, and immune
734 dysregulation. *J Allergy Clin Immunol* **141**, 2234-2248, doi:10.1016/j.jaci.2017.08.044 (2018).

735 40 Rademakers, R. *et al.* Mutations in the colony stimulating factor 1 receptor
736 (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. *Nat Genet* **44**,
737 200-205, doi:10.1038/ng.1027 (2011).

738 41 Chakrabarty, P. *et al.* Interferon-gamma induces progressive nigrostriatal
739 degeneration and basal ganglia calcification. *Nat Neurosci* **14**, 694-696, doi:10.1038/nn.2829
740 (2011).

741 42 Nahar, K. *et al.* Astrocyte-microglial association and matrix composition are
742 common events in the natural history of primary familial brain calcification. *Brain Pathol*,
743 doi:10.1111/bpa.12787 (2019).

744 43 Lindblom, P. *et al.* Endothelial PDGF-B retention is required for proper
745 investment of pericytes in the microvessel wall. *Genes Dev* **17**, 1835-1840,
746 doi:10.1101/gad.266803 (2003).

747 44 Yona, S. *et al.* Fate mapping reveals origins and dynamics of monocytes and
748 tissue macrophages under homeostasis. *Immunity* **38**, 79-91,
749 doi:10.1016/j.jimmuni.2012.12.001 (2013).

750 45 Buttgereit, A. *et al.* Sall1 is a transcriptional regulator defining microglia identity
751 and function. *Nat Immunol* **17**, 1397-1406, doi:10.1038/ni.3585 (2016).

752 46 Radde, R. *et al.* Abeta42-driven cerebral amyloidosis in transgenic mice reveals
753 early and robust pathology. *EMBO Rep* **7**, 940-946, doi:10.1038/sj.embor.7400784 (2006).

754 47 Turnbull, I. R. *et al.* Cutting edge: TREM-2 attenuates macrophage activation. *J*
755 *Immunol* **177**, 3520-3524 (2006).

756 48 Dagher, N. N. *et al.* Colony-stimulating factor 1 receptor inhibition prevents
757 microglial plaque association and improves cognition in 3xTg-AD mice. *J Neuroinflammation*
758 **12**, 139, doi:10.1186/s12974-015-0366-9 (2015).

759 49 Elmore, M. R. *et al.* Colony-stimulating factor 1 receptor signaling is necessary
760 for microglia viability, unmasking a microglia progenitor cell in the adult brain. *Neuron* **82**,
761 380-397, doi:10.1016/j.neuron.2014.02.040 (2014).

762 50 Klingstedt, T. *et al.* Synthesis of a library of oligothiophenes and their utilization
763 as fluorescent ligands for spectral assignment of protein aggregates. *Org Biomol Chem* **9**, 8356-
764 8370, doi:10.1039/c1ob05637a (2011).

765 51 Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis.
766 *Nat Methods* **9**, 676-682, doi:10.1038/nmeth.2019 (2012).

767 52 Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library
768 and plugins for mathematical morphology with ImageJ. *Bioinformatics* **32**, 3532-3534,
769 doi:10.1093/bioinformatics/btw413 (2016).

770 53 Davis, B. M., Salinas-Navarro, M., Cordeiro, M. F., Moons, L. & De Groef, L.
771 Characterizing microglia activation: a spatial statistics approach to maximize information
772 extraction. *Sci Rep* **7**, 1576, doi:10.1038/s41598-017-01747-8 (2017).

773 54 Van Gassen, S. *et al.* FlowSOM: Using self-organizing maps for visualization and
774 interpretation of cytometry data. *Cytometry A* **87**, 636-645, doi:10.1002/cyto.a.22625 (2015).

775 55 Hartmann, F. J. *et al.* High-dimensional single-cell analysis reveals the immune
776 signature of narcolepsy. *J Exp Med* **213**, 2621-2633, doi:10.1084/jem.20160897 (2016).

777 56 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic
778 RNA-seq quantification. *Nat Biotechnol* **34**, 525-527, doi:10.1038/nbt.3519 (2016).

779 57 Soneson, C., Love, M. & Robinson, M. Differential analyses for RNA-seq:
780 transcript-level estimates improve gene-level inferences [version 1; referees: 2 approved].
781 *F1000Research* **4**, doi:10.12688/f1000research.7563.1 (2015).

782 58 Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data
783 using factor analysis of control genes or samples. *Nat Biotechnol* **32**, 896-902,
784 doi:10.1038/nbt.2931 (2014).

785 59 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor
786 package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**,
787 139-140, doi:10.1093/bioinformatics/btp616 (2010).

788 60 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
789 dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550, doi:10.1186/s13059-014-
790 0550-8 (2014).

791 61 Sergushichev, A. An algorithm for fast preranked gene set enrichment analysis
792 using cumulative statistic calculation. *bioRxiv*, 060012, doi:10.1101/060012 (2016).

793 62 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based
794 approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**,
795 15545-15550, doi:10.1073/pnas.0506580102 (2005).

796 63 Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the
797 integration of genomic datasets with the R/Bioconductor package biomaRt. *Nat Protoc* **4**, 1184-
798 1191, doi:10.1038/nprot.2009.97 (2009).

799 64 Miller, J. A. *et al.* Strategies for aggregating gene expression data: the
800 collapseRows R function. *BMC Bioinformatics* **12**, 322, doi:10.1186/1471-2105-12-322
801 (2011).

802 65 Liberzon, A. *et al.* The Molecular Signatures Database (MSigDB) hallmark gene
803 set collection. *Cell Syst* **1**, 417-425, doi:10.1016/j.cels.2015.12.004 (2015).

804 66 Li, Q. *et al.* Developmental Heterogeneity of Microglia and Brain Myeloid Cells
805 Revealed by Deep Single-Cell RNA Sequencing. *Neuron* **101**, 207-223 e210,
806 doi:10.1016/j.neuron.2018.12.006 (2019).

807 67 Kolde, R. (2015).

808 68 Armulik, A. *et al.* Pericytes regulate the blood-brain barrier. *Nature* **468**, 557-561,
809 doi:10.1038/nature09522 (2010).

810 69 Qin, Y. *et al.* A Milieu Molecule for TGF-beta Required for Microglia Function
811 in the Nervous System. *Cell* **174**, 156-171 e116, doi:10.1016/j.cell.2018.05.027 (2018).

812 70 Friedman, B. A. *et al.* Diverse Brain Myeloid Expression Profiles Reveal Distinct
813 Microglial Activation States and Aspects of Alzheimer's Disease Not Evident in Mouse Models.
814 *Cell Rep* **22**, 832-847, doi:10.1016/j.celrep.2017.12.066 (2018).

815 71 Kang, S. S. *et al.* Microglial translational profiling reveals a convergent APOE
816 pathway from aging, amyloid, and tau. *J Exp Med* **215**, 2235-2245, doi:10.1084/jem.20180653
817 (2018).

818 72 Nuvolone, M. *et al.* Cystatin F is a biomarker of prion pathogenesis in mice. *PLoS*
819 *One* **12**, e0171923, doi:10.1371/journal.pone.0171923 (2017).

820 73 Wang, Y. *et al.* TREM2 lipid sensing sustains the microglial response in an
821 Alzheimer's disease model. *Cell* **160**, 1061-1071, doi:10.1016/j.cell.2015.01.049 (2015).

822 74 Orre, M. *et al.* Isolation of glia from Alzheimer's mice reveals inflammation and
823 dysfunction. *Neurobiol Aging* **35**, 2746-2760, doi:10.1016/j.neurobiolaging.2014.06.004
824 (2014).

825 75 Heneka, M. T. *et al.* NLRP3 is activated in Alzheimer's disease and contributes
826 to pathology in APP/PS1 mice. *Nature* **493**, 674-678, doi:10.1038/nature11729 (2013).

