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Abstract 

In the dysconnection hypothesis, psychosis is caused by NMDA hypofunction resulting in 

aberrant network connectivity. Combining a cognitive-control task, functional magnetic 

resonance spectroscopy, and functional magnetic resonance imaging, we tested this hypothesis in 

the salience network of 20 first-episode psychosis (FEP) and 20 healthy control (HC) subjects. 

Across groups, glutamate concentration in the dorsal anterior cingulate cortex (dACC) was 

associated with higher and lower inhibitory connectivity in the dACC and in the anterior insula 

(AI) respectively. Crucially, glutamate concentration correlated negatively with the inhibitory 

influence on the excitatory neuronal population in the dACC of FEP subjects. Furthermore, 

aberrant computational parameters of the cognitive-control task performance were associated 

with aberrant inhibitory connections. Finally, the strength of connections from the dACC to the 

AI correlated negatively with severity of social withdrawal. These findings support a link 

between glutamate-mediated cortical disinhibition, deficits in effective connectivity, and 

computational performance in psychosis. 

Keywords: dysconnection hypothesis; glutamate hypothesis; effective connectivity; dynamic 

causal models; predictive coding; schizophrenia 
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Introduction 

The glutamate hypothesis (1-4) has been a central focus of interest in the study of the 

psychopathology of schizophrenia for more than 20 years. It states that dysfunction of 

glutamatergic neurotransmission is associated with signature negative symptoms of 

schizophrenia such as poor executive control and social withdrawal. The dysfunction of 

glutamatergic neurotransmission is likely caused by NMDA-receptor hypofunction (i.e., 

glutamate hypofunction) in inhibitory GABAergic interneurons which would lead to an increase 

in the synaptic gain of excitatory neurons (the disinhibition hypothesis, 5, 6). The abnormal 

increase of synaptic gain is also conceptualized as a disruption of the excitation-inhibition 

balance which, as described below, rests at the core of the dysconnection hypothesis (7) within 

the theoretical framework of “the Bayesian brain” (8). 

The dysconnection hypothesis (c.f., disconnection hypothesis,  9)1 states that the 

psychopathology of schizophrenia should be studied at three levels of analysis: neurochemical, 

effective-connectivity (network-connectivity), and computational levels. At the computational 

level, the dysconnection hypothesis states that a suboptimal (e.g., schizophrenia) Bayesian brain 

(10) would overly afford confidence or precision (i.e., inverse variance) to its predictions about 

the external stimuli and would overestimate the reliability of the prediction errors (PE), leading 

to false inferences (e.g., hallucinations) and cognitive failures (e.g., cognitive control, 11). At the 

effective-connectivity level, a predictive coding algorithm (12), namely, hierarchical message 

passing between lower and higher cortical levels would be altered in terms of aberrant backward 

                                                 

1 Here, “dysconnection” means abnormal functional integration or effective connectivity. This meaning differs from 

the meaning of “disconnection” which refers to collapsed or disintegrated cognitive functions. 
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and forward interregional connectivity strength (13). Crucially, at the neurochemical level the 

aberrant connectivity strength would depend on increased synaptic gain in deep and superficial 

pyramidal cells, reflecting a decrease in the strength of intrinsic inhibitory connections, driven by 

NMDA hypofunction (7, 14). Therefore, the dysconnection hypothesis takes the glutamate 

hypothesis one step further by postulating that the disruption of excitation-inhibition balance 

makes itself evident at effective-connectivity level of analysis. In this work, we provide evidence 

in support of this hypothesis. 

We provide evidence of the association between glutamate and dysconnection within the context 

of neurochemical, effective-connectivity, and computational levels of analysis. We will do this 

by studying the relationship between 1H-MRS glutamate in the dorsal anterior cingulate cortex 

([Glu]dACC), the effective connectivity within the salience network, and cognitive-control 

dysfunction and negative symptoms in schizophrenia. Specifically, at the computational level we 

compare the performance of first-episode psychosis (FEP) and healthy control (HC) subjects in 

the Stroop task (15), which reliably engages the two nodes of the salience network (16, 17). 

Suboptimal Stroop computations in FEP are reflected in long reaction times and low response 

accuracy (18, 19). We show that these suboptimal computations are explained in terms of a drift-

diffusion model as a specific case of a Bayesian decision making (20). At the effective-

connectivity level, we show that the computational parameter associated with aberrant 

predictions in FEP maps onto forward and backward connections. Ultimately, we demonstrate at 

the neurochemical level that the dysconnection within the salience network is driven by 

[Glu]dACC. As we detail below, the salience network is an appropriate anatomical and functional 

motif (c.f., 21) to evaluate the relationship between all three levels of analysis. 
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The dACC is functionally specialized in conflict monitoring during the Stroop task (22). In the 

salience network, the right anterior cingulate cortex (dACC) is anatomically connected to the 

right anterior cingulate insula (AI) (23-25). Crucially, psychosis is associated with consistent 

structural deficits (26) as well as resting-state functional dysconnectivity in the salience network 

(27, 28). Given that the right AI is particularly sensitive to descending afferents from the right 

dACC (29), we expected the subtle variations of excitation-inhibition balance resulting from the 

putative glutamatergic abnormalities within the dACC to induce dysconnectivity in the salience 

network, affecting both intrinsic inhibitory connections of the dACC and the extrinsic connection 

with the AI. We anticipated the aberrant effective connectivity to account for aberrant prior 

beliefs and overly precise PE during cognitive conflict resolution and to the burden of negative 

symptoms of schizophrenia. 
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Methods and Materials 

Participants 

Twenty FEP subjects (8 female; age male M = 22.5, SD = 3.45; age female M = 22.37, SD = 

3.07; age range [17 -28]) and 20 HC subjects (9 female, age male M = 21.64, SD = 4.27; female 

M = 21.67, SD = 3.04; age range [16 - 29]) participated in the study. No difference in age was 

detected across groups (p > |t| = 0.47). Subjects were recruited from the “Prevention and Early 

Intervention Program for Psychosis” in London, Ontario. Criteria for inclusion in the FEP group 

included (i) first clinical presentation with psychotic symptoms and (ii) Diagnostic and Statistical 

Manual of Mental Disorders (5th Edition) criteria A for schizophrenia satisfied. HC subjects did 

not report a personal history of mental illness or family history of psychotic disorders. The 

subjects’ consent was obtained according to the Declaration of Helsinki, and approval for the 

study was obtained from the University Human Ethics Committee for Health Sciences at the 

University of Western Ontario. Subjects were assessed for positive and negative symptoms of 

schizophrenia using the eight items of the Positive and Negative Syndrome Scale (PANSS-8, 

30). All relevant demographic data are provided in the Supplemental Information. As detailed 

below, inside an MRI scanner, subjects underwent resting-state 1H-MRS, resting-state fMRI, and 

performed a color version of the Stroop task. 

