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Abstract

In the dysconnection hypothesis, psychosis is caused by NMDA hypofunction resulting in
aberrant network connectivity. Combining a cognitive-control task, functional magnetic
resonance spectroscopy, and functional magnetic resonance imaging, we tested this hypothesis in
the salience network of 20 first-episode psychosis (FEP) and 20 healthy control (HC) subjects.
Across groups, glutamate concentration in the dorsal anterior cingulate cortex (dACC) was
associated with higher and lower inhibitory connectivity in the dACC and in the anterior insula
(Al respectively. Crucially, glutamate concentration correlated negatively with the inhibitory
influence on the excitatory neuronal population in the dACC of FEP subjects. Furthermore,
aberrant computational parameters of the cognitive-control task performance were associated
with aberrant inhibitory connections. Finally, the strength of connections from the dACC to the
Al correlated negatively with severity of social withdrawal. These findings support a link
between glutamate-mediated cortical disinhibition, deficits in effective connectivity, and

computational performance in psychosis.
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Introduction

The glutamate hypothesis (1-4) has been a central focus of interest in the study of the
psychopathology of schizophrenia for more than 20 years. It states that dysfunction of
glutamatergic neurotransmission is associated with signature negative symptoms of
schizophrenia such as poor executive control and social withdrawal. The dysfunction of
glutamatergic neurotransmission is likely caused by NMDA-receptor hypofunction (i.e.,
glutamate hypofunction) in inhibitory GABAergic interneurons which would lead to an increase
in the synaptic gain of excitatory neurons (the disinhibition hypothesis, 5, 6). The abnormal
increase of synaptic gain is also conceptualized as a disruption of the excitation-inhibition
balance which, as described below, rests at the core of the dysconnection hypothesis (7) within

the theoretical framework of “the Bayesian brain” (8).

The dysconnection hypothesis (c.f., disconnection hypothesis, 9)? states that the
psychopathology of schizophrenia should be studied at three levels of analysis: neurochemical,
effective-connectivity (network-connectivity), and computational levels. At the computational
level, the dysconnection hypothesis states that a suboptimal (e.g., schizophrenia) Bayesian brain
(10) would overly afford confidence or precision (i.e., inverse variance) to its predictions about
the external stimuli and would overestimate the reliability of the prediction errors (PE), leading
to false inferences (e.g., hallucinations) and cognitive failures (e.g., cognitive control, 11). At the
effective-connectivity level, a predictive coding algorithm (12), namely, hierarchical message

passing between lower and higher cortical levels would be altered in terms of aberrant backward

! Here, “dysconnection” means abnormal functional integration or effective connectivity. This meaning differs from
the meaning of “disconnection” which refers to collapsed or disintegrated cognitive functions.
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and forward interregional connectivity strength (13). Crucially, at the neurochemical level the
aberrant connectivity strength would depend on increased synaptic gain in deep and superficial
pyramidal cells, reflecting a decrease in the strength of intrinsic inhibitory connections, driven by
NMDA hypofunction (7, 14). Therefore, the dysconnection hypothesis takes the glutamate
hypothesis one step further by postulating that the disruption of excitation-inhibition balance
makes itself evident at effective-connectivity level of analysis. In this work, we provide evidence

in support of this hypothesis.

We provide evidence of the association between glutamate and dysconnection within the context
of neurochemical, effective-connectivity, and computational levels of analysis. We will do this
by studying the relationship between H-MRS glutamate in the dorsal anterior cingulate cortex
([Glu]uacc), the effective connectivity within the salience network, and cognitive-control
dysfunction and negative symptoms in schizophrenia. Specifically, at the computational level we
compare the performance of first-episode psychosis (FEP) and healthy control (HC) subjects in
the Stroop task (15), which reliably engages the two nodes of the salience network (16, 17).
Suboptimal Stroop computations in FEP are reflected in long reaction times and low response
accuracy (18, 19). We show that these suboptimal computations are explained in terms of a drift-
diffusion model as a specific case of a Bayesian decision making (20). At the effective-
connectivity level, we show that the computational parameter associated with aberrant
predictions in FEP maps onto forward and backward connections. Ultimately, we demonstrate at
the neurochemical level that the dysconnection within the salience network is driven by
[Glu]aacc. As we detail below, the salience network is an appropriate anatomical and functional

motif (c.f., 21) to evaluate the relationship between all three levels of analysis.
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The dACC is functionally specialized in conflict monitoring during the Stroop task (22). In the
salience network, the right anterior cingulate cortex (dACC) is anatomically connected to the
right anterior cingulate insula (Al) (23-25). Crucially, psychosis is associated with consistent
structural deficits (26) as well as resting-state functional dysconnectivity in the salience network
(27, 28). Given that the right Al is particularly sensitive to descending afferents from the right
dACC (29), we expected the subtle variations of excitation-inhibition balance resulting from the
putative glutamatergic abnormalities within the dACC to induce dysconnectivity in the salience
network, affecting both intrinsic inhibitory connections of the dACC and the extrinsic connection
with the Al. We anticipated the aberrant effective connectivity to account for aberrant prior
beliefs and overly precise PE during cognitive conflict resolution and to the burden of negative

symptoms of schizophrenia.
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Methods and Materials

