

1 Evaluation of haplotype callers for next-generation sequencing of viruses

2

3 Anton Eliseev^{a,b,^}, Keylie M. Gibson^{c,*^}, Pavel Avdeyev^{c,d,#}, Dmitry Novik^{a,#}, , Matthew L.
4 Bendall^c, Marcos Pérez-Losada^{c,e,f}, Nikita Alexeev^{a,†}, and Keith A. Crandall^{c,e,‡}

5

6

7 ^a Computer Technologies Department, ITMO University, Saint-Petersburg, Russia

8 ^b JetBrains Research, Saint-Petersburg, Russia

9 ^c Computational Biology Institute, Milken Institute School of Public Health, George Washington
10 University, Washington, DC, USA

11 ^d Department of Mathematics, George Washington University, Washington, DC, USA

12 ^e Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George
13 Washington University, Washington, DC, USA

14 ^f CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do
15 Porto, Campus Agrário de Vairão, Vairão, Portugal

16

17 [^] Co-First Author

18 [#] Co-Second Author

19 [‡] Joint Senior Authors

20

21

22 * Corresponding author at: Computational Biology Institute, Milken Institute School of Public Health,
23 George Washington University, Washington, DC, USA

24 Email address: kmgibson@gwu.edu (K.M. Gibson)

25 **Highlights**

26 • Haplotype callers for NGS data vary greatly in their performance.
27 • Haplotype callers performance is mainly determined by mutation rate.
28 • Haplotype callers performance is less sensitive to effective population size.
29 • Most haplotype callers perform well with low diversity and poorly with high diversity.
30 • PredictHaplo performs best if genetic diversity is in the range of HIV diversity.

31

32 **Abbreviations**

33 NGS – Next generation sequencing
34 HIV – Human immunodeficiency virus
35 HCV - Hepatitis C virus
36 HPV - Human papillomavirus

37

38

39 **Abstract**

40 Currently, the standard practice for assembling next-generation sequencing (NGS) reads of viral
41 genomes is to summarize thousands of individual short reads into a single consensus sequence, thus
42 confounding useful intra-host diversity information for molecular phylodynamic inference. It is
43 hypothesized that a few viral strains may dominate the intra-host genetic diversity with a variety of
44 lower frequency strains comprising the rest of the population. Several software tools currently exist to
45 convert NGS sequence variants into haplotypes. However, previous studies suggest that current
46 approaches of haplotype reconstruction greatly underestimate intra-host diversity. Here, we tested
47 twelve NGS haplotype reconstruction methods using viral populations simulated under realistic
48 evolutionary dynamics. Parameters for the simulated data spanned known fast evolving viruses (e.g.,
49 HIV-1) diversity estimates to test the limits of the haplotype reconstruction methods and ensured
50 coverage of predicted intra-host viral diversity levels. Using those parameters, we simulated HIV-1
51 viral populations of 216-1,185 haplotypes per host at a frequency <7%. All twelve investigated
52 haplotype callers showed variable performance and produced drastically different results that were
53 mainly driven by differences in mutation rate and, to a lesser extent, in effective population size. Most
54 methods were able to accurately reconstruct haplotypes when genetic diversity was low. However,
55 under higher levels of diversity (e.g., those seen intra-host HIV-1 infections), haplotype reconstruction
56 accuracy was highly variable and, on average, poor. High diversity levels led to severe underestimation
57 of, with a few tools greatly overestimating, the true number of haplotypes. PredictHaplo and PEHaplo
58 produced estimates close to the true number of haplotypes, although their haplotype reconstruction
59 accuracy was worse than that of the other ten tools. We conclude that haplotype reconstruction from
60 NGS short reads is unreliable due to high genetic diversity of fast-evolving viruses. Local haplotype
61 reconstruction of longer reads to phase variants may provide a more reliable estimation of viral variants
62 within a population.

63

64 **Keywords:** fast-evolving viruses, haplotype reconstruction, HIV, intra-host diversity, next-generation
65 sequencing, second generation sequencing

66

1. Introduction

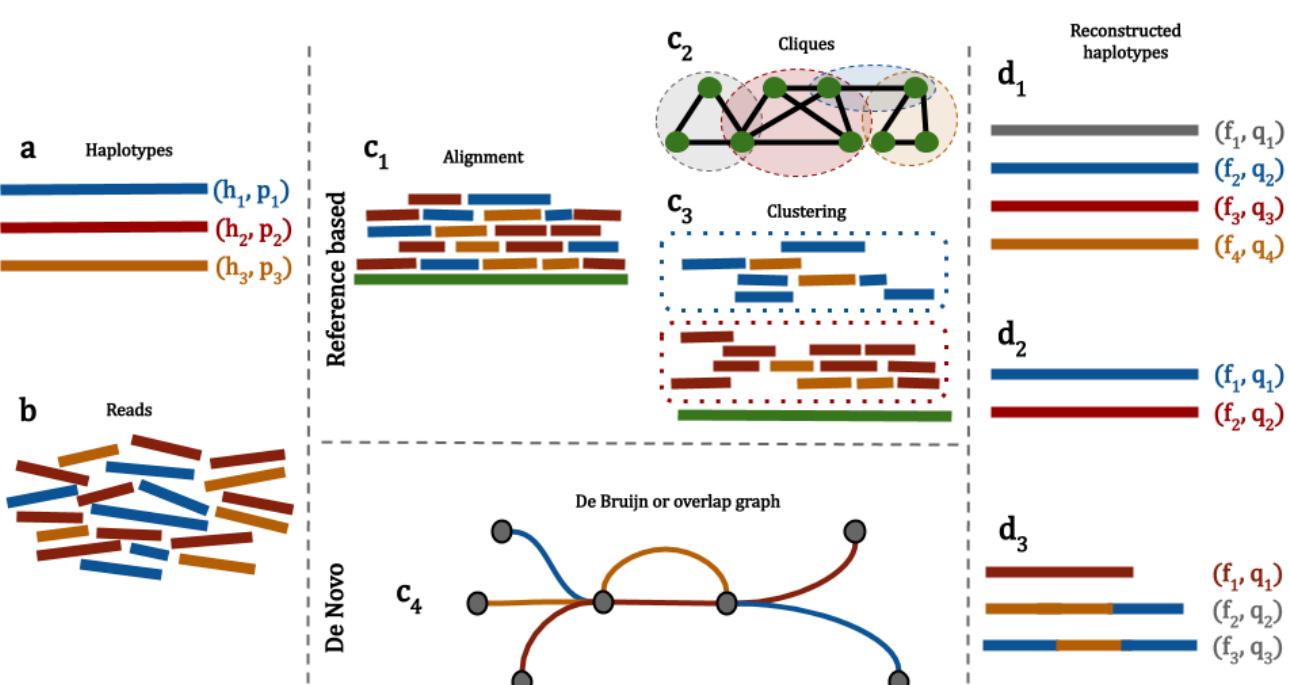
67 Next-generation sequencing (NGS) technologies provide novel opportunities to study the
68 evolution of many viruses that impose health issues among humans, such as human immunodeficiency
69 virus (HIV), hepatitis C virus (HCV), human papillomavirus (HPV), and influenza. Such sequencing
70 platforms allow an in-depth characterization of the genetic diversity in a heterogeneous intra-host viral
71 population by sequencing many viral strains directly. Illumina and 454/Roche offered the first round
72 of next-generation sequencing machines, which gradually replaced Sanger sequencing for viral studies.
73 These platforms are able to generate a sufficiently high coverage of the genome, which allows one to
74 detect mutations present in less abundant strains. However, the large number of short reads with a
75 relatively high error rate produced during sequencing poses computational and statistical challenges
76 for reconstructing full-length strain sequences and estimating their frequency. In particular, since
77 abundance rates can be comparable or lower than sequencing error rates, high sequence error rates
78 ($\leq 0.1\%$ for Illumina reads) can interfere with the detection of true mutations that are present at low
79 frequencies. Moreover, short reads length (25 – 400 bp) need to be assembled into an unknown number
80 of contigs. Ultimately, the goal of assembly is to produce contigs that can cover the entire targeted
81 gene region (i.e., targeted amplicon sequencing) or that can be scaffolded together to cover the length
82 of a full genome (i.e., shotgun sequencing). Finally, the large number of sequencing reads (25 – 300
83 million) requires the development of algorithms capable of processing this large amount of data. The
84 amount of data generated by a single NGS run (1 GB to 1 TB) can be up to a million times greater than
85 that generated by a single Sanger sequencing run (1 MB of data).

86 Several computational tools have been developed over the last decade to address the challenge
87 of defining sequence variants (haplotypes – sometimes erroneously referred to as ‘quasispecies’; see
88 Holmes, 2010) from NGS data (Beerenwinkel and Zagordi, 2011; Di Giallondo et al., 2014; Pandit
89 and de Boer, 2014; Posada-Cespedes et al., 2016; Schirmer et al., 2014). Different software has been
90 tailored to various sequencing platforms and experimental designs. It is important to note that
91 454/Roche sequencing reads were the main input data for developers of viral variant assemblers until
92 2013. This was because 454/Roche was the first widely-used NGS platform and generated longer reads
93 than all other Illumina platforms at the time (Beerenwinkel and Zagordi, 2011; Schirmer et al., 2014).
94 A number of computational methods were proposed for handling the 454/Roche reads, including
95 PredictHaplo (Prabhakaran et al., 2014), ViSpA (Astrovskaya et al., 2011), QuRe (Prosperi and
96 Salemi, 2012), QuasiRecomb (Topfer et al., 2013), VirA (Skums et al., 2013), BIOA (Mancuso et al.,
97 2011), Mutant-Bin (Prabhakara et al., 2013), V-Phaser + V-Profiler¹ (Henn et al., 2012; Macalalad et
98 al., 2012), and ShoRAH (Zagordi et al., 2010). Some of these methods were empirically validated
99 using HIV and HCV data sets with the methods showing little success in estimating reliable sequence
100 variants from NGS data (Prosperi et al., 2013). Later, thanks to the better cost-effectiveness and higher
101 coverage offered by the Illumina sequencing platforms, the main focus migrated towards Illumina
102 technology and has become dominant for developers of viral sequence variant assemblers since then
103 (Posada-cespedes et al., 2016). Following this paradigm shift, several methods such as PredictHaplo,
104 V-Phaser (Yang et al., 2013), and QuasiRecomb were extended to handle Illumina reads, and a number
105 of tools, including VGA (Mangul et al., 2014), HaploClique (Töpfer et al., 2014), QColors (Huang et
106 al., 2011), QSdpR (Barik et al., 2018), and ViQuas (Jayasundara et al., 2015), were developed
107 specifically to handle Illumina reads.

108 Currently, all state-of-the-art methods for viral variant reconstruction are designed to assemble
109 contigs from Illumina reads and can be divided into two main categories based on their dependency
110 on a reference genome: *reference-based* assemblers and *de novo* assemblers (Fig. 1). In the former
111 category, sequencing reads are aligned to a reference genome and information about the reads
112 positioning and orientation with respect to a reference genome is obtained (Fig. 1 c₁). This information

¹ V-phaser is used for calling variants in a viral sequence sample and V-Profiler is utilized for analyzing and visualizing variants from V-Phaser at the nucleotide, codon, and haplotype levels.

