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Highlights 25 
• Haplotype callers for NGS data vary greatly in their performance. 26 
• Haplotype callers performance is mainly determined by mutation rate. 27 
• Haplotype callers performance is less sensitive to effective population size. 28 
• Most haplotype callers perform well with low diversity and poorly with high diversity. 29 
• PredictHaplo performs best if genetic diversity is in the range of HIV diversity. 30 

 31 
Abbreviations  32 
NGS – Next generation sequencing 33 
HIV – Human immunodeficiency virus 34 
HCV - Hepatitis C virus 35 
HPV - Human papillomavirus 36 
 37 
 38 
Abstract 39 
Currently, the standard practice for assembling next-generation sequencing (NGS) reads of viral 40 
genomes is to summarize thousands of individual short reads into a single consensus sequence, thus 41 
confounding useful intra-host diversity information for molecular phylodynamic inference. It is 42 
hypothesized that a few viral strains may dominate the intra-host genetic diversity with a variety of 43 
lower frequency strains comprising the rest of the population. Several software tools currently exist to 44 
convert NGS sequence variants into haplotypes. However, previous studies suggest that current 45 
approaches of haplotype reconstruction greatly underestimate intra-host diversity. Here, we tested 46 
twelve NGS haplotype reconstruction methods using viral populations simulated under realistic 47 
evolutionary dynamics. Parameters for the simulated data spanned known fast evolving viruses (e.g., 48 
HIV-1) diversity estimates to test the limits of the haplotype reconstruction methods and ensured 49 
coverage of predicted intra-host viral diversity levels. Using those parameters, we simulated HIV-1 50 
viral populations of 216-1,185 haplotypes per host at a frequency <7%. All twelve investigated 51 
haplotype callers showed variable performance and produced drastically different results that were 52 
mainly driven by differences in mutation rate and, to a lesser extent, in effective population size. Most 53 
methods were able to accurately reconstruct haplotypes when genetic diversity was low. However, 54 
under higher levels of diversity (e.g., those seen intra-host HIV-1 infections), haplotype reconstruction 55 
accuracy was highly variable and, on average, poor. High diversity levels led to severe underestimation 56 
of, with a few tools greatly overestimating, the true number of haplotypes. PredictHaplo and PEHaplo 57 
produced estimates close to the true number of haplotypes, although their haplotype reconstruction 58 
accuracy was worse than that of the other ten tools. We conclude that haplotype reconstruction from 59 
NGS short reads is unreliable due to high genetic diversity of fast-evolving viruses. Local haplotype 60 
reconstruction of longer reads to phase variants may provide a more reliable estimation of viral variants 61 
within a population. 62 
 63 
Keywords: fast-evolving viruses, haplotype reconstruction, HIV, intra-host diversity, next-generation 64 
sequencing, second generation sequencing 65 
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1. Introduction  66 
Next-generation sequencing (NGS) technologies provide novel opportunities to study the 67 

evolution of many viruses that impose health issues among humans, such as human immunodeficiency 68 
virus (HIV), hepatitis C virus (HCV), human papillomavirus (HPV), and influenza. Such sequencing 69 
platforms allow an in-depth characterization of the genetic diversity in a heterogeneous intra-host viral 70 
population by sequencing many viral strains directly. Illumina and 454/Roche offered the first round 71 
of next-generation sequencing machines, which gradually replaced Sanger sequencing for viral studies. 72 
These platforms are able to generate a sufficiently high coverage of the genome, which allows one to 73 
detect mutations present in less abundant strains. However, the large number of short reads with a 74 
relatively high error rate produced during sequencing poses computational and statistical challenges 75 
for reconstructing full-length strain sequences and estimating their frequency. In particular, since 76 
abundance rates can be comparable or lower than sequencing error rates, high sequence error rates 77 
(≤0.1% for Illumina reads) can interfere with the detection of true mutations that are present at low 78 
frequencies. Moreover, short reads length (25 – 400 bp) need to be assembled into an unknown number 79 
of contigs. Ultimately, the goal of assembly is to produce contigs that can cover the entire targeted 80 
gene region (i.e., targeted amplicon sequencing) or that can be scaffolded together to cover the length 81 
of a full genome (i.e., shotgun sequencing). Finally, the large number of sequencing reads (25 – 300 82 
million) requires the development of algorithms capable of processing this large amount of data. The 83 
amount of data generated by a single NGS run (1 GB to 1 TB) can be up to a million times greater than 84 
that generated by a single Sanger sequencing run (1 MB of data). 85 

Several computational tools have been developed over the last decade to address the challenge 86 
of defining sequence variants (haplotypes – sometimes erroneously referred to as ‘quasispecies’; see 87 
Holmes, 2010) from NGS data (Beerenwinkel and Zagordi, 2011; Di Giallonardo et al., 2014; Pandit 88 
and de Boer, 2014; Posada-Cespedes et al., 2016; Schirmer et al., 2014). Different software has been 89 
tailored to various sequencing platforms and experimental designs. It is important to note that 90 
454/Roche sequencing reads were the main input data for developers of viral variant assemblers until 91 
2013. This was because 454/Roche was the first widely-used NGS platform and generated longer reads 92 
than all other Illumina platforms at the time (Beerenwinkel and Zagordi, 2011; Schirmer et al., 2014). 93 
A number of computational methods were proposed for handling the 454/Roche reads, including 94 
PredictHaplo (Prabhakaran et al., 2014), ViSpA (Astrovskaya et al., 2011), QuRe (Prosperi and 95 
Salemi, 2012), QuasiRecomb (Topfer et al., 2013), VirA (Skums et al., 2013), BIOA (Mancuso et al., 96 
2011), Mutant-Bin (Prabhakara et al., 2013), V-Phaser + V-Profiler1 (Henn et al., 2012; Macalalad et 97 
al., 2012), and ShoRAH (Zagordi et al., 2010). Some of these methods were empirically validated 98 
using HIV and HCV data sets with the methods showing little success in estimating reliable sequence 99 
variants from NGS data (Prosperi et al., 2013). Later, thanks to the better cost-effectiveness and higher 100 
coverage offered by the Illumina sequencing platforms, the main focus migrated towards Illumina 101 
technology and has become dominant for developers of viral sequence variant assemblers since then 102 
(Posada-cespedes et al., 2016). Following this paradigm shift, several methods such as PredictHaplo, 103 
V-Phaser (Yang et al., 2013), and QuasiRecomb were extended to handle Illumina reads, and a number 104 
of tools, including VGA (Mangul et al., 2014), HaploClique (Töpfer et al., 2014), QColors (Huang et 105 
al., 2011), QSdpR (Barik et al., 2018), and ViQuas (Jayasundara et al., 2015), were developed 106 
specifically to handle Illumina reads. 107 

Currently, all state-of-the-art methods for viral variant reconstruction are designed to assemble 108 
contigs from Illumina reads and can be divided into two main categories based on their dependency 109 
on a reference genome: reference-based assemblers and de novo assemblers (Fig. 1). In the former 110 
category, sequencing reads are aligned to a reference genome and information about the reads 111 
positioning and orientation with respect to a reference genome is obtained (Fig. 1 с"). This information 112 