827 76 Jin, C. *et al.* NLRP3 inflammasome plays a critical role in the pathogenesis of
828 hydroxyapatite-associated arthropathy. *Proc Natl Acad Sci U S A* **108**, 14867-14872,
829 doi:10.1073/pnas.1111101108 (2011).

830 77 McInnes, L. H., John; Melville, James UMAP: Uniform Manifold Approximation
831 and Projection for Dimension Reduction. doi:1802.03426 (2018).

832 78 Chehrehasa, F., Meedeniya, A. C., Dwyer, P., Abrahamsen, G. & Mackay-Sim,
833 A. EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. *J*
834 *Neurosci Methods* **177**, 122-130, doi:10.1016/j.jneumeth.2008.10.006 (2009).

835 79 Parkhurst, C. N. *et al.* Microglia promote learning-dependent synapse formation
836 through brain-derived neurotrophic factor. *Cell* **155**, 1596-1609,
837 doi:10.1016/j.cell.2013.11.030 (2013).

838 80 Ulrich, J. D., Ulland, T. K., Colonna, M. & Holtzman, D. M. Elucidating the Role
839 of TREM2 in Alzheimer's Disease. *Neuron* **94**, 237-248, doi:10.1016/j.neuron.2017.02.042
840 (2017).

841 81 Pescatore, L. A., Gamarra, L. F. & Liberman, M. Multifaceted Mechanisms of
842 Vascular Calcification in Aging. *Arterioscler Thromb Vasc Biol* **39**, 1307-1316,
843 doi:10.1161/ATVBAHA.118.311576 (2019).

844 82 Arnold, M. M. & Kreel, L. Asymptomatic cerebral calcification--a previously
845 unrecognized feature. *Postgrad Med J* **67**, 147-153 (1991).

846 83 Mann, D. M. Calcification of the basal ganglia in Down's syndrome and
847 Alzheimer's disease. *Acta neuropathologica* **76**, 595-598 (1988).

848 84 Sirko, S. *et al.* Astrocyte reactivity after brain injury: The role of galectins 1 and
849 3. *Glia* **63**, 2340-2361, doi:10.1002/glia.22898 (2015).

850 85 Uede, T. Osteopontin, intrinsic tissue regulator of intractable inflammatory
851 diseases. *Pathol Int* **61**, 265-280, doi:10.1111/j.1440-1827.2011.02649.x (2011).

852 86 Park, J. M., Shin, Y. J., Kim, H. L., Cho, J. M. & Lee, M. Y. Sustained expression
853 of osteopontin is closely associated with calcium deposits in the rat hippocampus after transient

854 854 forebrain ischemia. *J Histochem Cytochem* **60**, 550-559, doi:10.1369/0022155412441707
855 (2012).

856 87 Maetzler, W. *et al.* Osteopontin is elevated in Parkinson's disease and its absence
857 leads to reduced neurodegeneration in the MPTP model. *Neurobiol Dis* **25**, 473-482,
858 doi:10.1016/j.nbd.2006.10.020 (2007).

859 88 Comabella, M. *et al.* Plasma osteopontin levels in multiple sclerosis. *J
860 Neuroimmunol* **158**, 231-239, doi:10.1016/j.jneuroim.2004.09.004 (2005).

861 89 Chabas, D. *et al.* The influence of the proinflammatory cytokine, osteopontin, on
862 autoimmune demyelinating disease. *Science* **294**, 1731-1735, doi:10.1126/science.1062960
863 (2001).

864 90 Hunter, G. K., Kyle, C. L. & Goldberg, H. A. Modulation of crystal formation by
865 bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of
866 hydroxyapatite formation. *Biochem J* **300** (Pt 3), 723-728 (1994).

867 91 Kim, S. Y. *et al.* Osteopontin in kainic acid-induced microglial reactions in the
868 rat brain. *Mol Cells* **13**, 429-435 (2002).

869 92 Sugiyama, Y. *et al.* Neuronal and microglial localization of secreted
870 phosphoprotein 1 (osteopontin) in intact and damaged motor cortex of macaques. *Brain Res*
871 **1714**, 52-64, doi:10.1016/j.brainres.2019.02.021 (2019).

872 93 Jähnen-Dechent, W., Schafer, C., Ketteler, M. & McKee, M. D. Mineral
873 chaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic
874 calcification. *J Mol Med (Berl)* **86**, 379-389, doi:10.1007/s00109-007-0294-y (2008).

875 94 Maetzler, W. *et al.* Progressive secondary neurodegeneration and
876 microcalcification co-occur in osteopontin-deficient mice. *The American journal of pathology*
877 **177**, 829-839, doi:10.2353/ajpath.2010.090798 (2010).

878 95 Gowen, M. *et al.* Cathepsin K knockout mice develop osteopetrosis due to a
879 deficit in matrix degradation but not demineralization. *J Bone Miner Res* **14**, 1654-1663,
880 doi:10.1359/jbmr.1999.14.10.1654 (1999).

881 96 Fujita, D. *et al.* Immunohistochemical examination on intracranial calcification in
882 neurodegenerative diseases. *Acta Neuropathol* **105**, 259-264, doi:10.1007/s00401-002-0640-7
883 (2003).

884 97 Mulay, S. R. & Anders, H. J. Crystallopathies. *N Engl J Med* **374**, 2465-2476,
885 doi:10.1056/NEJMra1601611 (2016).

886 98 Kobayashi, S., Yamadori, I., Miki, H. & Ohmori, M. Idiopathic
887 nonarteriosclerotic cerebral calcification (Fahr's disease): an electron microscopic study. *Acta
888 Neuropathol* **73**, 62-66 (1987).

889 99 Guerreiro, R. *et al.* TREM2 variants in Alzheimer's disease. *N Engl J Med* **368**,
890 117-127, doi:10.1056/NEJMoa1211851 (2013).

891 100 Ulland, T. K. *et al.* TREM2 Maintains Microglial Metabolic Fitness in
892 Alzheimer's Disease. *Cell* **170**, 649-663 e613, doi:10.1016/j.cell.2017.07.023 (2017).

893 101 Hickman, S., Izzy, S., Sen, P., Morsett, L. & El Khoury, J. Microglia in
894 neurodegeneration. *Nat Neurosci* **21**, 1359-1369, doi:10.1038/s41593-018-0242-x (2018).

895 102 Jonsson, T. *et al.* Variant of TREM2 associated with the risk of Alzheimer's
896 disease. *The New England journal of medicine* **368**, 107-116, doi:10.1056/NEJMoa1211103
897 (2013).

898 103 Zeisel, A. *et al.* Molecular Architecture of the Mouse Nervous System. *Cell* **174**,
899 999-1014 e1022, doi:10.1016/j.cell.2018.06.021 (2018).

900 104 Zhang, Y. *et al.* Purification and Characterization of Progenitor and Mature
901 Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. *Neuron*
902 **89**, 37-53, doi:10.1016/j.neuron.2015.11.013 (2016).

903 105 Vanlandewijck, M. *et al.* A molecular atlas of cell types and zonation in the brain
904 vasculature. *Nature* **554**, 475-480, doi:10.1038/nature25739 (2018).

905 106 Saunders, A. *et al.* Molecular Diversity and Specializations among the Cells of
906 the Adult Mouse Brain. *Cell* **174**, 1015-1030 e1016, doi:10.1016/j.cell.2018.07.028 (2018).

907 107 Meireles, A. M. *et al.* The phosphate exporter xpr1b is required for differentiation
908 of tissue-resident macrophages. *Cell Rep* **8**, 1659-1667, doi:10.1016/j.celrep.2014.08.018
909 (2014).

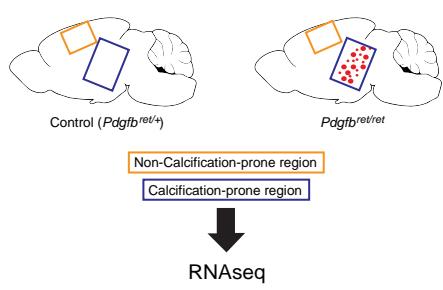
910 108 Ansermet, C. *et al.* Renal Fanconi Syndrome and Hypophosphatemic Rickets in
911 the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron. *J Am Soc*
912 *Nephrol* **28**, 1073-1078, doi:10.1681/ASN.2016070726 (2017).