113 is further used to reconstruct haplotypes (Fig. 1 c₂, c₃, d₁, d₂). *De novo* assemblers, however, do not
114 rely on reference genomes, and haplotype sequences are usually reconstructed directly from the reads
115 (Fig. 1 c₄, d₃). *De novo* assembly often requires more computational resources, but *reference-based*
116 assembly requires a closely related genome, which is not always available in high quality. Each
117 strategy has advantages and disadvantages and have been implemented in several software programs,
118 but the performance of these assembly tools has not been comprehensively examined yet. In this study,
119 we simulated realistic, coalescent based intra-host viral diversity with diversity measurements
120 encompassing known variation from fast-evolving viruses such as HIV-1 for empirical grounding. We
121 then used these simulated populations to assess the performance and accuracy of three *de novo* and
122 nine *reference-based* sequence variant reconstruction tools or haplotype callers.
123



124
125
126 **Figure 1.** Schematic diagram representing the process of reconstructing haplotypes from next-
127 generation sequencing reads by reference-based and *de novo* methods. (a) A hypothetical virus
128 population consisting of three haplotypes is sequenced by NGS techniques. (b) Reads originating from
129 different haplotypes are identified by distinct colors in the diagram. (c₁) After sequencing, reads are
130 aligned against reference genome (green) as a first step in all reference-based methods. (c₂) Read
131 alignment is used for building a graph and candidate haplotypes are reconstructed as maximal cliques
132 in the graph. (c₃) Read alignment is used for dividing reads into clusters and candidate haplotypes are
133 reconstructed by concatenation of all reads from clusters. (c₄) Alternatively, after sequencing, reads are
134 *de novo* assembled using De Bruijn or overlap graphs and candidate haplotypes are reconstructed
135 as paths by analyzing the graph structure. (d₁) A method based on clique detections overestimates the
136 number of reconstructed haplotypes with relative frequencies. (d₂) A method based on clustering
137 procedure underestimates the number of reconstructed haplotypes with relative frequencies. (d₃) A *de*
138 *novo* method reconstructs the correct number of haplotypes with frequencies, but one inferred
139 haplotype is smaller than the true haplotype and the other two haplotypes are admixtures of the original
140 haplotypes.
141

142 **2. Material and Methods**

143 *2.1 Viral Sequence Variant Estimators*

144 All *de novo* viral variant reconstruction methods can be further divided into two subcategories:
145 *consensus* and *strain-specific* assemblers. The main goal of consensus-based tools is, generally
146 speaking, to construct a suitable consensus reference genome that may be further used as a template
147 for more fine-grained studies. VICUNA (Yang et al., 2012) and IVA (Hunt et al., 2015) represent this
148 subcategory of methods. VICUNA is the most popular software among them, as it generates full-length
149 consensus and detects polymorphisms. VICUNA merges NGS reads into contigs, and those into a
150 bigger contig, by calculating “good” prefix-suffix overlap between sequences. During this process,
151 contigs are also clustered and validated to reach a better quality of consensus. IVA follows the same
152 approach with only one difference, the tool starts from k-mers that are sorted in decreasing order with
153 respect to their abundance and then extends sequences into a bigger sequence by using reads that have
154 perfect overlap with initial sequences. VICUNA also has an additional option for contig merging if a
155 reference genome exists.

156 Contrary to *de novo* consensus approaches, *de novo* strain-specific assemblers aim to
157 reconstruct sequences at the strain resolution level (Table 1). It is worth mentioning that the *de novo*
158 viral variant reconstruction problem is quite similar to the assembly effort of multiple genomes in
159 microbial communities at once using shotgun metagenomic reads (e.g., Bishara et al., 2018; Scholz et
160 al., 2016). The arising challenges in the microbial community genome assembly are addressed by
161 metagenome assemblers. Thus, at first glance, applying metagenome assemblers to *de novo* viral
162 variant reconstruction seems very promising. However, SPAdes is the only assembler that was able to
163 identify haplotypes in the case of sufficiently abundant strains (Jasmijn A Baaijens et al., 2017;
164 Bankevich et al., 2012; Nurk et al., 2017). Therefore, the development of specific assemblers for viral
165 sequence variants is required. Currently, there exist three *de novo* strain-specific assemblers, namely
166 MLEHaplo (Malhotra et al., 2015), SAVAGE (Jasmijn A Baaijens et al., 2017), and PEHaplo (Chen
167 et al., 2018) (Table 1). MLEHaplo was the first assembler that truly applied *de novo* viral sequence
168 variant assembly at the strain resolution level. MLEHaplo performs k-mer counting and then filters
169 erroneous k-mers using raw reads and a specified threshold value. Afterwards, the tool builds a De
170 Bruijn graph (see Compeau et al., 2011) based on the set of k-mers obtained in the previous round
171 (Fig. 1 c₄). On the next step, MLEHaplo recovers paths from the De Bruijn graph that may correspond
172 to haplotypes. Finally, the tool chooses correct haplotypes and estimates their frequencies using the
173 maximum likelihood method. PEHaplo follows the same workflow as MLEHaplo. However, PEHaplo
174 constructs an overlap graph instead of creating a De Bruijn graph during the initial steps² (Fig. 1 c₄).
175 PEHaplo also has a more careful path finding algorithm based on paired-end connection information.
176 SAVAGE uses overlap graphs as a key data structure, but the pipeline is different from those in
177 PEHaplo and MLEHaplo. After constructing an overlap graph (Fig. 1 c₄), SAVAGE joins overlapped
178 read pairs. At the next step, SAVAGE iteratively merges reads into contigs and contigs into scaffolds
179 using clique enumeration and contig formation. Finally, the tool uses Kallisto (Bray et al., 2016) to
180 estimate frequencies of the resulting haplotypes

² One can read the difference between overlap graphs and De Bruijn graphs in a review paper by Li et al. (2012).

181

Table 1. *De novo* and reference-based viral haplotype callers compared in this study.

Software Tool	Published Year	Programming Language	Frequencies	Haplotypes	Type
MLEHaplo	2015	Perl	+	+	<i>de novo</i>
Savage	2017	Python 3	-	-	<i>de novo</i>
PEHaplo	2018	Python 2.7	+	-	<i>de novo</i>
ShoRAH	2011	C++	+	+	reference-based
QuRe	2012	Java 6	+	+	reference-based
QuasiRecomb	2013	Java 7	+	+	reference-based
PredictHaplo	2014	C++	+	+	reference-based
HaploClique	2014	C++	+	+	reference-based
ViQuas	2015	R, Perl	+	+	reference-based
aBayesQR	2017	C++	+	+	reference-based
RegressHaplo	2017	R	+	+	reference-based
CliqueSNV	2018	Java 6	+	+	reference-based

If a haplotype caller produces haplotypes as an output, it is given a plus sign. If a haplotype caller reports corresponding frequencies for the sequences produced, it is given a plus sign. Savage and PEHaplo claim they produce contigs not haplotypes, which is why we did not deem that they produce haplotypes.

182

183 While the final sequences produced by MLEHaplo, PEHaplo, and SAVAGE are strain-
184 specific, the obtained sequences, in general, do not represent full-length haplotypes (Fig. 1 d₃).
185 Recently, Virus-VG and VG-flow have been developed for completing strain-specific assemblies
186 produced by the aforementioned *de novo* strain-specific assemblers (Baaijens et al., 2018, 2019).
187 Virus-VG and VG-flow try to convert strain-specific contigs into full-length haplotypes taking into
188 account their abundances. The difference between Virus-VG and VG-flow is that the former uses a
189 brute-force exact approach, while the latter utilizes a heuristic algorithm. Therefore, VG-flow is faster
190 than Virus-VG, but less accurate. The main goal for both tools is to find and select maximum-length
191 paths in a variation graph.

192 The main advantage of *reference-based viral* variant reconstruction methods prior to *de novo*
193 haplotype assemblers is the potential ability to reconstruct full-length haplotypes (Fig. 1 d₁, d₂).
194 However, it was shown in several studies (Jasmijn A Baaijens et al., 2017; Mangul et al., 2014) that
195 the reference genome may bias the reconstruction of haplotypes. An additional disadvantage of using
196 a reference-based tool is the potential lack of a high-quality reference genome of a virus population.
197 In this case, the required reference genome can be potentially assembled from sequencing reads by
198 first using *de novo* consensus assembly tools. Nevertheless, the reference genome is often available
199 for common pathogenic viruses, such as HIV, HCV, polyomavirus or influenza.

200 Currently there are nine commonly used state-of-the-art reference-based tools (Table 1). All
201 these tools claim to be global haplotype inference methods, i.e., able to infer the sequences and
202 frequencies of the underlying viral strains over a longer region than the average read length. ShoRAH
203 (Short Read Assembly into Haplotypes) is, historically, the first publicly available software (Zagordi
204 et al., 2011). ShoRAH uses a probabilistic clustering algorithm for short haplotype sequence
205 reconstruction (Fig. 1 c₁, c₃, d₂). Then, it computes a minimal set of haplotypes using the principle of
206 parsimony that provides the best explanation for the given a set of error corrected sequencing reads
207 (Eriksson et al., 2008). The tool then uses an expectation minimization algorithm for haplotype
208 frequency estimation.

209 The next important milestone in the reference-based viral variant reconstruction tool
210 development was the release of QuRe (Prosperi and Salemi, 2012). QuRe uses the combinatorial
211 method proposed in Prosperi and Salemi (2012) for inferring genetic variants in local windows that do
212 not exceed read lengths. After that, the obtained genetic variants are clustered by a probabilistic

213 algorithm (Zagordi et al., 2010) (Fig. 1 c₁, c₃, d₂). Finally, haplotypes with their frequencies are
214 obtained by utilizing a genome reference and clustered variants. Later, the same probabilistic clustering
215 and combinatorial algorithms were used for developing the reference-assisted assembly pipeline
216 ViQuas (Jayasundara et al., 2015). The main difference between QuRe and ViQuas is that the latter
217 tool assembles reads into contigs using the SSAKE assembler (Warren et al., 2007) and then iteratively
218 extends obtained contigs by connecting overlapping pairs without using any sequence information
219 from the reference.

220 The next developed software was PredictHaplo (Prabhakaran et al., 2014), HaploClique
221 (Töpfer et al., 2014), and QuasiRecomb (Topfer et al., 2013). All these tools have special features in
222 comparison to the previous generation tools. For example, PredictHaplo was specifically designed for
223 identifying haplotypes in an HIV-1 population. HaploClique allows for detection of point mutations,
224 large insertions and deletions. QuasiRecomb, on the other hand, incorporates the existence of
225 recombination events into the estimated viral evolution. PredictHaplo, HaploClique, and
226 QuasiRecomb are based on different approaches and their applications to the viral variant
227 reconstruction problem were novel at the time. PredictHaplo reformulates the original problem in
228 terms of a non-standard clustering problem, where reads are points in some metric space and
229 haplotypes are clusters (Fig. 1 c₁, c₃, d₂). To take into account an unknown number of variants, the
230 stochastic Dirichlet process and the infinite mixture model were used (Prabhakaran et al., 2010).
231 HaploClique uses the insert size distribution and an iterative enumeration of maximal cliques in a
232 graph to reconstruct super-reads that may represent haplotypes (Fig. 1 c₁, c₂, d₁). Due to the
233 computational complexity of maximal clique enumeration, this tool requires excessive computational
234 resources on data sets with coverage >1,000x. HaploClique provided inspiration for the development
235 of SAVAGE. Finally, QuasiRecomb utilizes data parameters of a hidden Markov model for estimating
236 point mutations and recombination events (David Posada et al., 2002). These parameters allow
237 estimation of the probability of each possible haplotype with respect to the observed read data.

238 The latest releases of reference-based methods for viral sequence variant reconstruction are
239 aBayesQR (Ahn and Vikalo, 2017), CliqueSNV (Knyazev et al., 2018), and RegressHaplo (Leviyang
240 et al., 2017). CliqueSNV extends the previous approach used in the 2SNV tool (Artyomenko et al.,
241 2017). CliqueSNV constructs a graph based on linkage information between single nucleotide
242 variations and then identifies true viral variants by merging cliques in that graph (Fig. 1 c₁, c₂, d₁).
243 RegressHaplo, in turn, is based on a regression-based approach specifically designed low diversity and
244 convergent evolutions. This tool implements penalized regression to assess the haplotype interactions
245 that belong to different unlinked regions. aBayesQR employs a maximum-likelihood approach to infer
246 viral sequences. The search of most likely viral sequence is conducted on long contigs, which enables
247 identification of closely related haplotypes in a population and provides computational tractability of
248 the Bayesian method. It should be noted that aBayesQR is designed for reconstructing viral haplotypes
249 that are near genetically identical.

250 Each haplotype reconstruction tool in Table 1 was run on the Colonial One high performance
251 computing cluster at The George Washington University. We used 64 standard CPU nodes featuring
252 dual Intel Xeon E5-2670 2.6GHz 8-core processors with a RAM capacity of 128GB. A single node
253 with a 48-hour time limit was allocated for each run.