 
1 V-phaser is used for calling variants in a viral sequence sample and V-Profiler is utilized for analyzing and visualizing 
variants from V-Phaser at the nucleotide, codon, and haplotype levels. 
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is further used to reconstruct haplotypes (Fig. 1 с#,	с%, d",	d#). De novo assemblers, however, do not 113 
rely on reference genomes, and haplotype sequences are usually reconstructed directly from the reads 114 
(Fig. 1 с(,	d%). De novo assembly often requires more computational resources, but reference-based 115 
assembly requires a closely related genome, which is not always available in high quality. Each 116 
strategy has advantages and disadvantages and have been implemented in several software programs, 117 
but the performance of these assembly tools has not been comprehensively examined yet. In this study, 118 
we simulated realistic, coalescent based intra-host viral diversity with diversity measurements 119 
encompassing known variation from fast-evolving viruses such as HIV-1 for empirical grounding. We 120 
then used these simulated populations to assess the performance and accuracy of three de novo and 121 
nine reference-based sequence variant reconstruction tools or haplotype callers. 122 
 123 

 124 
 125 
Figure 1. Schematic diagram representing the process of reconstructing haplotypes from next-126 
generation sequencing reads by reference-based and de novo methods. (a) A hypothetical virus 127 
population consisting of three haplotypes is sequenced by NGS techniques. (b) Reads originating from 128 
different haplotypes are identified by distinct colors in the diagram. (с") After sequencing, reads are 129 
aligned against reference genome (green) as a first step in all reference-based methods. (с#) Read 130 
alignment is used for building a graph and candidate haplotypes are reconstructed as maximal cliques 131 
in the graph. (с%) Read alignment is used for dividing reads into clusters and candidate haplotypes are 132 
reconstructed by concatenation of all reads from clusters. (с() Alternatively, after sequencing, reads 133 
are de novo assembled using De Bruijn or overlap graphs and candidate haplotypes are reconstructed 134 
as paths by analyzing the graph structure. (d") A method based on clique detections overestimates the 135 
number of reconstructed haplotypes with relative frequencies. (d#) A method based on clustering 136 
procedure underestimates the number of reconstructed haplotypes with relative frequencies. (d%) A de 137 
novo method reconstructs the correct number of haplotypes with frequencies, but one inferred 138 
haplotype is smaller than the true haplotype and the other two haplotypes are admixtures of the original 139 
haplotypes. 140 
 141 
2. Material and Methods 142 
2.1 Viral Sequence Variant Estimators 143 
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All de novo viral variant reconstruction methods can be further divided into two subcategories: 144 
consensus and strain-specific assemblers. The main goal of consensus-based tools is, generally 145 
speaking, to construct a suitable consensus reference genome that may be further used as a template 146 
for more fine-grained studies. VICUNA (Yang et al., 2012) and IVA (Hunt et al., 2015) represent this 147 
subcategory of methods. VICUNA is the most popular software among them, as it generates full-length 148 
consensus and detects polymorphisms. VICUNA merges NGS reads into contigs, and those into a 149 
bigger contig, by calculating “good” prefix-suffix overlap between sequences. During this process, 150 
contigs are also clustered and validated to reach a better quality of consensus. IVA follows the same 151 
approach with only one difference, the tool starts from k-mers that are sorted in decreasing order with 152 
respect to their abundance and then extends sequences into a bigger sequence by using reads that have 153 
perfect overlap with initial sequences. VICUNA also has an additional option for contig merging if a 154 
reference genome exists. 155 

Contrary to de novo consensus approaches, de novo strain-specific assemblers aim to 156 
reconstruct sequences at the strain resolution level (Table 1). It is worth mentioning that the de novo 157 
viral variant reconstruction problem is quite similar to the assembly effort of multiple genomes in 158 
microbial communities at once using shotgun metagenomic reads (e.g., Bishara et al., 2018; Scholz et 159 
al., 2016). The arising challenges in the microbial community genome assembly are addressed by 160 
metagenome assemblers. Thus, at first glance, applying metagenome assemblers to de novo viral 161 
variant reconstruction seems very promising. However, SPAdes is the only assembler that was able to 162 
identify haplotypes in the case of sufficiently abundant strains (Jasmijn A Baaijens et al., 2017; 163 
Bankevich et al., 2012; Nurk et al., 2017). Therefore, the development of specific assemblers for viral 164 
sequence variants is required. Currently, there exist three de novo strain-specific assemblers, namely 165 
MLEHaplo (Malhotra et al., 2015), SAVAGE (Jasmijn A Baaijens et al., 2017), and PEHaplo (Chen 166 
et al., 2018) (Table 1). MLEHaplo was the first assembler that truly applied de novo viral sequence 167 
variant assembly at the strain resolution level. MLEHaplo performs k-mer counting and then filters 168 
erroneous k-mers using raw reads and a specified threshold value. Afterwards, the tool builds a De 169 
Bruijn graph (see Compeau et al., 2011) based on the set of k-mers obtained in the previous round 170 
(Fig. 1 с(). On the next step, MLEHaplo recovers paths from the De Bruijn graph that may correspond 171 
to haplotypes. Finally, the tool chooses correct haplotypes and estimates their frequencies using the 172 
maximum likelihood method. PEHaplo follows the same workflow as MLEHaplo. However, PEHaplo 173 
constructs an overlap graph instead of creating a De Bruijn graph during the initial steps2 (Fig. 1 с(). 174 
PEHaplo also has a more careful path finding algorithm based on paired-end connection information. 175 
SAVAGE uses overlap graphs as a key data structure, but the pipeline is different from those in 176 
PEHaplo and MLEHaplo. After constructing an overlap graph (Fig. 1 с(), SAVAGE joins overlapped 177 
read pairs. At the next step, SAVAGE iteratively merges reads into contigs and contigs into scaffolds 178 
using clique enumeration and contig formation. Finally, the tool uses Kallisto (Bray et al., 2016) to 179 
estimate frequencies of the resulting haplotypes180 

 
2 One can read the difference between overlap graphs and De Bruijn graphs in a review paper by Li et al. (2012). 
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 181 
Table 1. De novo and reference-based viral haplotype callers compared in this study. 
Software 
Tool 

Published 
Year 

Programming 
Language 

Frequencies Haplotypes Type 

MLEHaplo 2015 Perl + + de novo 
Savage 2017 Python 3 - - de novo 
PEHaplo 2018 Python 2.7 + - de novo 
ShoRAH 2011 C++ + + reference-based 
QuRe 2012 Java 6 + + reference-based 
QuasiRecomb 2013 Java 7 + + reference-based 
PredictHaplo 2014 C++ + + reference-based 
HaploClique 2014 C++ + + reference-based 
ViQuas 2015 R, Perl + + reference-based 
aBayesQR 2017 C++ + + reference-based 
RegressHaplo 2017 R + + reference-based 
CliqueSNV 2018 Java 6 + + reference-based 
If a haplotype caller produces haplotypes as an output, it given a plus sign. If a haplotype caller reports 
corresponding frequencies for the sequences produced, it is given a plus sign. Savage and PEHaplo claim they 
produce contigs not haplotypes, which is why we did not deem that they produce haplotypes. 