913 109 Konno, T., Kasanuki, K., Ikeuchi, T., Dickson, D. W. & Wszolek, Z. K. CSF1R-
914 related leukoencephalopathy: A major player in primary microgliopathies. *Neurology* **91**, 1092-
915 1104, doi:10.1212/WNL.0000000000006642 (2018).

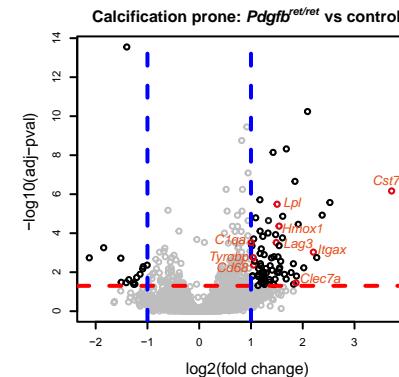
916 110 Oosterhof, N. *et al.* Colony-Stimulating Factor 1 Receptor (CSF1R) Regulates
917 Microglia Density and Distribution, but Not Microglia Differentiation In Vivo. *Cell Rep* **24**,
918 1203-1217 e1206, doi:10.1016/j.celrep.2018.06.113 (2018).

919 111 Hagemeyer, N. *et al.* Microglia contribute to normal myelinogenesis and to
920 oligodendrocyte progenitor maintenance during adulthood. *Acta Neuropathol* **134**, 441-458,
921 doi:10.1007/s00401-017-1747-1 (2017).

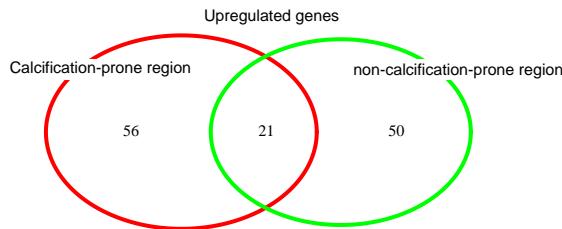
922 112 Wlodarczyk, A. *et al.* A novel microglial subset plays a key role in
923 myelinogenesis in developing brain. *EMBO J* **36**, 3292-3308, doi:10.15252/embj.201696056
924 (2017).


925

926


Figure 1.

Zarb et al.


A

B

C

E

Upregulated genes

Calcification-prone region

non-calcification-prone region

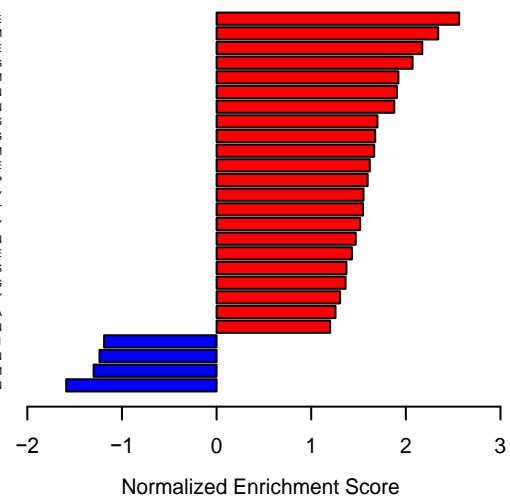
56

21

50

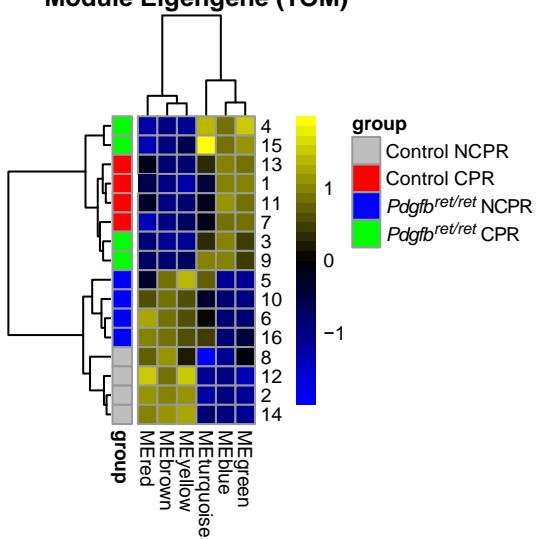
Downregulated genes

Calcification-prone regions

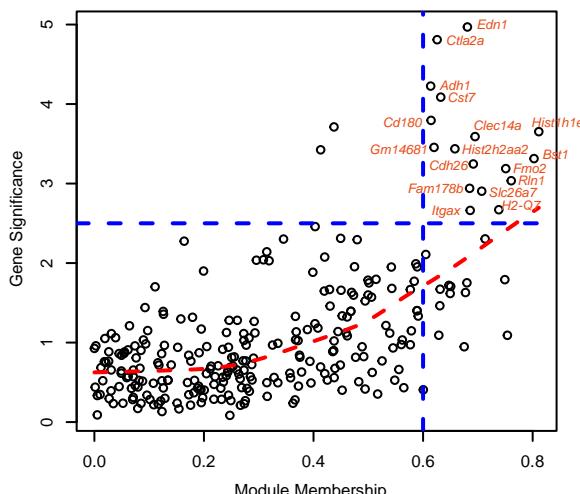

non-calcification-prone region

18

5


10

HALLMARK_INTERFERON_ALPHA_RESPONSE
HALLMARK_FATTY_ACID_METABOLISM
HALLMARK_INTERFERON_GAMMA_RESPONSE
HALLMARK_IL6_JAK_STAT3_SIGNALING
HALLMARK_XENOBIOCITIC_METABOLISM
HALLMARK_ALLOGRAFT_REJECTION
HALLMARK_OXIDATIVE_PHOSPHORYLATION
HALLMARK_ADIPOGENESIS
HALLMARK_TGF_BETA_SIGNALING
HALLMARK_BILE_ACID_METABOLISM
HALLMARK_INFLAMMATORY_RESPONSE
HALLMARK_KRAS_SIGNALING_UP
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY
HALLMARK_COMPLEMENT
HALLMARK_P53_PATHWAY
HALLMARK_COAGULATION
HALLMARK_PEROXISOME
HALLMARK_APOPTOSIS
HALLMARK_IL2_STATS_SIGNALING
HALLMARK_ESTROGEN_RESPONSE_EARLY
HALLMARK_HYPOXIA
HALLMARK_APICAL_JUNCTION
HALLMARK_MYC_TARGETS_V1
HALLMARK_UV_RESPONSE_DN
HALLMARK_HEME_METABOLISM
HALLMARK_PROTEIN_SECRETION



D

Module Eigengene (TOM)