1H-MRS  

We measured resting-state 1H-MRS during a four-minute block. The measurement was made in a 

Siemens MAGNETOM 7-Tesla MRI scanner using an 8-channel transmit/ 32-channel receive, 

head-only, radiofrequency coil at the Centre for Functional and Metabolic Mapping at the 

University of Western Ontario. A 2.0 x 2.0 x 2.0 cm (8cm3) 1H-MRS voxel was placed on the 
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dACC where activation was expected based on our previous work (19) using the Stroop task 

(MNI: X = 1, Y = 16, Z = 38, Fig. 1). To locate the voxel, we used a two-dimensional anatomical 

imaging sequence in the sagittal direction (37 slices, TR = 8000 ms, TE = 70 ms, flip-angle (α) = 

120°, thickness = 3.5 mm, field of view = 240×191 mm). Conventional 1H-MRS sequences use a 

short or “short-as-possible” echo time to minimize the T2 relaxation and J-coupling effects. 

However, a recent study by Wong, Schranz (31) proposed that a longer echo time for the semi-

LASER sequence would improve glutamate measurement in the human brain. Therefore, one 

long echo time (100 ms) dataset was acquired using a semi-LASER 1H-MRS pulse sequence 

(repetition time = 7500 ms). A 32 channel-combined, water-suppressed spectral average was 

acquired using the semi-LASER 1H-MRS pulse sequence (repetition time = 7500 ms, echo time 

= 100 ms, N = 32). Water suppression was achieved using the VAPOR preparation sequence and 

a water-unsuppressed spectrum was also acquired for spectral post-processing. Spectral post-

processing is described in the Supplemental Information. 

Resting-state fMRI 

Using the same scanner as in the 1H-MRS measurement, we acquired 360 whole-brain functional 

images. A gradient echo-planar-imaging sequence was used with phase-encoding direction = A > 

> P, repetition time = 1000 ms, echo time = 20 ms, flip angle = 30 deg, field of view = 208 mm, 

field of view phase = 100 %, voxel dimension = 2 mm isotropic, slice thickness = 2 mm, multi-

band acceleration factor = 3, acquisition time = 6 min. 26 s, and number of slices = 63 

(interleaved slice order). Subjects were instructed to lie with their eyes open. 
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Stroop task 

We implemented the same Stroop task we used in Taylor, Neufeld (19). By pressing a key in a 

four-key response pad, subjects identified as quickly and as accurate as possible the color of the 

ink of a string of letters (on a gray background) representing either the name of a color (yellow, 

green, blue, or red) or a series of ‘Xs’ (‘XXXX’) projected on screen visible via a mirror located 

in the scanner’s coil. The task comprised four conditions: word-only (a word in white ink saying 

a color name, e.g., the word ‘yellow’ written in white ink), color-only (an ‘XXXX’ string with 

the color ink), congruent (the ink color matching the meaning of the word, e.g., the word ‘red’ in 

red ink), and incongruent (the ink color differing from the meaning of the word, e.g., the word 

‘red’ written in blue ink). Subjects performed 20 trials per condition. They were allotted 2 s to 

respond with an interstimulus trial interval of 1 s during which a fixation cross was visible. 

Outside the scanner, each participant rehearsed the task until reaching 80 % accuracy —

collapsed across all four conditions. 

Computational model of the Stroop performance 

Based on our previous works (19), we were particularly interested in the incongruent condition 

in which we expected lower accuracy and longer reaction time in FEP than in HC. To verify this, 

we regressed accuracy and reaction time (separately) against condition, group, and the Condition 

× Group interaction via a mixed-effects linear model (32). Subjects were included as random 

effects. 

We fit a hierarchical drift-diffusion model to the reaction time and accuracy data. In the 

hierarchical drift-diffusion model, subjects accumulate information and trigger a response after 

reaching an accumulation threshold. Formally, the hierarchical drift-diffusion model comprises 
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four basic parameters representing the accumulation threshold, the starting point of the 

accumulation process, the accumulation (or drift) rate, and the non-decision processes such as 

stimulus encoding and motor execution (i.e., sensorimotor delay). 

Predictive coding maps elegantly onto the hierarchical drift-diffusion model (11, 20, 33). 

Evidence accumulation corresponds to the accumulation of presynaptic afferent activity from 

neuronal populations encoding PE (i.e., superficial pyramidal cells), the drift rate represents the 

precision of the ascending PE, and the starting point represents the prior beliefs. Formally, 

corrected prior beliefs (i.e., a change in the starting point parameter) correlates with a steeper 

slope of the accumulation process (i.e., a larger absolute value of the drift rate indicating more 

precise PE).  

Using Bayesian and Markov chain Monte Carlo methods (34), we estimated the parameters of 

the hierarchical drift diffusion model from subjects of each group separately. We assumed that 

subjects of a particular group were alike. Therefore, their parameters were constrained by their 

group parameters. This also allowed us to estimate between-groups difference without over or 

underestimating the true group-level variance (35). Prior distributions were informative as per 

the default option used in the HDDM package (34). The chain length was 200,000. The number 

of burn-in iterations was 2000, and the chains were generated with thinning = 20. We report the 

proportion of the estimate’s posterior distribution (PP) that differs from zero. To show 

differences between groups, we report the proportion of the posteriors in which the parameter 

estimate for one group differs from the other. Specifically, we expected larger drift rate (i.e., 

aberrant precision of PE) and larger starting point (aberrant prior beliefs) in the FEP group than 

in the HC. We did not have a-priori expectations about differences in the decision threshold and 
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in non-decision processes. However, we report the differences in these parameters for 

completeness and post-hoc interpretation. 