Participants

Twenty FEP subjects (8 female; age male M = 22.5, SD = 3.45; age female M = 22.37, SD =
3.07; age range [17 -28]) and 20 HC subjects (9 female, age male M = 21.64, SD = 4.27; female
M =21.67, SD = 3.04; age range [16 - 29]) participated in the study. No difference in age was
detected across groups (p > |t| = 0.47). Subjects were recruited from the “Prevention and Early
Intervention Program for Psychosis” in London, Ontario. Criteria for inclusion in the FEP group
included (i) first clinical presentation with psychotic symptoms and (ii) Diagnostic and Statistical
Manual of Mental Disorders (5th Edition) criteria A for schizophrenia satisfied. HC subjects did
not report a personal history of mental illness or family history of psychotic disorders. The
subjects’ consent was obtained according to the Declaration of Helsinki, and approval for the
study was obtained from the University Human Ethics Committee for Health Sciences at the
University of Western Ontario. Subjects were assessed for positive and negative symptoms of
schizophrenia using the eight items of the Positive and Negative Syndrome Scale (PANSS-8,
30). All relevant demographic data are provided in the Supplemental Information. As detailed
below, inside an MRI scanner, subjects underwent resting-state *H-MRS, resting-state fMRI, and

performed a color version of the Stroop task.
'H-MRS

We measured resting-state *H-MRS during a four-minute block. The measurement was made in a
Siemens MAGNETOM 7-Tesla MRI scanner using an 8-channel transmit/ 32-channel receive,
head-only, radiofrequency coil at the Centre for Functional and Metabolic Mapping at the

University of Western Ontario. A 2.0 x 2.0 x 2.0 cm (8cm®) *H-MRS voxel was placed on the
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dACC where activation was expected based on our previous work (19) using the Stroop task
(MNI: X=1,Y =16, Z=238, Fig. 1). To locate the voxel, we used a two-dimensional anatomical
imaging sequence in the sagittal direction (37 slices, TR = 8000 ms, TE = 70 ms, flip-angle (a) =
120°, thickness = 3.5 mm, field of view = 240x191 mm). Conventional *H-MRS sequences use a
short or “short-as-possible” echo time to minimize the T2 relaxation and J-coupling effects.
However, a recent study by Wong, Schranz (31) proposed that a longer echo time for the semi-
LASER sequence would improve glutamate measurement in the human brain. Therefore, one
long echo time (100 ms) dataset was acquired using a semi-LASER *H-MRS pulse sequence
(repetition time = 7500 ms). A 32 channel-combined, water-suppressed spectral average was
acquired using the semi-LASER H-MRS pulse sequence (repetition time = 7500 ms, echo time
=100 ms, N = 32). Water suppression was achieved using the VAPOR preparation sequence and
a water-unsuppressed spectrum was also acquired for spectral post-processing. Spectral post-

processing is described in the Supplemental Information.
Resting-state fMRI

Using the same scanner as in the *H-MRS measurement, we acquired 360 whole-brain functional
images. A gradient echo-planar-imaging sequence was used with phase-encoding direction = A >
> P, repetition time = 1000 ms, echo time = 20 ms, flip angle = 30 deg, field of view = 208 mm,
field of view phase = 100 %, voxel dimension = 2 mm isotropic, slice thickness = 2 mm, multi-
band acceleration factor = 3, acquisition time = 6 min. 26 s, and number of slices = 63

(interleaved slice order). Subjects were instructed to lie with their eyes open.


https://doi.org/10.1101/828558
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/828558; this version posted November 2, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Stroop task

We implemented the same Stroop task we used in Taylor, Neufeld (19). By pressing a key in a
four-key response pad, subjects identified as quickly and as accurate as possible the color of the
ink of a string of letters (on a gray background) representing either the name of a color (yellow,
green, blue, or red) or a series of ‘Xs’ (‘XXXX) projected on screen visible via a mirror located
in the scanner’s coil. The task comprised four conditions: word-only (a word in white ink saying
a color name, e.g., the word ‘yellow” written in white ink), color-only (an ‘XXXX’ string with
the color ink), congruent (the ink color matching the meaning of the word, e.g., the word ‘red’ in
red ink), and incongruent (the ink color differing from the meaning of the word, e.g., the word
‘red” written in blue ink). Subjects performed 20 trials per condition. They were allotted 2 s to
respond with an interstimulus trial interval of 1 s during which a fixation cross was visible.
Outside the scanner, each participant rehearsed the task until reaching 80 % accuracy —

collapsed across all four conditions.
Computational model of the Stroop performance

Based on our previous works (19), we were particularly interested in the incongruent condition
in which we expected lower accuracy and longer reaction time in FEP than in HC. To verify this,
we regressed accuracy and reaction time (separately) against condition, group, and the Condition
x Group interaction via a mixed-effects linear model (32). Subjects were included as random

effects.

We fit a hierarchical drift-diffusion model to the reaction time and accuracy data. In the
hierarchical drift-diffusion model, subjects accumulate information and trigger a response after

reaching an accumulation threshold. Formally, the hierarchical drift-diffusion model comprises
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four basic parameters representing the accumulation threshold, the starting point of the
accumulation process, the accumulation (or drift) rate, and the non-decision processes such as

stimulus encoding and motor execution (i.e., sensorimotor delay).

Predictive coding maps elegantly onto the hierarchical drift-diffusion model (11, 20, 33).
Evidence accumulation corresponds to the accumulation of presynaptic afferent activity from
neuronal populations encoding PE (i.e., superficial pyramidal cells), the drift rate represents the
precision of the ascending PE, and the starting point represents the prior beliefs. Formally,
corrected prior beliefs (i.e., a change in the starting point parameter) correlates with a steeper
slope of the accumulation process (i.e., a larger absolute value of the drift rate indicating more

precise PE).

Using Bayesian and Markov chain Monte Carlo methods (34), we estimated the parameters of
the hierarchical drift diffusion model from subjects of each group separately. We assumed that
subjects of a particular group were alike. Therefore, their parameters were constrained by their
group parameters. This also allowed us to estimate between-groups difference without over or
underestimating the true group-level variance (35). Prior distributions were informative as per
the default option used in the HDDM package (34). The chain length was 200,000. The number
of burn-in iterations was 2000, and the chains were generated with thinning = 20. We report the
proportion of the estimate’s posterior distribution (PP) that differs from zero. To show
differences between groups, we report the proportion of the posteriors in which the parameter
estimate for one group differs from the other. Specifically, we expected larger drift rate (i.e.,
aberrant precision of PE) and larger starting point (aberrant prior beliefs) in the FEP group than

in the HC. We did not have a-priori expectations about differences in the decision threshold and
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in non-decision processes. However, we report the differences in these parameters for