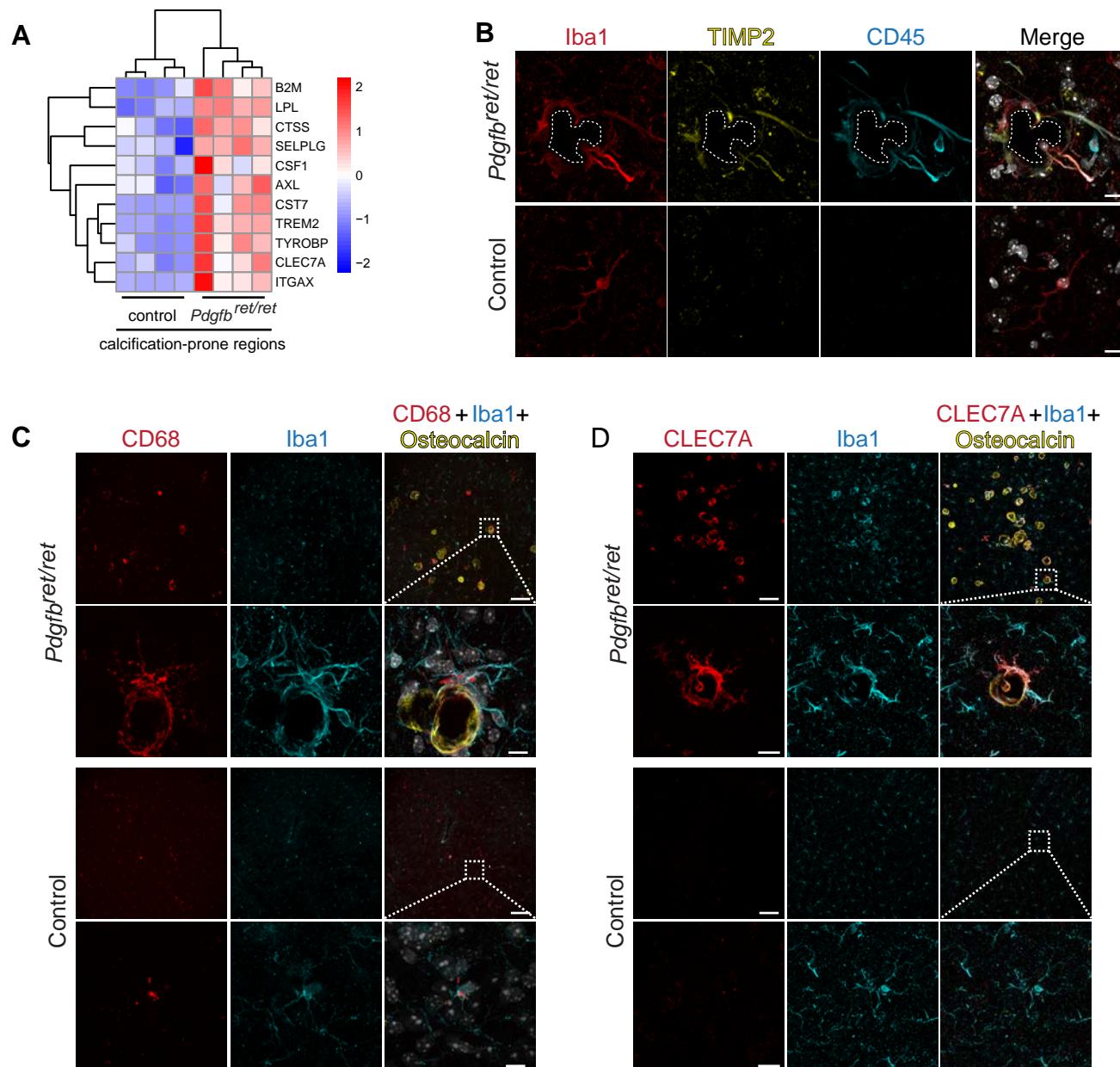

G

Figure 1. An inflammatory microenvironment surrounds vascular calcifications. **(A)** Samples collected for transcriptome analysis. RNA sequencing was performed from tissue isolated from two anatomical regions of *Pdgfb^{ret/ret}* and control animals. Tissue enriched with brain calcifications was isolated from the thalamus/midbrain region labelled as “calcification-prone region”. Tissue isolated from the cortex is labelled “non-calcification prone region”. **(B)** Volcano plot showing deregulated genes in calcification-prone regions in *Pdgfb^{ret/ret}* animals compared to control animals. **(C, D)** Venn diagrams showing upregulated **(C)** and downregulated **(D)** genes in calcification-prone and non-calcification prone regions. **(E)** Significantly upregulated (in red) and downregulated (in blue) pathways ($p<0.05$) in calcification-prone regions in *Pdgfb^{ret/ret}* animals compared to controls. **(F)** For each module identified by the network analysis, the Module Eigengene (ME) was calculated, which summarizes the expression profile of the module. The turquoise module is associated with calcification-prone brain regions in *Pdgfb^{ret/ret}* mice. CPR - calcification-prone region, NCPR – non-calcification-prone region **(G)** Graphical representation of hub genes with a high gene significance and module membership in the turquoise module.

Figure 2.

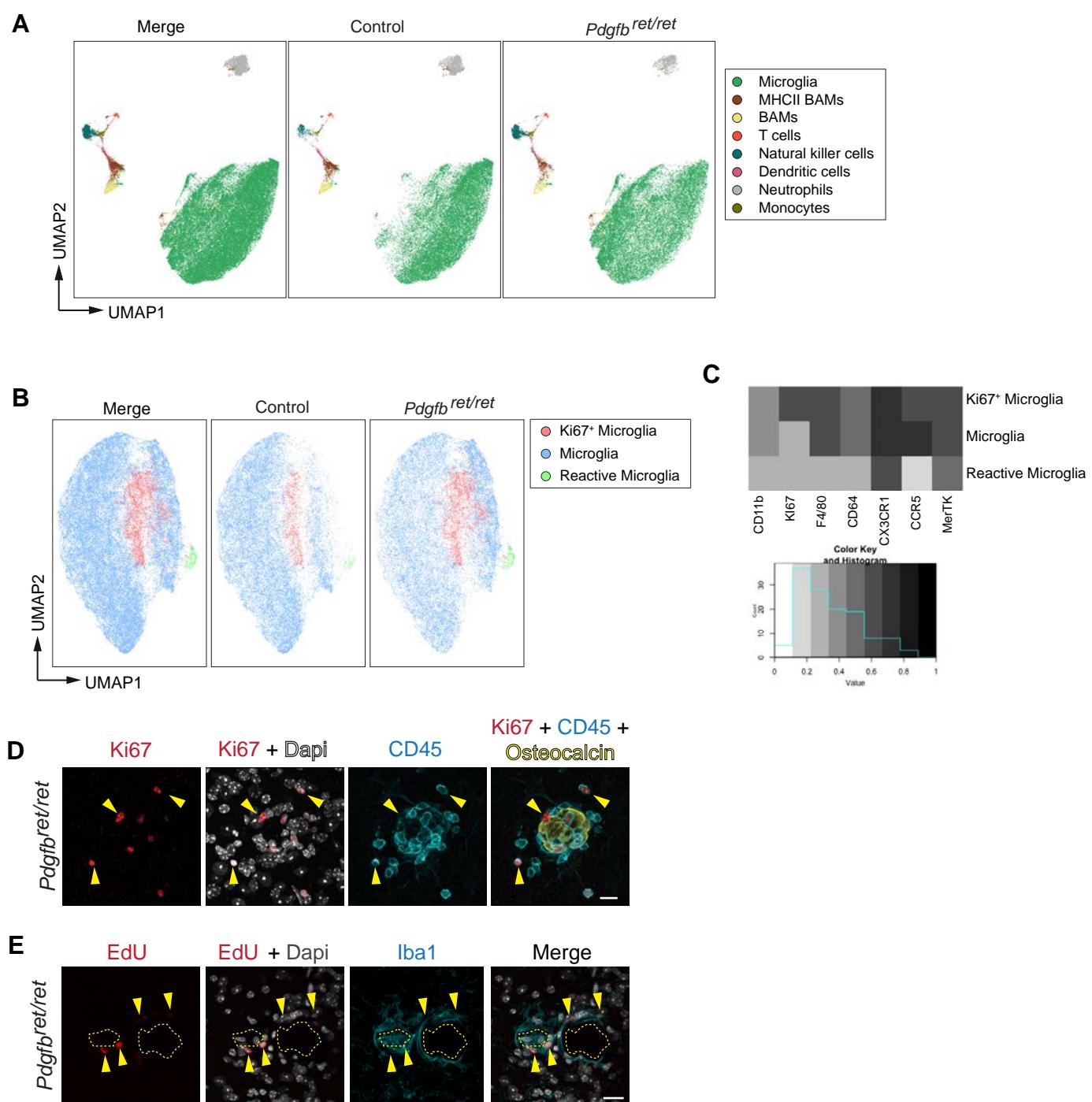

Zarb et al.