Effective connectivity 

Preprocessing and general linear model 

Functional images were realigned, normalized to the Montreal Neurological Institute space, and 

spatially smoothed using a 4 mm (full width at half maximum) Gaussian kernel. We fit a general 

linear model to the images and included the six head movement parameters and the time series 

corresponding to the white matter and cerebrospinal fluid as regressors. In addition, we included 

a cosine basis set with frequencies ranging from 0.0078 to 0.1 Hz (36). Images were also high-

pass filtered to remove slow frequency drifts (< 0.0078 Hz). By specifying an F-contrast across 

the basis set, we identified regions with blood oxygen level fluctuations within the range of 

frequencies specified above. On the F-contrast, a sphere (8-mm radius) was centered on the 

Montreal Neurological Institute coordinates corresponding to the dACC (the same coordinates 

that formed the centroid of the 1H-MRS voxel for the [Glu]dACC measurements) and to the AI (X 

= 38, Y = 20, Z = -4, Fig. 1) —we selected these coordinates based on our previous results (37). 

At the peak voxel on each region of interest, we defined a sphere (8-mm radius) and extracted 

the timeseries (principal eigenvariate) summarizing the activity within the sphere. 

Spectral dynamic causal model (DCM) 

We estimated the resting-state effective connectivity within the salience network by fitting a 

two-state spectral DCM (38) to the resting-state fMRI data (39). Two-state DCM assumes two 

populations of neurons within a region: excitatory and inhibitory. For stability of the model, each 

sub-population comprises self-inhibition connections (which are fixed parameters). Crucially, 
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two free parameters are fit to the fMRI data: interregional excitatory-to-excitatory connections 

and within-region inhibitory-to-excitatory connections (Fig. 1). Since we aimed at demonstrating 

the relationship between the effect of [Glu]dACC on inhibitory-to-excitatory connections and the 

ensuing consequences in the entire network, this two-state model was sufficient to test our 

hypothesis despite not capturing all the circuitry constraints of cortical columns (c.f., a four-

neuronal-population model, 40). For each participant, a fully connected DCM, with no 

exogenous inputs was specified and inverted using spectral DCM of SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).  

After inverting subjects’ DCMs, we estimated a series of parametric empirical Bayes models (41, 

42) aiming to test, at a group level, our hypothesis against five alternative hypotheses. We fit six 

(general linear) models to the posterior estimates of effective connectivity from each subject. Our 

main hypothesis stated that [Glu]dACC hypofunction would cause aberrant effective connectivity 

in the salience network which would account for aberrant prior beliefs and aberrant precision of 

PE. We tested this hypothesis by comparing the evidence supporting a “three-level” model with 

the evidence supporting five alternative models. The three-level (neurochemical, effective-

connectivity, and computational) model comprised the following four covariates: (i) group, (ii) 

[Glu]dACC, (iii) precision of PE, and (iv) prior beliefs. Crucially, the model included the 

interactions between [Glu]dACC, prior beliefs, and precision of PE with Group. Each covariate 

was mean centered, and we used effect coding for groups (HC = -1, FEP = 1). All but the 

“behavioral model” (see below) were reduced versions of the three-level model.  

A “no-glutamate” model represented the hypothesis that glutamate did not affect the salience 

network, the model did not include the main effect of [Glu]dACC and its interaction with group. If 

[Glu]dACC did not exert an effect on the effective connectivity of the salience network, the no-
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glutamate model would perform better than the three-level model. Similarly, if the computational 

parameters representing prior beliefs and precision of PE were not affected by the aberrant 

connectivity within the salience network, a model without these effects would perform better 

than the three-level model. We fit this alternative model and referred to it as the “no-

computational” model. Alternatively, it could be that a model including the observed behavioral 

responses would perform better than a model comprising the computational parameters. We fit 

this model by substituting (in the three-level model) the behavioral responses and their 

interactions with group for the hierarchical drift-diffusion model parameters. We referred to this 

model as the “behavioral model”. For completeness, we fit a “group model” and a “null model”. 

The group model represented the hypothesis that changes in the salience network would be 

caused only by differences between groups. This model comprised only the main effect of group. 

The null model included only a single column of “ones” in the design matrix representing the 

hypothesis that neither groups nor the covariates were associated with the effective connectivity 

of the network.  

To adjudicate between models, we performed Bayesian model comparison. At a group level, we 

first report the mean posterior estimate (collapsed across groups) of the strength of each 

connection along with the PP of models with each parameter, relative to models without. To 

evaluate our ‘three level’ hypothesis, we report the effect sizes; i.e., parameters β of the between-

subject parametric empirical Bayesian model associated with each main effect and their 

interactions with group. 

Goodness of fit, convergence, and acquisition quality assessments 

In the hierarchical drift-diffusion model, goodness of fit was assessed via posterior predictive 

checks (43). Convergence  was assessed by computing the R-hat statistic (44). Proportion of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2019. ; https://doi.org/10.1101/828558doi: bioRxiv preprint 

https://doi.org/10.1101/828558
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

variance accounted for by the dynamic causal models are reported in the Supplemental 

Information (Table S1). Finally, to assess the quality of our acquired 1H-MRS data, signal-to-

noise ratio (SNRNAA) was calculated by dividing the amplitude of the NAA CH3 peak in the 

frequency domain by the standard deviation of the noise in the last 32 most upfield points of the 

spectrum. The linewidth was also calculated using water-unsuppressed spectra and measuring the 

FWHM of the water peak in Hertz (Hz). 

Data availability 

Data supporting the findings of this study are available at https://uwoca-

my.sharepoint.com/:f:/g/personal/rlimongi_uwo_ca/EmDE6zsduKpIinRzEhWoyz8B2OX83970

WxL8KnG0dUj6IA?e=0ZxdO6. 
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Results 

[Glu]dACC does not differ across groups 

Glutamate MR Spectroscopy assessment could not be performed in one FEP subject. Data from 

this subject were not analyzed. A frequentist two-sample t-test did not reveal statistically 

significant difference between the mean [Glu]dACC in the FEP group (M = 6.90 mM, SD = 1.35) 

relative to the HC group (M = 6.38 mM, SD = 1.3); t(36.72) = 1.21, p = 0.88 (Fig. 1).  

[Glu]dACC does not account for between-groups difference in (Stroop) computational 

performance 

Both FEP and HC subjects performed the task as instructed. Table 1 shows the summary 

statistics. The mixed-effects models confirmed the expected behavioral results (Table 2). Across 

conditions, FEP subjects performed worse than HC subjects. Planned t-tests confirmed that they 

were less accurate (t(502) = 3.71, p < 0.001, Cohen’s d = 0.28) and took longer (t(674) = 6.99, p < 

0.001, Cohen’s d = 0.52) when resolving cognitive conflicts in the incongruent condition. 