completeness and post-hoc interpretation.
Effective connectivity

Preprocessing and general linear model

Functional images were realigned, normalized to the Montreal Neurological Institute space, and
spatially smoothed using a 4 mm (full width at half maximum) Gaussian kernel. We fit a general
linear model to the images and included the six head movement parameters and the time series
corresponding to the white matter and cerebrospinal fluid as regressors. In addition, we included
a cosine basis set with frequencies ranging from 0.0078 to 0.1 Hz (36). Images were also high-
pass filtered to remove slow frequency drifts (< 0.0078 Hz). By specifying an F-contrast across
the basis set, we identified regions with blood oxygen level fluctuations within the range of
frequencies specified above. On the F-contrast, a sphere (8-mm radius) was centered on the
Montreal Neurological Institute coordinates corresponding to the dACC (the same coordinates
that formed the centroid of the *H-MRS voxel for the [GluJaacc measurements) and to the Al (X
=38,Y =20, Z=-4, Fig. 1) —we selected these coordinates based on our previous results (37).
At the peak voxel on each region of interest, we defined a sphere (8-mm radius) and extracted

the timeseries (principal eigenvariate) summarizing the activity within the sphere.
Spectral dynamic causal model (DCM)

We estimated the resting-state effective connectivity within the salience network by fitting a
two-state spectral DCM (38) to the resting-state fMRI data (39). Two-state DCM assumes two
populations of neurons within a region: excitatory and inhibitory. For stability of the model, each

sub-population comprises self-inhibition connections (which are fixed parameters). Crucially,
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two free parameters are fit to the fMRI data: interregional excitatory-to-excitatory connections
and within-region inhibitory-to-excitatory connections (Fig. 1). Since we aimed at demonstrating
the relationship between the effect of [Glu]aacc on inhibitory-to-excitatory connections and the
ensuing consequences in the entire network, this two-state model was sufficient to test our
hypothesis despite not capturing all the circuitry constraints of cortical columns (c.f., a four-
neuronal-population model, 40). For each participant, a fully connected DCM, with no
exogenous inputs was specified and inverted using spectral DCM of SPM12

(https://www fil.ion.ucl.ac.uk/spm/software/spm12/).

After inverting subjects’ DCMs, we estimated a series of parametric empirical Bayes models (41,
42) aiming to test, at a group level, our hypothesis against five alternative hypotheses. We fit six
(general linear) models to the posterior estimates of effective connectivity from each subject. Our
main hypothesis stated that [Glu]dacc hypofunction would cause aberrant effective connectivity
in the salience network which would account for aberrant prior beliefs and aberrant precision of
PE. We tested this hypothesis by comparing the evidence supporting a “three-level” model with
the evidence supporting five alternative models. The three-level (neurochemical, effective-
connectivity, and computational) model comprised the following four covariates: (i) group, (ii)
[Glu]acc, (iii) precision of PE, and (iv) prior beliefs. Crucially, the model included the
interactions between [Glu]dacc, prior beliefs, and precision of PE with Group. Each covariate
was mean centered, and we used effect coding for groups (HC = -1, FEP = 1). All but the

“behavioral model” (see below) were reduced versions of the three-level model.

A “no-glutamate” model represented the hypothesis that glutamate did not affect the salience
network, the model did not include the main effect of [Glu]sacc and its interaction with group. If

[Glu]uacc did not exert an effect on the effective connectivity of the salience network, the no-
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glutamate model would perform better than the three-level model. Similarly, if the computational
parameters representing prior beliefs and precision of PE were not affected by the aberrant
connectivity within the salience network, a model without these effects would perform better
than the three-level model. We fit this alternative model and referred to it as the “no-
computational” model. Alternatively, it could be that a model including the observed behavioral
responses would perform better than a model comprising the computational parameters. We fit
this model by substituting (in the three-level model) the behavioral responses and their
interactions with group for the hierarchical drift-diffusion model parameters. We referred to this
model as the “behavioral model”. For completeness, we fit a “group model” and a “null model”.
The group model represented the hypothesis that changes in the salience network would be
caused only by differences between groups. This model comprised only the main effect of group.
The null model included only a single column of “ones” in the design matrix representing the
hypothesis that neither groups nor the covariates were associated with the effective connectivity

of the network.

To adjudicate between models, we performed Bayesian model comparison. At a group level, we
first report the mean posterior estimate (collapsed across groups) of the strength of each
connection along with the PP of models with each parameter, relative to models without. To
evaluate our ‘three level” hypothesis, we report the effect sizes; i.e., parameters 3 of the between-
subject parametric empirical Bayesian model associated with each main effect and their

interactions with group.
Goodness of fit, convergence, and acquisition quality assessments

In the hierarchical drift-diffusion model, goodness of fit was assessed via posterior predictive

checks (43). Convergence was assessed by computing the R-hat statistic (44). Proportion of

10
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variance accounted for by the dynamic causal models are reported in the Supplemental
Information (Table S1). Finally, to assess the quality of our acquired *H-MRS data, signal-to-
noise ratio (SNRNAA) was calculated by dividing the amplitude of the NAA CH3 peak in the
frequency domain by the standard deviation of the noise in the last 32 most upfield points of the
spectrum. The linewidth was also calculated using water-unsuppressed spectra and measuring the

FWHM of the water peak in Hertz (Hz).
Data availability

Data supporting the findings of this study are available at https://uwoca-

my.sharepoint.com/:f:/g/personal/rlimongi uwo ca/EmDE6zsduKplinRzEhWoyz8B20X83970

WxL8KnG0dUj61A?e=0ZxdO6.
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Results

[Glu]dacc does not differ across groups

Glutamate MR Spectroscopy assessment could not be performed in one FEP subject. Data from
this subject were not analyzed. A frequentist two-sample t-test did not reveal statistically
significant difference between the mean [GluJaacc in the FEP group (M = 6.90 mM, SD = 1.35)

relative to the HC group (M =6.38 mM, SD = 1.3); tz6.72) = 1.21, p = 0.88 (Fig. 1).

