

1      **Title: Dietary fat and fiber impacts intestinal microbiome resilience to**  
2      **antibiotics and *Clostridoides difficile* infection in mice**

3

4      **Authors:** Keith Z. Hazleton<sup>1,2</sup>, Casey G. Martin<sup>3</sup>, Kathleen L. Arnolds<sup>3</sup>, Nichole M. Nusbacher  
5      <sup>4</sup>, Nancy Moreno-Huizar<sup>4</sup>, Michael Armstrong<sup>5</sup>, Nichole Reisdorph<sup>5</sup>, Catherine A. Lozupone<sup>4\*</sup>

6      **Affiliations:**

7      <sup>1</sup> Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition. University of  
8      Colorado, Denver Anschutz Medical Campus, Aurora, CO USA 80045.

9      <sup>2</sup>Digestive Health Institute, Children's Hospital Colorado, Aurora, CO USA 80045.

10     <sup>3</sup> Department of Immunology and Microbiology, University of Colorado, Denver Anschutz  
11     Medical Campus, Aurora, CO USA 80045.

12     <sup>4</sup> Department of Medicine, Division of Biomedical Informatics and Personalized Medicine,  
13     University of Colorado, Denver Anschutz Medical Campus, Aurora, CO USA 80045.

14     <sup>5</sup> Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz  
15     Medical Campus, Aurora, CO USA 80045.

16     \*To whom correspondence should be addressed: Catherine.lozupone@cuanschutz.edu

17     **One Sentence Summary:** High dietary fat promoted mortality in a mouse model of antibiotic-  
18     induced *C. difficile* infection and low dietary fiber caused higher microbiome disturbance upon  
19     broad-spectrum antibiotic exposure, suggesting that diets low in fat and high in fiber may protect  
20     against *C. difficile* pathogenesis.

21

22 **Abstract:** *Clostridoides difficile* infection (CDI) is a leading cause of hospital-acquired diarrhea  
23 and there has been a steady increase in the number of new infections, emphasizing the  
24 importance of novel prevention strategies. Use of broad-spectrum antibiotics and disruption of  
25 the intestinal microbiome is one of the most important risk factors of CDI. We used a murine  
26 model of antibiotic-induced CDI to investigate the relative contributions of high dietary fat and  
27 low dietary fiber on disease pathogenesis. We found that high fat, but not low fiber resulted in  
28 increased mortality from CDI (HR 4.95) and increased levels of *C. difficile* toxin production  
29 compared to a regular low-fat/high-fiber mouse diet even though we did not observe a significant  
30 change in *C. difficile* carriage. The high-fat diet also increased levels of primary bile acids  
31 known to be germination factors for *C. difficile* spores. Mice fed low-fat/low-fiber diets did not  
32 show increased CDI pathogenesis, but did have a larger antibiotic-induced gut microbiome  
33 disturbance compared to mice fed a high-fiber diet, characterized by a greater decrease in alpha  
34 diversity. This microbiome disturbance was associated with a loss of secondary bile acids and  
35 short chain fatty acids, which are both microbial metabolic products previously shown to protect  
36 against CDI. These data suggest that a low-fiber diet contributes to antibiotic-induced dysbiosis,  
37 while a high-fat diet promotes CDI pathogenesis. These findings indicate that dietary  
38 interventions that increase fiber and decrease fat may be an effective prevention strategy for  
39 individuals at high risk of CDI.

40

41 **Introduction**

42 *Clostridoides difficile* infection (CDI) is an important cause of morbidity and mortality,  
43 with 500,000 cases every year causing 30,000 deaths per year in the US alone (1). Alarmingly,  
44 there has been a steady increase in the number of new infections in spite of prevention efforts in  
45 hospitals that have focused largely on increased sanitation and antibiotic stewardship (2). These  
46 prevention approaches treat CDI as a traditional communicable infection. However, recent data  
47 suggests that CDI is often caused by the activation of strains that were already carried in the gut  
48 prior to hospital admission and prior to the onset of symptoms rather than by acquisition of a  
49 hospital-resident strain (3). Thus, determining strategies to reduce *C. difficile* carriage and  
50 attenuate CDI severity is critical.

51 A complex gut microbiome has been shown to be protective against CDI (4). Broad  
52 spectrum antibiotic usage, such as clindamycin, beta-lactams, and fluoroquinolones (5, 6)  
53 increase risk of CDI as do other illnesses associated with reduced gut microbiome diversity, such  
54 as Inflammatory Bowel Diseases (7). Individuals with recurrent CDI (rCDI) typically have  
55 microbiomes with greatly reduced complexity and altered compositions (8-12). The gut  
56 microbiome provides protection in part through conversion of conjugated primary bile acids,  
57 which are excreted by the liver into the intestine where they play a central role in fat digestion,  
58 into secondary bile acids. Taurine-conjugated primary bile acids can promote the germination  
59 and growth of *C. difficile* spores while secondary bile acids cause germination but arrest the  
60 growth of spores (13). Accordingly, prior studies have shown that secondary bile acid producers  
61 such as *Clostridium scindens* can protect against CDI in mice (14). Another class of bacterial  
62 metabolites that inhibits *C. difficile* are short chain fatty acids (SCFA), which are microbial

63 products of fiber fermentation. SCFAs can directly inhibit *C. difficile* growth *in vitro* and are  
64 decreased in individuals with rCDI (15, 16)

65       Recent studies conducted in mice have suggested that diet modulation has the potential to  
66 be an effective prevention strategy for CDI. Mice treated with broad-spectrum antibiotics and fed  
67 diets devoid of microbial accessible carbohydrates (MACs; e.g. soluble fibers such as inulin)  
68 showed increased persistence of *C. difficile* colonization consistent with a protective role of  
69 SCFAs; inulin supplementation of diets low in MACS lead to rapid clearance of *C. difficile* in  
70 this model (15). While dietary fiber content can result in microbial metabolites that are protective  
71 against CDI, other diet-influenced metabolites seem to promote the pathogenesis of CDI. For  
72 instance, consistent with *C. difficile* being auxotrophic for the amino acid proline, experiments  
73 conducted in gnotobiotic mice have supported that mice were protected from *C. difficile*  
74 colonization with low-proline diets (4).

75       Given that conjugated primary bile acids play a central role in fat digestion and are a  
76 germination factor for *C. difficile* spores, we became interested in investigating a role for dietary  
77 fat in CDI pathogenesis. In particular, since prior studies have indicated that the fraction of  
78 taurine-conjugated colonic bile acids increase with diets high in saturated fat (17), we  
79 hypothesized that a high-fat diet could alter the intestinal bile acid composition and drive  
80 pathology in a mouse model of CDI. We further hypothesized that the combination of high fat  
81 and low fiber in the diet, as is common in individuals in developed countries, would together  
82 promote CDI in mice. We found that high dietary fat content in an antibiotic-induced *C. difficile*  
83 model induced high mortality from CDI. A low-fiber diet did not cause mortality but did  
84 decrease the resilience of the gut microbiome to antibiotic-induced disturbance, a known risk  
85 factor for CDI. Taken together, our results suggest that dietary interventions to increase fiber

86 and, perhaps more importantly, to decrease fat represent effective prevention strategies for  
87 individuals at high risk of CDI.

88

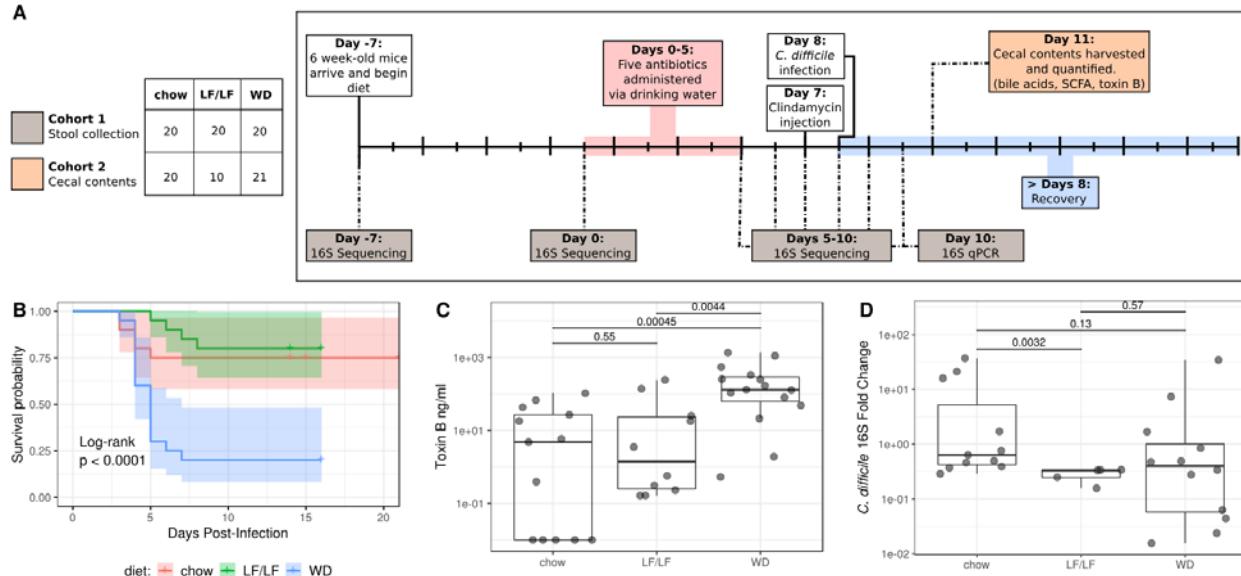
89 **Results**

90 *High dietary fat but not low dietary fiber causes increased mortality and toxin production in*  
91 *murine CDI*

92 To understand the relative effects of dietary fat and fiber on CDI, we used an established  
93 murine model of antibiotic-induced CDI (18). Specifically, conventional 6-week-old female  
94 C57-bl6 mice were fed 1 of 3 diets: 1) conventional mouse chow that is low-fat/high-fiber, 2) a  
95 purified “Western” diet (WD) that had ~2x the content of fat with increased ratio of saturated-to-  
96 unsaturated fat compared to chow and only insoluble cellulose as a source of fiber, and 3) the  
97 same purified diet as the WD, but with a lower fat content, similar to chow (low-fat/low-fiber)  
98 (Table 1). One week after diet switch, mice were treated with a cocktail of antibiotics in their  
99 drinking water for 5 days (kanamycin, gentamicin, colistin, metronidazole and vancomycin)  
100 followed by an injection of clindamycin and gavage with *C. difficile* VPI 10463 (Fig. 1A). We  
101 conducted 2 sets of experiments. In the first set, the experiments were carried out for up to 21  
102 days past *C. difficile* gavage, allowing us to assay effects on mortality and relate these to fecal  
103 microbiome composition. In the second set of experiments, mice were sacrificed at day 3 past *C.*  
104 *difficile* gavage (just prior to the observed onset of mortality in the first experiments), so that bile  
105 and SCFA levels could be assessed from the cecum (Fig. 1A).

106 WD-fed mice showed a marked increase in mortality as compared to chow-fed mice (HR  
107 4.95 CI 1.79-13.72) upon CDI exposure, and significantly higher levels of *C. difficile* toxin B in

108 the cecum after 3 days of infection (Fig. 1B, C). The low-fat/low-fiber diet-fed mice showed  
109 survival and *C. difficile* toxin B levels comparable to the chow-fed mice (Fig. 1B, C). Using  
110 qPCR to compare the relative abundance *C. difficile* to overall bacterial load in fecal samples  
111 collected 2 days after *C. difficile* challenge, we did not observe any significant differences in *C.*  
112 *difficile* carriage based on diet (Fig. 1D).