The hierarchical drift-diffusion model showed that all parameter estimates in both groups 

differed from 0 (PP = 1.0). Subject-wise estimates are provided in the Supplemental Information 

(Table S2). Fig. 2 shows that the drift-rate parameter in the HC group (M = 2.83, SD = 0.18) was 

larger than in the FEP group (M = 1.83, SD = 0.2), proportion of the group’s posteriors in which 

the parameters differ (ΔPP) = 0.99. Furthermore, the starting point parameter in the FEP group 

was larger (i.e., closer to the decision boundary, M = 0.44, SD = 0.03) than in the HC group (M 

= 0.32, SD =0.03), ΔPP = 0.99. The decision threshold was lower in the FEP group (M = 2.06, 

SD = 0.32) than in the HC group (M = 2.52, SD = 0.09), ΔPP= 0.96. Finally, the non-decision 
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processes took longer in the FEP group (M = 0.64, SD = 0.11) than in the HC group (M = 0.46, 

SD = 0.09), ΔPP = 0.99. 

To investigate whether [Glu]dACC could explain between-groups differences in precision of PE 

and prior beliefs, we regressed the drift-diffusion model parameters on group, [Glu]dACC, and the 

[Glu]dACC × Group interaction. Regarding prior beliefs, we found main effect of group, β = -0.06, 

SE = 0.0002, t(35) = -350, p < .0001, 95% CI [-0.059, -0.058] (congruent with the hierarchical 

drift-diffusion model results). However, we found no evidence for an effect of [Glu]dACC, β = 

0.00006, SE = 0.0001, t(35) = 0.51, p = .61, 95% CI [-0.0002, 0.0003], nor [Glu]dACC × Group 

interaction, β = -0.00009, SE = 0.0001, t(35) = -0.71, p = .48, 95% CI [-0.0003, 0.0002]. 

Similarly, regarding the precision of PE we found main effect of group, β = 0.5, SE = 0.05, t(35) 

= 9.11, p < .0001, 95% CI [0.39, 0.62] —also congruent with the hierarchical drift-diffusion 

model results— and we found no evidence for an effect of [Glu]dACC, β = -0.009, SE = 0.04, 

t(35) = -0.22, p = .83, 95% CI [-0.09, 0.08] nor [Glu]dACC × Group interaction, β = 0.01, SE = 

0.04, t(35) = 0.31, p = .76, 95% CI [-0.07, 0.098]. 

[Glu]dACC affects intrinsic inhibitory connections in the salience network 

Bayesian model comparison revealed that the three-level model outperformed all the alternative 

models (Fig. 3). The mean estimates across groups revealed that in resting state, there was 

intrinsic inhibition in both regions (dACC, M = 2.25, PP =1.0; AI, M = 2.6, PP = 1.0) and an 

ensuing attenuation in the strength of excitatory connections between regions (dACC→AI, M = -

0.53, PP =1; AI→dACC, M = -0.43, PP =1.0).  

Fig. 4 shows no main effect of group on network parameters. However, main effect of [Glu]dACC 

on self-connections in both the dACC and the AI was detected. The strength of intrinsic 
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inhibition increased in the dACC (β = 0.09, PP = 0.98) and decreased in the AI (β = -0.07, PP = 

0.96). Across groups, we did not find effect of prior beliefs on extrinsic connections. However, 

we found a main effect of the precision of PE on inhibitory connections. Across groups, the 

strength of inhibitory connections increased with the precision of PE (dACC, β = 0.9, PP = 1; AI, 

β = 0.85, PP = 1). 

[Glu]dACC correlates negatively with intrinsic inhibitory influence in the dACC of 

FEP subjects, accounting for aberrant prior beliefs and aberrant precision of PE 

Crucially, Fig. 5 shows that there was a Group × [Glu]dACC interaction in inhibitory connections 

of the dACC. Connections were weaker in FEP than in HC (β = -0.11, PP =1.0). Furthermore, 

there was a Group × Prior-beliefs interaction. The effect of inhibitory connections on prior 

beliefs was stronger in FEP than in HC (dACC, β = 39.52, PP =1) (AI, β = 44.44, PP = 1).  

Surprisingly, the effect of excitatory connections on prior beliefs was weaker in FEP than in HC 

(dACC→AI, β = -9.13, PP =1; AI→dACC, β = -7.49, PP = 1). Finally, we found Group × PE 

precision interaction in inhibitory connections. The effect of these connections on the precision 

of PE was weaker in FEP (dACC, β = -1.56, PP = 1; AI, β = -1.08, PP = 1). In summary, 

[Glu]dACC differentially affected the effective connectivity of the salience network, and the 

connectivity of the network was differentially associated with the parameter estimates of the 

hierarchical drift diffusion model in the presence of FEP. 

Connectivity strength correlates negatively with severity of social withdrawal 

We assessed the association between the severity of negative symptoms (blunted affect, social 

withdrawal, and lack of spontaneity) and the strength of connections independently (i.e., three 

comparisons per connection) in the FEP group. Only the effect of backward connections on 
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social withdrawal survived Bonferroni correction for the number of negative symptoms (three 

symptoms, P = 0.017). Severity of social withdrawal increased as the connectivity strength of 

dACC→AI connections decreased, β = -15.59, SE = 5.61, t(16) = 2.78, p = 0.013, 95% CI [27.43, 

3.75] (Fig. 6). 
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Discussion 

By using resting-state 1H-MRS, DCM of resting-state fMRI, and hierarchical drift-diffusion 

modeling, we have demonstrated that low computational performance during cognitive-conflict 

resolution in schizophrenia is explained by aberrant resting-state effective connectivity 

(dysconnection) in the salience network. This dysconnection was associated with glutamate 

hypofunction in the dACC, as proven by the fact that a model without the effect of [Glu]dACC had 

low probability of having produced the fMRI data. [Glu]dACC was associated with opposite 

intrinsic connectivity strength in both the dACC and the AI, indicating that [Glu]dACC affected 

the entire network and confirming the sensitivity of the AI to subtle changes in the dACC 

excitation-inhibition balance. Crucially, in the FEP group the inhibitory influence on the 

excitatory population of the dACC decreased as a function of glutamate concentration. This 

finding is the first imaging evidence directly linking the glutamate hypofunction to the cortical 

disinhibition hypothesis in schizophrenia. 