 182 
While the final sequences produced by MLEHaplo, PEHaplo, and SAVAGE are strain-183 

specific, the obtained sequences, in general, do not represent full-length haplotypes (Fig. 1 d%). 184 
Recently, Virus-VG and VG-flow have been developed for completing strain-specific assemblies 185 
produced by the aforementioned de novo strain-specific assemblers (Baaijens et al., 2018, 2019). 186 
Virus-VG and VG-flow try to convert strain-specific contigs into full-length haplotypes taking into 187 
account their abundances. The difference between Virus-VG and VG-flow is that the former uses a 188 
brute-force exact approach, while the latter utilizes a heuristic algorithm. Therefore, VG-flow is faster 189 
than Virus-VG, but less accurate. The main goal for both tools is to find and select maximum-length 190 
paths in a variation graph. 191 

The main advantage of reference-based viral variant reconstruction methods prior to de novo 192 
haplotype assemblers is the potential ability to reconstruct full-length haplotypes (Fig. 1 d",	d#). 193 
However, it was shown in several studies (Jasmijn A Baaijens et al., 2017; Mangul et al., 2014) that 194 
the reference genome may bias the reconstruction of haplotypes. An additional disadvantage of using 195 
a reference-based tool is the potential lack of a high-quality reference genome of a virus population. 196 
In this case, the required reference genome can be potentially assembled from sequencing reads by 197 
first using de novo consensus assembly tools. Nevertheless, the reference genome is often available 198 
for common pathogenic viruses, such as HIV, HCV, polyomavirus or influenza. 199 

Currently there are nine commonly used state-of-the-art reference-based tools (Table 1). All 200 
these tools claim to be global haplotype inference methods, i.e., able to infer the sequences and 201 
frequencies of the underlying viral strains over a longer region than the average read length. ShoRAH 202 
(Short Read Assembly into Haplotypes) is, historically, the first publicly available software (Zagordi 203 
et al., 2011). ShoRAH uses a probabilistic clustering algorithm for short haplotype sequence 204 
reconstruction (Fig. 1 с",	с%, d#). Then, it computes a minimal set of haplotypes using the principle of 205 
parsimony that provides the best explanation for the given a set of error corrected sequencing reads 206 
(Eriksson et al., 2008). The tool then uses an expectation minimization algorithm for haplotype 207 
frequency estimation. 208 

The next important milestone in the reference-based viral variant reconstruction tool 209 
development was the release of QuRe (Prosperi and Salemi, 2012). QuRe uses the combinatorial 210 
method proposed in Prosperi and Salemi (2012) for inferring genetic variants in local windows that do 211 
not exceed read lengths. After that, the obtained genetic variants are clustered by a probabilistic 212 
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algorithm (Zagordi et al., 2010) (Fig. 1 с",	с%, d#). Finally, haplotypes with their frequencies are 213 
obtained by utilizing a genome reference and clustered variants. Later, the same probabilistic clustering 214 
and combinatorial algorithms were used for developing the reference-assisted assembly pipeline 215 
ViQuas (Jayasundara et al., 2015). The main difference between QuRe and ViQuas is that the latter 216 
tool assembles reads into contigs using the SSAKE assembler (Warren et al., 2007) and then iteratively 217 
extends obtained contigs by connecting overlapping pairs without using any sequence information 218 
from the reference.   219 

The next developed software was PredictHaplo (Prabhakaran et al., 2014), HaploClique 220 
(Töpfer et al., 2014), and QuasiRecomb (Topfer et al., 2013). All these tools have special features in 221 
comparison to the previous generation tools. For example, PredictHaplo was specifically designed for 222 
identifying haplotypes in an HIV-1 population. HaploClique allows for detection of point mutations, 223 
large insertions and deletions. QuasiRecomb, on the other hand, incorporates the existence of 224 
recombination events into the estimated viral evolution. PredictHaplo, HaploClique, and 225 
QuasiRecomb are based on different approaches and their applications to the viral variant 226 
reconstruction problem were novel at the time. PredictHaplo reformulates the original problem in 227 
terms of a non-standard clustering problem, where reads are points in some metric space and 228 
haplotypes are clusters (Fig. 1 с",	с%, d#). To take into account an unknown number of variants, the 229 
stochastic Dirichlet process and the infinite mixture model were used (Prabhakaran et al., 2010). 230 
HaploClique uses the insert size distribution and an iterative enumeration of maximal cliques in a 231 
graph to reconstruct super-reads that may represent haplotypes (Fig. 1 с",	с#, d"). Due to the 232 
computational complexity of maximal clique enumeration, this tool requires excessive computational 233 
resources on data sets with coverage >1,000x. HaploClique provided inspiration for the development 234 
of SAVAGE. Finally, QuasiRecomb utilizes data parameters of a hidden Markov model for estimating 235 
point mutations and recombination events (David Posada et al., 2002). These parameters allow 236 
estimation of the probability of each possible haplotype with respect to the observed read data. 237 

The latest releases of reference-based methods for viral sequence variant reconstruction are 238 
aBayesQR (Ahn and Vikalo, 2017), CliqueSNV (Knyazev et al., 2018), and RegressHaplo (Leviyang 239 
et al., 2017). CliqueSNV extends the previous approach used in the 2SNV tool (Artyomenko et al., 240 
2017). CliqueSNV constructs a graph based on linkage information between single nucleotide 241 
variations and then identifies true viral variants by merging cliques in that graph (Fig. 1 с",	с#, d"). 242 
RegressHaplo, in turn, is based on a regression-based approach specifically designed low diversity and 243 
convergent evolutions. This tool implements penalized regression to assess the haplotype interactions 244 
that belong to different unlinked regions. aBayesQR employs a maximum-likelihood approach to infer 245 
viral sequences. The search of most likely viral sequence is conducted on long contigs, which enables 246 
identification of closely related haplotypes in a population and provides computational tractability of 247 
the Bayesian method. It should be noted that aBayesQR is designed for reconstructing viral haplotypes 248 
that are near genetically identical.  249 

Each haplotype reconstruction tool in Table 1 was run on the Colonial One high performance 250 
computing cluster at The George Washington University. We used 64 standard CPU nodes featuring 251 
dual Intel Xeon E5-2670 2.6GHz 8-core processors with a RAM capacity of 128GB. A single node 252 
with a 48-hour time limit was allocated for each run. 253 
 254 
2.2 Simulation Data Description 255 

Previous benchmarking of viral haplotype reconstruction programs (Pandit and de Boer, 2014; 256 
Prosperi et al., 2013; Schirmer et al., 2014) used simulation scenarios that are useful from a 257 
mathematical perspective but do not necessarily reflect viral evolution and epidemiology. For example, 258 
PredictHaplo artificially mutated ten haplotypes from a single HIV-1 reference genome at varying 259 
proportions  (Prabhakaran et al., 2014); HaploClique used an in-house mixture of known HIV-1 strains 260 
(number of specific strains unknown) (Töpfer et al., 2014); and SAVAGE simulated their data based 261 
on Illumina MiSeq sequencing results from an in-house mixture of five unique strains of HIV-1 262 
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subtype B with varying relative abundances (see supplemental methods in (Jasmijn A Baaijens et al., 263 
2017)). In those studies, often the pairwise divergence between the strains used to represent “real” 264 
HIV-1 haplotype diversity was either unreported (Prabhakaran et al., 2014) or ranged between 0.05% 265 
and 10% (Jasmijn A Baaijens et al., 2017; Töpfer et al., 2014). But realistic intra-host HIV-1 diversity 266 
is substantially lower with pairwise divergences ranging between 0.02% and 2%, while inter-host 267 
pairwise comparisons of the same viral subtypes can exceed 5% (Kearney et al., 2009; Maldarelli et 268 
al., 2013). Furthermore, unless the HIV-1 viral population in an individual was the product of a dual 269 
infection (see (van der Kuyl and Cornelissen, 2007) for review of dual infections), these benchmarking 270 
methods do not accurately represent the evolution of the virus, where the HIV viral population 271 
originated from an infection of one strain. All of these studies conditioned their simulations on HIV-1 272 
data sets, but we also want to explore the general utility across a broader parameter space that 273 
encompasses more fast-evolving viral populations. 274 