113 Because our WD and low-fat/low-fiber diet differed in sucrose content, we also tested a  
114 fourth diet that was low in fat and fiber, but with sucrose equivalent to the WD (Table S1).  
115 Sucrose does not appear to play a role in the increased mortality observed in the WD, as 100%  
116 survival was observed in mice fed this fourth diet (n = 10, one cage with 5 mice in two separate  
117 experiments) and those who received the low-fat/low-fiber/low-sucrose diet.

118

119 **Table 1**

|                        | <i>Low-fat/High fiber<br/>Chow diet</i> | <i>High-fat/Low-fiber<br/>Western diet (WD)</i> | <i>Low-fat/Low-fiber<br/>diet</i> |
|------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------|
| Fat (% kcal)           | 16                                      | 34.5                                            | 17.2                              |
| (% SFA)                | (N/A)                                   | (36.2)                                          | (19.5)                            |
| (% MUFA)               |                                         | (41.3)                                          | (41.7)                            |
| (% PUFA)               |                                         | (22.5)                                          | (38.8)                            |
| Carbohydrates (% kcal) | 60                                      | 50                                              | 63.9                              |
| (Sucrose)              | (0)                                     | (23.4)                                          | (10.6)                            |
| Protein (% kcal)       | 24                                      | 15.5                                            | 18.8                              |
| Fiber (g/kg)           | 137                                     | 50 (cellulose)                                  | 50 (cellulose)                    |

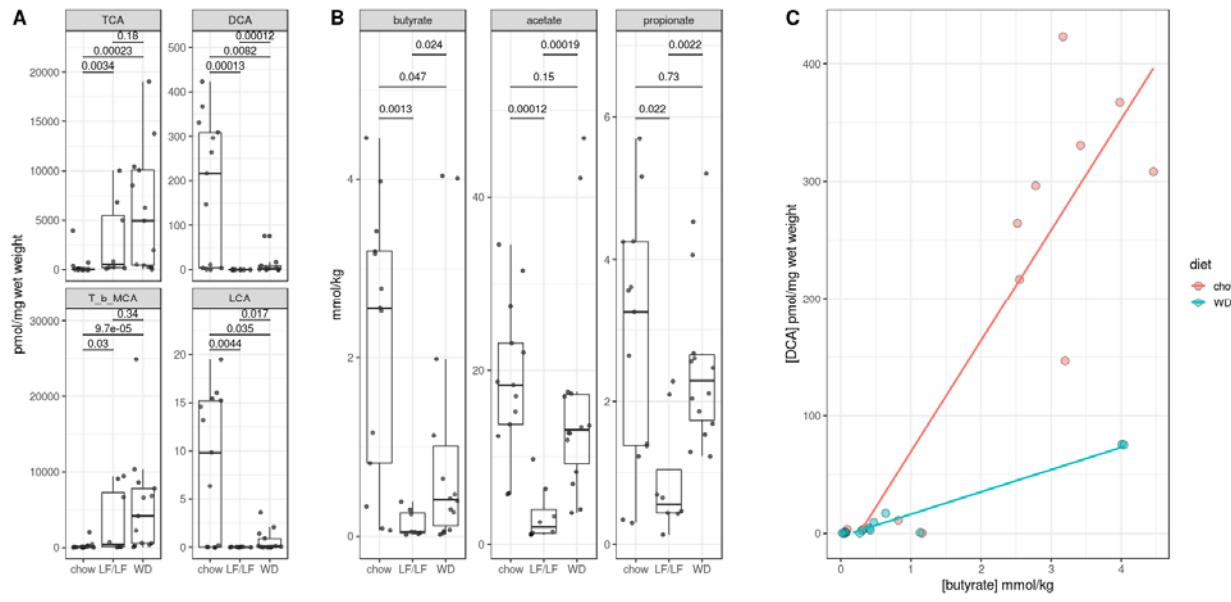
120



121

122 **Figure 1:** Experimental design of murine model of antibiotic-induced CDI, survival curves and  
123 *C. difficile* toxin production and colonization of mice on varying diets. **A)** *C. difficile* challenge  
124 experimental design. The figure legend at the left panel indicates the samples sizes for the 2  
125 cohorts. Grey and orange boxes indicate the timepoints at which samples were collected for the  
126 respective cohorts **B)** Survival curves on the 3 diets. Both chow and low-fat/low-fiber (LF/LF)  
127 diets show increased survival as compared to WD (high-fat/low-fiber). Statistical significance as  
128 assessed by log-rank comparison is indicated. **C)** Toxin B levels measured in cecal contents of  
129 mice by ELISA (tgcBiomics) at day 3 post infection. Statistical significance was assessed with  
130 the Wilcoxon rank-sum test. **(D)** qPCR of *C. difficile* normalized to total 16S from fecal pellets  
131 in fecal samples collected 2 days post *C. difficile* challenge, with significance determined by  
132 Wilcoxon rank-sum test.

133


134 *Fiber increases cecal levels of secondary bile acids and butyrate; fat increases taurine-  
135 conjugated primary bile acids*

136 To understand the effects of diet modulation on microbial metabolites previously  
137 described to modulate *C. difficile* sporulation, growth and activity, we assessed levels of bile  
138 acids and SCFAs in aspirated cecal contents that were collected in a separate cohort of 51 mice  
139 (chow= 20, WD = 21, low-fat/low-fiber = 10) sacrificed at 3 days post *C. difficile* infection,  
140 which is just before mortality typically occurred with the WD diet (Fig. 1A). A total of 17 bile  
141 acids including conjugated and unconjugated primary bile acids found in both humans and mice  
142 and secondary bile acids, were quantified using HPLC/QTOF using the method described in (19)  
143 with modifications (see methods). We found that mice fed a WD showed significantly increased  
144 levels of taurine-conjugated primary bile acids compared to chow with a trend towards increased  
145 level compared to the low-fat/low-fiber diet (Fig 2A, Fig. S1C). The primary unconjugated bile  
146 acids (e.g. beta-muricholic acid, cholic acid) did not show a consistent pattern of change based  
147 on diet (Fig. S1A) and glycine conjugated bile acids were minimally detectable, which is  
148 consistent with mouse metabolism of bile acids strongly favoring taurine conjugation. Finally,  
149 the chow-fed mice demonstrated high levels of bacterially-produced secondary bile acids as  
150 compared to both WD and low-fat/low-fiber diets (Fig. 2A).

151 The SCFAs butyrate, acetate and propionate were also quantified in cecal contents 3 days  
152 after *C. difficile* infection using gas-chromatography/mass spectrometry (GC/MS). Consistent  
153 with SCFAs being microbial fermentation products of dietary fiber, cecal levels of butyrate were  
154 reduced in the WD and low-fat/low-fiber diets compared to chow (Fig. 2B). The SCFAs acetate  
155 and propionate showed a reduction in the low-fat/low-fiber but not the WD compared to chow  
156 (Fig. 2B). Interestingly, there was a strong positive correlation between levels of the secondary

157 bile acid deoxycholate (DCA) and butyrate in both the chow and WD-fed mice, with a markedly  
158 increased effect size (slope) in the chow-fed mice (Fig. 2C). For chow-fed mice DCA levels  
159 increase by 94.4 pmol/mg wet weight for every 1 mmol/kg increase in butyrate ( $p = 5.4 \times 10^{-9}$ ).  
160 Diet alone was not associated with DCA levels ( $p = 0.500$ ), but there was a significant  
161 interaction between diet and butyrate; for WD-fed mice DCA levels increase by 18.92 pmol/mg  
162 wet weight for every 1 mmol/kg increase in butyrate ( $p = 5.1 \times 10^{-5}$ ). All low-fat/low-fiber  
163 samples were omitted from the regression as none of the sample had detectable DCA.  
164 Additionally, a single sample from the chow cohort (butyrate = 11.31 mmol/kg, DCA = 342  
165 pmol/mg wet weight) was omitted due to its outsized influence on the regression fit (DFFITs = -  
166 12.7).

167 To explore a direct relationship between microbial metabolites and *C. difficile*  
168 pathogenicity, we determined whether any bile acids or SCFAs correlated with *C. difficile* toxin  
169 production using linear regression. The model [Toxin B] ~ diet had an adjusted R-squared of  
170 0.1748 and p-value of 0.0131. The only metabolite that was associated with toxin B  
171 concentration in univariate analysis was taurocholic acid-3-sulfate (TCA-3-SO<sub>4</sub>) (Table S2).  
172 However, from multivariate analysis it would appear that this association is driven by  
173 collinearity of TCA-3-SO<sub>4</sub> and Toxin B concentrations with respect to diet (Fig. S2). Addition of  
174 other individual metabolites to the regression model with diet (e.g. Toxin B ~ metabolite + diet  
175 or Toxin B ~ metabolite + diet + diet\*metabolite) did not improve the regression model,  
176 suggesting that dietary control of toxin production is independent of the metabolites we  
177 interrogated.



178

179 **Figure 2:** Metabolite changes in cecal contents of infected mice 3 days post *C. difficile* infection.

180 **(A)** Cecal levels of taurine-conjugated primary bile acids (left column) and bacterially-produced  
181 secondary bile acids (second column) across diets. TCA= Taurocholic acid; T-b-MCA=Tauro-b-  
182 muricholic acid; DC=Deoxycholic acid; LCA=Lithocholic acid. **(B)** Cecal short chain fatty acid  
183 levels across diets. P-values were determined using the Wilcoxon rank-sum statistical test. **(C)**  
184 Multiple linear regression of DCA levels as a function of butyrate and diet. Model = DCA ~  
185 butyrate + diet + butyrate\*diet. R-squared 0.855 p <0.0001. Low-fat/low-fiber samples were  
186 excluded from analysis since there was no detectable DCA.

187

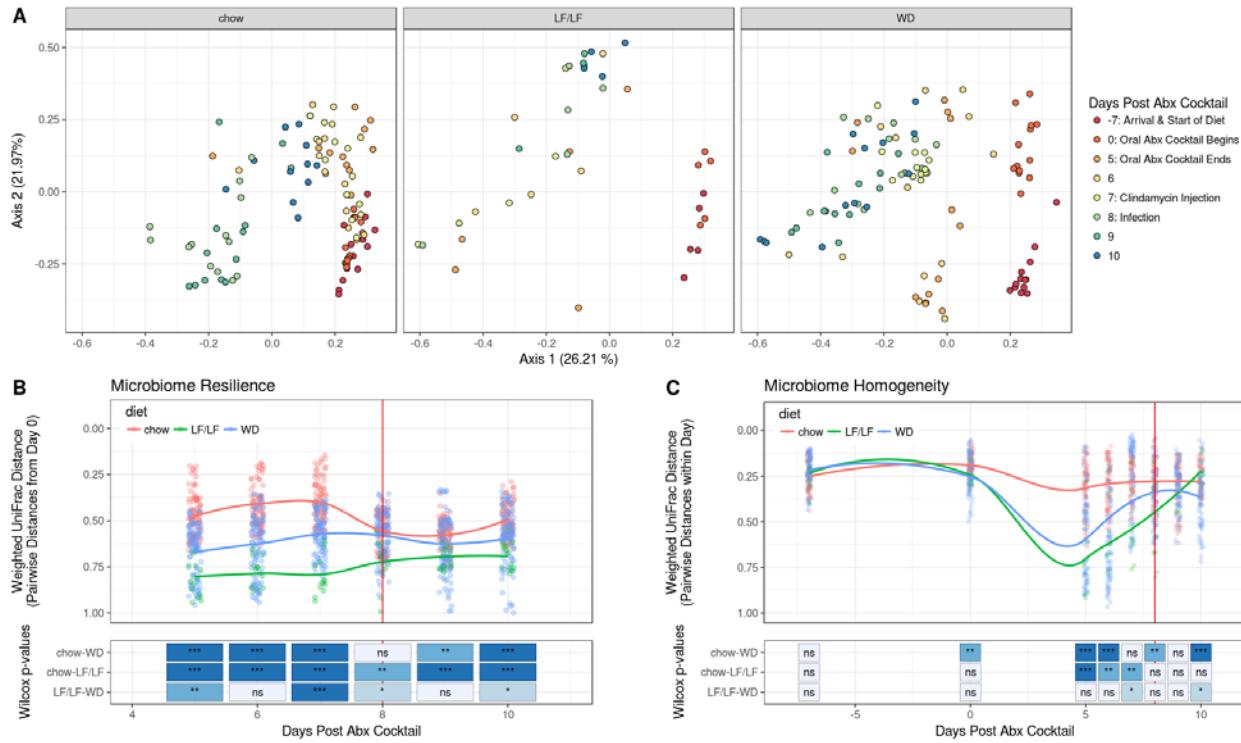
188 *Dietary fiber increases homogeneity of response, resilience and alpha-diversity of the gut*  
189 *microbiome after challenge with antibiotics and CDI*