254

255 2.2 *Simulation Data Description*

256 Previous benchmarking of viral haplotype reconstruction programs (Pandit and de Boer, 2014;
257 Prosperi et al., 2013; Schirmer et al., 2014) used simulation scenarios that are useful from a
258 mathematical perspective but do not necessarily reflect viral evolution and epidemiology. For example,
259 PredictHaplo artificially mutated ten haplotypes from a single HIV-1 reference genome at varying
260 proportions (Prabhakaran et al., 2014); HaploClique used an in-house mixture of known HIV-1 strains
261 (number of specific strains unknown) (Töpfer et al., 2014); and SAVAGE simulated their data based
262 on Illumina MiSeq sequencing results from an in-house mixture of five unique strains of HIV-1

263 subtype B with varying relative abundances (see supplemental methods in (Jasmijn A Baaijens et al.,
264 2017)). In those studies, often the pairwise divergence between the strains used to represent “real”
265 HIV-1 haplotype diversity was either unreported (Prabhakaran et al., 2014) or ranged between 0.05%
266 and 10% (Jasmijn A Baaijens et al., 2017; Töpfer et al., 2014). But realistic intra-host HIV-1 diversity
267 is substantially lower with pairwise divergences ranging between 0.02% and 2%, while inter-host
268 pairwise comparisons of the same viral subtypes can exceed 5% (Kearney et al., 2009; Maldarelli et
269 al., 2013). Furthermore, unless the HIV-1 viral population in an individual was the product of a dual
270 infection (see (van der Kuyl and Cornelissen, 2007) for review of dual infections), these benchmarking
271 methods do not accurately represent the evolution of the virus, where the HIV viral population
272 originated from an infection of one strain. All of these studies conditioned their simulations on HIV-1
273 data sets, but we also want to explore the general utility across a broader parameter space that
274 encompasses more fast-evolving viral populations.

275 In our simulations, we used parameters and settings under the coalescent theory (Kingman,
276 2000, 1982; Rodrigo and Felsenstein, 1999; Rosenberg and Nordborg, 2002) to more accurately reflect
277 viral intra-host diversity and evolution as seen in empirical studies (see (Crandall and Templeton,
278 1993)). We simulated viral intra-host evolutionary histories and the constituent haplotype sequences
279 (tips) using the coalescent simulator CoalEvol v. 7.3.5 (Arenas and Posada, 2014). We set the mutation
280 rate (μ) between 1e-3 and 5e-8 per-site to span past known viral mutation rates to test the limits of the
281 reconstruction algorithms and number of haplotypes present using the human genome mutation rate as
282 an upper limit and other retroviruses’ mutation rates as a lower limit. These parameters encapsulated
283 the empirical mutation rate of 2.5e-5 and 3.4e-5 estimated by Neher and Leitner (2010) and Maldarelli
284 et al. (2013), respectively for HIV-1; HCV with an estimated mutation rate between 2.5e-5 and 1.2e-
285 4 (Echeverría et al., 2015; Ribeiro et al., 2012; Sanjuán et al., 2010); HTLV-1 with an estimated mutation rate between 3.44e-7 and 7e-6 (Mansky, 2000; Nobre et al., 2018); and influenza with an
286 estimated mutation rate of 3e-5 to 4e-5 (McCrone, 2018; McCrone et al., 2018). Although Neher and
287 Leitner (2010) reported that the HIV-1 virus recombines at a rate of $1.4 \pm 0.6 \times 10^{-5}$, we chose to not
288 include recombination in the simulated evolution histories because some of the compared haplotype
289 reconstruction programs do not include recombination events in their reconstruction process. Other
290 parameters that were fixed in the CoalEvol config file included: i) nucleotide frequencies ($A=0.37$,
291 $C=0.16$, $G=0.23$, and $T=0.25$); ii) the transition/transversion rate ($ti/tv = 2.5$), as estimated among host
292 diversity from Crandall et al. (1999); and iii) rate heterogeneity among sites ($\Gamma = 0.95$) and invariable
293 site rate ($I = 0.4$) (Posada and Crandall, 2001), which are unique to HIV-1.

294 Recombination occurs frequently in natural HIV-1 populations (Crandall, 1999; Neher and
295 Leitner, 2010; D Posada et al., 2002) but we chose not to model recombination in our simulations.
296 First, many of the haplotype programs do not account for recombination. Second, we assume that
297 approaches that fail on a simplified model without recombination will not perform well on a more
298 complex that includes recombination.

299 We chose to use HIV-1 as an empirical viral strain to assess the capabilities of the haplotype
300 reconstruction tools given that most developers validated their programs on this virus and genetic
301 diversity values for this virus are well established. HIV-1 genetic diversity (Watterson’s theta) for the
302 polymerase gene (*pol*) has been estimated to fall between 0.067 and 0.09 for subtype B HIV-1 strains
303 in the United States (Gibson et al., 2019; Pérez-Losada et al., 2017, 2010). Boltz et al. (2016)
304 completed single genome sequencing that resulted in 677 – 1,577 sequences per sample for HIV-1,
305 therefore, we limited our sample size to range between 100 and 2,000 with an alignment length of
306 1,137bp. This length was chosen because we used a section of the polymerase gene (*pol*) from the
307 HXB2 reference sequence (GenBank accession number: K03455; (Ratner et al., 1985)) as the most
308 recent common ancestor (MRCA) for each parameter set (HXB2 numbering: 2,253 – 3,390). It is
309 important to note that CoalEvol is restricted to sample sizes of up to 2,000 haplotypes. Maldarelli et
310 al. (2013) estimated the effective population size (N_e) of intra-host diversity to be between 1,000 and
311 10,000, so we varied the effective population size between 500 and 10,000. We also denoted the ploidy
312

313 as diploid (Coffin, 1992). Wherever possible, we varied the parameters to be above and below
314 estimated HIV-1 estimates to ensure we adequately represented viral intra-host diversity and to
315 examine the limits of the haplotype reconstruction programs. Expanding our parameter set allowed us
316 to gain insights into other viral species with different evolutionary and population characteristics. For
317 example, the N_e for influenza is considerably smaller than HIV-1 at around 20-100 viral sequences
318 (Kim and Kim, 2016; McCrone, 2018; McCrone et al., 2018), while HCV hovers around the lower end
319 of HIV-1 with an N_e of 10-1,000 sequences (Bernini et al., 2011).

320 Since the Illumina MiSeq platform is the most popular NGS technology currently used for viral
321 amplicon sequencing due to low cost and high throughput, we simulated sequencing reads in the
322 FASTA output (excluding the original HXB2 sequence we deemed as the GMCRA in the coalescence
323 simulation) of CoalEvol using the NGS read simulator ART v. MountRainier-2016-06-05 (Huang et
324 al., 2012). ART mimics real sequencing processes, therefore, we used the built-in sequencing Illumina
325 MiSeq platform (MSv1). We simulated error-free 150 bp paired-end reads with a read count of 100
326 reads, mean size of 215 bp for DNA fragments, and a standard deviation of 120 bp for DNA fragment
327 size.

328 The error free output data generated for the haplotype populations with the ART read simulator
329 was processed with HAPPIPE, a Haplotype reconstruction and PHylodynamics PIPEline for viral
330 NGS sequences (Bendall et al., 2019). By both not simulating recombination and starting with
331 sequencing-error free data, we removed nuisance variables that would impact haplotype reconstruction
332 and could not be handled by some haplotype callers. Briefly, we used HAPPIPE and its
333 implementation of Trimmomatic v. 0.33 (Bolger et al., 2014) to trim the starting FASTQ files from
334 the output of ART by removing low quality reads, low quality bases, and adapter contamination. We
335 performed *de novo* assembly on the clean reads using Trinity v. 2.5.1 (Grabher et al., 2013) and formed
336 scaffolds with MUMMER 3+ v. 3.23 (Alnafee, 2016). With two iterative refining steps, the cleaned
337 reads were mapped back to the scaffolds with Bowtie2 v. 2.3.4.1 (Langmead and Salzberg, 2013). The
338 BAM file of aligned reads generated as final output by HAPPIPE and a FASTA file containing the
339 cleaned reads (an intermediate output by HAPPIPE) were used as input for the haplotype
340 reconstruction algorithms.

341 2.3 Haplotype Assembly Comparative Indices

342 In order to evaluate the quality of haplotype assembly provided by different tools, we used common
343 statistical measures of precision and recall, as well as weighted normalized UniFrac distance
344 (Lozupone and Knight, 2005), which is widely used to compare microbial communities. Our simulated
345 data can be represented as $P = \{(h_i, p_i), i = 1, 2, \dots\}$ – the ground truth haplotypes h_i and their
346 associated abundances p_i ($\sum p_i = 1$), and $Q = \{(f_i, q_i), i = 1, 2, \dots\}$ – the set of predicted haplotypes
347 f_i together with their predicted abundances q_i .

348 We define precision as $\frac{TP}{(TP+FP)}$ and recall as $\frac{TP}{(TP+FN)}$. Since the length of viral sequences
349 reconstructed by *de novo* tools may differ from actual length of ground truth haplotypes, we define TP
350 (true positive) and FP (false positive) differently for *reference-based* and *de novo* tools. We define FN
351 (false negative) as $1 - TP$, for both assembly strategies equally.

352 In the case of *reference-based* methods, we define TP as the total frequency of those haplotypes
353 h in the ground truth set P which have an accurate enough prediction f in Q (which means that the
354 edit distance $d(h, f)$ is less than some threshold $T = T(\mu)$); we also define FP as the total frequency
355 of those haplotypes f in the predicted set Q which do not match any haplotype f from the ground truth
356 set (which means that $d(h, f) \geq T$ for all $f \in P$). We choose the threshold $T = 12$ because 12 bp is
357 about 1% of the haplotypes' length. We consider the haplotype $h \in P$ to be reconstructed correctly if
358 there exists a haplotype $f \in Q$ such that the edit distance between them $d(h, f) \leq 12$.

359 For *de novo* methods, we define TP as follows: We say that a contig f from Q is *proper* if there
360 exists such a ground truth haplotype h and its substring $s \in h$ so that the edit distance between f and

362 s is small (less than 1% of f 's length). Then, for each ground truth haplotype h_i , we define c_i – the
363 proportion of its part which is *properly* covered by contigs from Q . We then define TP as a weighted
364 total frequency of properly predicted haplotypes $\sum_{h_i \in P} c_i f_i$. It is important to note that the definition
365 of TP is a generalization of the TP definition for reference-based tools. Indeed, in the latter case, all
366 the c_i are equal to either 0 or 1. We define FP as the total frequency of non-proper contigs in Q .

367 While these measures are standard and they show how good the haplotype reconstruction is,
368 they are not very sensitive to the errors in frequency prediction. In order to address this issue, we also
369 computed the UniFrac distance $EMD(P, Q)$ using the EMDUniFrac algorithm (McClelland and
370 Koslicki, 2018). The UniFrac distance takes into account both the phylogenetic structure of the
371 haplotype set and their frequency distribution, which makes it ideal for incorporating sensitivity to
372 errors in frequency prediction. The UniFrac EMD method makes the following steps:
373

- 374 • construct a tree T with branch length l_e on the set of all haplotypes $h_i \in P$ and $f_i \in Q$
- 375 • for each tree branch e and its descendant subtree T_e , estimates the imbalance W_e :

377
$$W_e := \left| \sum_{i: h_i \in T_e} p_i - \sum_{i: f_i \in T_e} q_i \right|;$$

378
379 • evaluate the weighted imbalance with respect to the branch lengths
380

381
$$EMD := \sum_{e \in T} l_e W_e.$$

382 As a baseline for the UniFrac EMD comparison, we evaluate the UniFrac distance between
383 reference or, more formally, a set of haplotypes Q containing only one haplotype – the reference at a
384 frequency of 1.