Figure 2. Microglia around vessel calcifications express proteins associated with a DAM/PAM signature. **(A)** Heatmap showing the expression of selected DAM signature genes significantly upregulated in calcification-prone regions (thalamus/midbrain) in *Pdgfb^{ret/ret}* animals and controls. Data are presented as z-score. **(B-D)** Immunohistochemical validation of proteins associated with the DAM signature. **(B)** Iba1-positive (in red) microglia adjacent to a calcification (encircled with white dotted line) is strongly positive for CD45 (in cyan) and positive for TIMP2 (in yellow). **(C)** Iba1-positive (in cyan) microglia surrounding osteocalcin positive calcifications (in yellow) are positive for CD68 (in red). **(D)** Iba1-positive (in cyan) microglia surrounding osteocalcin positive calcifications (in yellow) are positive for CLEC7A (in red). Nuclei were visualized using DAPI (in white). Scale bars – 10 μ m (B, C inset, D inset) and 100 μ m (C, D).

Figure 3.

Zarb et al.

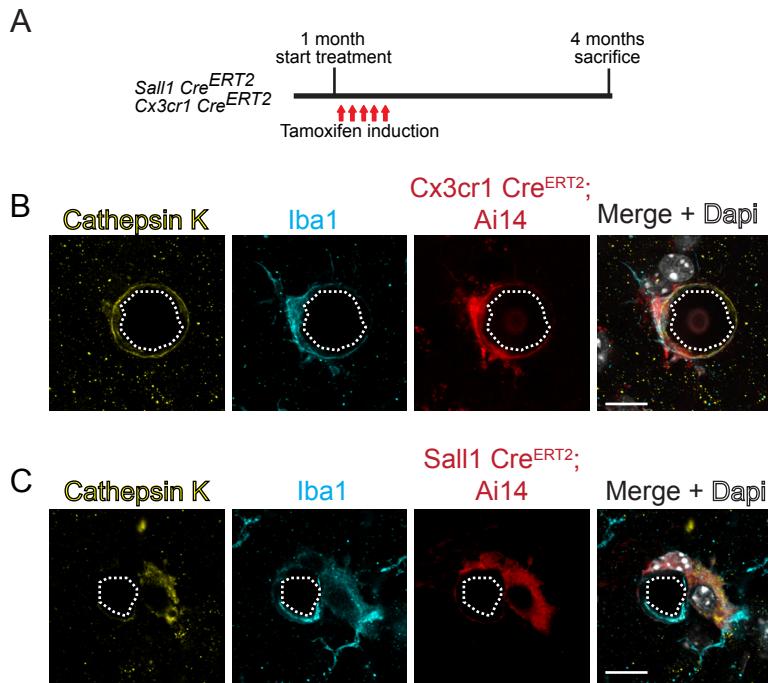


Figure 3. Microglia proliferate around vessel-associated calcifications.

(A-C) Tissue from calcification-prone brain regions of *Pdgfb^{ret/ret}* mice and controls were analysed using flow cytometry with a panel of antibodies to identify leukocytes and subtypes of brain myeloid cells. **(A)** Eight subpopulations of immune cells were identified with UMAP analysis. Microglia are depicted in green. **(B)** Microglia (in green in A) were isolated and analysed separately using UMAP. An increase in proliferating (Ki67⁺, in pink) microglia and the appearance of reactive (in green) microglia in *Pdgfb^{ret/ret}* mice were observed in contrast to control animals (*Pdgfb^{ret/wt}*). **(C)** Heatmap showing the expression of markers in different microglial sub-populations used to define sub-populations in B using UMAP. **(D)** A subset of CD45-positive cells (in cyan, yellow arrowheads) surrounding an osteocalcin positive brain calcification (in yellow) immunolabel with the proliferation marker Ki67 (in red). **(E)** EdU (in red) labelled Iba1-positive (in cyan, yellow arrowheads) microglia around brain calcifications (encircled with yellow dotted line). Nuclei were visualized using DAPI (in white, D and E). Scale bars – 15 μ m (D), 10 μ m (E).

Figure 4.

Zarb et al.

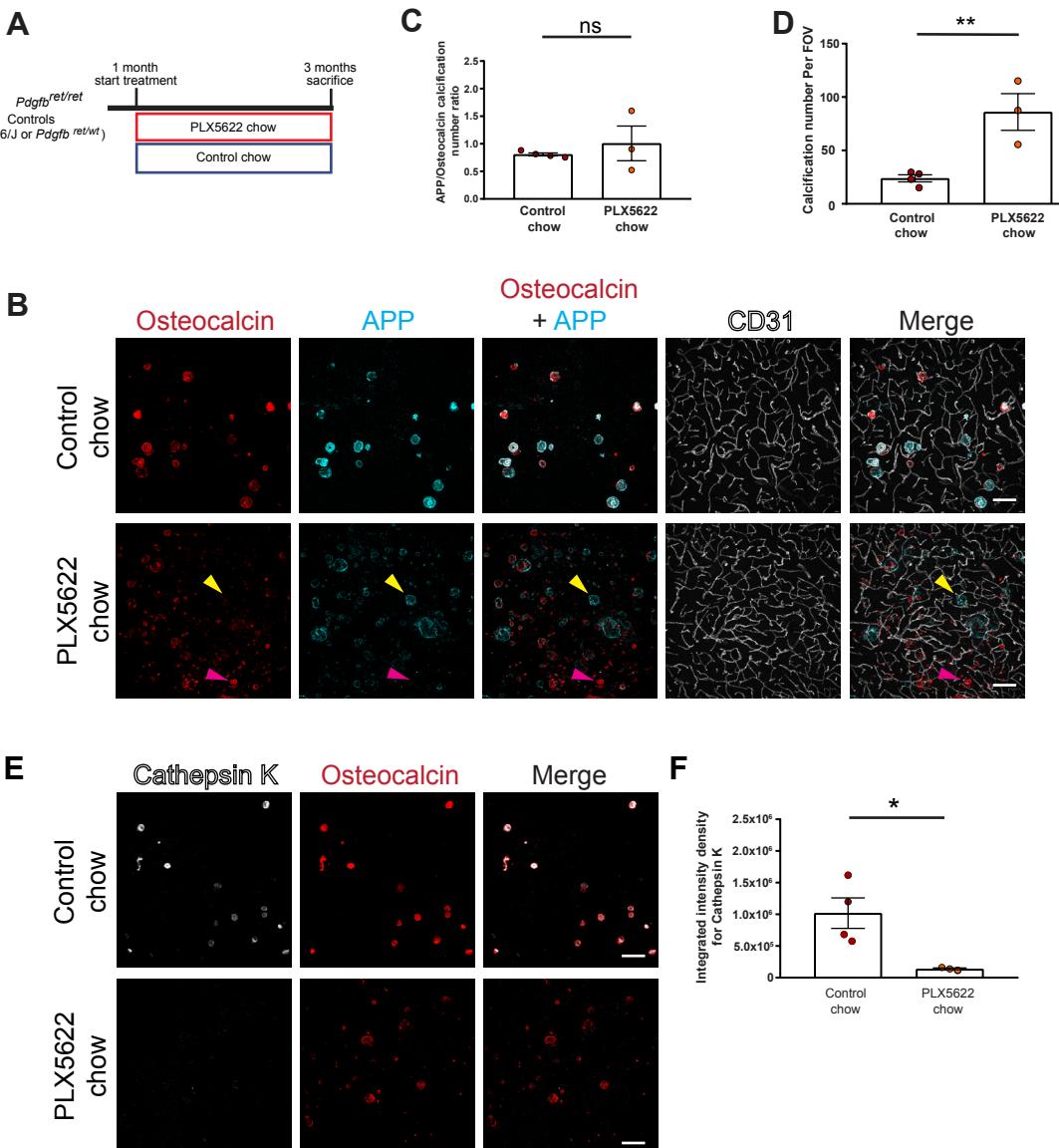


Figure 4. Microglia give rise to cathepsin K expressing cells around calcifications.