190 We next sought to understand how the composition of the fecal microbiome was affected  
191 by diet during the course of antibiotic treatment and infection with *C. difficile* (Fig. 1A). Fecal  
192 pellets were collected upon arrival prior to diet change (Day -7), just prior to the start of oral  
193 antibiotic delivery (Day 0), after 5 days of oral antibiotics (Day 5), and daily through Day 10,  
194 which captured before and after the clindamycin injection given on day 7 and *C. difficile* gavage  
195 on Day 8 (Fig. 1A). Collected samples were subjected to 16S ribosomal RNA (rRNA) amplicon  
196 sequencing targeting the V4 region of rRNA on the MiSeq platform.

197 Principle coordinate analysis (PCoA) plots of a weighted UniFrac distance matrix  
198 suggested that mice fed either low-fiber diet had decreased resilience and a less homogeneous  
199 response to antibiotic challenge and CDI as compared to chow-fed mice. Mice fed either low-  
200 fiber diet showed greater divergence across PC1 upon antibiotic exposure than chow-fed mice,  
201 higher spread across mice in the same diet group, and less recovery towards their baseline after  
202 antibiotics (Fig. 3A). We quantified resilience by comparing the pairwise weighted UniFrac  
203 distances of mice across the experiment to baseline microbiota of their respective diet cohort at  
204 Day 0 (7 days post-diet change and pre-oral antibiotics; Fig. 3B). Chow-fed mice had  
205 significantly smaller weighted UniFrac distances from their baselines than the other groups at  
206 Day 5 (post 5 days antibiotic challenge) that persisted through Day 10 despite some convergence  
207 after clindamycin injection (Day 8) (Fig. 3B). By Day 9, chow-fed mice again displayed higher  
208 microbiome resilience than both low-fiber groups. We also assessed the homogeneity of  
209 response to a disturbance among mice in the same diet group. As an example, low homogeneity  
210 would occur if the mice within a diet group showed high variability in the degree to which their

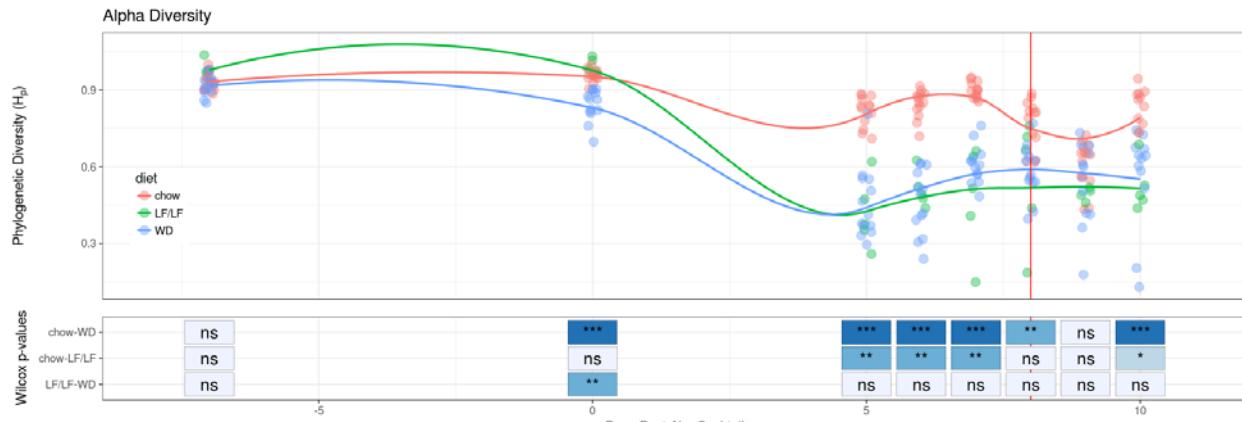
211 gut microbiome changed upon antibiotic exposure. We quantified this as the median pairwise  
212 weighted UniFrac distance for comparisons within samples collected at the same time point from  
213 mice fed the same diet (Fig. 3C). Both low-fiber diets showed much lower homogeneity of gut  
214 microbiome compositional response to antibiotic challenge, particularly to the 5 day treatment  
215 with oral antibiotics (Day 5), compared to chow-fed mice (Fig. 3C).

216 Similar patterns were seen when evaluating changes in alpha-diversity across the  
217 experiment between each diet cohort. Figure 4 shows changes in phylogenetic entropy, which is  
218 a measure of alpha diversity that considers species richness, evenness, and distinctness (20). The  
219 phylogenetic entropy of the WD-fed mice was lower than chow-fed mice after diet change and  
220 this difference became more pronounced upon oral antibiotics and remained so through the rest  
221 of the experimental timeline (Fig. 4). Interestingly, the phylogenetic entropy of the low-fat/low-  
222 fiber diet-fed mice remained equivalent to the chow-fed cohort with diet change but decreased to  
223 the same level as the WD with antibiotic treatment (Fig. 4).


224

225

226


227

228



229

230 **Figure 3:** Beta diversity plots of fecal microbiome by diet during antibiotic treatment and  
 231 infection with *C. difficile*. Vertical red lines in panels B and C designate the day of *C. difficile*  
 232 infection. (A) Weighted UniFrac PCoA plots of all samples with each diet highlighted in  
 233 separate panels. (B) Resilience of microbiome composition assessed by within-mouse pairwise  
 234 weighted UniFrac distances between Day 0 (7 days post diet switch and prior to oral antibiotics)  
 235 and later time points and (C) Longitudinal plot of microbiome turnover homogeneity as plotted  
 236 by intra-time point pairwise Weighted UniFrac distances within diet groups. Trend lines were fit  
 237 using local polynomial regression.

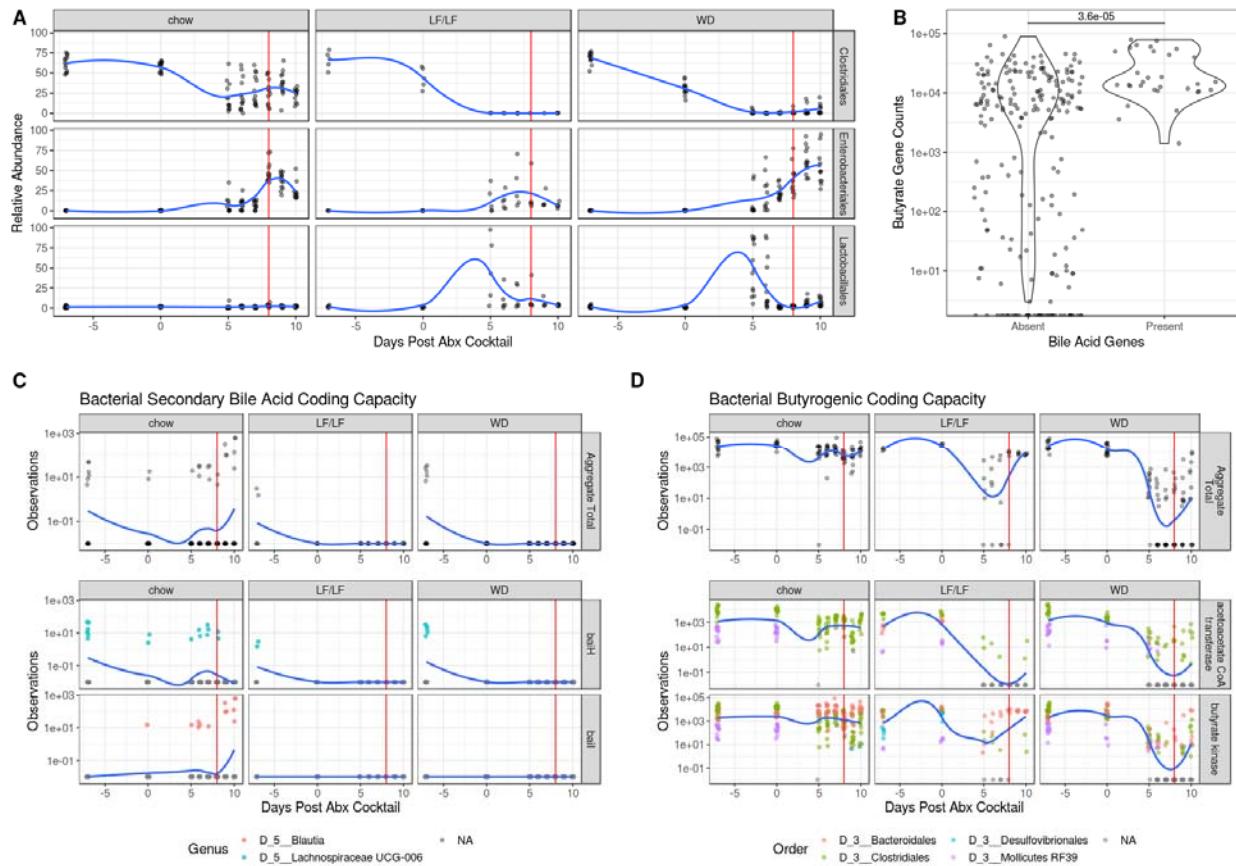


238

239 **Figure 4:** Alpha-diversity (phylogenetic entropy) of the fecal microbiome during murine CDI  
240 model. Data for each individual mouse is plotted as well as the fitted local polynomial regression  
241 for each diet group. Significant differences between groups are noted as calculated with the  
242 Wilcoxon rank-sum test. \*\*\*:  $p < 0.001$ . \*\*:  $p < 0.01$ , \*:  $p < 0.05$  ns= non significant.