387 **3. Results and Discussion**

388 *3.1 True haplotypes from simulated data*

389 All analyses were completed using the simulated dataset developed under the coalescent
390 framework. For each mutation rate $\mu \in \{1e-8, 3e-8, 5e-8, 1e-7, 5e-7, 1e-6, 5e-6, 1e-5, 3e-5, 5e-5, 1e-4,$
391 $3e-4, 5e-4, 5e-3, 5e-8\}$ and effective population size $N_e = \{500, 1000, 2500, 5000, 7500, 10000\}$,
392 there were five simulated haplotype populations $P = \{(h_i, p_i), i = 1, 2, \dots\}$ used as replicates for each
393 parameter set. Under the coalescent model, the number of true haplotypes ranged from 1 to 1,993 with
394 a median of 342 haplotypes for a parameter set (Fig. 2). Unlike previous attempts to represent intra-
395 host HIV-1 diversity levels – often five haplotypes at varying abundances (J A Baaijens et al., 2017;
396 Prabhakaran et al., 2014; Töpfer et al., 2014), our intra-host populations have 216-1,185 haplotypes
397 per host at a frequency <7%, with a median of 525 haplotypes. Therefore, the number of haplotypes at
398 high diversity levels may actually be even higher, but we primarily focused on the diversity levels of
399 intra-host HIV-1 populations. Additionally, the number of haplotypes at smaller diversity levels, such
400 as those seen in influenza, are likely to be smaller than ours.
401

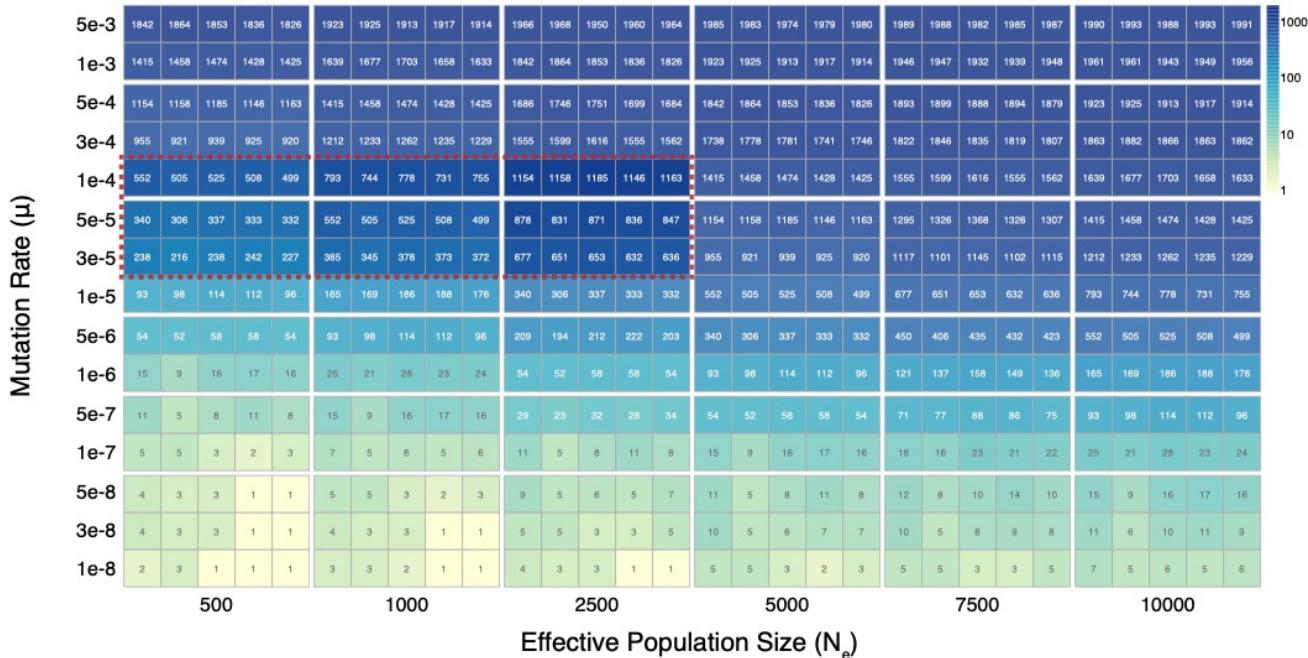


Figure 2. Simulated population parameters with the haplotype count in each parameter box. All five population replicates are displayed. The color darkens as the number of haplotypes increases. The red dashed box indicates expected HIV-1 mutation rates and effective population sizes.

3.2 Haplotype caller performance

HIV-1 intra-patient populations exhibit levels of diversity that exceed the limitations of all twelve haplotype callers we compared in this study, regardless of the assembly approach used (*de novo* or *reference-based*). However, because HCV and influenza both have lower mutation rates and effective population sizes, they may fall within the limitations of some of the compared haplotype reconstruction approaches. The haplotype callers varied drastically in their haplotype reconstruction accuracy (precision, recall, UniFrac, and number of reconstructed haplotypes), with most tools performing well with low genetic diversity and poorly with high genetic diversity. Since HIV-1 diversity is very high, all haplotype reconstruction tools seemed to have difficulties either producing output (i.e., predicted haplotypes) or reconstructing haplotypes that reflect the true haplotypes. Furthermore, haplotype reconstruction accuracy was more sensitive to the mutation rate of the virus than to its effective population size. Although, the opposite was true for PEHaplo, where N_e seemed to play a major role in the quality of predicted haplotypes. Fortunately, we often know, or have better *a priori* estimates for, the mutation rate of a virus than for the effective population size of an intra-host population. Furthermore, the effective population size changes over time during infection, whereas the mutation rate remains relatively constant (Maldarelli et al., 2013), unless there are pressures from antiretroviral treatment. However, as theta is estimated, effective population size and mutation rate are indeed confounded. Below, we discuss the current results in more detail.

MLEHaplo and ViQuas did not produce any valid results within the given time limit, whereas QuRe crashed in all analyses because of memory limitations. While HaploClique produced results within our time limit (Fig. S1), we excluded this tool from final comparisons because the length of the reconstructed viral sequences was always significantly shorter than the length of the ground truth haplotypes (Fig. S2). Such behavior is atypical among reference-based methods. Moreover, since SAVAGE can be considered as the next installment of HaploClique, it provides an additional argument for excluding HaploClique from our comparison.

In addition to the two *de novo* tools assessed (i.e., SAVAGE and PEHaplo), we also ran the VG-flow tool to complete contigs produced by those methods. We selected VG-flow over Virus-VG because VG-flow is faster and almost as accurate (Baaijens et al., 2018, 2019). Despite the claim that

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435 VG-flow improves assemblies from any *de novo* tool (Baaijens et al., 2018, 2019), we also included
436 the output from PEHaplo in our comparison since VG-flow was tested on the SAVAGE output only
437 in the original paper (Baaijens et al., 2018, 2019).

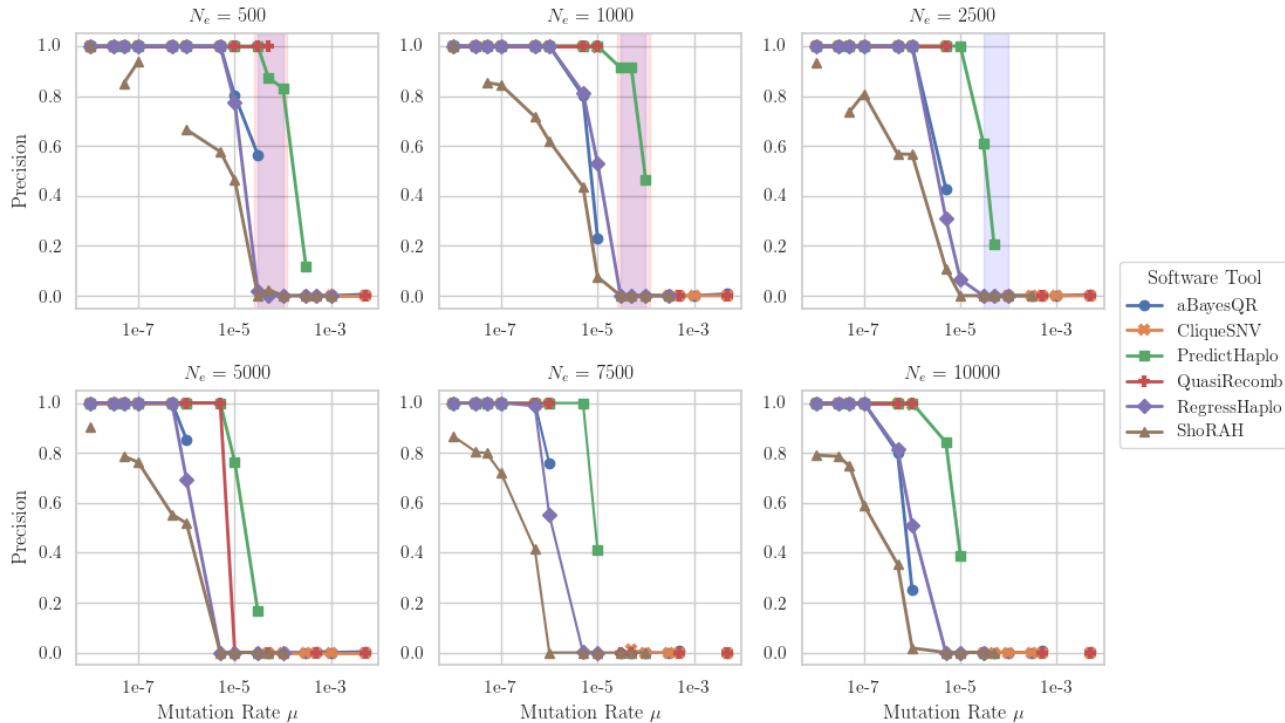
438 Datasets completed within our time limits varied across reconstruction tools; in general,
439 datasets with higher mutation rates (μ) and effective population sizes (N_e) represented challenges for
440 almost all the tools. For example, RegressHaplo and PredictHaplo did not produce any output if both
441 N_e and μ were high but performed well otherwise. For low values of μ ($\mu \leq 1e-5$), all the callers
442 except ShoRAH produced some output. aBayesQR, SAVAGE, and RegressHaplo had problems
443 reconstructing haplotypes for datasets with low μ and N_e values.

444 For HIV-1 μ estimates ($3e-5 \leq \mu \leq 1e-4$), CliqueSNV and QuasiRecomb did not
445 produce any valid output; aBayesQR, PredictHaplo, SAVAGE, and RegressHaplo produced some
446 outputs; and ShoRAH, and PEHaplo produced output for all the datasets. It is also important to note
447 that only PEHaplo was able to solve all datasets within the given time limit. For all datasets, where
448 haplotype callers performed successfully, we measured their results in terms of precision, recall, and
449 the Unifrac distance EMD. Below we present and discuss the behavior of the *reference-based* tools
450 and the *de novo* tools.

451

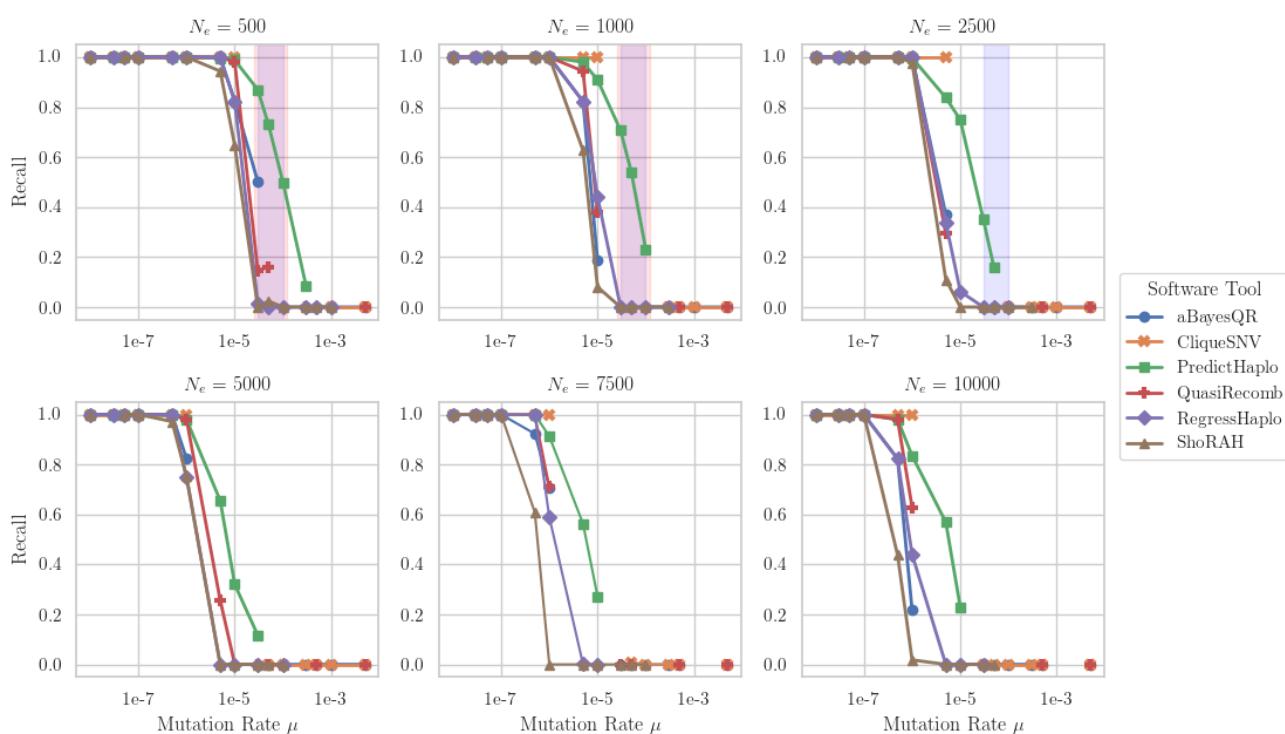
452 3.2.1 Reference-based Program Performance

453 We evaluated results from six *reference-based* haplotype callers: aBayesQR, RegressHaplo,
454 CliqueSNV, ShoRAH, PredictHaplo, and QuasiRecomb. Precision (Fig. 3) and recall (Fig. 4) values
455 were calculated for each tool. The quality of obtained results did not seem to depend much on the
456 effective population size (N_e). This is a positive finding, as determining the effective population size
457 for intra-host viral infections is often difficult and can vary between studies. All the tools, except
458 ShoRAH, performed very well (i.e., both precision and recall are close to one) if the mutation rate was
459 relatively small ($\mu \leq 1e-5$), which is an estimated mutation rate for influenza. For higher values of μ
460 ($\mu \geq 1e-4$), such as those seen in HCV and HIV-1, all the tools performed poorly (i.e., both
461 precision and recall were close to zero). For the values of μ seen in HIV-1 ($3e-5 \leq \mu \leq 1e-4$),
462 PredictHaplo was able to produce better results than the other tools; PredictHaplo's precision and recall
463 decreased with $\mu \in (3e-5, 1e-4)$ but stayed positive. It also should be noted that CliqueSNV
464 outperformed all other tools for $\mu = 1e-6$, but did not produce any results for $\mu \in (1e-5, 1e-4)$.
465 Such behavior looks promising and it is possible that in future releases, if run-time is increased,
466 CliqueSNV will exceed PredictHaplo in precision and recall performance.