(A) Experimental setup of lineage tracing experiments. At one-month of age control and *Pdgfb^{ret/ret}* mice positive for *Sall1-CreER^{T2}*; Ai14 or *Cx3cr1-CreER^{T2}*; Ai14 were administered tamoxifen for 5 consecutive days and sacrificed at 4 months of age. TdTomato expression was induced using inducible Cre-lines where the expression of Cre is driven under *Sall1* or *Cx3cr1* promoter. **(B-C)** Cathepsin K staining (in yellow) co-localizes with tdTomato (in red) and Iba1 staining (in cyan) adjacent to calcification (encircled with a white dotted line). Nuclei were visualized using Dapi (in white, in B and D). Scale bars – 10 μ m (B, C).

Figure 5.

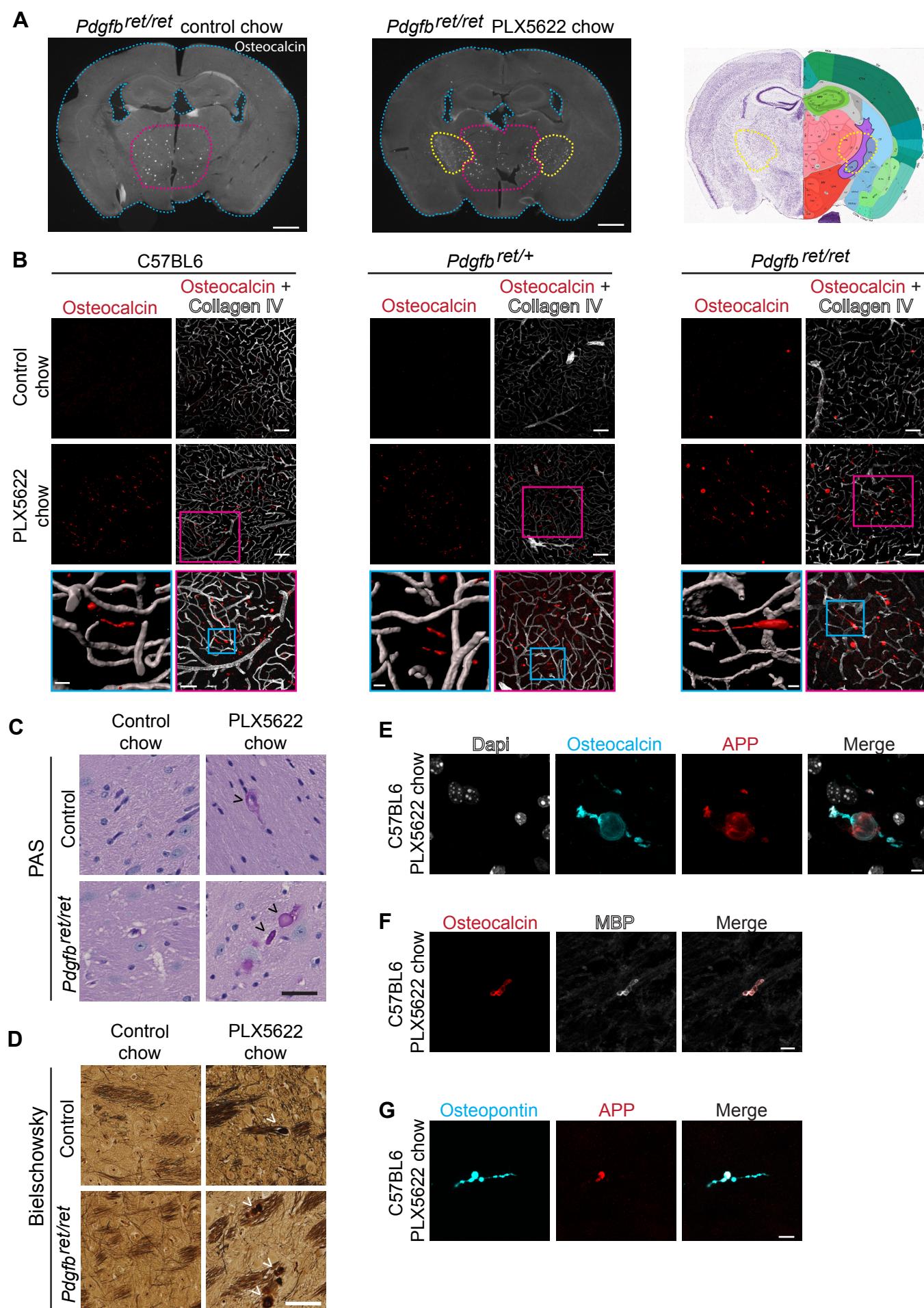

Zarb et al.

Figure 5. Pharmacological ablation of microglia aggravates vascular calcification

(A) Experimental setup of the pharmacological ablation of microglia. One-month old mice (*Pdgfb^{ret/wt}*, *Pdgfb^{ret/ret}* or C57BL6) were fed PLX5622 or control chow for two-months. Mice were sacrificed at 3 months of age. **(B)** Vessel-associated calcifications, visualised by osteocalcin (in red) and APP staining (in cyan), are increased in *Pdgfb^{ret/ret}* compared to control chow fed *Pdgfb^{ret/ret}* animals. Blood vessels are visualized using CD31 staining (in white). Note that some calcifications in PLX5622 treated *Pdgfb^{ret/ret}* mice are only positive for APP (yellow arrowhead), whereas others are positive only for osteocalcin (magenta arrowhead). **(C)** The ratio between APP and osteocalcin positive calcifications after PLX5622 and control chow treatment. **(D)** Quantification of calcification number in *Pdgfb^{ret/ret}* mice administered PLX5622 or control chow (unpaired two-tailed t-test, $p = 0.0087$). **(E)** Cathepsin K (in white) deposition in calcifications (in red) in *Pdgfb^{ret/ret}* mice is reduced after PLX5622 treatment. **(F)** Quantification of cathepsin K intensity from immunohistochemical stains in (G; unpaired two-tailed t-test, $p = 0.0276$). Scale bars –100 μm (B, E). All data are mean \pm SEM.

Figure 6.