Using stochastic DCM, Bastos-Leite, Ridgway (45) found decreased intrinsic inhibition and 

decreased extrinsic connections in the default network of schizophrenia subjects. Similarly, using 

parametric empirical Bayes and DCM in a sample of schizophrenia subjects, Zhou, Zeidman (46) 

recently found decreased intrinsic inhibition and decreased extrinsic connectivity within the 

dorsal attention network. They speculated that both glutamate hypofunction and aberrant 

precision of prediction errors would be associated with this sort of dysconnectivity in large-scale 

networks. In the context of the salience network, we confirmed their hypothesis. Therefore, the 

fact that three independent groups have shown the same relationship between decreased intrinsic 

and extrinsic connections in the default, attention, and salience networks provide strong support 

to the dysconnection hypothesis of schizophrenia. Crucially, our results point to glutamate 
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hypofunction and aberrant computations of sensory and prior precision as critical causes of 

dysconnection and are in line with recently reported independent preliminary data showing that 

the effect of glutamate hypofunction should be observed at the network level (47). 

These results also demonstrate that establishing the relationship between glutamate 

hypofunction, the disinhibition hypothesis, and the pathophysiology of schizophrenia requires 

the integration of the neurochemical, effective-connectivity, and computational levels of 

analysis. This is supported by the fact that Bayesian model comparison afforded low probability 

to any model not comprising all three levels (PP ≈ 0.12, summed over all but the three-level 

model).  Specifically, parameter estimates of resting-state aberrant connectivity (driven by 

resting-state [Glu]dACC) in the salience network accounted for computational parameters of 

cognitive dysfunction in schizophrenia. Furthermore, an increase in the effect of the inhibitory 

population on the excitatory population in both regions explains the precision subjects afforded 

to ascending information, in line with the known role of GABA interneurons on pyramidal 

circuits (48).  

The three-level model also explains the compensatory effect of aberrant prior beliefs to aberrant 

precision of ascending information in FEP. At the computational level, FEP subjects needed to 

accumulate less information than HC (i.e., lower decision threshold), relied more on their prior 

beliefs (i.e., at the beginning of each trial they were closer to the decision boundary) than on 

sensory information, and were less cautious when resolving cognitive conflicts ―they tended to 

jump to conclusions (49). At a group level, we did not find evidence for a larger precision of PE 

in the FEP group than in the HC group. On the contrary, the HC group showed a steeper drift 

rate. However, within the FEP group, over affordance of precision to PE was associated with a 

decrease in the strength of inhibitory connections —in both regions (Fig. 5-B). Crucially, an 
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increase in the inhibitory activity was associated with an increase in prior beliefs (Fig. 5-C), 

suggesting (at the effective-connectivity level) that more precise prior beliefs compensate for the 

aberrant precision of PE —as predicted by the dysconnection hypothesis (7). 

A three-level model could provide alternative explanations for previously reported findings. 

Specifically, Taylor, Neufeld (19) found no relationship between [Glu]dACC and deficits in Stroop 

performance of FEP subjects. One possible reason for this finding might be the lack of both a 

computational model (e.g., hierarchical drift-diffusion model) and a network model (e.g., DCM). 

This is supported by the fact that we found no direct association between [Glu]dACC on either 

behavioral performance (i.e., reaction time and accuracy) or hierarchical drift-diffusion model 

parameters. However, we demonstrated that glutamate hypofunction affected the whole salience 

network and the aberrant effective connectivity of this network did affect the computational 

performance. 

The advantage of a “three-level approach” is also supported by recent findings of Shaw, Knight 

(14). They used a four-neuronal-population DCM to model inhibitory (GABA) connections to 

superficial pyramidal cells. Their DCM parameters were associated with the behavioral 

performance. Our Bayesian model comparison showed that a model including behavioral 

measurements rather than the computational parameters underperformed the three-level model 

—which included the computational parameters. The findings of Shaw, Knight (14), however, 

are in concert with our idea that establishing a relationship between synaptic dysfunction and 

behavior (i.e., symptoms) requires modeling effective connectivity (at least at the regional scale) 

that would be disrupted by the synaptic dysfunction. More in general, along with this recent 

work, the current results suggest that symptoms of schizophrenia emerge from the interaction 

between the three levels of analysis. 
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Our results and the idea of interactive emergence allow us to provide an alternative interpretation 

to recent findings of Valton, Karvelis (50), who reported a computational model of Bayesian 

learning in schizophrenia and HC. Unlike our work, their study did not find differences in the 

precision of prior beliefs or in the precision of sensory evidence across groups. However, the fact 

that they did not include the effective-connectivity level of analysis in their experimental design 

left open the possibility of a Group × Precision interaction on the effective connectivity. Our 

results regarding [Glu]dACC support this alternative explanation. We did not find main effect of 

group on [Glu]dACC (c.f., no main effect of group on precision in 50). However, the effect of 

[Glu]dACC on inhibitory connections in the dACC varied with group. 

Valton, Karvelis (50) also proposed that prior beliefs in schizophrenia subjects might not 

influence behavioral performance in the absence of sensory stimulation. During resting state 

fMRI, our FEP subjects did not expect sensory stimulation. Interestingly, the weaker the 

connectivity strength in descending connections (representing prior beliefs) were in resting state 

the more biased were their responses towards the decision threshold. Heuristically, this could be 

interpreted as an increase in the confidence FEP subjects afforded to their prior beliefs during 

task performance, caused by a decreased in the strength of backward connections. Therefore, it is 

possible that the effect that prior beliefs might exert on behavioral performance might depend not 

only on the sensory stimulation (as suggested by 50) but also on the resting-state connectivity 

strength of descending connections which in hierarchical message passing represent prior beliefs. 

It is intriguing that the relationship between the strength of extrinsic connections and the 

computational parameters of precision-weighted PE (and prior beliefs) does not conform to the 

assumption of an asymmetric flow of information under predictive coding. Canonical 

formulations of predictive coding would predict an increase in the strength of ascending 
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connections associated with aberrant precision of PE and an increase in the strength of 

descending connections associated with compensatory aberrant prior beliefs. However, we found 

that the extrinsic connectivity strength did not reflect the precision of PE, whereas weak 

bidirectional connections correlated with prior beliefs. These data provide initial evidence of 

“bidirectional correlates of effective connectivity strength with prior beliefs” in hierarchical 

message passing with, as we elaborate upon below, implications for the underlying predictive 

coding theory of brain function and its translational corollary, the dysconnection hypothesis. 