468
469

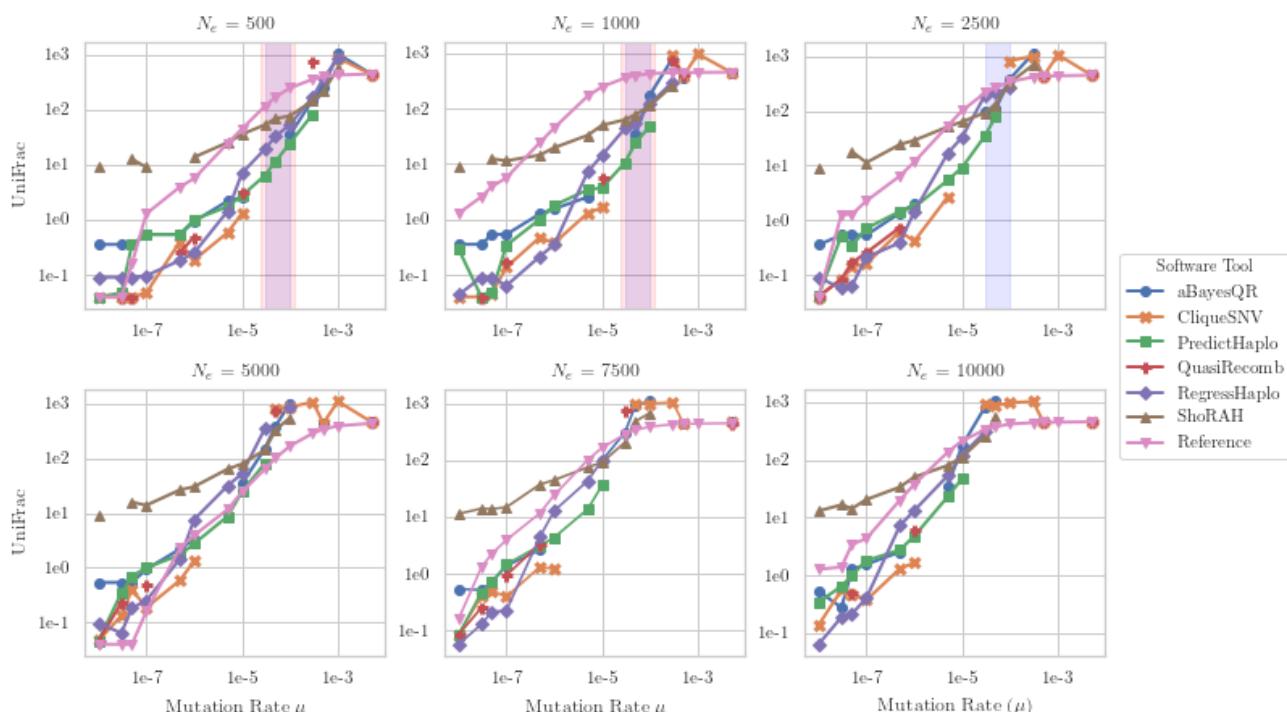
470 **Figure 3.** Reference-based haplotype callers: variation of precision values with mutation rate (log-
471 scaled) for all considered N_e . The shaded light blue and shaded light red regions correspond to HIV-1
472 and HCV diversity levels, respectively. For all pairs of parameters μ and N_e , we report the mean
473 estimates of precision over all valid outputs produced by each software tool for the five haplotype
474 populations. If a tool did not produce any output for any pair of parameters, we included a gap in the
475 corresponding plot.
476



477
478

479
480 **Figure 4.** Reference-based haplotype callers: variation of recall values with mutation rate (log-scaled)
481 for all considered N_e . The shaded light blue and shaded light red regions correspond to HIV-1 and
482 HCV diversity levels, respectively. For all pairs of parameters μ and N_e , we report the mean estimates
483 of recall over all valid outputs produced by each software tool for five haplotype populations. If a tool
484 did not produce any output for some pair of parameters, we included a gap in the corresponding plot.
485

486 We calculated UniFrac distance values for the aforementioned tools (Fig. 5). The UniFrac
487 distance further supported the previous observation that the quality of obtained results does not depend
488 much on the effective population size (N_e). Comparisons using the UniFrac distance also showed that
489 all the tools, except ShoRAH, performed well if $\mu \leq 1e - 5$; the UniFrac distance between the ground
490 truth sets of haplotypes and those predicted by the tool sets are all close to zero. With increasing μ
491 values, UniFrac distances also increased. For HIV-1 mutation rates, PredictHaplo showed the best
492 performance since it produced outputs for almost all pairs of parameters and the sets of predicted
493 haplotypes were the closest to the correct haplotypes. Again, CliqueSNV outperformed all other
494 methods for $\mu = 1e - 6$, which further supports our previous observation.
495

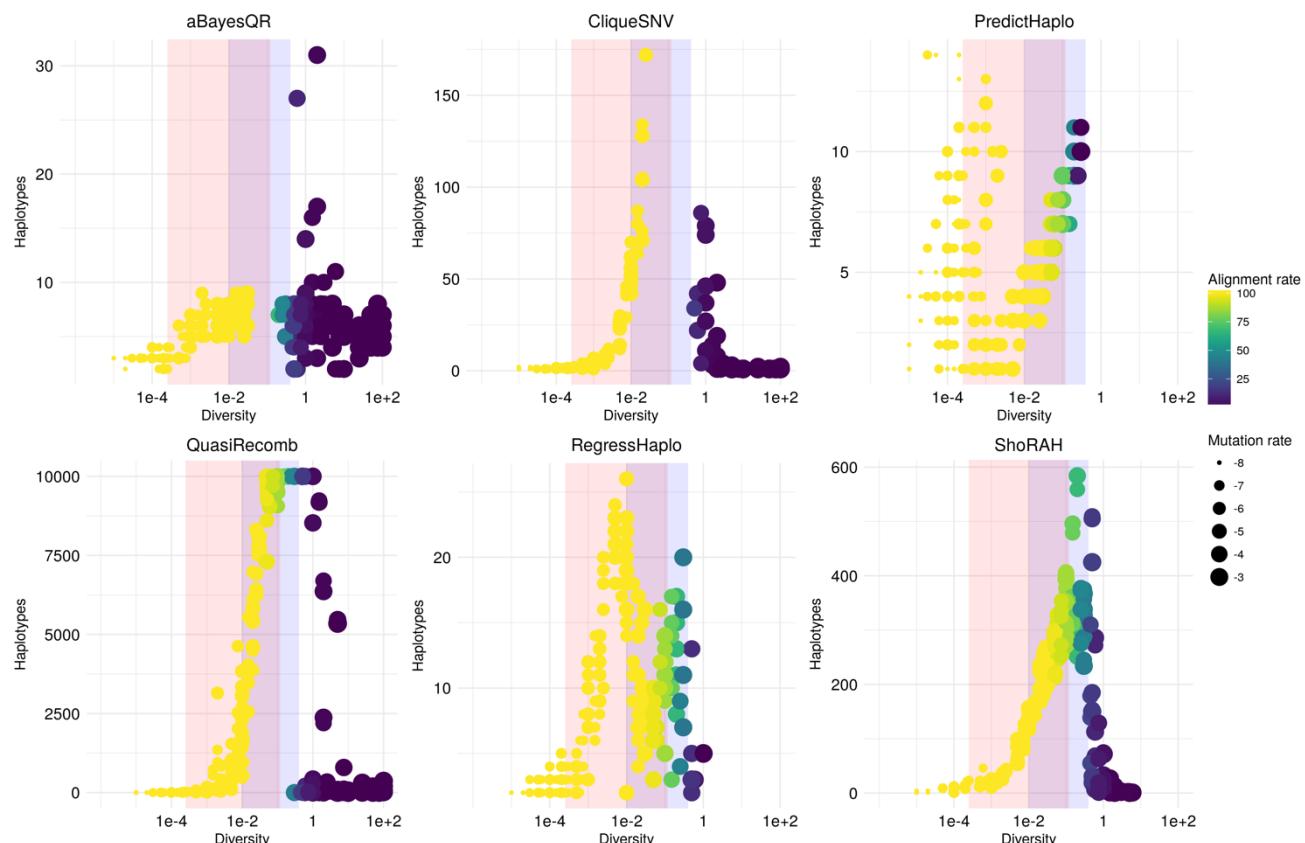


496
497 **Figure 5.** Reference-based haplotype callers: variation of UniFrac distances (EMD) with mutation rate
498 (log-scaled) for all considered N_e . The shaded light blue and shaded light red regions correspond to
499 HIV-1 and HCV diversity levels, respectively. For all pairs of parameters μ and N_e , we report the mean
500 estimates of UniFrac distances over all valid outputs produced by each software tool for five haplotype
501 populations. If a tool did not produce any output for some pair of parameters, we included a gap in the
502 corresponding plot.
503

504 For large values of μ ($\mu \geq 1e - 4$), ShoRAH, QuasiRecomb, RegressHaplo and PredictHaplo
505 rarely produced a valid output within the given time limit. aBayesQR and CliqueSNV produced results
506 that were worse than or comparable to the baseline. For large values of the effective population size
507 ($N_e \geq 5000$) and low values of μ , all the tools except ShoRAH showed better results than the baseline.
508 However, for mutation values larger than $5e - 4$, none of the tools made a better prediction of the set
509 of haplotypes than just a reference. It is important to note that HCV, HIV, and influenza do not have
510

510 N_e close to 5,000 (Bernini et al., 2011; Kim and Kim, 2016; Maldarelli et al., 2013; McCrone, 2018;
 511 McCrone et al., 2018). Most methods severely underestimated the true number of haplotypes in a
 512 population at high genetic diversity levels or overestimated it at low genetic diversity levels (Fig. 6),
 513 compared to the true number of haplotypes across the same levels of underlying genetic diversity
 514 obtained from the simulated datasets (Fig. S3). PredictHaplo, RegressHaplo, aBayesQR, and
 515 CliqueSNV underestimated haplotype numbers in the HIV intra-host diversity range (shaded in yellow).
 516 HaplotypeClique and QuasiRecomb, on the other hand, overestimated haplotype numbers,
 517 whereas ShoRAH provided the closest estimate to the true number of haplotypes in the HIV-1 diversity
 518 range. aBayesQR and CliqueSNV did not produce results for any dataset within the HIV-1 diversity
 519 range.

520



521

522

523 **Figure 6.** Reference-based haplotype callers: number of predicted haplotypes across levels of
 524 underlying genetic diversity. Intra-host HIV-1 and HCV diversity levels are highlighted shaded light
 525 blue and shaded light red regions, respectively. If a software tool did not complete haplotype
 526 reconstruction within the given time frame, we included a gap in the corresponding plot (see Fig. S1
 527 for more information on dataset completions).