In our simulations, we used parameters and settings under the coalescent theory (Kingman, 275 
2000, 1982; Rodrigo and Felsenstein, 1999; Rosenberg and Nordborg, 2002) to more accurately reflect 276 
viral intra-host diversity and evolution as seen in empirical studies (see (Crandall and Templeton, 277 
1993)). We simulated viral intra-host evolutionary histories and the constituent haplotype sequences 278 
(tips) using the coalescent simulator CoalEvol v. 7.3.5 (Arenas and Posada, 2014). We set the mutation 279 
rate (µ) between 1e-3 and 5e-8 per-site to span past known viral mutation rates to test the limits of the 280 
reconstruction algorithms and number of haplotypes present using the human genome mutation rate as 281 
an upper limit and other retroviruses’ mutation rates as a lower limit. These parameters encapsulated 282 
the empirical mutation rate of 2.5e-5 and 3.4e-5 estimated by Neher and Leitner (2010) and Maldarelli 283 
et al. (2013), respectively for HIV-1; HCV with an estimated mutation rate between 2.5e-5 and 1.2e-284 
4 (Echeverría et al., 2015; Ribeiro et al., 2012; Sanjuán et al., 2010); HTLV-1 with an estimated 285 
mutation rate between 3.44e-7 and 7e−6 (Mansky, 2000; Nobre et al., 2018); and influenza with an 286 
estimated mutation rate of 3e−5 to 4e−5 (McCrone, 2018; McCrone et al., 2018). Although Neher and 287 
Leitner (2010) reported that the HIV-1 virus recombines at a rate of 1.4±0.6e−5, we chose to not 288 
include recombination in the simulated evolution histories because some of the compared haplotype 289 
reconstruction programs do not include recombination events in their reconstruction process. Other 290 
parameters that were fixed in the CoalEvol config file included: i) nucleotide frequencies (A=0.37, 291 
C=0.16, G=0.23, and T=0.25); ii) the transition/transversion rate (ti/tv = 2.5), as estimated among host 292 
diversity from Crandall et al. (1999); and iii) rate heterogeneity among sites (G = 0.95) and invariable 293 
site rate (I = 0.4) (Posada and Crandall, 2001), which are unique to HIV-1. 294 

Recombination occurs frequently in natural HIV-1 populations (Crandall, 1999; Neher and 295 
Leitner, 2010; D Posada et al., 2002) but we chose not to model recombination in our simulations. 296 
First, many of the haplotype programs do not account for recombination. Second, we assume that 297 
approaches that fail on a simplified model without recombination will not perform well on a more 298 
complex that includes recombination.  299 

We chose to use HIV-1 as an empirical viral strain to assess the capabilities of the haplotype 300 
reconstruction tools given that most developers validated their programs on this virus and genetic 301 
diversity values for this virus are well established. HIV-1 genetic diversity (Watterson’s theta) for the 302 
polymerase gene (pol) has been estimated to fall between 0.067 and 0.09 for subtype B HIV-1 strains 303 
in the United States (Gibson et al., 2019; Pérez-Losada et al., 2017, 2010). Boltz et al. (2016) 304 
completed single genome sequencing that resulted in 677 – 1,577 sequences per sample for HIV-1, 305 
therefore, we limited our sample size to range between 100 and 2,000 with an alignment length of 306 
1,137bp. This length was chosen because we used a section of the polymerase gene (pol) from the 307 
HXB2 reference sequence (GenBank accession number: K03455; (Ratner et al., 1985)) as the most 308 
recent common ancestor (MRCA) for each parameter set (HXB2 numbering: 2,253 – 3,390). It is 309 
important to note that CoalEvol is restricted to sample sizes of up to 2,000 haplotypes. Maldarelli et 310 
al. (2013) estimated the effective population size (Ne) of intra-host diversity to be between 1,000 and 311 
10,000, so we varied the effective population size between 500 and 10,000. We also denoted the ploidy 312 
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as diploid (Coffin, 1992). Wherever possible, we varied the parameters to be above and below 313 
estimated HIV-1 estimates to ensure we adequately represented viral intra-host diversity and to 314 
examine the limits of the haplotype reconstruction programs. Expanding our parameter set allowed us 315 
to gain insights into other viral species with different evolutionary and population characteristics. For 316 
example, the Ne for influenza is considerably smaller than HIV-1 at around 20-100 viral sequences 317 
(Kim and Kim, 2016; McCrone, 2018; McCrone et al., 2018), while HCV hovers around the lower end 318 
of HIV-1 with an Ne of 10-1,000 sequences (Bernini et al., 2011). 319 

Since the Illumina MiSeq platform is the most popular NGS technology currently used for viral 320 
amplicon sequencing due to low cost and high throughput, we simulated sequencing reads in the 321 
FASTA output (excluding the original HXB2 sequence we deemed as the GMCRA in the coalescence 322 
simulation) of CoalEvol using the NGS read simulator ART v. MountRainier-2016-06-05 (Huang et 323 
al., 2012). ART mimics real sequencing processes, therefore, we used the built-in sequencing Illumina 324 
MiSeq platform (MSv1). We simulated error-free 150 bp paired-end reads with a read count of 100 325 
reads, mean size of 215 bp for DNA fragments, and a standard deviation of 120 bp for DNA fragment 326 
size.  327 
 The error free output data generated for the haplotype populations with the ART read simulator 328 
was processed with HAPHPIPE, a HAplotype reconstruction and PHylodynamics PIPEline for viral 329 
NGS sequences (Bendall et al., 2019). By both not simulating recombination and starting with 330 
sequencing-error free data, we removed nuisance variables that would impact haplotype reconstruction 331 
and could not be handled by some haplotype callers. Briefly, we used HAPHPIPE and its  332 
implementation of Trimmomatic v. 0.33 (Bolger et al., 2014) to trim the starting FASTQ files from 333 
the output of ART by removing low quality reads, low quality bases, and adapter contamination. We 334 
performed de novo assembly on the clean reads using Trinity v. 2.5.1 (Grabher et al., 2013) and formed 335 
scaffolds with MUMMER 3+ v. 3.23 (Alnafee, 2016). With two iterative refining steps, the cleaned 336 
reads were mapped back to the scaffolds with Bowtie2 v. 2.3.4.1 (Langmead and Salzberg, 2013). The 337 
BAM file of aligned reads generated as final output by HAPHPIPE and a FASTA file containing the 338 
cleaned reads (an intermediate output by HAPHPIPE) were used as input for the haplotype 339 
reconstruction algorithms. 340 
 341 
2.3 Haplotype Assembly Comparative Indices 342 

In order to evaluate the quality of haplotype assembly provided by different tools, we used common 343 
statistical measures of precision and recall, as well as weighted normalized UniFrac distance 344 
(Lozupone and Knight, 2005), which is widely used to compare microbial communities. Our simulated 345 
data can be represented as 𝑃 = {(ℎ., 𝑝.), 𝑖 = 1, 2, … } – the ground truth haplotypes ℎ. and their 346 
associated abundances 𝑝.	(∑𝑝. = 1), and 𝑄 = {(𝑓., 𝑞.), 𝑖 = 1, 2, … } – the set of predicted haplotypes 347 
𝑓. together with their predicted abundances 𝑞..  348 

We define precision as :;
(:;<=;)

 and recall as :;
(:;<=>)