Initial works on predictive coding proposed an asymmetrical functional architecture for 

hierarchical message passing whereby prior beliefs would be conveyed by descending 

connections and PE would be conveyed by ascending connections. Not by coincidence, the 

connectivity asymmetry was motivated on the anatomical asymmetry widely described in early 

sensory areas (13). However, this scheme is not congruent with the effect of weak bidirectional 

connections on prior beliefs that our findings suggest.  

A possible explanation of our findings is that the parameter estimates of the current DCM could 

be reflecting the activity of another type of excitatory inputs —for example, Von Economo 

neurons. DCMs do not differentiate this type of excitatory influence from others. This is a 

limitation of the current study that could be resolved in the future by incorporating additional 

excitatory neuronal populations and parameters of interlaminar connectivity (40). 

We posit that the salience network might defy the canonical asymmetry of predictive coding due 

to the presence of Von Economo neurons, emerging as a network functionally specialized in the 

bidirectional processing of prior beliefs. Indeed, the “unique” role of Von Economo neurons in 

predictive coding has been recently suggested (51). However, asymmetric message passing does 

not contradict the principles of functional specialization and functional integration. For example, 
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classic theories of working memory have been recently updated by integrating the principle of 

hierarchical message passing with the widely accepted functional specialization of the prefrontal 

cortex (52). Working memory, in the prefrontal cortex, has been recently regarded as a locus for 

the generation and maintenance of prior beliefs (53) which would be passed along to lower areas 

in the cortical hierarchy (54). Therefore, it is possible that the prefrontal cortex generates prior 

beliefs and deploys such beliefs downstream to the salience network. As a hub, the salience 

network would then functionally specialize in broadcasting prior beliefs (i.e., predictions) to 

lower sensory areas and interoceptive channels. The salience network would draw upon 

bidirectional circulation of prior beliefs to execute this functional integration. 

The possibility of a functionally specialized two-node network for the processing of prior beliefs 

is further supported both by previous works on social isolation and suicidal behavior. For 

example, a post-mortem study of schizophrenia subjects that died by suicide showed a larger 

density of Von Economo neurons in the cingulate cortex of these subjects, compared with 

schizophrenia subjects who died due to other causes (55). Interestingly, social isolation (i.e., 

social withdrawal) is strongly related with both the (aberrant) salience network (55, 56) and 

suicidal behavior (57). These previous works are in consonance with the relationship between 

dACC→AI connectivity and severity of social withdrawal we found in this work.  

In conclusion, this work provides evidence to the hypothesis that the glutamate hypofunction 

relies on the disinhibition hypothesis and manifests itself in the effective connectivity of the 

salience network.  The three levels of analysis provide compelling explanation to deficits in 

cognitive control and negative symptoms in schizophrenia. Finally, a bidirectional functional 

architecture of prior beliefs of the salience network could be the key to understand both its 

coordinating role with the central executive network (58) and its cardinal role in psychosis (26). 
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Tables 

Table 1. Summary statistics of accuracy and reaction time in the Stroop task 

Group Condition 

Accuracy (proportion) Reaction Time (s) 

M SD M SD 

FEP 

Color-only 0.99 0.09 1.06 0.27 

Congruent 0.98 0.14 0.98 0.27 

Incongruent 0.92 0.27 1.19 0.31 

Word-only 0.97 0.17 0.95 0.26 

HC 

Color-only 1.00 0.05 0.89 0.20 

Congruent 1.00 0.05 0.82 0.21 

Incongruent 0.98 0.14 1.04 0.25 

Word-only 1.00 0.00 0.79 0.18 
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Table 2. Mixed-effect models of response accuracy and reaction time in the Stroop task 

 
Parameter Estimate SE DF t P 

Lower 

95 % 

Upper 

95% 

Accuracy 

Intercept 0.979 0.006 36.69 156 <.0001 0.966 0.992 

Group [FEP] -0.015 0.006 36.69 -2.32 0.0261 -0.027 -0.002 

Condition [Color-only] 0.015 0.004 3000.87 3.71 0.0002 0.007 0.023 

Condition [Congruent] 0.010 0.004 3000.86 2.33 0.0201 0.002 0.018 

Condition [Incongruent] -0.030 0.004 3001.31 -7.2 <.0001 -0.038 -0.022 

Group [FEP] × Condition [Color-only] 0.011 0.004 3000.87 2.79 0.0053 0.003 0.020 

Group [FEP]× Condition [Congruent] 0.006 0.004 3000.86 1.4 0.1624 -0.002 0.014 

Group [FEP] × Condition [Incongruent] -0.016 0.004 3001.32 -3.85 0.0001 -0.024 -0.008 

Reaction 

Time 

Intercept 0.971 0.022 36.83 45 <.0001 0.927 1.014 

Group [FEP] 0.083 0.022 36.83 3.86 0.0004 0.040 0.127 

Condition [Color-only] 0.011 0.007 2999.88 1.66 0.0968 -0.002 0.024 

Condition [Congruent] -0.069 0.007 2999.87 -10.4 <.0001 -0.082 -0.056 

Condition [Incongruent] 0.155 0.007 2999.98 23 <.0001 0.141 0.168 

Group [FEP] × Condition [Color-only] 0.004 0.007 2999.88 0.53 0.5943 -0.010 0.017 

Group [FEP]× Condition [Congruent] 0.000 0.007 2999.87 0.06 0.9561 -0.013 0.013 

Group [FEP] × Condition [Incongruent] -0.004 0.007 2999.98 -0.63 0.5271 -0.017 0.009 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2019. ; https://doi.org/10.1101/828558doi: bioRxiv preprint 

https://doi.org/10.1101/828558
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

Figures Legends 

Fig. 1. Voxel positioning for 1H-MRS measurement and two-neuronal-population DCM. 

Black box shows the voxel on the dACC for 1H-MRS (top) and the same voxel for fMRI 

(bottom). Grey box shows the two-neuronal-population DCM of the salience network. Each 

region comprises one population of excitatory neurons (E) and one population of inhibitory 

neurons (I). Parameters of effective connectivity represent the influence of inhibitory to 

excitatory connections (IE, assumed to be GABAergic neurons), the influence of excitatory to 

inhibitory connections (EI), the influence of self-inhibitory connections within each population 

(SE, SI), and the influence of excitatory population of one region on the excitatory population of 

the other region (EE, assumed to be glutamatergic connections). Whereas EI, SE, and SI 

parameters are fixed in the model, IE and EE are free parameters. Small white box shows a 

sample spectrum obtained using 1H-MRS semi-LASER (TE = 100 ms). Raw data are indicated 

in blue, fit spectrum is indicated in orange, and residual signal is shown above in green. Main 

glutamate signal contribution is indicated with an arrow (2.3 ppm). Since we aimed at 

demonstrating the relationship between the effect of [Glut]dACC (observed measurements on the 

bar chart indicating no group difference) on IE and the ensuing consequences in the whole 

network, this two-state model was sufficient to test our hypothesis despite not capturing all the 

circuitry constraints of cortical columns (c.f., a four-neuronal-population model, 40). 