[Glu]aacc does not account for between-groups difference in (Stroop) computational

performance

Both FEP and HC subjects performed the task as instructed. Table 1 shows the summary
statistics. The mixed-effects models confirmed the expected behavioral results (Table 2). Across
conditions, FEP subjects performed worse than HC subjects. Planned t-tests confirmed that they
were less accurate (tso2) = 3.71, p < 0.001, Cohen’s d = 0.28) and took longer (te74) = 6.99, p <

0.001, Cohen’s d = 0.52) when resolving cognitive conflicts in the incongruent condition.

The hierarchical drift-diffusion model showed that all parameter estimates in both groups
differed from 0 (PP = 1.0). Subject-wise estimates are provided in the Supplemental Information
(Table S2). Fig. 2 shows that the drift-rate parameter in the HC group (M = 2.83, SD = 0.18) was
larger than in the FEP group (M = 1.83, SD = 0.2), proportion of the group’s posteriors in which
the parameters differ (APP) = 0.99. Furthermore, the starting point parameter in the FEP group
was larger (i.e., closer to the decision boundary, M = 0.44, SD = 0.03) than in the HC group (M
=0.32, SD =0.03), APP = 0.99. The decision threshold was lower in the FEP group (M = 2.06,

SD =0.32) than in the HC group (M = 2.52, SD = 0.09), APP= 0.96. Finally, the non-decision

12
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processes took longer in the FEP group (M =0.64, SD = 0.11) than in the HC group (M = 0.46,

SD = 0.09), APP = 0.99.

To investigate whether [Glu]aacc could explain between-groups differences in precision of PE
and prior beliefs, we regressed the drift-diffusion model parameters on group, [Glu]dacc, and the
[Glu]aacc x Group interaction. Regarding prior beliefs, we found main effect of group, p = -0.06,
SE =0.0002, t(35) = -350, p <.0001, 95% CI [-0.059, -0.058] (congruent with the hierarchical
drift-diffusion model results). However, we found no evidence for an effect of [Glu]uacc, B =
0.00006, SE = 0.0001, t(35) = 0.51, p = .61, 95% CI [-0.0002, 0.0003], nor [Glu]sacc * Group
interaction, B = -0.00009, SE = 0.0001, t(35) = -0.71, p = .48, 95% CI [-0.0003, 0.0002].
Similarly, regarding the precision of PE we found main effect of group, = 0.5, SE = 0.05, t(35)
=09.11, p<.0001, 95% CI [0.39, 0.62] —also congruent with the hierarchical drift-diffusion
model results— and we found no evidence for an effect of [Glu]dacc, p = -0.009, SE = 0.04,
t(35) = -0.22, p = .83, 95% CI [-0.09, 0.08] nor [Glu]¢acc x Group interaction, § = 0.01, SE =

0.04, t(35) = 0.31, p = .76, 95% CI [-0.07, 0.098].
[Glu]aacc affects intrinsic inhibitory connections in the salience network

Bayesian model comparison revealed that the three-level model outperformed all the alternative
models (Fig. 3). The mean estimates across groups revealed that in resting state, there was
intrinsic inhibition in both regions (AACC, M = 2.25, PP =1.0; Al, M = 2.6, PP = 1.0) and an
ensuing attenuation in the strength of excitatory connections between regions (lACC—AI, M = -

0.53, PP =1; AI-»dACC, M =-0.43, PP =1.0).

Fig. 4 shows no main effect of group on network parameters. However, main effect of [Glu]dacc

on self-connections in both the dACC and the Al was detected. The strength of intrinsic
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inhibition increased in the dACC (B = 0.09, PP = 0.98) and decreased in the Al (§ =-0.07, PP =
0.96). Across groups, we did not find effect of prior beliefs on extrinsic connections. However,
we found a main effect of the precision of PE on inhibitory connections. Across groups, the
strength of inhibitory connections increased with the precision of PE (dACC, =0.9, PP =1; Al,

B=0.85,PP=1).

[Glu]uacc correlates negatively with intrinsic inhibitory influence in the dACC of

FEP subjects, accounting for aberrant prior beliefs and aberrant precision of PE

Crucially, Fig. 5 shows that there was a Group x [Glu]dacc interaction in inhibitory connections
of the dACC. Connections were weaker in FEP than in HC (f =-0.11, PP =1.0). Furthermore,
there was a Group x Prior-beliefs interaction. The effect of inhibitory connections on prior
beliefs was stronger in FEP than in HC (dACC, B=39.52, PP =1) (Al, p =44.44, PP = 1).
Surprisingly, the effect of excitatory connections on prior beliefs was weaker in FEP than in HC
(dACC—AI, B=-9.13, PP =1; AI->dACC, p =-7.49, PP = 1). Finally, we found Group x PE
precision interaction in inhibitory connections. The effect of these connections on the precision
of PE was weaker in FEP (dACC, B =-1.56, PP = 1; Al, p =-1.08, PP = 1). In summary,
[Glu]eacc differentially affected the effective connectivity of the salience network, and the
connectivity of the network was differentially associated with the parameter estimates of the

hierarchical drift diffusion model in the presence of FEP.
Connectivity strength correlates negatively with severity of social withdrawal

We assessed the association between the severity of negative symptoms (blunted affect, social
withdrawal, and lack of spontaneity) and the strength of connections independently (i.e., three

comparisons per connection) in the FEP group. Only the effect of backward connections on
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social withdrawal survived Bonferroni correction for the number of negative symptoms (three
symptoms, P = 0.017). Severity of social withdrawal increased as the connectivity strength of
dACC—ALI connections decreased, p = -15.59, SE = 5.61, tue) = 2.78, p = 0.013, 95% CI [27.43,

3.75] (Fig. 6).
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Discussion

By using resting-state *H-MRS, DCM of resting-state fMRI, and hierarchical drift-diffusion
modeling, we have demonstrated that low computational performance during cognitive-conflict
resolution in schizophrenia is explained by aberrant resting-state effective connectivity
(dysconnection) in the salience network. This dysconnection was associated with glutamate
hypofunction in the dACC, as proven by the fact that a model without the effect of [Glu]dacc had
low probability of having produced the fMRI data. [Glu]sacc was associated with opposite
intrinsic connectivity strength in both the dACC and the Al, indicating that [Glu]dacc affected
the entire network and confirming the sensitivity of the Al to subtle changes in the dACC
excitation-inhibition balance. Crucially, in the FEP group the inhibitory influence on the
excitatory population of the dACC decreased as a function of glutamate concentration. This
finding is the first imaging evidence directly linking the glutamate hypofunction to the cortical

disinhibition hypothesis in schizophrenia.