528

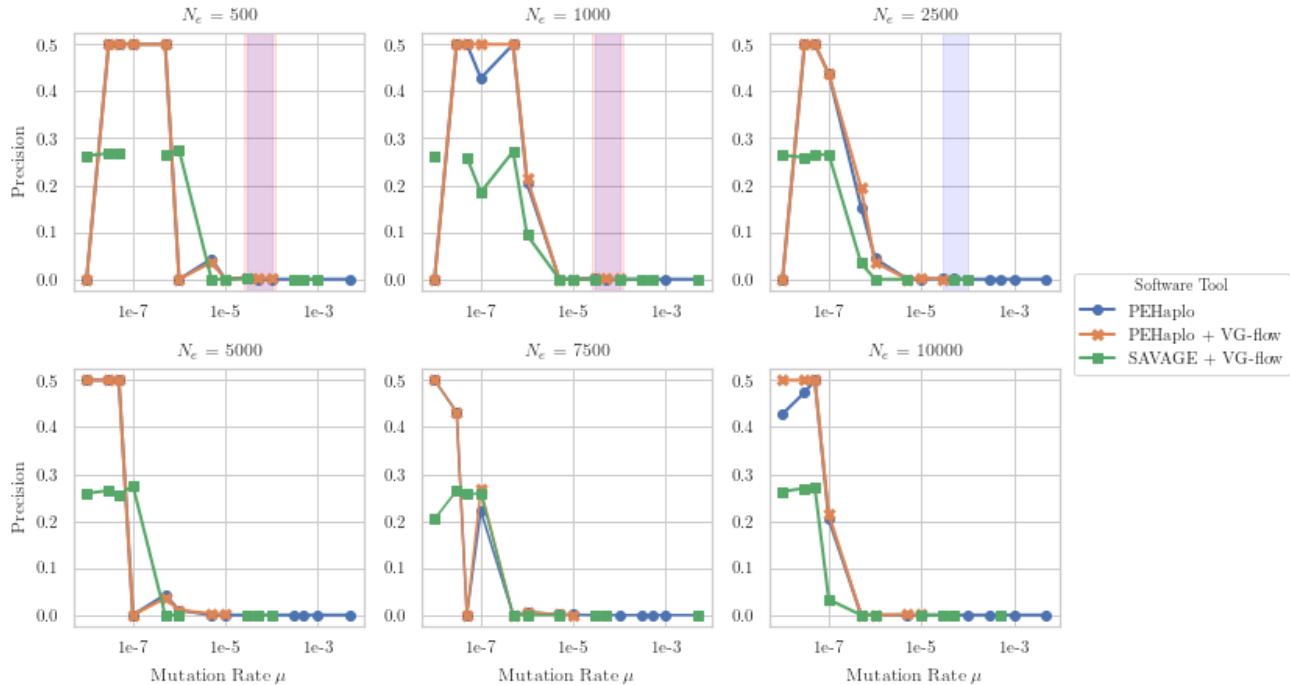
529

3.2.2 *De Novo* Program Performances

530 We analyzed the behavior of two *de novo* haplotype callers: SAVAGE and PEHaplo. The
 531 output of both tools usually contained shorter contigs, so we completed the assembly using the VG-
 532 flow tool. PEHaplo itself produced valid output for all the datasets, while SAVAGE or PEHaplo with
 533 VG-flow failed to produce results for some datasets (Fig. S1). Moreover, the length of PEHaplo output
 534 haplotypes was usually closer to the ground truth haplotype length, while the SAVAGE+VG-flow
 535 produced shorter contigs (see N50 statistics plot on Fig. S4). Thus, we only further considered
 536 PEHaplo, PEHaplo + VG-flow and SAVAGE + VG-flow.

537 We compared the *de novo* tools using our modified versions of precision and recall (Fig. 7 and
 538 Fig. 8). VG-flow usually improved slightly the performance of PEHaplo, while PEHaplo usually
 539 performed better than SAVAGE+VG-flow. Although the quality of results of SAVAGE+VG-flow did
 540 not seem to depend on the effective population size, N_e played a role in the quality of obtained results
 541 by PEHaplo. For example, both precision and recall were close to zero for $\mu = 1e - 8$ and $N_e \in$
 542 $\{500, 1000, 2500\}$, but significantly higher for $N_e \in \{5000, 7500, 10000\}$ and $\mu = 1e - 8$. It is also
 543 important to note the behavior of recall values for the obtained results in PEHaplo; those values, in
 544 general, were close to one for small μ values, close to zero for μ values near $1e - 5$, and stayed positive
 545 for higher μ values.

546



547

548

549 **Figure 7.** *De novo* haplotype callers: variation of precision values with mutation rate (log-scaled) for
 550 all considered N_e . The shaded light blue and shaded light red regions correspond to HIV-1 and HCV
 551 diversity levels, respectively. For all pairs of parameters μ and N_e , we report the mean estimates of
 552 precision over all valid outputs produced by each software tool for five haplotype populations. If a tool
 553 did not produce any output for some pair of parameters, we included a gap in the corresponding plot.
 554

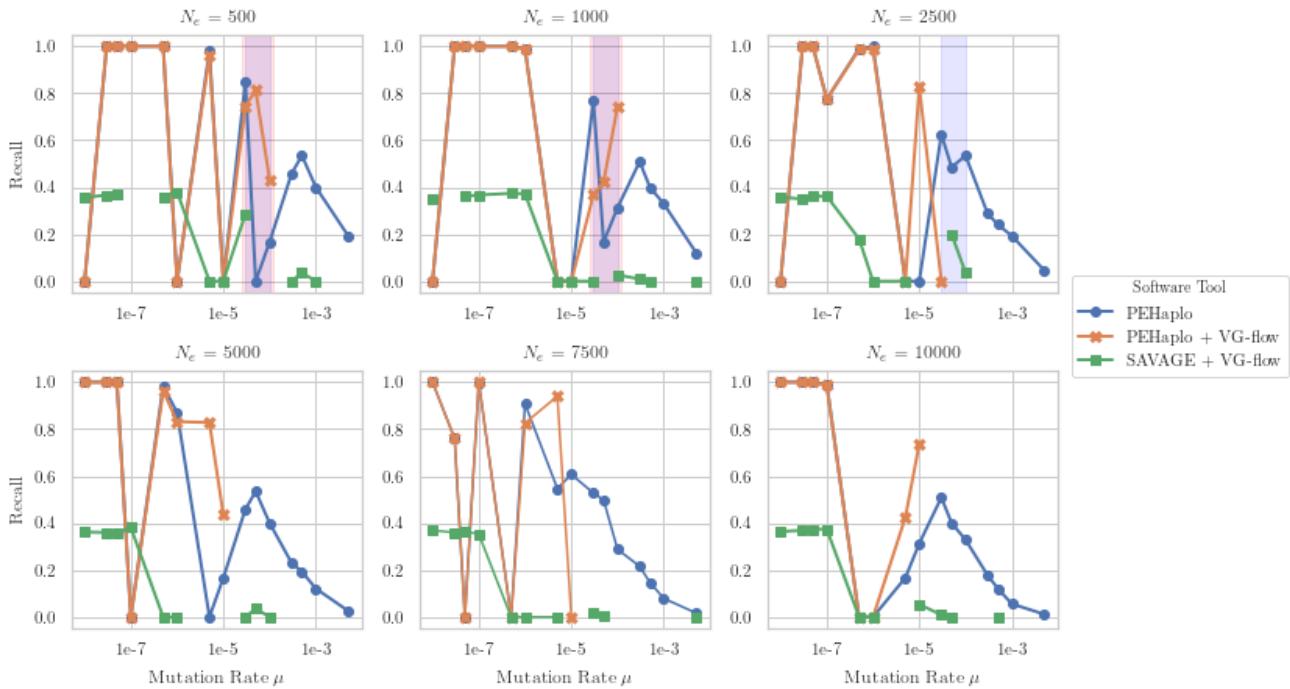


Figure 8. *De novo* haplotype callers: variation of recall values with the mutation rate (log-scaled) for all considered N_e . The shaded light blue and shaded light red regions correspond to HIV-1 and HCV diversity levels, respectively. For all pairs of parameters μ and N_e , we report the mean estimates of recall over all valid outputs produced by each software tool for five haplotype populations. If a tool did not produce any output for some pair of parameters, we included a gap in the corresponding plot.

De novo tools performed very well, in both precision and recall values, if the mutation rate was less than $1e - 6$ (in contrast to $\mu \leq 1e - 5$ for *reference-based* tools). Additionally, recall values for PEHaplo when $\mu \geq 1e - 4$ were usually better than those seen for any *reference-based* approaches. *De novo* tools did not produce results with a positive precision for HIV-1 and HCV mutation rates. The UniFrac distance further confirmed our previous observation that VG-flow slightly improved the performance of PEHaplo (Fig. 9). Moreover, the performance of SAVAGE + VG-flow did not depend on the mutation rate or the effective population size N_e . It is important to note that all UniFrac distance values were, in general, higher than baseline values. We also compared UniFrac distances between both categories of assemblers (Fig. S5); as we expected, *reference-based* tools largely outperformed *de novo* tools. At the same time, PEHaplo performed better than ShoRAH for some datasets. Moreover, SAVAGE + VG-flow showed the worst performance based on UniFrac distances.