. Since the length of viral sequences 349 
reconstructed by de novo tools may differ from actual length of ground truth haplotypes, we define TP 350 
(true positive) and FP (false positive) differently for reference-based and de novo tools. We define FN 351 
(false negative) as 1 − 	𝑇𝑃, for both assembly strategies equally. 352 

In the case of reference-based methods, we define TP as the total frequency of those haplotypes 353 
ℎ in the ground truth set 𝑃 which have an accurate enough prediction 𝑓 in 𝑄 (which means that the 354 
edit distance 𝑑(ℎ, 𝑓) is less than some threshold 𝑇 = 𝑇(𝜇)); we also define FP as the total frequency 355 
of those haplotypes f in the predicted set 𝑄 which do not match any haplotype 𝑓 from the ground truth 356 
set (which means that 𝑑(ℎ, 𝑓) ≥ 𝑇 for all 𝑓 ∈ 𝑃). We choose the threshold 𝑇 = 12 because 12 bp is 357 
about 1% of the haplotypes' length. We consider the haplotype ℎ	 ∈ 𝑃 to be reconstructed correctly if 358 
there exists a haplotype 𝑓	 ∈ 𝑄 such that the edit distance between them 𝑑(ℎ, 𝑓) ≤ 12.  359 

For de novo methods, we define TP as follows: We say that a contig 𝑓 from 𝑄 is proper if there 360 
exists such a ground truth haplotype ℎ and its substring s	∈ ℎ so that the edit distance between 𝑓 and 361 
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𝑠 is small (less than 1% of 𝑓 's length). Then, for each ground truth haplotype ℎ., we define 𝑐. – the 362 
proportion of its part which is properly covered by contigs from 𝑄. We then define TP as a weighted 363 
total frequency of properly predicted haplotypes ∑ 𝑐.𝑓.IJ	∈	K . It is important to note that the definition 364 
of TP is a generalization of the TP definition for reference-based tools. Indeed, in the latter case, all 365 
the 𝑐. are equal to either 0 or 1. We define FP as the total frequency of non-proper contigs in 𝑄. 366 

While these measures are standard and they show how good the haplotype reconstruction is, 367 
they are not very sensitive to the errors in frequency prediction. In order to address this issue, we also 368 
computed the UniFrac distance 𝐸𝑀𝐷(𝑃, 𝑄) using the EMDUniFrac algorithm (McClelland and 369 
Koslicki, 2018). The UniFrac distance takes into account both the phylogenetic structure of the 370 
haplotype set and their frequency distribution, which makes it ideal for incorporating sensitivity to 371 
errors in frequency prediction. The UniFrac EMD method makes the following steps: 372 

 373 
• construct a tree 𝑇 with branch length 𝑙P on the set of all haplotypes ℎ. ∈ 𝑃 and 𝑓. ∈ 𝑄 374 
• for each tree branch 𝑒 and its descendant subtree 𝑇P, estimates the imbalance 𝑊P: 375 

 376 

𝑊P ≔	 T U 𝑝.
.∶IJ∈:W

− U 𝑞.
.:YJ∈:W

T ; 377 

 378 
• evaluate the weighted imbalance with respect to the branch lengths 379 

 380 

𝐸𝑀𝐷 ≔	U𝑙P𝑊P
P∈:

. 381 

  382 
As a baseline for thе UniFrac EMD comparison, we evaluate the UniFrac distance between 383 

reference or, more formally, a set of haplotypes Q containing only one haplotype – the reference at a 384 
frequency of 1. 385 
 386 
3. Results and Discussion 387 
3.1 True haplotypes from simulated data 388 

All analyses were completed using the simulated dataset developed under the coalescent 389 
framework. For each mutation rate μ ∈{1e-8, 3e-8, 5e-8, 1e-7, 5e-7, 1e-6, 5e-6, 1e-5, 3e-5, 5e-5, 1e-4, 390 
3e-4, 5e-4, 5e-3, 5e-8} and effective population size 𝑁P = {500, 1000, 2500, 5000, 7500, 10000}, 391 
there were five simulated haplotype populations 𝑃 = {(ℎ., 𝑝.), 𝑖 = 1, 2, … } used as replicates for each 392 
parameter set. Under the coalescent model, the number of true haplotypes ranged from 1 to 1,993 with 393 
a median of 342 haplotypes for a parameter set (Fig. 2). Unlike previous attempts to represent intra-394 
host HIV-1 diversity levels – often five haplotypes at varying abundances (J A Baaijens et al., 2017; 395 
Prabhakaran et al., 2014; Töpfer et al., 2014), our intra-host populations have 216-1,185 haplotypes 396 
per host at a frequency <7%, with a median of 525 haplotypes. Therefore, the number of haplotypes at 397 
high diversity levels may actually be even higher, but we primarily focused on the diversity levels of 398 
intra-host HIV-1 populations. Additionally, the number of haplotypes at smaller diversity levels, such 399 
as those seen in influenza, are likely to be smaller than ours. 400 
 401 
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 402 
Figure 2. Simulated population parameters with the haplotype count in each parameter box. All five 403 
population replicates are displayed. The color darkens as the number of haplotypes increases. The red 404 
dashed box indicates expected HIV-1 mutation rates and effective population sizes.  405 
 406 
3.2 Haplotype caller performance 407 

HIV-1 intra-patient populations exhibit levels of diversity that exceed the limitations of all 408 
twelve haplotype callers we compared in this study, regardless of the assembly approach used (de novo 409 
or reference-based). However, because HCV and influenza both have lower mutation rates and 410 
effective population sizes, they may fall within the limitations of some of the compared haplotype 411 
reconstruction approaches. The haplotype callers varied drastically in their haplotype reconstruction 412 
accuracy (precision, recall, UniFrac, and number of reconstructed haplotypes), with most tools 413 
performing well with low genetic diversity and poorly with high genetic diversity. Since HIV-1 414 
diversity is very high, all haplotype reconstruction tools seemed to have difficulties either producing 415 
output (i.e., predicted haplotypes) or reconstructing haplotypes that reflect the true haplotypes. 416 
Furthermore, haplotype reconstruction accuracy was more sensitive to the mutation rate of the virus 417 
than to its effective population size. Although, the opposite was true for PEHaplo, where Ne seemed 418 
to play a major role in the quality of predicted haplotypes. Fortunately, we often know, or have better 419 
a priori estimates for, the mutation rate of a virus than for the effective population size of an intra-host 420 
population. Furthermore, the effective population size changes over time during infection, whereas the 421 
mutation rate remains relatively constant (Maldarelli et al., 2013), unless there are pressures from 422 
antiretroviral treatment. However, as theta is estimated, effective population size and mutation rate are 423 
indeed coundfounded. Below, we discuss the current results in more detail.  424 

MLEHaplo and ViQuas did not produce any valid results within the given time limit, whereas 425 
QuRe crashed in all analyses because of memory limitations. While HaploClique produced results 426 
within our time limit (Fig. S1), we excluded this tool from final comparisons because the length of the 427 
reconstructed viral sequences was always significantly shorter than the length of the ground truth 428 
haplotypes (Fig. S2). Such behavior is atypical among reference-based methods. Moreover, since 429 
SAVAGE can be considered as the next installment of HaploClique, it provides an additional argument 430 
for excluding HaploClique from our comparison. 431 