Using stochastic DCM, Bastos-Leite, Ridgway (45) found decreased intrinsic inhibition and
decreased extrinsic connections in the default network of schizophrenia subjects. Similarly, using
parametric empirical Bayes and DCM in a sample of schizophrenia subjects, Zhou, Zeidman (46)
recently found decreased intrinsic inhibition and decreased extrinsic connectivity within the
dorsal attention network. They speculated that both glutamate hypofunction and aberrant
precision of prediction errors would be associated with this sort of dysconnectivity in large-scale
networks. In the context of the salience network, we confirmed their hypothesis. Therefore, the
fact that three independent groups have shown the same relationship between decreased intrinsic
and extrinsic connections in the default, attention, and salience networks provide strong support
to the dysconnection hypothesis of schizophrenia. Crucially, our results point to glutamate
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hypofunction and aberrant computations of sensory and prior precision as critical causes of
dysconnection and are in line with recently reported independent preliminary data showing that

the effect of glutamate hypofunction should be observed at the network level (47).

These results also demonstrate that establishing the relationship between glutamate
hypofunction, the disinhibition hypothesis, and the pathophysiology of schizophrenia requires
the integration of the neurochemical, effective-connectivity, and computational levels of
analysis. This is supported by the fact that Bayesian model comparison afforded low probability
to any model not comprising all three levels (PP = 0.12, summed over all but the three-level
model). Specifically, parameter estimates of resting-state aberrant connectivity (driven by
resting-state [Glu]aacc) in the salience network accounted for computational parameters of
cognitive dysfunction in schizophrenia. Furthermore, an increase in the effect of the inhibitory
population on the excitatory population in both regions explains the precision subjects afforded
to ascending information, in line with the known role of GABA interneurons on pyramidal

circuits (48).

The three-level model also explains the compensatory effect of aberrant prior beliefs to aberrant
precision of ascending information in FEP. At the computational level, FEP subjects needed to
accumulate less information than HC (i.e., lower decision threshold), relied more on their prior
beliefs (i.e., at the beginning of each trial they were closer to the decision boundary) than on
sensory information, and were less cautious when resolving cognitive conflicts —they tended to
jump to conclusions (49). At a group level, we did not find evidence for a larger precision of PE
in the FEP group than in the HC group. On the contrary, the HC group showed a steeper drift
rate. However, within the FEP group, over affordance of precision to PE was associated with a

decrease in the strength of inhibitory connections —in both regions (Fig. 5-B). Crucially, an
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increase in the inhibitory activity was associated with an increase in prior beliefs (Fig. 5-C),
suggesting (at the effective-connectivity level) that more precise prior beliefs compensate for the

aberrant precision of PE —as predicted by the dysconnection hypothesis (7).

A three-level model could provide alternative explanations for previously reported findings.
Specifically, Taylor, Neufeld (19) found no relationship between [Glu]sacc and deficits in Stroop
performance of FEP subjects. One possible reason for this finding might be the lack of both a
computational model (e.g., hierarchical drift-diffusion model) and a network model (e.g., DCM).
This is supported by the fact that we found no direct association between [Glu]dacc on either
behavioral performance (i.e., reaction time and accuracy) or hierarchical drift-diffusion model
parameters. However, we demonstrated that glutamate hypofunction affected the whole salience
network and the aberrant effective connectivity of this network did affect the computational

performance.

The advantage of a “three-level approach” is also supported by recent findings of Shaw, Knight
(14). They used a four-neuronal-population DCM to model inhibitory (GABA) connections to
superficial pyramidal cells. Their DCM parameters were associated with the behavioral
performance. Our Bayesian model comparison showed that a model including behavioral
measurements rather than the computational parameters underperformed the three-level model
—which included the computational parameters. The findings of Shaw, Knight (14), however,
are in concert with our idea that establishing a relationship between synaptic dysfunction and
behavior (i.e., symptoms) requires modeling effective connectivity (at least at the regional scale)
that would be disrupted by the synaptic dysfunction. More in general, along with this recent
work, the current results suggest that symptoms of schizophrenia emerge from the interaction

between the three levels of analysis.
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Our results and the idea of interactive emergence allow us to provide an alternative interpretation
to recent findings of Valton, Karvelis (50), who reported a computational model of Bayesian
learning in schizophrenia and HC. Unlike our work, their study did not find differences in the
precision of prior beliefs or in the precision of sensory evidence across groups. However, the fact
that they did not include the effective-connectivity level of analysis in their experimental design
left open the possibility of a Group x Precision interaction on the effective connectivity. Our
results regarding [Glu]aacc support this alternative explanation. We did not find main effect of
group on [Glu]dacc (c.f., no main effect of group on precision in 50). However, the effect of

[Glu]dacc on inhibitory connections in the dACC varied with group.

Valton, Karvelis (50) also proposed that prior beliefs in schizophrenia subjects might not
influence behavioral performance in the absence of sensory stimulation. During resting state
fMRI, our FEP subjects did not expect sensory stimulation. Interestingly, the weaker the
connectivity strength in descending connections (representing prior beliefs) were in resting state
the more biased were their responses towards the decision threshold. Heuristically, this could be
interpreted as an increase in the confidence FEP subjects afforded to their prior beliefs during
task performance, caused by a decreased in the strength of backward connections. Therefore, it is
possible that the effect that prior beliefs might exert on behavioral performance might depend not
only on the sensory stimulation (as suggested by 50) but also on the resting-state connectivity

strength of descending connections which in hierarchical message passing represent prior beliefs.