555
556

557
558
559
560
561
562

563
564
565
566
567
568
569
570
571
572
573
574

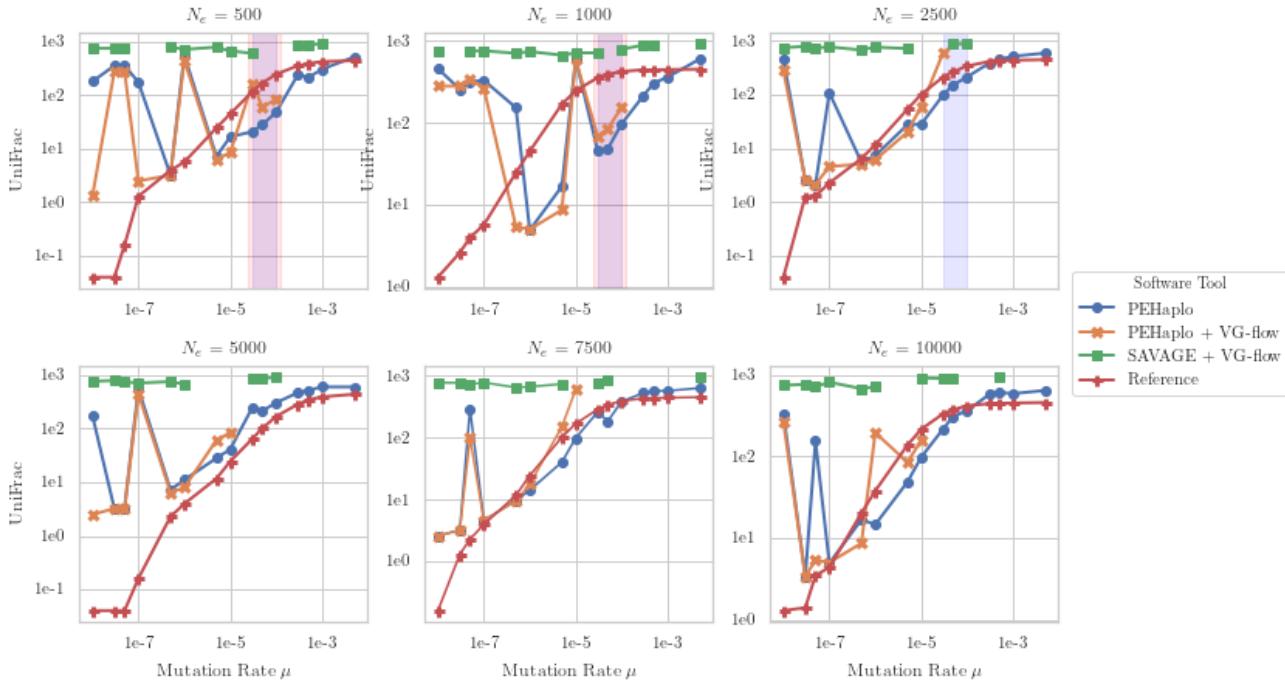
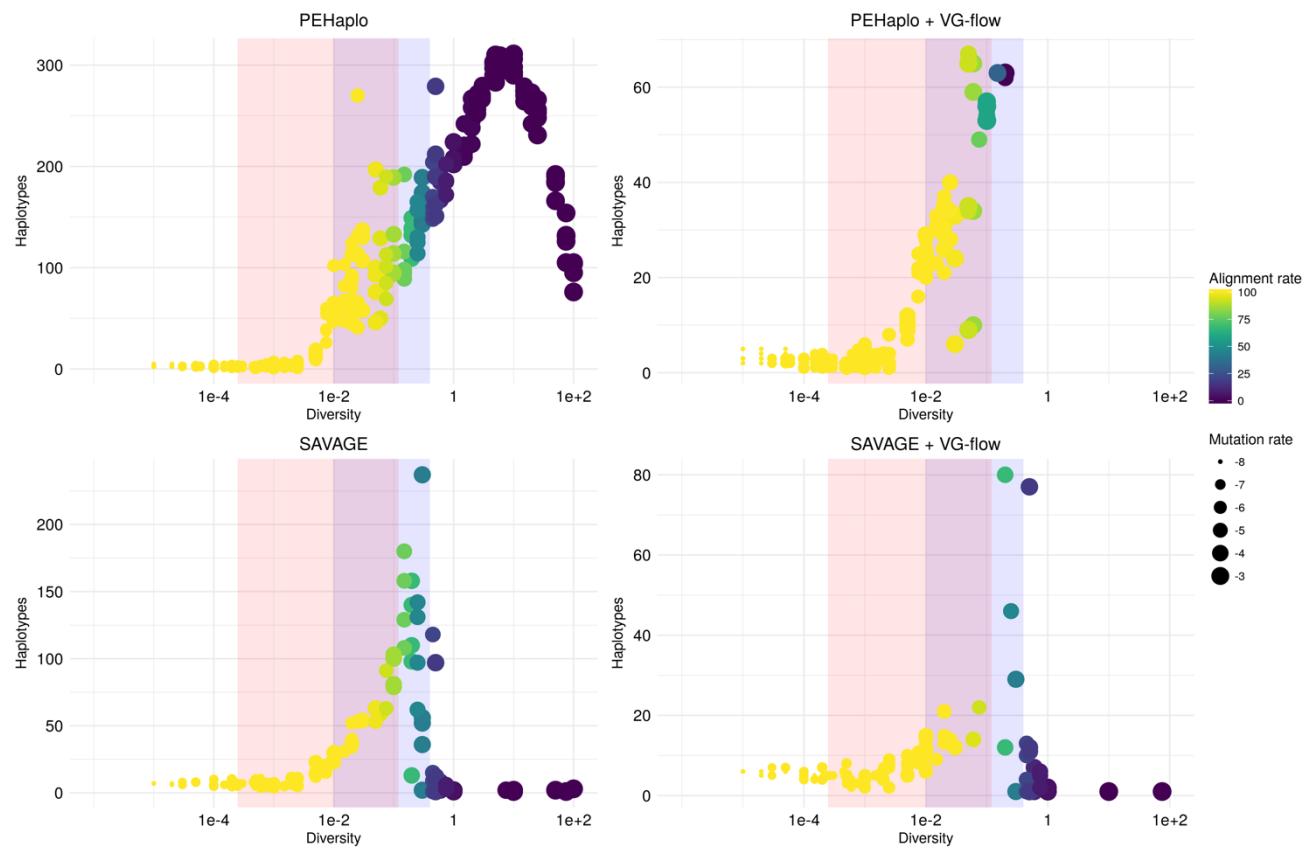


Figure 9. *De novo* haplotype callers: variation of UniFrac distance (EMD) with mutation rate (log-scaled) for all considered N_e . The shaded light blue and shaded light red regions correspond to HIV-1 and HCV diversity levels, respectively. For all pairs of parameters μ and N_e , we report the mean estimates of UniFrac distances over all valid outputs produced by each software tool for five haplotype populations. If a tool did not produce any output for some pair of parameters, we included a gap in the corresponding plot.

Although the *de novo* methods produced more haplotypes in the HIV-1 diversity range compared to *reference-based* methods, they all still underestimated the true number of haplotypes in a population at higher diversity levels. They also overestimated true haplotype numbers at lower genetic diversity levels (Fig. 10) compared to the true number of haplotypes from the simulated datasets (Fig. S3). When extending the contigs into scaffolds with VG-flow, the number of haplotypes reconstructed decreased considerably and remained below the number of true haplotypes estimated for the varying genetic diversity levels. PEHaplo reconstructed the lower limit of the true number of haplotypes within HIV-1 diversity levels, but like other tools, including aBayes, CliqueSNV and QuasiRecomb, PEHaplo and SAVAGE, had trouble reconstructing viral sequences at higher diversity levels.



594
595
596 **Figure 10.** *De novo* haplotype callers: variation in number of predicted haplotypes across levels of
597 underlying genetic diversity. Intra-host HIV-1 and HCV diversity levels are highlighted shaded light
598 blue and shaded light red regions, respectively. If a software tool did not complete haplotype
599 reconstruction within the given time frame, we included a gap in the corresponding plot (see Fig. S1
600 for more information on dataset completions).

601 4. Conclusions and Future Directions

602 We compared twelve of the most commonly used software tools to reconstruct haplotypes from
603 viral NGS data. We simulated coalescent-based populations that spanned past known levels of viral
604 diversity, including mutation rates, sample size, and effective population size. We focused our
605 empirical comparisons on the intra-host diversity levels of fast-evolving RNA viruses such as HIV-1
606 because parameter value ranges are well established and a better understanding of viral dynamics is
607 important for drug and vaccine development. Additionally, the majority of haplotype tool developers
608 used HIV-1 to validate their own programs. In our analyses of HIV-1 intra-host diversity, we estimated
609 between 216 and 1,185 haplotypes with a <7% frequency for a single haplotype.
610

611 Overall, *reference-based* assemblers produced more accurate haplotypes than *de novo*-based
612 assemblers for all performance indices (precision, recall, UniFrac, and number of reconstructed
613 haplotypes) across HIV-1 diversity levels. This performance could be attributed to the availability of
614 high-quality reference sequences for HIV-1, HIV-2, HCV, influenza and other viruses. Furthermore,
615 using a reference sequence reduces the computational time and power needed to reconstruct
616 haplotypes. Reference-based assemblers likely performed better than *de novo* assemblers because of
617 the high variation within viral populations, especially HIV-1, where the reference sequence may have
618 provided needed guidance to orient the highly diverse NGS sequences into a haplotype sequence.
619

620 Our results show that PredictHaplo offers the best tradeoff between statistical performance and
621 computational efficiency within HIV-1 diversity ranges. PredictHaplo was found to have the highest
precision, recall, and lowest UniFrac distance values. CliqueSNV followed closely and may actually

622 outperform PredictHaplo if more computational resources were made available. An important caveat
623 for both these approaches, however, is that the number of true haplotypes is greatly underestimated. If
624 it is important to identify the true number of haplotypes (as in rare haplotype discovery) approaches
625 such as ShoRAH or PEHaplo may be more appropriate. The haplotype programs also varied greatly
626 in terms of their ease-of-use. This variation is due to differences in coding language, program
627 dependencies, availability of executable files, absence of comprehensive documentation and lack of
628 example datasets. For example, SAVAGE, PEHaplo, ShoRAH can be easily installed by package
629 managers, and CliqueSNV and QuasiRecomb are distributed as executable files. In contrast, Virus-
630 VG and VG-flow requires installment of proprietary software, which has an academic license.
631 Installation and usage of PredictHaplo is challenging because of the lack of description and instructions
632 regarding the config file. While CliqueSNV is easier to install and use, there are no example datasets.
633

634 It is important to note that our study represents an initial attempt of comprehensive comparison
635 of available haplotype reconstruction tools. For example, we focused HIV-1 diversity estimates for the
636 polymerase gene, which is less variable than the envelope gene. Moreover, almost all developers of
637 the aforementioned tools used the polymerase gene as a source of simulating sequencing data for
638 assessing performance of their programs and rarely used the envelope gene for the same purposes.
639 Given the envelope gene has a higher mutation rate and the haplotype reconstruction tools – *de novo*
640 or *reference-based* – seem to be dependent on mutation rate, it is likely that the tools available here
641 would not be successful in reconstructing envelope haplotypes for HIV-1 accurately. However, we
642 chose polymerase as our gene of interest because of research focus on this gene as the target for drug
643 resistance mutations. The same concept of lower mutation rates in conserved genes and higher
644 mutation in less conserved genes can be seen in other fast-evolving viruses. For example, in HCV the
645 core protein is more conserved compared to the E1/E2 region. Thus, users should target methods for
646 haplotype calling that best match the mutation rate of their target gene.

647 Another limitation of our study is coverage. It is well-known that coverage plays a crucial role
648 in all algorithms for distinguishing between errors and rare sequence variants. We chose 100x coverage
649 because it represents a reasonable amount of data that can be obtained without intensive labor or money
650 consuming procedures. Contrary to our simulations, the developers of haplotype reconstruction tools
651 usually test their methods on datasets with higher coverage than ours. For example, the famous golden-
652 standard benchmark HIV dataset (*labmix* dataset (Di Giallonardo et al., 2014)) on which all tools have
653 been tested by developers, consisted of an average of 20,000x coverage. Thus, our study represents an
654 attempt to measure the performance of the haplotype reconstruction tools on datasets that are more
655 likely to be seen and produced in laboratories. Moreover, according to our results for higher mutation
656 rates, many tools did not produce any results within the time limit. Considering that higher coverage
657 implies a larger amount of data and thus requiring more computational time to process these data, it is
658 expected that the tools available here would require extensive computational resources.

659 We also considered error-free and recombination-free data in our study. Only a few tools
660 explicitly took into account the presence of errors or recombination in their models (e.g., only
661 QuasiRecomb explicitly assumes the presence of recombination events). By not simulating
662 recombination and sequencing errors, we removed nuisance parameters that would impact haplotype
663 reconstruction. Moreover, since almost all tools have been tested on ultra-deep data, our comparison
664 study by error-free data is giving an advantage to these methods by removing errors in sequence data
665 (i.e., one does not need deep coverage to distinguish between rare variants and errors). Furthermore,
666 Zanini et al. (2015) found evidence that recombination likely interrupts haplotypes, specifically in
667 HIV-1, every 100-200bp, so, the concept of haplotypes in HIV-1, and maybe other fast-evolving
668 viruses with high recombination rates, may not exist or be feasible to study with frequent
669 recombination events. Together these facts imply that the performance of the aforementioned tools
670 would be even worse than observed here.

671 Overall, results and limitations of our study indicate the importance of creating broad and
672 diverse golden-standard datasets that must include several different genes, diverse parameters of

672 mutation rates and effective population sizes, different average coverages, presence or absence of
673 recombination events or/and error prone data. Moreover, future simulation studies should address
674 error-prone data using haplotype callers that can handle sequencing errors and investigate the effect of
675 recombination and average coverage on the reconstruction of haplotype. In addition to simulation
676 studies, some theoretical work similar to DNA sequencing theory should be done for laying analytical
677 foundations for determining coverage depending on the mutation rate, effective population size, error-
678 rate of a sequencing technology, and so on. Finally, there are still a lot of opportunities for developing
679 new haplotype callers that can process a wide range of data with different mutation rates, average
680 coverage, and presence or absence of recombination events. Moreover, since the reconstructed
681 haplotypes are often used for reconstructing phylogeny, the future tools may also consider the problem
682 of reconstructing haplotype sequences together with their phylogeny. Considering the possibility that
683 the reconstructing haplotype sequences from short-read sequencing technologies may represent an
684 intractable problem, focusing on reconstructing haplotype phylogeny directly from short-reads may
685 lead to better results after all. In addition to mentioned future directions, the advances and price-
686 decreasing of long-read sequencing technologies (e.g., Nanopore, PacBio, 10X Genomics) poses a
687 whole new set of challenges for haplotype reconstructions including the development of new
688 sequencing protocols and haplotype reconstruction tools. This new technology has the power to
689 sequence long amplicons or even entire viral genomes in a single pass, i.e., no need to assemble
690 sequencing reads. However, this type of data requires development of new methods that can
691 distinguish between rare variants and sequencing errors. Therefore, the application of long-read
692 sequencing technology may be more beneficial for studying global, or entire genome, haplotypes.
693

694 **Acknowledgements**

695 The authors would like to thank Adam Kai Leung Wong for his invaluable help installing and
696 troubleshooting different software packages in the Colonial One high performance computing cluster
697 at The George Washington University.