243 *Dietary fiber influences colonization patterns of facultative anaerobes and of secondary bile acid*  
244 *and SCFA-producing bacteria*

245 Low-diversity dysbiosis is a state of disturbance that is often characterized not only by  
246 low alpha-diversity, but also by an increased ratio of facultative to strict anaerobes (21). Low-  
247 diversity dysbiosis is associated with a number of diseases including rCDI (21). We sought to  
248 investigate whether high dietary fat and low dietary fiber influenced if the microbiome  
249 developed a compositional state characterized by high levels of facultative anaerobe colonization  
250 and lower levels of strict anaerobes. Since Lactobacillales and Enterobacteriales contain many  
251 important intestinal facultative anaerobes and most members of Clostridiales are strict anaerobes  
252 and include key butyrate and secondary bile acid producers, we plotted the relative abundances  
253 of these orders over the course of the experiment (Fig. 5A). All mice had decreases in the  
254 relative abundance of Clostridiales in their fecal microbiome with oral antibiotics; however, mice  
255 fed a chow diet were able to maintain a Clostridiales population while both low-fiber diets saw  
256 near-complete elimination of these taxa (chow-WD p<0.01 for days 0 through 9 and p<0.05 on  
257 day 10, Fig. S3). Conversely, mice fed either low-fiber diet had a large bloom of Lactobacillales  
258 after oral antibiotic treatment that was not observed in the chow-fed mice (chow-WD p <0.001  
259 and chow-low-fat/low-fiber p<0.05). Lastly, all 3 diet groups had a large increase in  
260 Enterobacteriales in their fecal microbiome following antibiotics; however, the low-fat/low-fiber  
261 and chow groups showed earlier decrease than WD mice (chow-WD p <0.01 and p<0.05 at days  
262 9 and 10 respectively, Fig. S3). Comparisons of the low-fat/low-fiber diet were limited due to  
263 smaller sample size (n = 5 vs. n = 13 for chow and WD).


264 We also used PICRUSt (22) to predict metagenomes using our 16S rRNA data 1) to  
265 investigate trends in the prevalence of key genes in secondary bile and butyrate production over

266 the course of our experimental timeline and 2) to predict which bacterial taxa were contributing  
267 these genes. Because BaiA, BaiB, and BaiCD are not available in PICRUSt2's set of predicted  
268 genes, we only used the genes for BaiH (KEGG ID: K15873) and BaiI (KEGG ID: K15874),  
269 which are both genes in the Bai operon (23), to assess genomic potential for secondary bile acid  
270 metabolism. Acetoacetate co-A transferase (*but*; K01034) and Butyrate Kinase (*buk*; KEGG ID:  
271 K00929), which are the main pathways for fermentative production of butyrate in the gut  
272 microbiome (24), were used to assess butyrate production potential. Plotting these  
273 genes/pathways over time reveals a significant effect of fiber on their abundance and response to  
274 antibiotics (Fig. 5C). Although all diet groups showed a marked decrease in bile acid genes with  
275 oral antibiotics, only the chow-fed mice displayed a recovery of bile acids genes, though the  
276 source of these genes switched from Lachnospiraceae UCG-006 to Blautia. This result is  
277 consistent with our observation of higher cecal levels of secondary bile acids in chow-fed mice  
278 compared to mice fed either low-fiber diets at 3 days post *C. difficile* gavage (Fig. 2A).

279 Fiber also influenced the butyrate coding capacity observed between diet groups. Chow-  
280 fed mice showed minimal change in the abundance of both the *but* and *buk* genes for  
281 fermentative butyrate production during the time course while the WD mice had a decrease of 5  
282 orders of magnitude (Fig 5D). The low-fat/low-fiber mice showed an intermediate phenotype  
283 with the resilience of the butyrate pathway being mostly attributed to a butyrate kinase dependent  
284 pathway. The results for *but* and not *buk* however are consistent with our measurements of cecal  
285 butyrate levels in these mice 3 days post *C. difficile* gavage (Fig. 2B). This is consistent with *but*  
286 being regarded to be a more important source of butyrate in the intestine (25).

287 Since we had observed a strong positive correlation between cecal levels of butyrate and  
288 the secondary bile acid DCA in our mass spectrometry data (Fig. 2C), we also determined

289 whether there was a relationship between butyrate and secondary bile acid coding capacity. We  
290 found a highly significant association ( $p = 3.6 \times 10^{-5}$ ), with secondary bile acid producing genes  
291 only predicted to be present in samples that also had high predicted levels of butyrate producing  
292 genes (Fig. 5B).



293

294 **Figure 5:** Changes in key taxa, and secondary bile acid and butyrate coding capacity during the  
 295 CDI protocol. The vertical red line in (A), (C) and (D) represent day of infection with *C. difficile*.  
 296 All trend lines were fit using local polynomial regression. **(A)** Relative abundance of key  
 297 bacterial orders during antibiotic treatment and infection. Clostridiales are strict anaerobes while  
 298 Enterobacteriales and Lactobacillales are facultative anaerobes. **(B)** Violin plots of abundance of  
 299 butyrate genes from PICRUSt analysis binned by presence of secondary bile acid producing  
 300 genes (Wilcoxon  $p < 0.001$ ). **(C)** Time course of coding capacity of secondary bile acid genes.  
 301 The top row shows the total capacity of each sample (BaiH and BaiI) while the bottom two rows  
 302 show specific taxa contributions of key genes in the Bai operon. **(D)** Time course of coding  
 303 capacity of butyrate producing genes by diet. The top row shows the total capacity as measured

304 by *but* and *buk* genes while the bottom two rows show specific taxa contributions of *but* and *buk*  
305 specifically. Taxa with mean relative abundance < 0.01% were filtered from the analysis.

306

307 **Discussion**

308         *Clostridioides difficile* infection is a grave and growing health threat. Current strategies to  
309 limit its spread have focused on sanitation and antibiotic stewardship, however incidence has  
310 continued to rise *in spite* of these efforts, highlighting the need for new treatment and prevention  
311 strategies (2). Because of the ubiquity of *C. difficile* spores in the environment, focusing on ways  
312 to increase the resilience of the host to colonization is one important prevention strategy.  
313 However, modulation of host factors that influence virulence of *C. difficile* already present in the  
314 gut is also a key aspect of prevention, as CDI is often caused by *C. difficile* that is already  
315 residing in the gut before the onset of symptomatic CDI rather than acquisition of a new  
316 infection (3).

317         A growing body of evidence points to dietary intervention as a promising new approach  
318 to prevent CDI colonization (4, 15). One recent study showed that a diet poor in proline (an  
319 essential amino acid for *C. difficile* growth) prevented *C. difficile* carriage (4). Another study  
320 demonstrated that mice fed a diet deficient in MACs (e.g. soluble fiber, resistant starches) had  
321 persistent *C. difficile* shedding and that there was a resolution of colonization with the  
322 reintroduction of inulin or other MACs (15). Although these papers both showed a strong effect  
323 of dietary factors on *C. difficile* colonization, neither study observed the high levels of mortality  
324 that we observed here with a high-fat/low-fiber WD. This is consistent with our findings that a  
325 low-fat/low-fiber diet did not increase mortality in our antibiotic induced CDI murine model, and  
326 suggests a particularly high influence of dietary fat on CDI disease severity. This is further  
327 supported by the fact that *C. difficile* abundance 2 days post *C. difficile* challenge, as quantified  
328 by strain-specific qPCR, was not significantly influenced by diet, suggesting that in an acute  
329 infection model, *C. difficile* blooms regardless of diet, and that increased disease severity is due

330 to dietary fat activating toxin production and not from increased *C. difficile* carriage.  
331 Furthermore, although new data has suggested that novel speciation of *C. difficile* may be  
332 selecting for strains that show increased sporulation and host colonization capacity with sugar  
333 (glucose or fructose) (26), this work, conducted with a hyper-virulent *C. difficile* strain (VPI  
334 10463), did not show differences in mortality from CDI in low-fat/low-fiber diets with different  
335 amounts of sucrose.

336 Evidence to suggest that a high-fat/low-fiber western diet could have a more profound  
337 effect on CDI was first presented over 20 years ago. In experiments designed to study the  
338 atherogenic properties of a Western diet in Syrian hamsters, significant mortality from CDI was  
339 observed in hamsters fed a high-fat/low-fiber pro-atherogenic diet and not a typical high-  
340 fiber/low-fat hamster diet (27, 28). Our work confirms the same effect of a WD in an antibiotic-  
341 induced murine CDI model.

342 Differences in host bile acid production and microbial bile acid metabolism is one  
343 potential mechanism of high-fat diet induced modulation of CDI severity. *In vitro* experiments  
344 have shown that the primary bile acid taurocholate is a potent *C. difficile* germination and growth  
345 factor (13). We found that mice fed a high-fat/low-fiber WD had higher cecal levels of primary  
346 taurine-conjugated bile acids compared to the two low-fat diets tested. This is consistent with a  
347 prior study that found that IL10-deficient mice fed a diet high in saturated fat, had an increased  
348 proportion of taurine-conjugated bile acids compared to standard chow and a diet high in poly-  
349 unsaturated fats (17). However, in our current study multivariate regression did not correlate any  
350 species of bile acid with toxin B concentration. This suggests that dietary fat may directly  
351 modulate *C. difficile* Toxin B production or act through a non-bile acid dependent pathway to  
352 promote CDI in our model.

353 We also sought to explore a role for secondary bile acids in phenotypes observed in diet-  
354 induced CDI. *In vitro* experiments have shown that the bacterially produced secondary bile acids  
355 deoxycholate and lithocholate caused germination followed by growth arrest of *C. difficile* (13).  
356 In line with these effects, reduced prevalence of the secondary bile acid producer, *Clostridium*  
357 *scindens* in the fecal microbiome has been associated with high incidence of CDI in both humans  
358 and in experimental mouse models, and gavaging mice with *C. scindens* protected against CDI  
359 and restored intestinal secondary bile acid levels (14). We observed that chow-fed mice had high  
360 levels of secondary bile acids compared to both WD and low-fat/low-fiber diets. Functional  
361 interrogation of the microbiome using PICRUSt suggests that this might be due to a lack of  
362 recovery of secondary bile acid producing bacteria following antibiotic disturbance in both low-  
363 fiber diet contexts. However, mice fed the low-fat/low-fiber diet did not demonstrate the  
364 increased mortality or high *C. difficile* toxin production observed in the WD despite a lack of  
365 secondary bile acids, suggesting that the loss of secondary bile acid producing bacteria were not  
366 an important mechanism for the increased mortality and *C. difficile* toxin production observed  
367 with a WD.

368 While these data show that a high-fat diet increases *C. difficile* toxin production and  
369 mortality in a mouse model of CDI, we did not explore how the composition of fat influences  
370 these factors. Our WD composition represents a typical diet in the United States based on  
371 population survey data and it has 34.5% of calories from fat, with a roughly equivalent  
372 contributions of saturated (~36%), mono-unsaturated fats (41%) and a lower contribution from  
373 poly-unsaturated fats (~21%). In the low-fat/low-fiber diet, these contributions are reversed  
374 (saturated fat ~19% and poly-unsaturated fat ~39%). Further studies to determine if total fat  
375 intake or specific types of fat drive our observed phenotype are needed.

376 Our data suggests that dietary fiber is critical for the resilience and homogeneity of  
377 response of the gut microbiome after perturbation. In both cohorts of mice fed fiber-deficient  
378 diets, the gut microbiome was significantly more variable and slower to recover to baseline after  
379 perturbation. By supplying the gut with a preferred fuel (fiber) for species associated with health  
380 (e.g. strict anaerobes), the community is able to resist antibiotic induced changes and reconstitute  
381 more quickly once the pressure of antibiotic treatment has been removed. This finding is  
382 consistent with a recent study that showed that fiber supplementation in mice lead to a reduced  
383 disruption of the gut microbiome to disturbance from amoxicillin, and that this was linked with  
384 upregulation of polysaccharide utilization by *Bacteroides thetaiotaomicron*, an intestinal  
385 commensal that individually became less susceptible to amoxicillin in the presence of dietary  
386 fiber (29).