It is intriguing that the relationship between the strength of extrinsic connections and the
computational parameters of precision-weighted PE (and prior beliefs) does not conform to the
assumption of an asymmetric flow of information under predictive coding. Canonical

formulations of predictive coding would predict an increase in the strength of ascending
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connections associated with aberrant precision of PE and an increase in the strength of
descending connections associated with compensatory aberrant prior beliefs. However, we found
that the extrinsic connectivity strength did not reflect the precision of PE, whereas weak
bidirectional connections correlated with prior beliefs. These data provide initial evidence of
“bidirectional correlates of effective connectivity strength with prior beliefs” in hierarchical
message passing with, as we elaborate upon below, implications for the underlying predictive

coding theory of brain function and its translational corollary, the dysconnection hypothesis.

Initial works on predictive coding proposed an asymmetrical functional architecture for
hierarchical message passing whereby prior beliefs would be conveyed by descending
connections and PE would be conveyed by ascending connections. Not by coincidence, the
connectivity asymmetry was motivated on the anatomical asymmetry widely described in early
sensory areas (13). However, this scheme is not congruent with the effect of weak bidirectional

connections on prior beliefs that our findings suggest.

A possible explanation of our findings is that the parameter estimates of the current DCM could
be reflecting the activity of another type of excitatory inputs —for example, Von Economo
neurons. DCMs do not differentiate this type of excitatory influence from others. This is a
limitation of the current study that could be resolved in the future by incorporating additional

excitatory neuronal populations and parameters of interlaminar connectivity (40).

We posit that the salience network might defy the canonical asymmetry of predictive coding due
to the presence of Von Economo neurons, emerging as a network functionally specialized in the
bidirectional processing of prior beliefs. Indeed, the “unique” role of Von Economo neurons in

predictive coding has been recently suggested (51). However, asymmetric message passing does

not contradict the principles of functional specialization and functional integration. For example,
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classic theories of working memory have been recently updated by integrating the principle of
hierarchical message passing with the widely accepted functional specialization of the prefrontal
cortex (52). Working memory, in the prefrontal cortex, has been recently regarded as a locus for
the generation and maintenance of prior beliefs (53) which would be passed along to lower areas
in the cortical hierarchy (54). Therefore, it is possible that the prefrontal cortex generates prior
beliefs and deploys such beliefs downstream to the salience network. As a hub, the salience
network would then functionally specialize in broadcasting prior beliefs (i.e., predictions) to
lower sensory areas and interoceptive channels. The salience network would draw upon

bidirectional circulation of prior beliefs to execute this functional integration.

The possibility of a functionally specialized two-node network for the processing of prior beliefs
is further supported both by previous works on social isolation and suicidal behavior. For
example, a post-mortem study of schizophrenia subjects that died by suicide showed a larger
density of Von Economo neurons in the cingulate cortex of these subjects, compared with
schizophrenia subjects who died due to other causes (55). Interestingly, social isolation (i.e.,
social withdrawal) is strongly related with both the (aberrant) salience network (55, 56) and
suicidal behavior (57). These previous works are in consonance with the relationship between

dACC—AI connectivity and severity of social withdrawal we found in this work.

In conclusion, this work provides evidence to the hypothesis that the glutamate hypofunction
relies on the disinhibition hypothesis and manifests itself in the effective connectivity of the
salience network. The three levels of analysis provide compelling explanation to deficits in
cognitive control and negative symptoms in schizophrenia. Finally, a bidirectional functional
architecture of prior beliefs of the salience network could be the key to understand both its

coordinating role with the central executive network (58) and its cardinal role in psychosis (26).
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Tables

Table 1. Summary statistics of accuracy and reaction time in the Stroop task

Accuracy (proportion) Reaction Time (s)
Group Condition
M SD M SD
Color-only 0.99 0.09 1.06 0.27
Congruent 0.98 0.14 0.98 0.27
FEP
Incongruent 0.92 0.27 1.19 0.31
Word-only 0.97 0.17 0.95 0.26
Color-only 1.00 0.05 0.89 0.20
Congruent 1.00 0.05 0.82 0.21
HC
Incongruent 0.98 0.14 1.04 0.25
Word-only 1.00 0.00 0.79 0.18
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Table 2. Mixed-effect models of response accuracy and reaction time in the Stroop task

Parameter Estimate SE DF t Lower - Upper
95%  95%
Intercept 0.979 0.006 36.69 156 <.0001 0.966 0.992
Group [FEP] -0.015 0.006 36.69 -2.32 0.0261 -0.027 -0.002
Condition [Color-only] 0.015 0.004 3000.87 3.71 0.0002 0.007 0.023
Condition [Congruent] 0.010 0.004 3000.86 2.33 0.0201 0.002 0.018
Accuracy
Condition [Incongruent] -0.030 0.004 3001.31 -7.2 <.0001 -0.038 -0.022
Group [FEP] x Condition [Color-only] ~ 0.011 0.004 3000.87 2.79 0.0053 0.003 0.020
Group [FEP]x Condition [Congruent] 0.006 0.004 3000.86 1.4 0.1624 -0.002 0.014
Group [FEP] x Condition [Incongruent] -0.016 0.004 3001.32 -3.85 0.0001 -0.024 -0.008
Intercept 0.971 0.022 36.83 45 <0001 0.927 1.014
Group [FEP] 0.083 0.022 36.83 3.86 0.0004 0.040 0.127
Condition [Color-only] 0.011 0.007 2999.88 1.66 0.0968 -0.002 0.024
Reaction  condition [Congruent] -0.069  0.007 2999.87 -104 <0001 -0.082 -0.056
Time Condition [Incongruent] 0.155 0.007 2999.98 23 <0001 0.141 0.168
Group [FEP] x Condition [Color-only]  0.004 0.007 2999.88 0.53 0.5943 -0.010 0.017
Group [FEP]x Condition [Congruent] 0.000 0.007 2999.87 0.06 0.9561 -0.013 0.013
Group [FEP] x Condition [Incongruent] -0.004 0.007 2999.98 -0.63 0.5271 -0.017 0.009
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Figures Legends