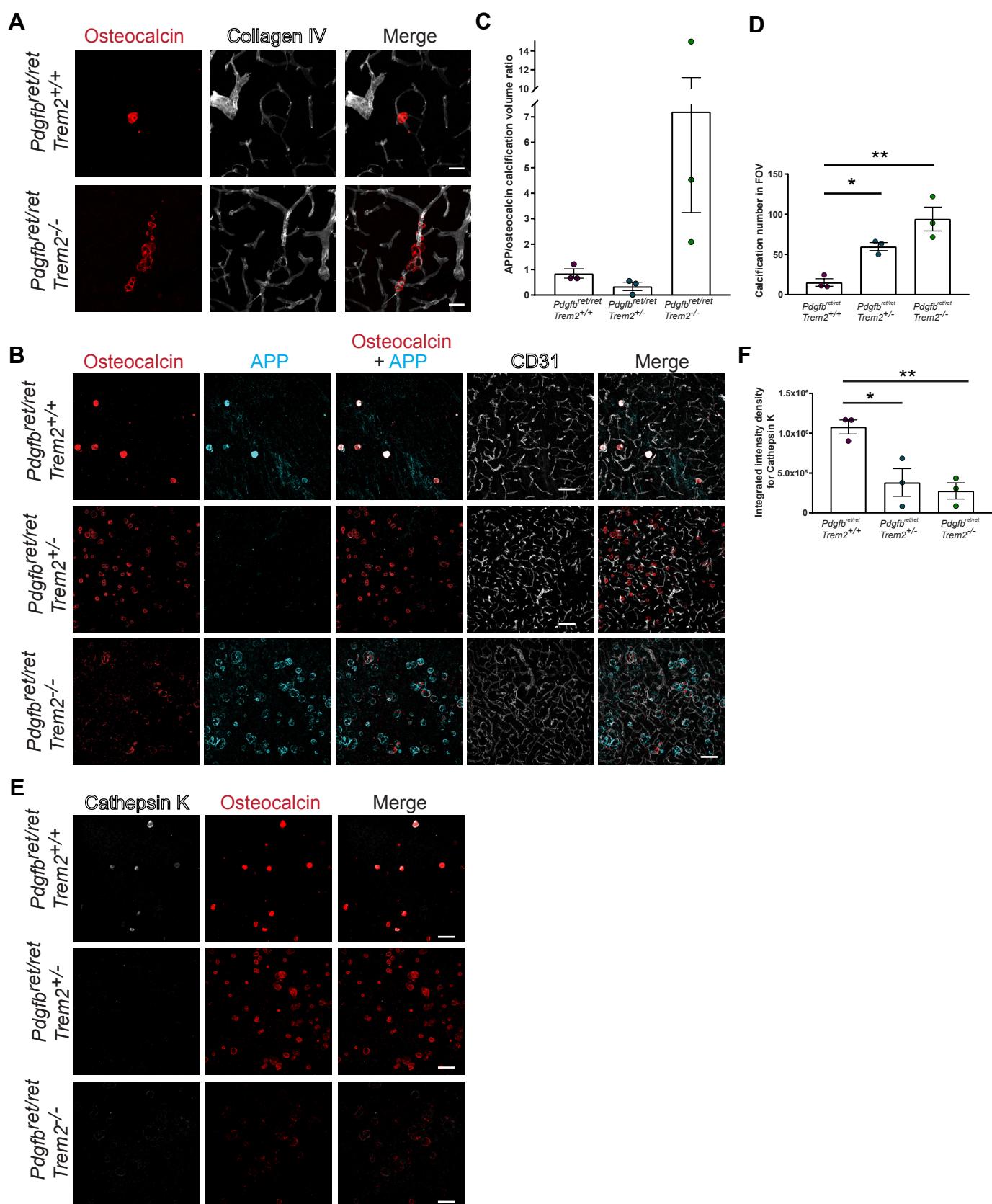


Figure 6. Microglial ablation leads to bone protein containing axonal spheroids in white matter

(A) Coronal sections of *Pdgfb^{ret/ret}* mouse brains fed with control chow or chow containing PLX5622. Mice treated with PLX5622 exhibited conspicuous osteocalcin staining (in white) in the internal capsule (yellow dotted line, middle; black dotted line, right) in addition to calcifications in the thalamus (circled with a pink dotted line). Coronal mouse brain section depicts the location of analysed brain sections (Image credit: Allen Institute). **(B)** Linear inclusions, positive for osteocalcin (in red), in white matter are not vessel-associated in C57BL6 (left), *Pdgfb^{ret/wt}* (middle) and *Pdgfb^{ret/ret}* (right) mice. Blood vessels are visualized using the anti-collagen IV antibody (in white). **(C)** White matter deposits appearing after PLX5622 treatment *Pdgfb^{ret/ret}* and control mice (*Pdgfb^{ret/wt}*) are positive for PAS (black arrowheads). **(D)** Dystrophic neurites exhibiting axonal spheroids (indicated by white arrowheads) in white matter after PLX5622 treatment in *Pdgfb^{ret/ret}* and control (*Pdgfb^{ret/wt}*) mice. **(E-G)** White matter deposits appearing after microglial depletion are positive for osteocalcin (in cyan) and APP (in red) **(E)**, osteocalcin (in red) and MBP **(F)** (in white), and OPN (in cyan) and APP (in red) **(G)**. Nuclei were visualized using Dapi (E, in white). Scale bars – 1000 μ m (A), 100 μ m (B), 50 μ m (B pink inset, C, D), 10 μ m (B blue inset, F, G) and 5 μ m (E).

Figure 7.

Zarb et al.

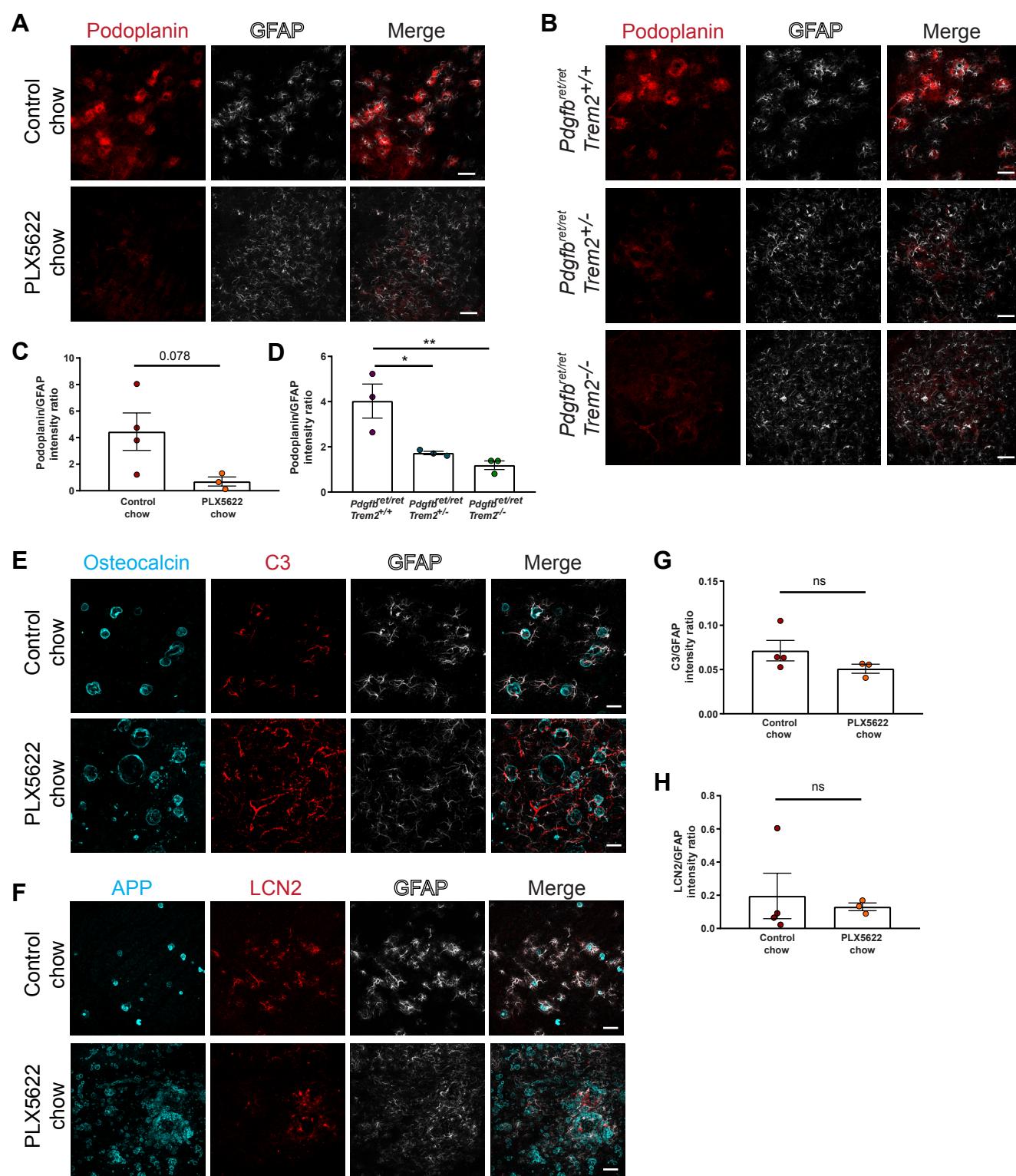


Figure 7. TREM2-dependent microglial function is crucial in controlling vascular calcification.