387 This increased resilience of gut microbiome composition to antibiotic disturbance was  
388 also reflected through levels of the bacterially produced metabolites that we measured. Neither  
389 low-fiber diet was able to maintain butyrate or secondary bile acid production following  
390 perturbation. Based on the correlation between butyrate and DCA concentrations, we speculate  
391 that the lack of butyrate leads to increased luminal oxygen concentrations that are unsuitable for  
392 *Clostridium scindens* and other secondary bile acid producers. Prior work has shown that  
393 aerobic metabolism of butyrate by intestinal epithelial cells is a key driver of intestinal hypoxia  
394 (30). That there may be increased luminal oxygen concentrations in the low fiber diets is  
395 consistent with our observation of a bloom in Lactobacillales order, which is entirely composed  
396 of facultative anaerobes, after oral antibiotic challenge in both low-fiber diets but not chow.

397 While our data do not suggest a role for fiber in protection against mortality from CDI in  
398 this mouse model, it would be short-sighted to dismiss the beneficial role of fiber in maintaining

399 a healthy gut microbiome and resistance to CDI. Our model utilized a rather short-term diet  
400 change and an intense antibiotic regimen that may not correlate well with human circumstances.  
401 We also did not explore diets high in fat and high in fiber, where it is possible that increased  
402 microbiome resilience to antibiotics due to fiber may protect from the detrimental effects of fat.  
403 As discussed above, a fiber-deficient diet has been shown to hinder clearance of *C. difficile* after  
404 challenge (15). This is particularly relevant in a clinical context as recent studies of both  
405 pediatric and adult oncology patients have shown asymptomatic colonization rates with *C.*  
406 *difficile* of ~30% and ~10%, respectively (3, 31). Further, in pediatric patients it was  
407 demonstrated that the vast majority of “hospital-acquired” CDI may be caused by a strain of *C.*  
408 *difficile* that is present at admission rather than a strain acquired during the patient stay (3).

409 Our data along with recently published findings investigating dietary fiber (15) and  
410 dietary proline (4) intake provides a compelling case that diet should be increasingly targeted as  
411 a prevention and treatment modality for CDI. High-risk populations such as adult and pediatric  
412 oncology patients may benefit from decreased *C. difficile* colonization through increased fiber  
413 intake. For patients with active infection, limiting fat intake could decrease disease severity  
414 while maintaining enteral nutrition.

415 **Materials and Methods**

416 Murine model of CDI: Mice were infected using a widely used murine CDI model (18)  
417 with minor modifications. Briefly, 6-week-old female C57BL/6 mice from Taconic Bioscience  
418 (Rensselaer, NY) arrived at University of Colorado on Day -7 of the experiment. Within 24  
419 hours, mouse feed was changed to one of three diets: standard chow, high-fat/low-fiber (Western  
420 Diet), or low-fat/low-fiber diet (all groups n=20). After seven days of the new diet, we placed  
421 mice on a five-antibiotic cocktail (kanamycin (0.4 mg/ml), gentamicin (0.035 mg/ml), colistin

422 (850 U/ml), metronidazole (0.215 mg/ml), and vancomycin (0.045 mg/ml)) in their drinking  
423 water. Antibiotics were removed for 48 hours, after which we administered an intraperitoneal  
424 injection of clindamycin in normal saline (10 mg/kg body weight). Twenty-four hours after  
425 injection, we gavaged mice with  $1.75 \times 10^5$  cfu of *C. difficile* VPI 10463. We weighed mice daily  
426 after removal of oral antibiotics and they were euthanized if they lost >15% of body weight or  
427 were moribund. Fecal pellets were collected at arrival (Day -7), after diet change and prior to  
428 oral antibiotics (Day 0) and then daily after removal of oral antibiotics (Day 5-10). In a separate  
429 experiment, we performed the same experimental protocol on 51 mice (chow = 20, low-fat/low-  
430 fiber = 10, WD = 21), but we sacrificed the mice 72 hours after infection and collected cecal  
431 contents for short chain fatty acid, bile acid and toxin quantification. All mouse experiments  
432 were approved by the Institutional Animal Care and Use Committee and complied with their  
433 guidelines and NIH Guide for the Care and Use of Laboratory Animals (IACUC protocol  
434 #00249)

435 **DNA Extraction and Sequencing:** Total genomic DNA was extracted from fecal pellets  
436 from a subset of the mice in cohort 1 (chow = 13 mice from four separate cages over two  
437 experiments, WD = 13 mice from four separate cages over two experiments, low-fat/low-fiber =  
438 5 mice from two cages over two experiments) using the DNeasy PowerSoil Kit (Qiagen,  
439 Germantown, MD). Modifications to the standard protocol included a 10 minute incubation at  
440 65°C immediately following the addition of the lysis buffer and the use of a bead mill  
441 homogenizer at 4.5 m/s for 1 min. The V4 variable region of the 16S rDNA gene was targeted  
442 for sequencing (515F: GTGCCAGCMGCCGCGTAA, 806R:  
443 GGAATCAGVGGGTWTCTAAT). The target DNA was amplified using HotMaster Mix  
444 (Quantabio Beverly, MA). Construction of primers and amplification procedures follow the

445 Earth Microbiome Project guidelines ([www.earthmicrobiome.org](http://www.earthmicrobiome.org)) (32). Amplified DNA was  
446 quantified in a PicoGreen (ThermoFisher Scientific) assay and equal quantities of DNA from  
447 each sample was pooled. The pooled DNA was sequenced using a V2 2x250 kit on the Illumina  
448 MiSeq platform (San Diego, CA) at the University of Colorado Anschutz Medical Campus  
449 Genomics and Microarray Core facility.

450 **Sequence Data Analysis:** Raw paired-end FASTQ files were processed with QIIME 2  
451 version 2018.8 (33). Denoising was performed with DADA2 (34), a phylogenetic tree was built  
452 using sepp (35) and taxonomy was assigned to amplicon sequence variants (ASVs) using the  
453 RDP Classifier (36) trained on the Silva version 132 taxonomic database (37, 38) using QIIME  
454 2. The data was rarefied at 5,746 sequences per sample. Alpha-diversity was measured by  
455 phylogenetic entropy (20) and beta-diversity was determined by weighted UniFrac distances  
456 (39). PCoA of weighted UniFrac plots were constructed using QIIME 2. Metagenomes were  
457 imputed from 16S ASVs using PICRUSt2's default pipeline for stratified genome contributions  
458 (22). Low abundance taxa (<0.01% mean relative abundance) were filtered for analysis of the  
459 butyrogenic coding capacity. Software was installed using Anaconda (40) and analysis was  
460 performed on the Fiji compute cluster at the University of Colorado Boulder BioFrontiers  
461 Institute.

462 ***C. difficile* and 16S Quantitative PCR:** qPCR was performed on extracted DNA from  
463 fecal pellets from cohort 1 on day 10 of the experiment with primers targeting the V4 region of  
464 16S rRNA (see above) and strain specific *C. difficile* VPI 10463 (41). The qPCR was prepared  
465 using Kapa SYBR Fast qPCR master mix (Roche Wilmington, MA) and completed on the  
466 CFX96 platform (BioRad Hercules, CA).

467                   **SCFA quantification:** The SCFAs butyrate, propionate, and acetate were analyzed by  
468                   stable isotope GC/MS as previously described (42). Briefly, cecal samples were collected  
469                   directly into pre-weighed, sterile Eppendorf tubes and flash frozen at -80°C until processing.  
470                   Samples were then subject to an alkylation procedure in which sample and alkylating reagent  
471                   were added, vortexed for 1 min, and incubated at 60°C for 25 min. Following cooling and  
472                   addition of n-hexane to allow for separation, 170 µL of the organic phase was transferred to an  
473                   auto sampler vial and analyzed by GC/MS. Results were quantified in reference to the stable  
474                   isotope standard and normalized to sample weight.

475                   **Bile acids quantification:** *Reagents:* LC/MS grade methanol, acetonitrile, and  
476                   isopropanol were obtained from Fisher Scientific (Fairlawn, New Jersey). HPLC grade water  
477                   was obtained from Burdick and Jackson (Morristown, New Jersey). Acetic acid, cholic acid,  
478                   chenodeoxycholic acid, lithocholic acid, glycolithocholic acid, glycodeoxycholic acid,  
479                   glycochenodeoxycholic acid, taurocholic acid and deoxycholic acid were obtained from Sigma  
480                   Aldrich (St. Louis, Missouri). Glycolithocholic acid, taurodeoxycholic acid,  
481                   taurochenodeoxycholic acid, taurolithocholic acid, alpha-muricholic acid and beta-muricholic  
482                   acid were obtained from Cayman Chemical (Ann Arbor, Michigan). Chenodeoxycholic acid-d4  
483                   and glycochenodeoxycholic acid-d4 were obtained from Cambridge Isotope labs (Tewksberry,  
484                   Massachusetts).

485                   *Standards preparation:* An internal standard containing 21 µM of chenodeoxycholic  
486                   acid-d4 and 21 µM of glycochenodeoxycholic acid-d4 was prepared in 100% methanol. A  
487                   combined stock of all bile acid standards was prepared at 0.5mM in 100% methanol. Calibration  
488                   working standards were then prepared by diluting the combined stock over a range of 0.05 µM-  
489                   50 µM in methanol. A 20 µL aliquot of each calibration working standard was added to 120 µL

490 of methanol, 50  $\mu$ L of water and 10  $\mu$ L of internal standard (200  $\mu$ L total) to create 10  
491 calibration standards across a calibration range of 0.005  $\mu$ M-5  $\mu$ M.

492 *Sample preparation:* Fecal samples were prepared using the method described by  
493 Sarafian et al (19) with modifications. Briefly, 15-30mg of fecal sample were weighed in a tared  
494 microcentrifuge tube and the weight was recorded. 140  $\mu$ L of methanol, 15-30  $\mu$ L of water and  
495 10  $\mu$ L of internal standard were added. The sample was vortexed for 5 seconds, and then  
496 incubated in a -20°C freezer for 20 minutes. The sample was then centrifuged at 6000RPM for  
497 15 minutes at 4°C. 185-200  $\mu$ L of the supernatant was transferred to an RSA autosampler vial  
498 (Microsolv Technology Corporation, Leland, NC) for immediate analysis or frozen at -70°C  
499 until analysis.

500 *High performance liquid chromatography/quadrupole time-of-flight mass spectrometry*  
501 (*HPLC/QTOF*): HPLC/QTOF mass spectrometry was performed using the method described by  
502 Sarafian et al (19) with modifications. Separation of bile acids was performed on a 1290 series  
503 HPLC from Agilent (Santa Clara, CA) using an Agilent SB-C18 2.1X100mm 1.8  $\mu$ m column  
504 with a 2.1X 5mm 1.8um guard column. Buffer A consisted of 90:10 water:acetonitrile with 1mM  
505 ammonium acetate adjusted to pH=4 with acetic acid, and buffer B consisted of 50:50  
506 acetonitrile:isopropanol. 10  $\mu$ L of the extracted sample was analyzed using the following  
507 gradient at a flow rate of 0.6mls/min: Starting composition=10% B, linear gradient from 10-35%  
508 B from 0.1-9.25 minutes, 35-85% B from 9.25-11.5 minutes at 0.65mls/min, 85-100% B from  
509 11.5-11.8 minutes at 0.8mls/min, hold at 100% B from 11.8-12.4 minutes at 1.0ml/min, 100-55%  
510 B from 12.4-12.5 minutes 0.85mls/min, followed by re-equilibration at 10% B from 12.5-15  
511 minutes. The column temperature was held at 60°C for the entire gradient.

512           Mass spectrometric analysis was performed on an Agilent 6520 quadrupole time of flight  
513   mass spectrometer in negative ionization mode. The drying gas was 300°C at a flow rate of  
514   12mls/min. The nebulizer pressure was 30psi. The capillary voltage was 4000V. Fragmentor  
515   voltage was 200V. Spectra were acquired in the mass range of 50-1700m/z with a scan rate of 2  
516   spectra/sec.