Fig. 2. Parameter estimates of the hierarchical drift diffusion model. Top right, visual 

depiction of the parameter estimates of the drift diffusion model (z = starting point or prior 

beliefs, v = drift rate or precision of PE, t = non-decision processes, a = decision threshold, RT = 

reaction time). Left, proportion of the posteriors in which the parameter estimate for one group 

differs from the other (ΔPP). 
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Fig. 3. Bayesian model comparison results and mean parameter estimates in the salience 

network across groups. * PP ≈ 0. 

Fig. 4. Main effects of the winning three-level parametric empirical Bayes model. In A, bars 

represent differences between groups as defined by the effect coding (FEP = 1, HC = -1). In B, 

C, and D, covariates were mean centered. 

Fig. 5. Interactions between group and covariates in the winning three-level parametric 

empirical Bayes model. In A, B, and C, positive values represent stronger effect in the FEP 

group, and vice versa. 

Fig. 6. Association between Extrinsic Connectivity Strength and Severity of Social 

Withdrawal. 
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Supplementary Information 

Table S1. Subject-level values of proportion of variance accounted for the three-level 

parametric-empirical-Bayes model 

Subject HC FEP 

1 5.1 21.44 

2 6.21 9.48 

3 18.23 37.41 

4 32.19 20.83 

5 32.55 20.13 

6 11.97 18.03 

7 31.64 3.6 

8 15.28 8.37 

9 19.77 5.39 

10 12.18 31.89 

11 5.76 38.74 

12 21.81 46 

13 24.01 27.92 

14 6.48 31.96 

15 30.61 36.86 

16 27.6 30.61 

17 11.82 9.82 

18 7.61 6.09 

10 15.3 26.32 

20 8.51   

 

Note. The mean proportion of variance accounted for by the model was 0.17 (SD = 9. 73, 95 % 

CI [12.67, 21.79]) in the HC group and 0.23 (SD = 12.93, 95% CI = [16.44, 28.91]) in the FEP 

group. —a proportion of a least 0.17 of variance accounted for by the model (averaged across 

subjects) is considered acceptable (1). 

Supplemental 1 Click here to access/download;Supplemental
Information;Supplemental Information Biological Psychiatry.docx
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Table S2. Parameter estimates of the hierarchical drift-diffusion model 

Group 

Parameter 

 a v t z 

  mean std mean std mean std mean std 

HC 

1 2.535 0.259 2.872 0.263 0.455 0.057 0.326 0.034 

2 2.558 0.275 2.884 0.272 0.540 0.064 0.326 0.034 

3 2.650 0.299 2.735 0.253 0.524 0.065 0.325 0.034 

4 2.538 0.236 2.845 0.260 0.300 0.038 0.326 0.034 

5 2.535 0.241 2.881 0.267 0.363 0.044 0.326 0.034 

6 2.678 0.295 2.561 0.285 0.563 0.058 0.324 0.034 

7 2.373 0.248 2.841 0.263 0.377 0.050 0.327 0.034 

8 2.592 0.266 2.863 0.270 0.447 0.052 0.326 0.034 

9 2.541 0.258 2.871 0.265 0.454 0.055 0.326 0.034 

10 2.439 0.241 2.795 0.254 0.455 0.054 0.326 0.034 

11 2.475 0.235 2.554 0.291 0.548 0.064 0.325 0.034 

12 2.462 0.237 2.902 0.268 0.360 0.048 0.327 0.035 

13 2.431 0.263 3.051 0.331 0.458 0.059 0.327 0.035 

14 2.344 0.282 2.926 0.288 0.503 0.067 0.327 0.035 

15 2.510 0.236 2.912 0.275 0.324 0.041 0.326 0.034 

16 2.656 0.300 2.701 0.256 0.486 0.062 0.325 0.034 

17 2.509 0.245 2.767 0.262 0.590 0.064 0.325 0.034 

18 2.507 0.272 3.011 0.319 0.582 0.068 0.326 0.035 

19 2.505 0.244 2.891 0.266 0.389 0.050 0.326 0.034 

20 2.474 0.245 2.804 0.262 0.528 0.059 0.325 0.034 

FEP 

1 2.365 0.486 2.305 0.403 0.821 0.082 0.443 0.035 

2 2.619 0.548 1.954 0.377 0.739 0.090 0.442 0.035 

3 1.371 0.173 1.322 0.366 0.533 0.029 0.441 0.035 

4 1.916 0.368 2.524 0.434 0.743 0.063 0.444 0.035 

5 1.797 0.243 1.633 0.335 0.642 0.056 0.443 0.035 

6 1.943 0.263 1.784 0.321 0.543 0.050 0.444 0.035 

7 1.854 0.275 1.202 0.350 0.800 0.095 0.443 0.035 

8 2.173 0.390 2.422 0.421 0.652 0.056 0.443 0.035 

9 1.707 0.268 2.259 0.404 0.640 0.046 0.443 0.035 

10 2.006 0.221 0.746 0.280 0.681 0.065 0.442 0.035 

11 2.580 0.457 1.797 0.338 0.573 0.067 0.442 0.035 

12 2.439 0.393 1.877 0.322 0.463 0.051 0.443 0.035 

13 1.950 0.257 1.654 0.323 0.707 0.057 0.442 0.035 

14 2.460 0.452 2.248 0.404 0.567 0.054 0.442 0.035 

15 2.411 0.350 1.621 0.305 0.546 0.053 0.441 0.035 

16 1.974 0.285 2.052 0.343 0.395 0.042 0.445 0.035 

17 1.666 0.214 1.290 0.302 0.739 0.063 0.445 0.035 

18 1.905 0.274 2.021 0.355 0.599 0.048 0.443 0.035 

19 2.147 0.317 1.839 0.332 0.733 0.065 0.442 0.035 
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Spectral post-processing 