In addition to the two de novo tools assessed (i.e., SAVAGE and PEHaplo), we also ran the 432 
VG-flow tool to complete contigs produced by those methods. We selected VG-flow over Virus-VG 433 
because VG-flow is faster and almost as accurate (Baaijens et al., 2018, 2019). Despite the claim that 434 
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VG-flow improves assemblies from any de novo tool (Baaijens et al., 2018, 2019), we also included 435 
the output from PEHaplo in our comparison since VG-flow was tested on the SAVAGE output only 436 
in the original paper  (Baaijens et al., 2018, 2019). 437 

Datasets completed within our time limits varied across reconstruction tools; in general, 438 
datasets with higher mutation rates (μ) and effective population sizes (Ne) represented challenges for 439 
almost all the tools. For example, RegressHaplo and PredictHaplo did not produce any output if both 440 
Ne and μ were high but performed well otherwise. For low values of μ (𝜇	 ≤ 1𝑒 − 5), all the callers 441 
except ShoRAH produced some output. aBayesQR, SAVAGE, and RegressHaplo had problems 442 
reconstructing haplotypes for datasets with low μ and Ne values. 443 

For HIV-1 μ estimates (3𝑒 − 5	 ≤ 𝜇	 ≤ 1𝑒 − 4), CliqueSNV and QuasiRecomb did not 444 
produce any valid output; aBayesQR, PredictHaplo, SAVAGE, and RegressHaplo produced some 445 
outputs; and ShoRAH, and PEHaplo produced output for all the datasets. It is also important to note 446 
that only PEHaplo was able to solve all datasets within the given time limit. For all datasets, where 447 
haplotype callers performed successfully, we measured their results in terms of precision, recall, and 448 
the Unifrac distance EMD. Below we present and discuss the behavior of the reference-based tools 449 
and the de novo tools. 450 

  451 
3.2.1 Reference-based Program Performance 452 

We evaluated results from six reference-based haplotype callers: aBayesQR, RegressHaplo, 453 
CliqueSNV, ShoRAH, PredictHaplo, and QuasiRecomb. Precision (Fig. 3) and recall (Fig. 4) values 454 
were calculated for each tool. The quality of obtained results did not seem to depend much on the 455 
effective population size (Ne). This is a positive finding, as determining the effective population size 456 
for intra-host viral infections is often difficult and can vary between studies. All the tools, except 457 
ShoRAH, performed very well (i.e., both precision and recall are close to one) if the mutation rate was 458 
relatively small (µ ≤ 1e − 5), which is an estimated mutation rate for influenza. For higher values of μ 459 
(𝜇	 ≥ 1𝑒 − 4), such as those seen in HCV and HIV-1, all the tools performed poorly (i.e., both 460 
precision and recall were close to zero). For the values of μ seen in HIV-1 (3𝑒 − 5	 ≤ 𝜇	 ≤ 1𝑒 − 4), 461 
PredictHaplo was able to produce better results than the other tools; PredictHaplo's precision and recall 462 
decreased with µ ∈ (3e−5, 1e−4) but stayed positive. It also should be noted that CliqueSNV 463 
outperformed all other tools for 𝜇 = 1𝑒 − 6, but did not produce any results for 𝜇	 ∈ (1𝑒 − 5, 1𝑒 − 4). 464 
Such behavior looks promising and it is possible that in future releases, if run-time is increased, 465 
CliqueSNV will exceed PredictHaplo in precision and recall performance.  466 

 467 
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 468 
 469 

Figure 3. Reference-based haplotype callers: variation of precision values with mutation rate (log-470 
scaled) for all considered Ne. The shaded light blue and shaded light red regions correspond to HIV-1 471 
and HCV diversity levels, respectively. For all pairs of parameters μ and Ne, we report the mean 472 
estimates of precision over all valid outputs produced by each software tool for the five haplotype 473 
populations. If a tool did not produce any output for any pair of parameters, we included a gap in the 474 
corresponding plot. 475 
 476 

 477 
 478 
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Figure 4. Reference-based haplotype callers: variation of recall values with mutation rate (log-scaled) 479 
for all considered Ne. The shaded light blue and shaded light red regions correspond to HIV-1 and 480 
HCV diversity levels, respectively. For all pairs of parameters μ and Ne, we report the mean estimates 481 
of recall over all valid outputs produced by each software tool for five haplotype populations. If a tool 482 
did not produce any output for some pair of parameters, we included a gap in the corresponding plot. 483 

 484 
 We calculated UniFrac distance values for the aforementioned tools (Fig. 5). The UniFrac 485 
distance further supported the previous observation that the quality of obtained results does not depend 486 
much on the effective population size (Ne). Comparisons using the UniFrac distance also showed that 487 
all the tools, except ShoRAH, performed well if µ ≤ 1e – 5; the UniFrac distance between the ground 488 
truth sets of haplotypes and those predicted by the tool sets are all close to zero. With increasing 𝜇 489 
values, UniFrac distances also increased. For HIV-1 mutation rates, PredictHaplo showed the best 490 
performance since it produced outputs for almost all pairs of parameters and the sets of predicted 491 
haplotypes were the closest to the correct haplotypes. Again, CliqueSNV outperformed all other 492 
methods for 𝜇 = 1𝑒 − 6, which further supports our previous observation. 493 
 494 

 495 
 496 

Figure 5. Reference-based haplotype callers: variation of UniFrac distances (EMD) with mutation rate 497 
(log-scaled) for all considered Ne. The shaded light blue and shaded light red regions correspond to 498 
HIV-1 and HCV diversity levels, respectively. For all pairs of parameters μ and Ne, we report the mean 499 
estimates of UniFrac distances over all valid outputs produced by each software tool for five haplotype 500 
populations. If a tool did not produce any output for some pair of parameters, we included a gap in the 501 
corresponding plot. 502 
 503 

For large values of μ (𝜇	 ≥ 1𝑒 − 4), ShoRAH, QuasiRecomb, RegressHaplo and PredictHaplo 504 
rarely produced a valid output within the given time limit. aBayesQR and CliqueSNV produced results 505 
that were worse than or comparable to the baseline. For large values of the effective population size 506 
(𝑁P ≥ 5000) and low values of μ, all the tools except ShoRAH showed better results than the baseline. 507 
However, for mutation values larger than 5𝑒 − 4, none of the tools made a better prediction of the set 508 
of haplotypes than just a reference. It is important to note that HCV, HIV, and influenza do not have 509 
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Ne close to 5,000 (Bernini et al., 2011; Kim and Kim, 2016; Maldarelli et al., 2013; McCrone, 2018; 510 
McCrone et al., 2018). Most methods severely underestimated the true number of haplotypes in a 511 
population at high genetic diversity levels or overestimated it at low genetic diversity levels (Fig. 6), 512 
compared to the true number of haplotypes across the same levels of underlying genetic diversity 513 
obtained from the simulated datasets (Fig. S3). PredictHaplo, RegressHaplo, aBayesQR, and 514 
CliqueSNV underestimated haplotype numbers in the HIV intra-host diversity range (shaded in 515 
yellow). HaploClique and QuasiRecomb, on the other hand, overestimated haplotype numbers, 516 
whereas ShoRAH provided the closest estimate to the true number of haplotypes in the HIV-1 diversity 517 
range. aBayesQR and CliqueSNV did not produce results for any dataset within the HIV-1 diversity 518 
range. 519 

 520 

 521 
 522 
Figure 6. Reference-based haplotype callers: number of predicted haplotypes across levels of 523 
underlying genetic diversity. Intra-host HIV-1 and HCV diversity levels are highlighted shaded light 524 
blue and shaded light red regions, respectively. If a software tool did not complete haplotype 525 
reconstruction within the given time frame, we included a gap in the corresponding plot (see Fig. S1 526 
for more information on dataset completions). 527 
 528 
3.2.2 De Novo Program Performances 529 