517           Retention time and m/z for each bile acid was determined by injecting authentic  
518   standards individually. All of the bile acids produced a prominent [M-H]<sup>-</sup> ion with negative  
519   ionization. The observed retention time and m/z was then used to create a quantitation method.  
520   Calibration curves for each calibrated bile acid were constructed using Masshunter Quantitative  
521   Analysis software (Aligent Technologies). Bile acid results for feces in pmol/mg were then  
522   quantitated using the following calculation:

523

524           Concentration in pmol/mg= 
$$\frac{(X_s)(V_t)(D)}{(V_i)(W_s)}$$

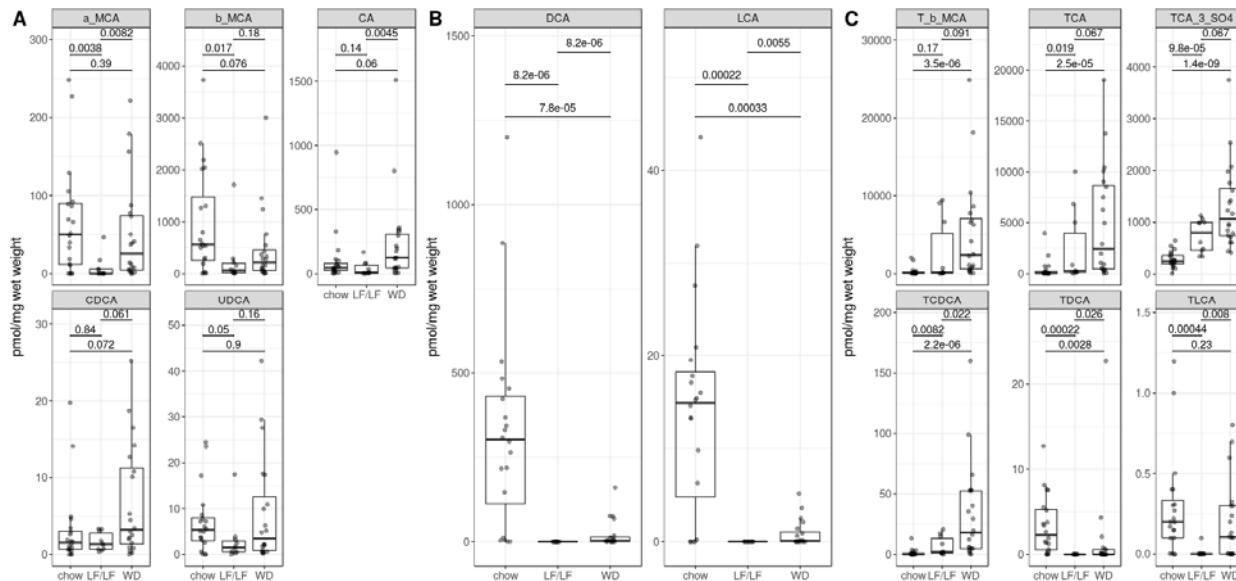
525           X<sub>s</sub> =pmol on column

526           V<sub>t</sub> =Total volume of concentrated extract (in  $\mu$ L)

527           D =Dilution factor if sample was extracted before analysis. If no dilution D=1

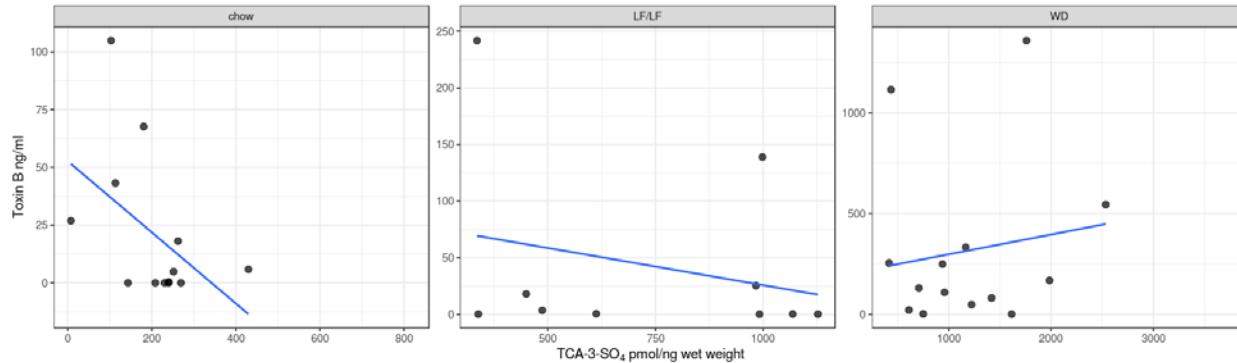
528           V<sub>i</sub> =Volume of extract injected (in  $\mu$ L)

529           W<sub>s</sub> =Weight of sample extracted in mg


530           **C. difficile toxin B quantification:** Toxin B concentration was determined in cecal  
531   samples from day 3 of infection by comparison to a standard curve using ELISA (tgcBiomics,

532 Germany). For samples that were too small to weigh accurately, a mass of 5 mg was assigned for  
533 concentration calculation. This mass was selected as it was the lowest weight that could be  
534 accurately determined.

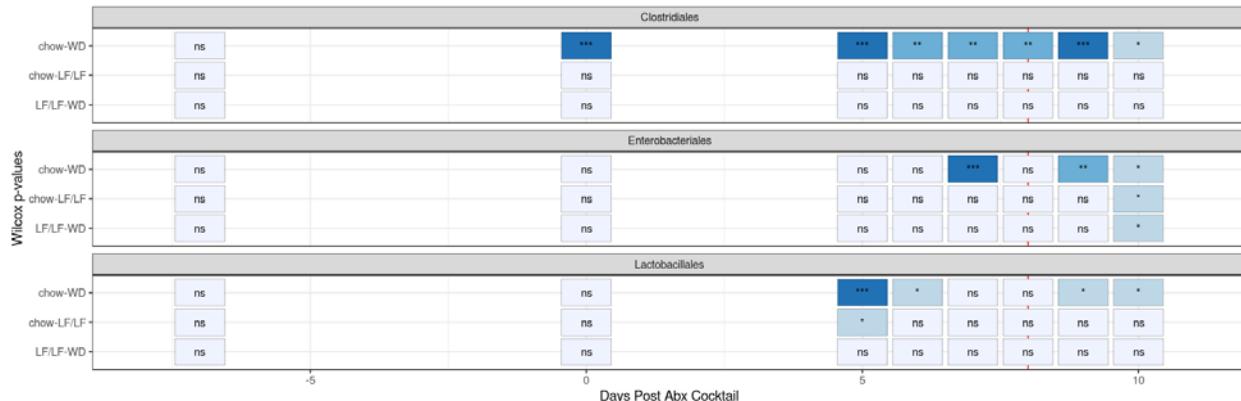
535 **Statistics:** Statistical analyses were performed in R (version 3.4.3 “Kite-Eating Tree”).  
536 Data were preprocessed using the “tidyverse” suite (43). We used “survminer” and “survival”  
537 libraries to analyze mouse survival (44, 45). All other data were plotted using “ggplot2”,  
538 “ggsignif”, and “cowplot” (46-48).


539

540 **Supplementary Materials**



541  
542 **Figure S1.** Cecal bile acid levels by diet. Unconjugated primary bile acids (A), secondary bile  
543 acid (B) and taurine-conjugated bile acids (C). Glycine conjugated bile acids were omitted due to  
544 very low concentrations. a\_MCA (alpha muricholic acid); b\_MCA (beta muricholic acid); CA  
545 (cholic acid); CDCA (chenodeoxycholic acid); UDCA (ursodeoxycholic acid); DCA  
546 (deoxycholic acid); LCA (lithocholic acid); T<sub>b</sub>\_MCA (tauro-beta muricholic acid); TCA  
547 (taurocholic acid); TCA\_3\_SO4 (taurocholic acid 3-sulfate); TCDCA (taurochenodeoxycholic  
548 acid); TDCA (taurodeoxycholic acid); TLCA (taurolithocholic acid).


549



550

551 **Figure S2.** Toxin B ~ TCA-3-SO<sub>4</sub> correlations by diet. Multivariate regression was performed  
552 allowing for an interaction between toxin B and diet.

553



558 Table. S1. Composition of low-fat/low-fiber/high-sucrose diet

|                        | <i>Low-fat/Low-fiber/High-Sucrose</i> |
|------------------------|---------------------------------------|
| Fat (% kcal)           | 17.0                                  |
| (% SFA)                | (19.5)                                |
| (% MUFA)               | (41.7)                                |
| (% PUFA)               | (38.8)                                |
| Carbohydrates (% kcal) | 64.5                                  |
| (Sucrose)              | (26.7)                                |
| Protein (%kcal)        | 18.6                                  |
| Fiber (g/kg)           | 50 (cellulose)                        |

559

560

561 Table S2. Correlations between *C. difficile* toxin B and metabolites

| Formula = toxin_B ~ x |                             | R-squared | p-value |
|-----------------------|-----------------------------|-----------|---------|
|                       | ~ diet                      | 0.1748    | 0.0131  |
| Bile acids            |                             |           |         |
|                       |                             | R-squared | p-value |
| TCA_3_SO4             | ~ metab                     | 0.1151    | 0.0227  |
|                       | ~ metab + diet              | 0.1701    | 0.0273  |
|                       | ~ metab + diet + metab*diet | 0.1748    | 0.0131  |
| T_b_MCA               | ~ metab                     | -0.0156   | 0.5078  |
|                       | ~ metab + diet              | 0.1739    | 0.0254  |
|                       | ~ metab + diet + metab*diet | 0.1208    | 0.1080  |
| TCA                   | ~ metab                     | -0.0090   | 0.4160  |
|                       | ~ metab + diet              | 0.1775    | 0.0238  |
|                       | ~ metab + diet + metab*diet | 0.1252    | 0.1017  |
| TCDCA                 | ~ metab                     | -0.0042   | 0.3629  |
|                       | ~ metab + diet              | 0.1804    | 0.0226  |
|                       | ~ metab + diet + metab*diet | 0.1287    | 0.0970  |
| TLCA                  | ~ metab                     | -0.0281   | 0.9000  |
|                       | ~ metab + diet              | 0.1612    | 0.0321  |
|                       | ~ metab + diet + metab*diet | 0.1078    | 0.1284  |
| TDCA                  | ~ metab                     | -0.0253   | 0.7406  |
|                       | ~ metab + diet              | 0.1632    | 0.0309  |
|                       | ~ metab + diet + metab*diet | 0.1371    | 0.0679  |
| GCA                   | ~ metab                     | -0.0184   | 0.5577  |
|                       | ~ metab + diet              | 0.1634    | 0.0308  |
|                       | ~ metab + diet + metab*diet | 0.1125    | 0.1206  |
| GCDCA                 | ~ metab                     | 0.0679    | 0.0653  |
|                       | ~ metab + diet              | 0.1819    | 0.0220  |
|                       | ~ metab + diet + metab*diet | 0.1819    | 0.0220  |
| GDCA                  | ~ metab                     | 0.0679    | 0.0653  |
|                       | ~ metab + diet              | 0.1819    | 0.0220  |
|                       | ~ metab + diet + metab*diet | 0.1819    | 0.0220  |
| GLCA                  | ~ metab                     | -0.0212   | 0.6188  |
|                       | ~ metab + diet              | 0.1602    | 0.0327  |
|                       | ~ metab + diet + metab*diet | 0.1867    | 0.0302  |
| a_MCA                 | ~ metab                     | -0.0283   | 0.9274  |
|                       | ~ metab + diet              | 0.1840    | 0.0211  |

|       |                             |         |        |
|-------|-----------------------------|---------|--------|
|       | ~ metab + diet + metab*diet | 0.1332  | 0.0912 |
| b_MCA | ~ metab                     | -0.0134 | 0.4740 |
|       | ~ metab + diet              | 0.1912  | 0.0184 |
|       | ~ metab + diet + metab*diet | 0.1525  | 0.0694 |
| CA    | ~ metab                     | -0.0123 | 0.4575 |
|       | ~ metab + diet              | 0.1677  | 0.0285 |
|       | ~ metab + diet + metab*diet | 0.1158  | 0.1154 |
| CDCA  | ~ metab                     | 0.0528  | 0.0916 |
|       | ~ metab + diet              | 0.1602  | 0.0327 |
|       | ~ metab + diet + metab*diet | 0.1104  | 0.1241 |
| UDCA  | ~ metab                     | -0.0255 | 0.7483 |
|       | ~ metab + diet              | 0.1835  | 0.0213 |
|       | ~ metab + diet + metab*diet | 0.1312  | 0.0937 |
| DCA   | ~ metab                     | 0.0197  | 0.1977 |
|       | ~ metab + diet              | 0.1628  | 0.0312 |
|       | ~ metab + diet + metab*diet | 0.1450  | 0.0599 |
| LCA   | ~ metab                     | 0.0259  | 0.1705 |
|       | ~ metab + diet              | 0.1628  | 0.0312 |
|       | ~ metab + diet + metab*diet | 0.2009  | 0.0237 |