The spectral acquisition was analyzed to measure glutamate concentration using methods 

previously developed in our laboratory (2-5). Specifically, the 32 spectral acquisition was 

corrected for frequency and phase drifts as described in Near, Edden (6). The corrected spectra 

were then averaged into one spectrum to represent the entire four-minute resting-state block. The 

averaged spectrum underwent post-processing using combined QUALITY Eddy Current 

Correction (7), using 400 QUALITY (quantification improvement by converting lineshapes to the 

Lorentzian type) points, to reduce linewidth distortions as well as Hankel Singular Value 

Decomposition (HSVD) water removal to remove any residual water signal between 4.2 ppm and 

5.7 ppm before being fit with fitMAN (2, 3), a time-domain fitting algorithm that uses a non-linear, 

iterative Levenberg-Marquardt minimization algorithm to echo time-specific prior knowledge 

templates. The metabolite fitting template included eighteen brain metabolites: alanine, aspartate, 

choline, creatine, 𝛾-aminobutyric acid (GABA), glucose, glutamate, glutamine, glutathione, 

glycine, lactate, myo-inositol, Nacetyl aspartate, N-acetyl aspartyl glutamate, 

phosphorylethanolamine, scyllo-inositol, and taurine. As well, a single peak was used to fit the 

water unsuppressed spectrum.  

Using Barstool (2), tissue-specific (gray matter, white matter, and CSF) T1 and T2 relaxations 

were corrected through partial volume segmentation calculations of voxels mapped onto T1-

weighted images acquired using a 0.75 mm isotropic MP2RAGE sequence (repetition time = 6000 

ms, TI1= 800 ms, TI2 = 2700 ms, flip-angle 1 (α1) = 4°, flip-angle 2 (α2) = 5°, field of view = 350 

mm × 263 mm × 350 mm, acquisition time = 9 min. 38 s, iPATPE = 3 and 6/8 k-space). Finally, 

glutamate concentration quantification was calculated using the postprocessed water suppressed 

and unsuppressed spectra for each participant along with voxel-appropriate, tissue-specific 

relaxation time adjustments (8).  
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ID Group AGESCAN DOB AgePsychosisOnset DUPMonths DaysOfAntipsychotic

1 HC 26.00 23-Jun-90  0.00 0.00

2 HC 23.00 16-Oct-93  0.00 0.00

3 HC 17.00 18-Nov-99  0.00 0.00

4 HC 23.00 22-Jul-93  0.00 0.00

5 HC 16.00 8-Nov-00  0.00 0.00

6 HC 25.00 10-Sep-91  0.00 0.00

7 HC 16.00 24-Oct-00  0.00 0.00

8 HC 16.00 4-Jan-01  0.00 0.00

9 HC 29.00 15-Apr-88  0.00 0.00

10 HC 22.00 18-May-95  0.00 0.00

11 HC 23.00 31-Jan-94  0.00 0.00

12 HC 20.00 6-Apr-97  0.00 0.00

13 HC 20.00 20-Nov-96  0.00 0.00

14 HC 20.00 9-May-97  0.00 0.00

15 HC 20.00 31-Jul-97  0.00 0.00

16 HC 20.00 13-Sep-97  0.00 0.00

17 HC 27.00 6-Sep-90  0.00 0.00

18 HC 22.00 3-Jan-95  0.00 0.00

19 HC 18.00 1-Oct-99  0.00 0.00

20 HC 22.00 27-Feb-96  0.00 0.00

1 FEP 19.00 25-Apr-97 17.00 24.00 0.00

2 FEP 20.00 10-Oct-96 20.00 4.00 0.00

3 FEP 19.00 28-Nov-97 19.00 1.00 7.00

4 FEP 17.00 3-Oct-99 17.00 2.00 0.00

5 FEP 18.00 18-Oct-98 18.00 2.00 7.00

6 FEP 17.00 10-Feb-00 16.00 9.00 0.00

7 FEP 24.00 19-Jan-93 23.00 12.00 0.00

8 FEP 21.00 24-Nov-95 21.00 1.00 0.00

9 FEP 25.00 23-Jul-91 20.00 59.00 7.00

10 FEP 28.00 6-Jul-89 28.00 3.00 0.00

11 FEP 20.00 21-Nov-96 18.00 14.00 0.00

12 FEP 23.00 29-Apr-94   5.00

13 FEP 23.00 21-Sep-93 22.00 6.00 0.00

14 FEP 24.00 22-Nov-92 24.00 0.50 7.00

15 FEP 23.00 7-Mar-94   0.00

16 FEP 20.00 2-May-97 19.00 9.00 0.00

17 FEP 27.00 7-Dec-89 21.00 72.00 0.00

18 FEP 26.00 19-Nov-91 26.00 1.00 7.00

19 FEP 19.00 5-Dec-98 19.00 0.50 10.00
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Antipsychotic Dose duration Gender PANSS8P1 PANSS8P3 PANSS8G9 PANSS8P2 PANSS8G5

1 1 1 1 1 1

2 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

2 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

2 1 1 1 1 1

2 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

2 1 1 1 1 1

2 1 1 1 1 1

2 1 1 1 1 1

2 1 1 1 1 1

2 1 1 1 1 1

0 0 0 1 4 4 4 4 2

0 0 0 1 5 5 4 4 3

Invega 6mg 1wk 1 4 4 3 5 1

0 0 0 1 5 5 4 1 1

Abilify 5mg 1wk 1 5 4 3 3 1

0 0 0 2 5 5 2 1 3

0 0 0 1 6 6 5 5 4

0 0 0 1 5 4 4 4 1

Invega 3mg, 6mg 3days, 4days 1 7 5 6 3 2

Olanzapine 1day 1 6 2 3 4 1

0 0 0 2 6 2 4 3 1

Risperidone 1.5mg 5 days 2 4 5 3 2 1

0 0 0 1 5 5 5 6 3

Olanzapine 7.5mg 1wk 2 5 2 5 4 1

0 0 0 2 7 6 6 4 1

0 0 0 1 5 5 3 1 1

0 0 0 1 7 2 3 3 1

Risperidone 1mg 1wk 2 5 5 3 1 1

Abilify 5mg 10days 2 5 1 4 3 1
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PANSS8N1 PANSS8N4 PANSS8N6

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

4 5 3

2 3 1

5 4 3

3 4 3

2 3 3

3 5 3

1 1 1

2 4 2

4 3 1

1 1 1

1 1 1

3 1 2

1 3 4

1 1 1

1 1 1

4 3 1

5 4 3

1 5 1

3 3 3
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