We analyzed the behavior of two de novo haplotype callers: SAVAGE and PEHaplo. The 530 
output of both tools usually contained shorter contigs, so we completed the assembly using the VG-531 
flow tool. PEHaplo itself produced valid output for all the datasets, while SAVAGE or PEHaplo with 532 
VG-flow failed to produce results for some datasets (Fig. S1). Moreover, the length of PEHaplo output 533 
haplotypes was usually closer to the ground truth haplotype length, while the SAVAGE+VG-flow 534 
produced shorter contigs (see N50 statistics plot on Fig. S4). Thus, we only further considered 535 
PEHaplo, PEHaplo + VG-flow and SAVAGE + VG-flow.  536 
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We compared the de novo tools using our modified versions of precision and recall (Fig. 7 and 537 
Fig. 8). VG-flow usually improved slightly the performance of PEHaplo, while PEHaplo usually 538 
performed better than SAVAGE+VG-flow. Although the quality of results of SAVAGE+VG-flow did 539 
not seem to depend on the effective population size, Ne played a role in the quality of obtained results 540 
by PEHaplo. For example, both precision and recall were close to zero for 𝜇 = 	1𝑒 − 8 and 𝑁P ∈541 
{500, 1000, 2500), but significantly higher for 𝑁P ∈ {5000, 7500, 10000} and 𝜇 = 	1𝑒 − 8. It is also 542 
important to note the behavior of recall values for the obtained results in PEHaplo; those values, in 543 
general, were close to one for small 𝜇 values, close to zero for 𝜇 values near 1𝑒 − 5, and stayed positive 544 
for higher 𝜇 values.  545 

 546 

 547 
 548 
Figure 7. De novo haplotype callers: variation of precision values with mutation rate (log-scaled) for 549 
all considered Ne. The shaded light blue and shaded light red regions correspond to HIV-1 and HCV 550 
diversity levels, respectively. For all pairs of parameters μ and Ne, we report the mean estimates of 551 
precision over all valid outputs produced by each software tool for five haplotype populations. If a tool 552 
did not produce any output for some pair of parameters, we included a gap in the corresponding plot. 553 
 554 
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 555 
 556 
Figure 8. De novo haplotype callers: variation of recall values with the mutation rate (log-scaled) for 557 
all considered Ne. The shaded light blue and shaded light red regions correspond to HIV-1 and HCV 558 
diversity levels, respectively. For all pairs of parameters μ and Ne, we report the mean estimates of 559 
recall over all valid outputs produced by each software tool for five haplotype populations. If a tool 560 
did not produce any output for some pair of parameters, we included a gap in the corresponding plot. 561 
 562 

De novo tools performed very well, in both precision and recall values, if the mutation rate was 563 
less than 1e − 6 (in contrast to µ ≤ 1e − 5 for reference-based tools). Additionally, recall values for 564 
PEHaplo when 𝜇	 ≥ 1𝑒 − 4 were usually better than those seen for any reference-based approaches. 565 
De novo tools did not produce results with a positive precision for HIV-1 and HCV mutation rates. 566 
The UniFrac distance further confirmed our previous observation that VG-flow slightly improved the 567 
performance of PEHaplo (Fig. 9). Moreover, the performance of SAVAGE + VG-flow did not depend 568 
on the mutation rate or the effective population size Ne. It is important to note that all UniFrac distance 569 
values were, in general, higher than baseline values. We also compared UniFrac distances between 570 
both categories of assemblers (Fig. S5); as we expected, reference-based tools largely outperformed 571 
de novo tools. At the same time, PEHaplo performed better than ShoRAH for some datasets. Moreover, 572 
SAVAGE + VG-flow showed the worst performance based on UniFrac distances. 573 

  574 
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 575 
 576 
Figure 9. De novo haplotype callers: variation of UniFrac distance (EMD) with mutation rate (log-577 
scaled) for all considered Ne. The shaded light blue and shaded light red regions correspond to HIV-1 578 
and HCV diversity levels, respectively. For all pairs of parameters μ and Ne, we report the mean 579 
estimates of UniFrac distances over all valid outputs produced by each software tool for five haplotype 580 
populations. If a tool did not produce any output for some pair of parameters, we included a gap in the 581 
corresponding plot. 582 
 583 

Although the de novo methods produced more haplotypes in the HIV-1 diversity range 584 
compared to reference-based methods, they all still underestimated the true number of haplotypes in a 585 
population at higher diversity levels. They also overestimated true haplotype numbers at lower genetic 586 
diversity levels (Fig. 10) compared to the true number of haplotypes from the simulated datasets (Fig. 587 
S3). When extending the contigs into scaffolds with VG-flow, the number of haplotypes reconstructed 588 
decreased considerably and remained below the number of true haplotypes estimated for the varying 589 
genetic diversity levels. PEHaplo reconstructed the lower limit of the true number of haplotypes within 590 
HIV-1 diversity levels, but like other tools, including aBayes, CliqueSNV and QuasiRecomb, PEHaplo 591 
and SAVAGE, had trouble reconstructing viral sequences at higher diversity levels. 592 

 593 
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 594 
 595 
Figure 10. De novo haplotype callers: variation in number of predicted haplotypes across levels of 596 
underlying genetic diversity. Intra-host HIV-1 and HCV diversity levels are highlighted shaded light 597 
blue and shaded light red regions, respectively. If a software tool did not complete haplotype 598 
reconstruction within the given time frame, we included a gap in the corresponding plot (see Fig. S1 599 
for more information on dataset completions). 600 
 601 
4. Conclusions and Future Directions 602 

We compared twelve of the most commonly used software tools to reconstruct haplotypes from 603 
viral NGS data. We simulated coalescent-based populations that spanned past known levels of viral 604 
diversity, including mutation rates, sample size, and effective population size. We focused our 605 
empirical comparisons on the intra-host diversity levels of fast-evolving RNA viruses such as HIV-1 606 
because parameter value ranges are well established and a better understanding of viral dynamics is 607 
important for drug and vaccine development. Additionally, the majority of haplotype tool developers 608 
used HIV-1 to validate their own programs. In our analyses of HIV-1 intra-host diversity, we estimated 609 
between 216 and 1,185 haplotypes with a <7% frequency for a single haplotype. 610 

Overall, reference-based assemblers produced more accurate haplotypes than de novo-based 611 
assemblers for all performance indices (precision, recall, UniFrac, and number of reconstructed 612 
haplotypes) across HIV-1 diversity levels. This performance could be attributed to the availability of 613 
high-quality reference sequences for HIV-1, HIV-2, HCV, influenza and other viruses. Furthermore, 614 
using a reference sequence reduces the computational time and power needed to reconstruct 615 
haplotypes. Reference-based assemblers likely performed better than de novo assemblers because of 616 
the high variation within viral populations, especially HIV-1, where the reference sequence may have 617 
provided needed guidance to orient the highly diverse NGS sequences into a haplotype sequence.  618 