### Short chain fatty acids

|            |                             | R-squared | p-value |
|------------|-----------------------------|-----------|---------|
| acetate    | ~ metab                     | -0.0250   | 0.6830  |
|            | ~ metab + diet              | 0.1594    | 0.0389  |
|            | ~ metab + diet + metab*diet | 0.1020    | 0.1500  |
| propionate | ~ metab                     | -0.0158   | 0.4974  |
|            | ~ metab + diet              | 0.1654    | 0.0351  |
|            | ~ metab + diet + metab*diet | 0.1246    | 0.1135  |
| butyrate   | ~ metab                     | -0.0198   | 0.5641  |
|            | ~ metab + diet              | 0.1591    | 0.0391  |
|            | ~ metab + diet + metab*diet | 0.1017    | 0.1504  |

562

563

564 **References and Notes:**

565 1. F. C. Lessa, Y. Mu, W. M. Bamberg, Z. G. Beldavs, G. K. Dumyati, J. R. Dunn, M. M. Farley,  
566 S. M. Holzbauer, J. I. Meek, E. C. Phipps, L. E. Wilson, L. G. Winston, J. A. Cohen, B. M.  
567 Limbago, S. K. Fridkin, D. N. Gerding, L. C. McDonald, Burden of Clostridium difficile  
568 infection in the United States, *N Engl J Med* **372**, 825–834 (2015).

569 2. D. A. Leffler, J. T. Lamont, Clostridium difficile infection, *N Engl J Med* **372**, 1539–1548  
570 (2015).

571 3. G. N. Al-Rawahi, A. Al-Najjar, R. McDonald, R. J. Deyell, G. R. Golding, R. Brant, P. Tilley,  
572 E. Thomas, S. R. Rassekh, A. O'Gorman, P. Wong, L. Turnham, S. Dobson, Pediatric oncology  
573 and stem cell transplant patients with healthcare-associated Clostridium difficile infection were  
574 already colonized on admission, *Pediatr Blood Cancer* **353**, e27604–5 (2019).

575 4. E. J. Battaglioli, V. L. Hale, J. Chen, P. Jeraldo, C. Ruiz-Mojica, B. A. Schmidt, V. M.  
576 Rekdal, L. M. Till, L. Huq, S. A. Smits, W. J. Moor, Y. Jones-Hall, T. Smyrk, S. Khanna, D. S.  
577 Pardi, M. Grover, R. Patel, N. Chia, H. Nelson, J. L. Sonnenburg, G. Farrugia, P. C. Kashyap,  
578 Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of  
579 patients with diarrhea, *Science Translational Medicine* **10**, eaam7019 (2018).

580 5. G. E. Bignardi, Risk factors for Clostridium difficile infection, *Journal of Hospital Infection*  
581 **40**, 1–15 (1998).

582 6. R. Fekety, L. V. McFarland, C. M. Surawicz, R. N. Greenberg, G. W. Elmer, M. E. Mulligan,  
583 Recurrent Clostridium difficile diarrhea: characteristics of and risk factors for patients enrolled in

584 a prospective, randomized, double-blinded trial, *Clinical Infectious Diseases* **24**, 324–333  
585 (1997).

586 7. C. A. Lozupone, J. Stombaugh, A. Gonzalez, G. Ackermann, D. Wendel, Y. Vázquez-Baeza,  
587 J. K. Jansson, J. I. Gordon, R. Knight, Meta-analyses of studies of the human microbiota,  
588 *Genome Research* **23**, 1704–1714 (2013).

589 8. C. Staley, B. P. Vaughn, C. T. Graizer, S. Singroy, M. J. Hamilton, D. Yao, C. Chen, A.  
590 Khoruts, M. J. Sadowsky, Community dynamics drive punctuated engraftment of the fecal  
591 microbiome following transplantation using freeze-dried, encapsulated fecal microbiota, *Gut*  
592 *Microbes* **131**, 1–13 (2017).

593 9. C. Staley, C. R. Kelly, L. J. Brandt, A. Khoruts, M. J. Sadowsky, Complete Microbiota  
594 Engraftment Is Not Essential for Recovery from Recurrent Clostridium difficileInfection  
595 following Fecal Microbiota Transplantation, *mBio* **7**, e01965–16–9 (2016).

596 10. A. Weingarden, A. Gonzalez, Y. Vázquez-Baeza, S. Weiss, G. Humphry, D. Berg-Lyons, D.  
597 Knights, T. Unno, A. Bobr, J. Kang, A. Khoruts, R. Knight, M. J. Sadowsky, Dynamic changes  
598 in short- and long-term bacterial composition following fecal microbiota transplantation for  
599 recurrent Clostridium difficile infection, *Microbiome* **3**, 10 (2015).

600 11. S. K. Dutta, M. Girotra, S. Garg, A. Dutta, E. C. von Rosenvinge, C. Maddox, Y. Song, J. G.  
601 Bartlett, R. Vinayek, W. F. Fricke, Efficacy of Combined Jejunal and Colonic Fecal Microbiota  
602 Transplantation for Recurrent Clostridium difficile Infection, *Clinical Gastroenterology and*  
603 *Hepatology* **12**, 1–5 (2014).

604 12. J. R. Allegretti, S. Kearney, N. Li, E. Bogart, K. Bullock, G. K. Gerber, L. Bry, C. B. Clish,  
605 E. Alm, J. R. Korzenik, Recurrent *Clostridium difficile* infection associates with distinct bile acid  
606 and microbiome profiles, **43**, 1142–1153 (2016).

607 13. J. A. Sorg, A. L. Sonenshein, Bile salts and glycine as cogerminants for *Clostridium difficile*  
608 spores, *J. Bacteriol.* **190**, 2505–2512 (2008).

609 14. C. G. Buffie, V. Bucci, R. R. Stein, P. T. McKenney, L. Ling, A. Gobourne, D. No, H. Liu,  
610 M. Kinnebrew, A. Viale, E. Littmann, M. R. M. van den Brink, R. R. Jenq, Y. Taur, C. Sander, J.  
611 R. Cross, N. C. Toussaint, J. B. Xavier, E. G. Pamer, Precision microbiome reconstitution  
612 restores bile acid mediated resistance to *Clostridium difficile*, *Nature* **517**, 205–208 (2015).

613 15. A. J. Hryckowian, W. Van Treuren, S. A. Smits, N. M. Davis, J. O. Gardner, D. M. Bouley,  
614 J. L. Sonnenburg, Microbiota-accessible carbohydrates suppress *Clostridium difficile* infection in  
615 a murine model, *Nat Microbiol* **372**, 2369 (2018).

616 16. V. C. Antharam, E. C. Li, A. Ishmael, A. Sharma, V. Mai, K. H. Rand, G. P. Wang, Intestinal  
617 dysbiosis and depletion of butyrogenic bacteria in *Clostridium difficile* infection and nosocomial  
618 diarrhea, *Journal of Clinical Microbiology* **51**, 2884–2892 (2013).

619 17. S. Devkota, Y. Wang, M. W. Musch, V. Leone, H. Fehlner-Peach, A. Nadimpalli, D. A.  
620 Antonopoulos, B. Jabri, E. B. Chang, Dietary-fat-induced taurocholic acid promotes pathobiont  
621 expansion and colitis in  $\text{Il10}^{-/-}$  mice, *Nature* **65**, 411–6 (2012).

622 18. X. Chen, K. Katchar, J. D. Goldsmith, N. Nanthakumar, A. Cheknis, D. N. Gerding, C. P.  
623 Kelly, A Mouse Model of *Clostridium difficile*–Associated Disease, *Gastroenterology* **135**,  
624 1984–1992 (2008).

625 19. M. H. Sarafian, M. R. Lewis, A. Pechlivanis, S. Ralphs, M. J. W. McPhail, V. C. Patel, M.-E.  
626 Dumas, E. Holmes, J. K. Nicholson, Bile acid profiling and quantification in biofluids using  
627 ultra-performance liquid chromatography tandem mass spectrometry, *Anal. Chem.* **87**, 9662–  
628 9670 (2015).

629 20. B. Allen, M. Kon, Y. Bar-Yam, A new phylogenetic diversity measure generalizing the  
630 shannon index and its application to phyllostomid bats, *Am. Nat.* **174**, 236–243 (2009).

631 21. M. Kriss, K. Z. Hazleton, N. M. Nusbacher, C. G. Martin, C. A. Lozupone, Low diversity gut  
632 microbiota dysbiosis: drivers, functional implications and recovery, *Curr Opin Microbiol* **44**, 34–  
633 40 (2018).

634 22. M. G. I. Langille, J. Zaneveld, J. G. Caporaso, D. McDonald, D. Knights, J. A. Reyes, J. C.  
635 Clemente, D. E. Burkepile, R. L. Vega Thurber, R. Knight, R. G. Beiko, C. Huttenhower,  
636 Predictive functional profiling of microbial communities using 16S rRNA marker gene  
637 sequences, *Nature Biotechnology* **31**, 814–821 (2013).

638 23. J. M. Ridlon, D. J. Kang, P. B. Hylemon, Bile salt biotransformations by human intestinal  
639 bacteria, (2006).

640 24. M. Vital, A. C. Howe, J. M. Tiedje, Revealing the bacterial butyrate synthesis pathways by  
641 analyzing (meta)genomic data, *mBio* **5**, e00889–e00889–14 (2014).

642 25. M. Vital, J. Gao, M. Rizzo, T. Harrison, J. M. Tiedje, Diet is a major factor governing the  
643 fecal butyrate-producing community structure across Mammalia, Aves and Reptilia, *ISME J* **9**,  
644 832–843 (2015).

645 26. N. Kumar, H. P. Browne, E. Viciani, S. C. Forster, S. Clare, K. Harcourt, M. D. Stares, G.  
646 Dougan, D. J. Fairley, P. Roberts, M. Pirmohamed, M. R. J. Clokie, M. B. F. Jensen, K. R.  
647 Hargreaves, M. Ip, L. H. Wieler, C. Seyboldt, T. Norén, T. V. Riley, E. J. Kuijper, B. W. Wren,  
648 T. D. Lawley, Adaptation of host transmission cycle during *Clostridium difficile* speciation,  
649 *Nature Genetics* **51**, 1315–1320 (2019).