Fig. 1. Voxel positioning for 'H-MRS measurement and two-neuronal-population DCM.
Black box shows the voxel on the dACC for *H-MRS (top) and the same voxel for fMRI
(bottom). Grey box shows the two-neuronal-population DCM of the salience network. Each
region comprises one population of excitatory neurons (E) and one population of inhibitory
neurons (I). Parameters of effective connectivity represent the influence of inhibitory to
excitatory connections (IE, assumed to be GABAergic neurons), the influence of excitatory to
inhibitory connections (El), the influence of self-inhibitory connections within each population
(SE, Sl), and the influence of excitatory population of one region on the excitatory population of
the other region (EE, assumed to be glutamatergic connections). Whereas EIl, SE, and Sl
parameters are fixed in the model, IE and EE are free parameters. Small white box shows a
sample spectrum obtained using H-MRS semi-LASER (TE = 100 ms). Raw data are indicated
in blue, fit spectrum is indicated in orange, and residual signal is shown above in green. Main
glutamate signal contribution is indicated with an arrow (2.3 ppm). Since we aimed at
demonstrating the relationship between the effect of [Glut]uacc (observed measurements on the
bar chart indicating no group difference) on IE and the ensuing consequences in the whole
network, this two-state model was sufficient to test our hypothesis despite not capturing all the

circuitry constraints of cortical columns (c.f., a four-neuronal-population model, 40).

Fig. 2. Parameter estimates of the hierarchical drift diffusion model. Top right, visual
depiction of the parameter estimates of the drift diffusion model (z = starting point or prior
beliefs, v = drift rate or precision of PE, t = non-decision processes, a = decision threshold, RT =
reaction time). Left, proportion of the posteriors in which the parameter estimate for one group
differs from the other (APP).

32


https://doi.org/10.1101/828558
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/828558; this version posted November 2, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Fig. 3. Bayesian model comparison results and mean parameter estimates in the salience

network across groups. * PP = 0.

Fig. 4. Main effects of the winning three-level parametric empirical Bayes model. In A, bars
represent differences between groups as defined by the effect coding (FEP = 1, HC = -1). In B,

C, and D, covariates were mean centered.

Fig. 5. Interactions between group and covariates in the winning three-level parametric
empirical Bayes model. In A, B, and C, positive values represent stronger effect in the FEP

group, and vice versa.

Fig. 6. Association between Extrinsic Connectivity Strength and Severity of Social
Withdrawal.
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Supplementary Information

Table S1. Subject-level values of proportion of variance accounted for the three-level
parametric-empirical-Bayes model

Subject HC FEP
1 5.1 21.44
2 6.21 9.48
3 1823 3741
4 3219 2083
5 3255 20.13
6 1197 18.03
7 31.64 3.6
8 15.28 8.37
9 19.77 5.39
10 1218  31.89
11 5.76 38.74
12 2181 46
13 2401 27.92
14 6.48  31.96
15 3061 36.86
16 276  30.61
17 11.82 9.82
18 7.61 6.09
10 153  26.32
20 8.51

Note. The mean proportion of variance accounted for by the model was 0.17 (SD = 9. 73, 95 %
CI[12.67, 21.79]) in the HC group and 0.23 (SD = 12.93, 95% CI = [16.44, 28.91]) in the FEP
group. —a proportion of a least 0.17 of variance accounted for by the model (averaged across
subjects) is considered acceptable (1).
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Table S2. Parameter estimates of the hierarchical drift-diffusion model

Parameter

Group a v t z
mean std mean std mean std mean std
1 2.535 0.259 2.872 0.263 0.455 0.057 0.326 0.034
2 2.558 0.275 2.884 0.272 0.540 0.064 0.326 0.034
3  2.650 0.299 2.735 0.253 0.524 0.065 0.325 0.034
4 2538 0.236 2.845 0.260 0.300 0.038 0.326 0.034
5 2535 0.241 2.881 0.267 0.363 0.044 0.326 0.034
6 2.678 0.295 2.561 0.285 0.563 0.058 0.324 0.034
7 2.373 0.248 2.841 0.263 0.377 0.050 0.327 0.034
8 2592 0.266 2.863 0.270 0.447 0.052 0.326 0.034
9 2.541 0.258 2.871 0.265 0.454 0.055 0.326 0.034
He 10 2.439 0.241 2.795 0.254 0.455 0.054 0.326 0.034
11 2.475 0.235 2.554 0.291 0.548 0.064 0.325 0.034
12 2.462 0.237 2.902 0.268 0.360 0.048 0.327 0.035
13 2431 0.263 3.051 0.331 0.458 0.059 0.327 0.035
14 2344 0.282 2.926 0.288 0.503 0.067 0.327 0.035
15 2510 0.236 2.912 0.275 0.324 0.041 0.326 0.034
16  2.656 0.300 2.701 0.256 0.486 0.062 0.325 0.034
17  2.509 0.245 2.767 0.262 0.590 0.064 0.325 0.034
18 2.507 0.272 3.011 0.319 0.582 0.068 0.326 0.035
19 2,505 0.244 2.891 0.266 0.389 0.050 0.326 0.034
20 2474 0.245 2.804 0.262 0.528 0.059 0.325 0.034
1 2.365 0.486 2.305 0.403 0.821 0.082 0.443 0.035
2 2.619 0.548 1.954 0.377 0.739 0.090 0.442 0.035
3 1.371 0.173 1.322 0.366 0.533 0.029 0.441 0.035
4 1.916 0.368 2.524 0.434 0.743 0.063 0.444 0.035
5 1.797 0.243 1.633 0.335 0.642 0.056 0.443 0.035
6 1.943 0.263 1.784 0.321 0.543 0.050 0.444 0.035
7 1.854 0.275 1.202 0.350 0.800 0.095 0.443 0.035
8 2173 0.390 2.422 0.421 0.652 0.056 0.443 0.035
9 1.707 0.268 2.259 0.404 0.640 0.046 0.443 0.035
FEP 10 2.006 0.221 0.746 0.280 0.681 0.065 0.442 0.035
11 2.580 0.457 1.797 0.338 0.573 0.067 0.442 0.035
12 2.439 0.393 1.877 0.322 0.463 0.051 0.443 0.035
13 1.950 0.257 1.654 0.323 0.707 0.057 0.442 0.035
14 2.460 0.452 2.248 0.404 0.567 0.054 0.442 0.035
15 2411 0.350 1.621 0.305 0.546 0.053 0.441 0.035
16 1974 0.285 2.052 0.343 0.395 0.042 0.445 0.035
17 1.666 0.214 1.290 0.302 0.739 0.063 0.445 0.035
18  1.905 0.274 2.021 0.355 0.599 0.048 0.443 0.035