Our results show that PredictHaplo offers the best tradeoff between statistical performance and 619 
computational efficiency within HIV-1 diversity ranges. PredictHaplo was found to have the highest 620 
precision, recall, and lowest UniFrac distance values. CliqueSNV followed closely and may actually 621 
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outperform PredictHaplo if more computational resources were made available. An important caveat 622 
for both these approaches, however, is that the number of true haplotypes is greatly underestimated. If 623 
it is important to identify the true number of haplotypes (as in rare haplotype discovery) approaches 624 
such as ShoRAH or PEHaplo may be more appropriate. The haplotype programs also varied greatly 625 
in terms of their ease-of-use. This variation is due to differences in coding language, program 626 
dependencies, availability of executable files, absence of comprehensive documentation and lack of 627 
example datasets. For example, SAVAGE, PEHaplo, ShoRAH can be easily installed by package 628 
managers, and CliqueSNV and QuasiRecomb are distributed as executable files. In contrast, Virus-629 
VG and VG-flow requires installment of proprietary software, which has an academic license. 630 
Installation and usage of PredictHaplo is challenging because of the lack of description and instructions 631 
regarding the config file. While CliqueSNV is easier to install and use, there are no example datasets. 632 

It is important to note that our study represents an initial attempt of comprehensive comparison 633 
of available haplotype reconstruction tools. For example, we focused HIV-1 diversity estimates for the 634 
polymerase gene, which is less variable than the envelope gene. Moreover, almost all developers of 635 
the aforementioned tools used the polymerase gene as a source of simulating sequencing data for 636 
assessing performance of their programs and rarely used the envelope gene for the same purposes. 637 
Given the envelope gene has a higher mutation rate and the haplotype reconstruction tools – de novo 638 
or reference-based – seem to be dependent on mutation rate, it is likely that the tools available here 639 
would not be successful in reconstructing envelope haplotypes for HIV-1 accurately. However, we 640 
chose polymerase as our gene of interest because of research focus on this gene as the target for drug 641 
resistance mutations. The same concept of lower mutation rates in conserved genes and higher 642 
mutation in less conserved genes can be seen in other fast-evolving viruses. For example, in HCV the 643 
core protein is more conserved compared to the E1/E2 region. Thus, users should target methods for 644 
haplotype calling that best match the mutation rate of their target gene. 645 

Another limitation of our study is coverage. It is well-known that coverage plays a crucial role 646 
in all algorithms for distinguishing between errors and rare sequence variants. We chose 100x coverage 647 
because it represents a reasonable amount of data that can be obtained without intensive labor or money 648 
consuming procedures. Contrary to our simulations, the developers of haplotype reconstruction tools 649 
usually test their methods on datasets with higher coverage than ours. For example, the famous golden-650 
standard benchmark HIV dataset (labmix dataset (Di Giallonardo et al., 2014)) on which all tools have 651 
been tested by developers, consisted of an average of 20,000x coverage. Thus, our study represents an 652 
attempt to measure the performance of the haplotype reconstruction tools on datasets that are more 653 
likely to be seen and produced in laboratories. Moreover, according to our results for higher mutation 654 
rates, many tools did not produce any results within the time limit. Considering that higher coverage 655 
implies a larger amount of data and thus requiring more computational time to process these data, it is 656 
expected that the tools available here would require extensive computational resources.   657 

We also considered error-free and recombination-free data in our study. Only a few tools 658 
explicitly took into account the presence of errors or recombination in their models (e.g., only 659 
QuasiRecomb explicitly assumes the presence of recombination events). By not simulating 660 
recombination and sequencing errors, we removed nuisance parameters that would impact haplotype 661 
reconstruction. Moreover, since almost all tools have been tested on ultra-deep data, our comparison 662 
study by error-free data is giving an advantage to these methods by removing errors in sequence data 663 
(i.e., one does not need deep coverage to distinguish between rare variants and errors). Furthermore, 664 
Zanini et al. (2015) found evidence that recombination likely interrupts haplotypes, specifically in 665 
HIV-1, every 100-200bp, so, the concept of haplotypes in HIV-1, and maybe other fast-evolving 666 
viruses with high recombination rates, may not exist or be feasible to study with frequent 667 
recombination events. Together these facts imply that the performance of the aforementioned tools 668 
would be even worse than observed here. 669 

Overall, results and limitations of our study indicate the importance of creating broad and 670 
diverse golden-standard datasets that must include several different genes, diverse parameters of 671 
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mutation rates and effective population sizes, different average coverages, presence or absence of 672 
recombination events or/and error prone data. Moreover, future simulation studies should address 673 
error-prone data using haplotype callers that can handle sequencing errors and investigate the effect of 674 
recombination and average coverage on the reconstruction of haplotype. In addition to simulation 675 
studies, some theoretical work similar to DNA sequencing theory should be done for laying analytical 676 
foundations for determining coverage depending on the mutation rate, effective population size, error-677 
rate of a sequencing technology, and so on. Finally, there are still a lot of opportunities for developing 678 
new haplotype callers that can process a wide range of data with different mutation rates, average 679 
coverage, and presence or absence of recombination events. Moreover, since the reconstructed 680 
haplotypes are often used for reconstructing phylogeny, the future tools may also consider the problem 681 
of reconstructing haplotype sequences together with their phylogeny. Considering the possibility that 682 
the reconstructing haplotype sequences from short-read sequencing technologies may represent an 683 
intractable problem, focusing on reconstructing haplotype phylogeny directly from short-reads may 684 
lead to better results after all. In addition to mentioned future directions, the advances and price-685 
decreasing of long-read sequencing technologies (e.g., Nanopore, PacBio, 10X Genomics) poses a 686 
whole new set of challenges for haplotype reconstructions including the development of new 687 
sequencing protocols and haplotype reconstruction tools. This new technology has the power to 688 
sequence long amplicons or even entire viral genomes in a single pass, i.e., no need to assemble 689 
sequencing reads. However, this type of data requires development of new methods that can 690 
distinguish between rare variants and sequencing errors. Therefore, the application of long-read 691 
sequencing technology may be more beneficial for studying global, or entire genome, haplotypes.  692 
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Appendix 976 
 977 
 978 

 979 
 980 

Figure S1. Plots showing percentage of datasets analyzed by a tool within our time limit. From 981 
green to red, full completion of a dataset (green) to no completion (red) is indicated for each set. 982 
 983 
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 984 
Figure S2. The length distribution of haplotypes obtained by HaploClique for each effective 985 

population size.  986 
 987 
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 988 
Figure S3. Number of true haplotypes estimated from the coalescent-based simulated data across 989 
levels of underlying intra-patient genetic diversity. Intra-host HIV-1 and HCV diversity levels are 990 

highlighted shaded light blue and shaded light red regions, respectively. 991 
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 992 
Figure S4. Reference-based and de novo haplotype callers: variation of recall values with mutation 993 
rate (log-scaled) for all considered Ne. The shaded light blue and red regions correspond to HIV-1 and 994 
HCV diversity levels, respectively. For all pairs of parameters μ and Ne, we report the mean estimates 995 
of recall over all valid outputs produced by each software tool for five haplotype populations. If a tool 996 
did not produce any output for some pair of parameters, we included a gap in the corresponding plot.997 
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 998 
Figure S5. Reference-based and de novo haplotype callers: variation of UniFrac distances (EMD) with 999 
mutation rate (log-scaled) for all considered Ne. The shaded light blue and red regions correspond to 1000 
HIV-1 and HCV diversity levels, respectively. For all pairs of parameters μ and Ne, we report the mean 1001 
estimates of UniFrac distances over all valid outputs produced by each software tool for five haplotype 1002 
populations. If a tool did not produce any output for some pair of parameters, we included a gap in the 1003 
corresponding plot. The values for de novo tools are usually higher than for reference-based tools.  1004 
 1005 
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