650 27. T. L. Blankenship-Paris, B. J. Walton, Y. O. Hayes, J. Chang, *Clostridium difficile* infection  
651 in hamsters fed an atherogenic diet, *Vet. Pathol.* **32**, 269–273 (1995).

652 28. T. L. Blankenship-Paris, J. Chang, F. G. Dalldorf, P. H. Gilligan, In vivo and in vitro studies  
653 of *Clostridium difficile*-induced disease in hamsters fed an atherogenic, high-fat diet, *Lab. Anim.*  
654 *Sci.* **45**, 47–53 (1995).

655 29. D. J. Cabral, S. Penumutchu, E. M. Reinhart, C. Zhang, B. J. Korry, J. I. Wurster, R. Nilson,  
656 A. Guang, W. H. Sano, A. D. Rowan-Nash, H. Li, P. Belenky, Microbial Metabolism Modulates  
657 Antibiotic Susceptibility within the Murine Gut Microbiome, *Cell Metabolism* **30**, 800–823.e7  
658 (2019).

659 30. C. J. Kelly, L. Zheng, E. L. Campbell, B. Saeedi, C. C. Scholz, A. J. Bayless, K. E. Wilson,  
660 L. E. Glover, D. J. Kominsky, A. Magnuson, T. L. Weir, S. F. Ehrentraut, C. Pickel, K. A. Kuhn,  
661 J. M. Lanis, V. Nguyen, C. T. Taylor, S. P. Colgan, Crosstalk between Microbiota-Derived  
662 Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function, *Cell*  
663 *Host Microbe* **17**, 662–671 (2015).

664 31. C. M. Cannon, J. S. Musuza, A. K. Barker, M. Duster, M. B. Juckett, A. E. Pop-Vicas, N.

665 Safdar, Risk of Clostridium difficile Infection in Hematology-Oncology Patients Colonized With

666 Toxigenic *C. difficile*, *Infect Control Hosp Epidemiol* **38**, 718–720 (2017).

667 32. L. R. Thompson, J. G. Sanders, D. McDonald, A. Amir, J. Ladau, K. J. Locey, R. J. Prill, A.

668 Tripathi, S. M. Gibbons, G. Ackermann, J. A. Navas-Molina, S. Janssen, E. Kopylova, Y.

669 Vázquez-Baeza, A. Gonzalez, J. T. Morton, S. Mirarab, Z. Zech Xu, L. Jiang, M. F. Haroon, J.

670 Kanbar, Q. Zhu, S. Jin Song, T. Kosciolek, N. A. Bokulich, J. Lefler, C. J. Brislawn, G.

671 Humphrey, S. M. Owens, J. Hampton-Marcell, D. Berg-Lyons, V. McKenzie, N. Fierer, J. A.

672 Fuhrman, A. Clauzet, R. L. Stevens, A. Shade, K. S. Pollard, K. D. Goodwin, J. K. Jansson, J. A.

673 Gilbert, R. Knight, Earth Microbiome Project Consortium, A communal catalogue reveals

674 Earth's multiscale microbial diversity, *Nature* **551**, 457–463 (2017).

675 33. E. Bolyen, J. R. Rideout, M. R. Dillon, N. A. Bokulich, C. C. Abnet, G. A. Al-Ghalith, H.

676 Alexander, E. J. Alm, M. Arumugam, F. Asnicar, Y. Bai, J. E. Bisanz, K. Bittinger, A. Brejnrod,

677 C. J. Brislawn, C. T. Brown, B. J. Callahan, A. M. Caraballo-Rodríguez, J. Chase, E. K. Cope, R.

678 Da Silva, C. Diener, P. C. Dorrestein, G. M. Douglas, D. M. Durall, C. Duvallet, C. F.

679 Edwardson, M. Ernst, M. Estaki, J. Fouquier, J. M. Gauglitz, S. M. Gibbons, D. L. Gibson, A.

680 Gonzalez, K. Gorlick, J. Guo, B. Hillmann, S. Holmes, H. Holste, C. Huttenhower, G. A.

681 Huttley, S. Janssen, A. K. Jarmusch, L. Jiang, B. D. Kaehler, K. B. Kang, C. R. Keefe, P. Keim,

682 S. T. Kelley, D. Knights, I. Koester, T. Kosciolek, J. Kreps, M. G. I. Langille, J. Lee, R. Ley, Y.-

683 X. Liu, E. Loftfield, C. Lozupone, M. Maher, C. Marotz, B. D. Martin, D. McDonald, L. J.

684 McIver, A. V. Melnik, J. L. Metcalf, S. C. Morgan, J. T. Morton, A. T. Naimey, J. A. Navas-

685 Molina, L. F. Nothias, S. B. Orchanian, T. Pearson, S. L. Peoples, D. Petras, M. L. Preuss, E.

686 Pruesse, L. B. Rasmussen, A. Rivers, M. S. Robeson, P. Rosenthal, N. Segata, M. Shaffer, A.

687 Shiffer, R. Sinha, S. J. Song, J. R. Spear, A. D. Swafford, L. R. Thompson, P. J. Torres, P. Trinh,  
688 A. Tripathi, P. J. Turnbaugh, S. Ul-Hasan, J. J. J. van der Hooft, F. Vargas, Y. Vázquez-Baeza,  
689 E. Vogtmann, M. von Hippel, W. Walters, Y. Wan, M. Wang, J. Warren, K. C. Weber, C. H. D.  
690 Williamson, A. D. Willis, Z. Z. Xu, J. R. Zaneveld, Y. Zhang, Q. Zhu, R. Knight, J. G. Caporaso,  
691 Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2,  
692 *Nature Biotechnology* **37**, 852–857 (2019).

693 34. B. J. Callahan, P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, S. P. Holmes,  
694 DADA2: High-resolution sample inference from Illumina amplicon data, *Nat Meth* **13**, 581–583  
695 (2016).

696 35. S. Janssen, D. McDonald, A. Gonzalez, J. A. Navas-Molina, L. Jiang, Z. Z. Xu, K. Winker,  
697 D. M. Kado, E. Orwoll, M. Manary, S. Mirarab, R. Knight, N. Chia, Ed. Phylogenetic Placement  
698 of Exact Amplicon Sequences Improves Associations with Clinical Information, *mSystems* **3**,  
699 581 (2018).

700 36. Q. Wang, G. M. Garrity, J. M. Tiedje, J. R. Cole, Naive Bayesian classifier for rapid  
701 assignment of rRNA sequences into the new bacterial taxonomy, *Appl. Environ. Microbiol.* **73**,  
702 5261–5267 (2007).

703 37. C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, F. O. Glöckner,  
704 The SILVA ribosomal RNA gene database project: improved data processing and web-based  
705 tools, *Nucleic Acids Res* **41**, D590–6 (2013).

706 38. P. Yilmaz, L. W. Parfrey, P. Yarza, J. Gerken, E. Pruesse, C. Quast, T. Schweer, J. Peplies,  
707 W. Ludwig, F. O. Glöckner, The SILVA and “All-species Living Tree Project (LTP)” taxonomic  
708 frameworks, *Nucleic Acids Res* **42**, D643–8 (2014).

709 39. C. A. Lozupone, M. Hamady, S. T. Kelley, R. Knight, Quantitative and Qualitative  
710 Diversity Measures Lead to Different Insights into Factors That Structure Microbial  
711 Communities, *Appl. Environ. Microbiol.* **73**, 1576–1585 (2007).

712 40. Anaconda Software Distribution (available at <https://anaconda.com>).

713 41. L. Etienne-Mesmin, B. Chassaing, O. Adekunle, L. M. Mattei, F. D. Bushman, A. T.  
714 Gewirtz, Toxin-positive Clostridium difficile latently infect mouse colonies and protect against  
715 highly pathogenic C. difficile, *Gut* **67**, 860–871 (2018).

716 42. C. J. Kelly, E. E. Alexeev, L. Farb, T. W. Vickery, L. Zheng, C. Eric L, D. A. Kitzenberg, K.  
717 D. Battista, D. J. Kominsky, C. E. Robertson, D. N. Frank, S. P. Stabler, S. P. Colgan, Oral  
718 vitamin B12 supplement is delivered to the distal gut, altering the corrinoid profile and  
719 selectively depleting Bacteroides in C57BL/6 mice, *Gut Microbes* **87**, 1–9 (2019).

720 43. H. Wickham, Tidyverse (available at <https://CRAN.R-project.org/package=tidyverse>).

721 44. A. Kassambara, M. Kosinski, P. Biecek, S. Fabian, survminer: Drawing Survival Curves  
722 using “ggplot2” (available at <http://www.sthda.com/english/rpkgs/survminer/>).

723 45. T. M. Therneau, T. Lumley, survival: Survival Analysis (available at  
724 <https://github.com/therneau/survival>).

725 46. H. Wickham, *ggplot2* (Springer, 2010).

726 47. C. Ahlmann-Eltze, *ggsignif*: Significance Brackets for “ggplot2” (available at  
727 <https://github.com/const-ae/ggsignif>).

728 48. C. O. Wilke, *cowplot*: Streamlined Plot Theme and Plot Annotations for “ggplot2” (available  
729 at <https://wilkelab.org/cowplot>).

730 49. A. Gonzalez, J. A. Navas-Molina, T. Kosciolek, D. McDonald, Y. Vázquez-Baeza, G.  
731 Ackermann, J. DeReus, S. Janssen, A. D. Swafford, S. B. Orchanian, J. G. Sanders, J.  
732 Shorenstein, H. Holste, S. Petrus, A. Robbins-Pianka, C. J. Brislawn, M. Wang, J. R. Rideout, E.  
733 Bolyen, M. Dillon, J. G. Caporaso, P. C. Dorrestein, R. Knight, Qiita: rapid, web-enabled  
734 microbiome meta-analysis, *Nature* **15**, 796–798 (2018).

735

736 **Acknowledgments:** We would like to thank Jordi Lanis and Sean Colgan for advice on the  
737 employed CDI mouse model and Sally Stabler for her assistance in measuring SCFAs. **Funding:**  
738 We would like to thank the University of Colorado Department of Medicine's Outstanding Early  
739 Career Science Award for supporting this work as well as support to Keith Hazleton from the  
740 Institutional Training Grant for Pediatric Gastroenterology from NIDDK (5T32-DK067009-12)  
741 and Clinical Fellow Awards from the Cystic Fibrosis Foundation (HAZLET18DO and  
742 HAZLET19DO). Kathleen Arnolds was supported by T32-AI007405 Training Program in  
743 Immunology. High performance computing was supported by a cluster at the University of  
744 Colorado Boulder funded by National Institutes of Health 1S10OD012300. **Author**  
745 **contributions:** KH conceived of and conducted experiments, analyzed data and wrote the paper;  
746 CM analyzed sequence data and made figures; KA generated and analyzed data from qPCR  
747 experiments and toxin ELISA; NN generated 16S rRNA sequence and qPCR data and aided in  
748 analysis and results interpretation; NMH aided in mouse experiments, 16S rRNA sequencing and  
749 generated data from toxin ELISA; NR and MA worked with KH to develop a novel bile acid  
750 panel and aided in analysis and interpretation of results, CL directed and contributed to all  
751 aspects of the project. All authors contributed to the manuscript. **Competing interests:** The  
752 authors declare no competing financial interests. **Data and materials availability:** The 16S  
753 rRNA has been deposited in QIITA (49)(Qiita Study ID: 12849) and at EBI (pending)

754