[EY
O

2.147 0.317 1.839 0.332 0.733 0.065 0.442 0.035
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Spectral post-processing

The spectral acquisition was analyzed to measure glutamate concentration using methods
previously developed in our laboratory (2-5). Specifically, the 32 spectral acquisition was
corrected for frequency and phase drifts as described in Near, Edden (6). The corrected spectra
were then averaged into one spectrum to represent the entire four-minute resting-state block. The
averaged spectrum underwent post-processing using combined QUALITY Eddy Current
Correction (7), using 400 QUALITY (quantification improvement by converting lineshapes to the
Lorentzian type) points, to reduce linewidth distortions as well as Hankel Singular Value
Decomposition (HSVD) water removal to remove any residual water signal between 4.2 ppm and
5.7 ppm before being fit with fitMAN (2, 3), a time-domain fitting algorithm that uses a non-linear,
iterative Levenberg-Marquardt minimization algorithm to echo time-specific prior knowledge
templates. The metabolite fitting template included eighteen brain metabolites: alanine, aspartate,
choline, creatine, y-aminobutyric acid (GABA), glucose, glutamate, glutamine, glutathione,
glycine, lactate, myo-inositol, Nacetyl aspartate, N-acetyl aspartyl glutamate,
phosphorylethanolamine, scyllo-inositol, and taurine. As well, a single peak was used to fit the

water unsuppressed spectrum.

Using Barstool (2), tissue-specific (gray matter, white matter, and CSF) T1 and T2 relaxations
were corrected through partial volume segmentation calculations of voxels mapped onto T1-
weighted images acquired using a 0.75 mm isotropic MP2RAGE sequence (repetition time = 6000
ms, T11= 800 ms, TI2 = 2700 ms, flip-angle 1 (al) = 4°, flip-angle 2 (02) = 5°, field of view =350
mm x 263 mm x 350 mm, acquisition time = 9 min. 38 s, IPATPE = 3 and 6/8 k-space). Finally,
glutamate concentration quantification was calculated using the postprocessed water suppressed
and unsuppressed spectra for each participant along with voxel-appropriate, tissue-specific

relaxation time adjustments (8).
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ID Group AGESCAN DOB AgePsychosisOnset DUPMonths DaysOfAntipsychotic
1 HC 26.00 23-Jun-90 0.00 0.00
2 HC 23.00 16-Oct-93 0.00 0.00
3 HC 17.00 18-Nov-99 0.00 0.00
4 HC 23.00  22-Jul-93 0.00 0.00
5 HC 16.00 8-Nov-00 0.00 0.00
6 HC 25.00 10-Sep-91 0.00 0.00
7 HC 16.00 24-Oct-00 0.00 0.00
8 HC 16.00 4-Jan-01 0.00 0.00
9 HC 29.00 15-Apr-88 0.00 0.00
10 HC 22.00 18-May-95 0.00 0.00
11 HC 23.00 31-Jan-94 0.00 0.00
12 HC 20.00  6-Apr-97 0.00 0.00
13 HC 20.00 20-Nov-96 0.00 0.00
14 HC 20.00 9-May-97 0.00 0.00
15 HC 20.00  31-Jul-97 0.00 0.00
16 HC 20.00 13-Sep-97 0.00 0.00
17 HC 27.00  6-Sep-90 0.00 0.00
18 HC 22.00 3-Jan-95 0.00 0.00
19 HC 18.00  1-Oct-99 0.00 0.00
20 HC 22.00 27-Feb-96 0.00 0.00
1 FEP 19.00 25-Apr-97 17.00 24.00 0.00
2 FEP 20.00 10-Oct-96 20.00 4.00 0.00
3 FEP 19.00 28-Nov-97 19.00 1.00 7.00
4 FEP 17.00  3-Oct-99 17.00 2.00 0.00
5 FEP 18.00 18-Oct-98 18.00 2.00 7.00
6 FEP 17.00 10-Feb-00 16.00 9.00 0.00
7 FEP 24.00 19-Jan-93 23.00 12.00 0.00
8 FEP 21.00 24-Nov-95 21.00 1.00 0.00
9 FEP 25.00  23-Jul-91 20.00 59.00 7.00
10 FEP 28.00 6-Jul-89 28.00 3.00 0.00
11 FEP 20.00 21-Nov-96 18.00 14.00 0.00
12 FEP 23.00 29-Apr-94 5.00
13 FEP 23.00 21-Sep-93 22.00 6.00 0.00
14 FEP 24.00 22-Nov-92 24.00 0.50 7.00
15 FEP 23.00 7-Mar-94 0.00
16 FEP 20.00 2-May-97 19.00 9.00 0.00
17 FEP 27.00  7-Dec-89 21.00 72.00 0.00
18 FEP 26.00 19-Nov-91 26.00 1.00 7.00

19 FEP 19.00  5-Dec-98 19.00 0.50 10.00
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