(A) Altered pattern of vessel calcification in *Pdgfb^{ret/ret}*; *Trem2^{-/-}* animals compared to *Pdgfb^{ret/ret}*; *Trem2^{+/+}* animals. Calcifications are visualized using osteocalcin staining (in red) and blood vessels using collagen IV staining (in white). **(B)** *Pdgfb^{ret/ret}*; *Trem2^{-/-}* and *Pdgfb^{ret/ret}*; *Trem2^{+/+}* animals show an increase in calcification load when compared to *Pdgfb^{ret/ret}*; *Trem2^{+/+}* animals. Vascular calcification is visualized with osteocalcin (in red) and APP (in cyan) staining, and blood vessels using CD31 staining (in white). Note the staining of the two selected calcification markers in *Pdgfb^{ret/ret}* animals that differ in zygosity for *Trem2*. **(D)** Ratio between APP and osteocalcin staining. **(C)** Quantification of calcification using immunohistochemical stains (one-way ANOVA with Dunnett's multiple comparison; *p = 0.0270, **p = 0.0018). **(E)** Cathepsin K (in white) deposition in calcifications (in red) is reduced in *Pdgfb^{ret/ret}*; *Trem2^{-/-}* and *Pdgfb^{ret/ret}*; *Trem2^{+/+}* animals when compared to *Pdgfb^{ret/ret}*; *Trem2^{+/+}* animals. **(F)** Quantification of cathepsin K intensity with immunohistochemical stains (one-way ANOVA with Dunnett's multiple comparison; *p = 0.0146, **p = 0.0076). Scale bars – 50 μ m (A) and 100 μ m (B, E). All data are means \pm SEM.

Figure 8.

Zarb et al.

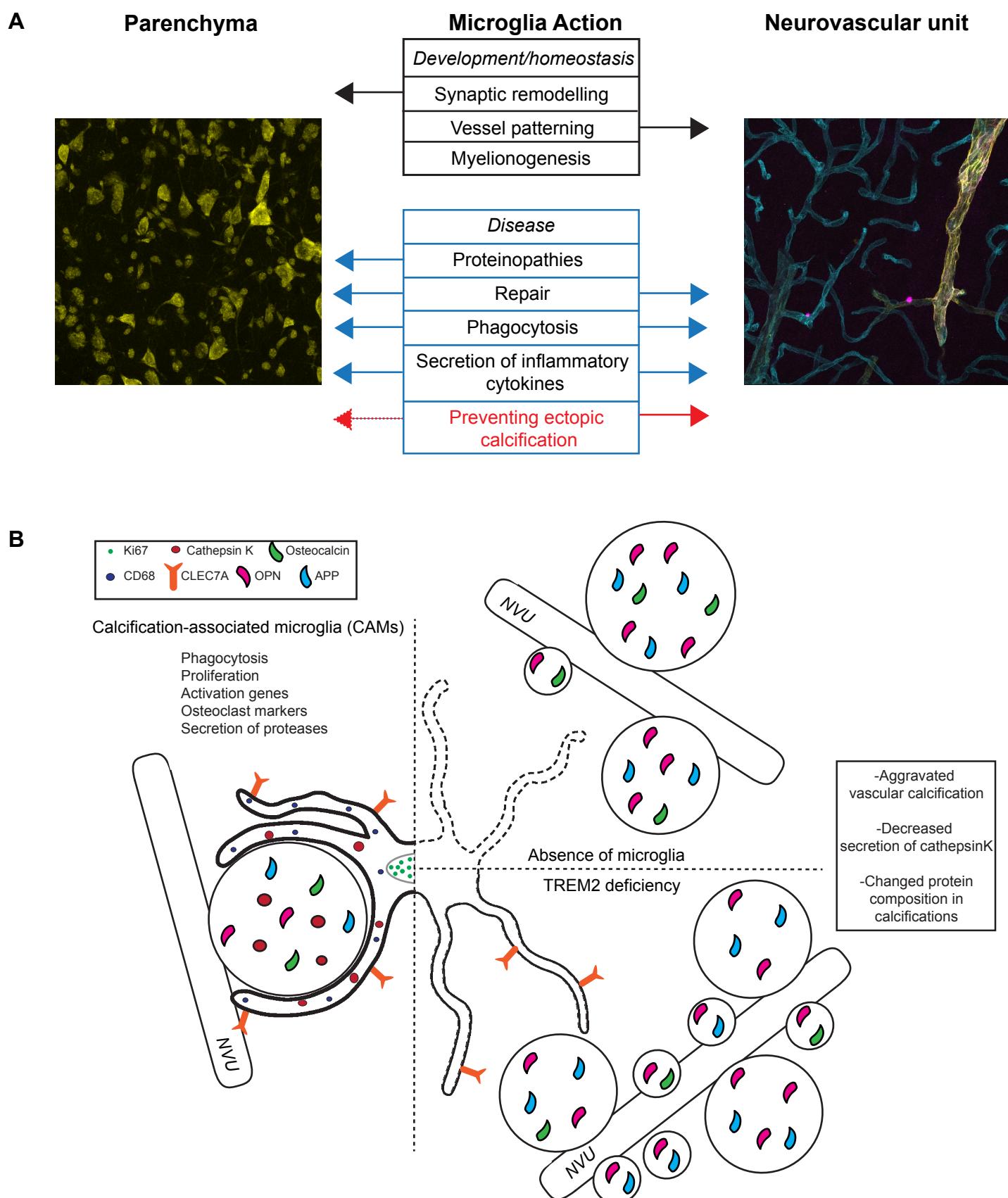


Figure 8. Alterations in microglia number and function change astrocyte reactivity.

(A, B) Podoplanin (in red) expression in GFAP-positive astrocytes surrounding calcifications (in cyan) is reduced in *Pdgfb^{ret/ret}* animals treated with PLX5622 (**A**) or lacking *Trem2* (**B**). **(C, D)** Quantification of podoplanin intensity normalized to GFAP intensity in mice treated with PLX5622 (unpaired two-tailed t-test, $p=0.078$) (**C**) and with different zygosity for *Trem2* (one-way ANOVA with Dunnett's multiple comparison; $*p=0.008$, $**p=0.02$) (**D**). **(E)** C3 (in red) expression in GFAP-positive astrocytes (in white) around calcifications (osteocalcin, in cyan) in *Pdgfb^{ret/ret}* animals treated with PLX5622. **(F)** LCN2 (in red) expression in GFAP-positive astrocytes (in white) around calcifications (APP, in cyan) in *Pdgfb^{ret/ret}* animals treated with PLX5622. **(G)** Quantification of C3 expression in astrocytes (unpaired two-tailed t-test, $p=0.21$). **(H)** Quantification of the LCN2 expression in astrocytes (Mann-Whitney two-tailed test $p=0.63$). Scale bars – 100 μ m (A, C) and 50 μ m (E, G). All data are means \pm SEM.

Figure 9.

Zarb et al.

Figure 9. Microglia functions in brain parenchyma and at the NVU.

(A) Microglia function during development, homeostasis and in disease states with their respective action on parenchymal and NVU cells. Text in red marks a new function identified in this study. **(B)** Calcified protein aggregates at the NVU are surrounded by calcification-associated microglia (CAM). CAMs are phagocytotic (express CD68; blue circles), proliferative (express Ki67; green circles), activated (express CLEC7A; orange receptor), and secrete ECM degrading proteases (cathepsin K, red circles). Vascular calcifications contain bone proteins (osteocalcin, green teardrop; osteopontin, pink teardrop) and non-bone proteins (APP, light blue teardrop; cathepsin K, red circles). Microglial depletion (indicated by a dotted line) or genetic deletion of *Trem2* in *Pdgfb^{ret/ret}* mice leads to increased calcification of the NVU and changes in the protein composition (e.g., lack cathepsin K).