698 **Funding**

700 This study was supported by a DC D-CFAR pilot award. MPL was supported by a 2015 HIV
701 Phylodynamics Supplement award from the District of Columbia for AIDS Research, an NIH funded
702 program (AI117970), and NIH grants AI076059 and UL1TR001876. The content is solely the
703 responsibility of the authors and does not necessarily represent the official views of the NIH. The
704 work of NA is supported by the Government of the Russian Federation through the ITMO
705 Fellowship and Professorship Program.

707 **Authors' contributions**

708 KMG, MLB, and KAC developed project idea. KAC and MP-L acquired funding for this study. KMG
709 and MLB completed the simulation study. AE and DN ran all the haplotype reconstruction tools. AE,
710 PA, and NA performed the statistical analysis of the results. PA and NA supervised AE and DN. PA,
711 NA and KMG developed initial manuscript draft. All authors read and reviewed final draft of
712 manuscript.

714 **Ethics approval and consent to participate**

715 Not applicable.

717 **Consent for publication**

718 Not applicable.

720 **Competing interest**

721 The authors declare that they have no competing interests.

722

723

References

724

Ahn, S., Vikalo, H., 2017. aBayesQR: A Bayesian Method for Reconstruction of Viral Populations Characterized by Low Diversity. *J. Comput. Biol.* 25, 637–648.

725

<https://doi.org/10.1089/cmb.2017.0249>

726

Alnafee, K., 2016. Versatile and open software for comparing large genomes 5, 12–23.

727

<https://doi.org/10.1186/gb-2004-5-2-r12>

728

Arenas, M., Posada, D., 2014. Simulation of genome-wide evolution under heterogeneous substitution models and complex multispecies coalescent histories. *Mol. Biol. Evol.* 31, 1295–1301. <https://doi.org/10.1093/molbev/msu078>

729

Artyomenko, A., Wu, N.C., Mangul, S., Eskin, E., Sun, R., Zelikovsky, A., 2017. Long Single-Molecule Reads Can Resolve the Complexity of the Influenza Virus Composed of Rare, Closely Related Mutant Variants. *J. Comput. Biol.* 24, 558–570. <https://doi.org/10.1089/cmb.2016.0146>

730

Astrovskaia, I., Tork, B., Mangul, S., Westbrooks, K., Mändöiu, I., Balfe, P., Zelikovsky, A., 2011. Inferring viral quasispecies spectra from 454 pyrosequencing reads. *BMC Bioinformatics* 12. <https://doi.org/10.1186/1471-2105-12-S6-S1>

731

Baaijens, J., Roest, B. Van Der, Koester, J., Stougie, L., Baaijens, J., Roest, B. Van Der, Koester, J., Stougie, L., Schoenhuth, A., Baaijens, J.A., Roest, B. Van Der, Johannes, K., 2018. Full-length de novo viral quasispecies assembly through variation graph construction. *bioRxiv*.

732

Baaijens, J.A, Aabidine, A.Z.E., Rivals, E., Schonhuth, A., 2017. De novo assembly of viral quasispecies using overlap graphs. *Genome Res* 27, 835–848. <https://doi.org/10.1101/gr.215038.116>

733

Baaijens, J.A., Stougie, L., Schönhuth, A., 2019. Strain-aware assembly of genomes from mixed samples using variation graphs. *bioRxiv* 645721. <https://doi.org/10.1101/645721>

734

Baaijens, Jasmijn A, Zine, A., Aabidine, E., Rivals, E., Schönhuth, A., Wiskunde, C., Amsterdam, X.G., Montpellier, U. De, 2017. De novo assembly of viral quasispecies using overlap graphs. *Genome Res.* 27, 835–848. <https://doi.org/10.1101/gr.215038.116.4>

735

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A. V., Sirotnik, A. V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A., 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J. Comput. Biol.* 19, 455–77. <https://doi.org/10.1089/cmb.2012.0021>

736

Barik, S., Das, S., Vikalo, H., 2018. QSdpR: Viral quasispecies reconstruction via correlation clustering. *Genomics* 110, 375–381. <https://doi.org/10.1016/j.ygeno.2017.12.007>

737

Beerenwinkel, N., Zagordi, O., 2011. Ultra-deep sequencing for the analysis of viral populations. *Curr. Opin. Virol.* 1, 413–418. <https://doi.org/10.1016/j.coviro.2011.07.008>

738

Bendall, M.L., Gibson, K.M., Steiner, M.C., Pérez-Losada, M., Keith A. Crandall, 2019. HAPHPipe: Haplotype reconstruction and real-time phylodynamics for deep sequencing of intra-host viral populations. *Mol. Biol. Evol.*

739

Bernini, F., Ebranati, E., De Maddalena, C., Shkjezi, R., Milazzo, L., Presti, A. Lo, Ciccozzi, M., Galli, M., Zehender, G., 2011. Within-host dynamics of the hepatitis C virus quasispecies population in HIV-1/HCV coinfecting patients. *PLoS One* 6, 1–11. <https://doi.org/10.1371/journal.pone.0016551>

740

Bishara, A., Moss, E.L., Kolmogorov, M., Parada, A.E., Weng, Z., Sidow, A., Dekas, A.E., Batzoglou, S., Bhatt, A.S., 2018. High-quality genome sequences of uncultured microbes by assembly of read clouds. *Nat. Biotechnol.* 36, 1067–1080. <https://doi.org/10.1038/nbt.4266>

741

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* 30, 2114–2120. <https://doi.org/10.1093/bioinformatics/btu170>

742

Boltz, V.F., Rausch, J., Shao, W., Hattori, J., Luke, B., Maldarelli, F., Mellors, J.W., Kearney, M.F., Coffin, J.M., 2016. Ultrasensitive single - genome sequencing : accurate , targeted , next

743

772 generation sequencing of HIV - 1 RNA. *Retrovirology* 1–17. <https://doi.org/10.1186/s12977-016-0321-6>

773

774 Bray, N.L., Pimentel, H., Melsted, P., Pachter, L., 2016. Near-optimal probabilistic RNA-seq
775 quantification. *Nat. Biotechnol.* 34, 525–7. <https://doi.org/10.1038/nbt.3519>

776 Chen, J., Zhao, Y., Sun, Y., 2018. De novo haplotype reconstruction in viral quasispecies using
777 paired-end read guided path finding. *Bioinformatics* 34, 2927–2935.
778 <https://doi.org/10.1093/bioinformatics/bty202>

779 Coffin, J.M., 1992. Genetic Diversity and Evolution of Retroviruses, in: Holland J.J. (Eds) *Genetic*
780 *Diversity of RNA Viruses. Current Topics in Microbiology and Immunology*, Vol 176.
781 Springer, Berlin, Heidelberg, pp. 143–164. https://doi.org/10.1007/978-3-642-77011-1_10

782 Compeau, P.E.C., Pevzner, P.A., Tesler, G., 2011. How to apply de Bruijn graphs to genome
783 assembly. *Nat. Biotechnol.* 29, 987–991. <https://doi.org/10.1038/nbt.2023>

784 Crandall, K.A., 1999. *The Evolution of HIV*. The Johns Hopkins University Press, Baltimore.

785 Crandall, K.A., Kelsey, C.R., Imamichi, H., Lane, H.C., Salzman, N.P., 1999. Parallel evolution of
786 drug resistance in HIV: Failure of nonsynonymous/synonymous substitution rate ratio to detect
787 selection. *Mol. Biol. Evol.* 16, 372–382. <https://doi.org/10.1093/oxfordjournals.molbev.a026118>

788 Crandall, K.A., Templeton, A.R., 1993. Empirical tests of some predictions from coalescent theory
789 with applications to intraspecific phylogeny reconstruction. *Genetics* 134, 959–969.

790 Di Giallonardo, F., Töpfer, A., Rey, M., Prabhakaran, S., Duport, Y., Leemann, C., Schmutz, S.,
791 Campbell, N.K., Joos, B., Lecca, M.R., Patrignani, A., Däumer, M., Beisel, C., Rusert, P.,
792 Trkola, A., Günthard, H.F., Roth, V., Beerenwinkel, N., Metzner, K.J., 2014. Full-length
793 haplotype reconstruction to infer the structure of heterogeneous virus populations. *Nucleic*
794 *Acids Res.* 42, e115. <https://doi.org/10.1093/nar/gku537>

795 Echeverría, N., Moratorio, G., Cristina, J., Moreno, P., 2015. Hepatitis C virus genetic variability and
796 evolution. *World J. Hepatol.* 7, 831–845. <https://doi.org/10.4254/wjh.v7.i6.831>

797 Eriksson, N., Pachter, L., Mitsuya, Y., Rhee, S.Y., Wang, C., Gharizadeh, B., Ronaghi, M., Shafer,
798 R.W., Beerenwinkel, N., 2008. Viral population estimation using pyrosequencing. *PLoS*
799 *Comput. Biol.* 4. <https://doi.org/10.1371/journal.pcbi.1000074>

800 Gibson, K.M., Steiner, M.C., Kassaye, S., Maldarelli, F., Grossman, Z., Pérez-Losada, M., Crandall,
801 K.A., 2019. A 28-Year History of HIV-1 Drug Resistance and Transmission in Washington,
802 DC. *Front. Microbiol.* 10, 1–16. <https://doi.org/10.3389/fmicb.2019.00369>

803 Grabher, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X.F.,
804 Raychowdhury, L.R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnrke, A., Rhind, N.,
805 Palma, F. di, W., B., Friedman, N., Regev, A., 2013. Trinity: reconstructing a full-length
806 transcriptome without a genome from RNA-Seq data. *Nat. Biotechnol.* 29, 644–652.
807 <https://doi.org/10.1038/nbt.1883>. Trinity

808 Henn, M.R., Boutwell, C.L., Charlebois, P., Lennon, N.J., Power, K.A., Macalalad, A.R., Berlin,
809 A.M., Malboeuf, C.M., Ryan, E.M., Gnerre, S., Zody, M.C., Erlich, R.L., Green, L.M., Berical,
810 A., Wang, Y., Casali, M., Streeck, H., Bloom, A.K., Dudek, T., Tully, D., Newman, R., Axten,
811 K.L., Gladden, A.D., Battis, L., Kemper, M., Zeng, Q., Shea, T.P., Gujja, S., Zedlack, C.,
812 Gasser, O., Brander, C., Hess, C., Günthard, H.F., Brumme, Z.L., Brumme, C.J., Bazner, S.,
813 Rychert, J., Tinsley, J.P., Mayer, K.H., Rosenberg, E., Pereyra, F., Levin, J.Z., Young, S.K.,
814 Jessen, H., Altfeld, M., Birren, B.W., Walker, B.D., Allen, T.M., 2012. Whole genome deep
815 sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition
816 during acute infection. *PLoS Pathog.* 8. <https://doi.org/10.1371/journal.ppat.1002529>

817 Holmes, E.C., 2010. The RNA Virus Quasispecies: Fact or Fiction? *J. Mol. Biol.* 400, 271–273.
818 <https://doi.org/10.1016/j.jmb.2010.05.032>

819 Huang, A., Rami Kantor, DeLong, A., Schreier, L., Istrail, S., 2011. QColors: An algorithm for
820 conservative viral quasispecies reconstruction from short and non-contiguous next generation
821 sequencing reads. In *Silico Biol.* 11, 193–201. <https://doi.org/10.3233/ISB-2012-0454>

822 Huang, W., Li, L., Myers, J.R., Marth, G.T., 2012. ART: A next-generation sequencing read
823 simulator. *Bioinformatics* 28, 593–594. <https://doi.org/10.1093/bioinformatics/btr708>

824 Hunt, M., Gall, A., Ong, S.H., Brener, J., Ferns, B., Goulder, P., Nastouli, E., Keane, J.A., Kellam,
825 P., Otto, T.D., 2015. IVA: Accurate de novo assembly of RNA virus genomes. *Bioinformatics*
826 31, 2374–2376. <https://doi.org/10.1093/bioinformatics/btv120>

827 Jayasundara, D., Saeed, I., Maheswararajah, S., Chang, B.C., Tang, S.L., Halgamuge, S.K., 2015.
828 ViQuaS: An improved reconstruction pipeline for viral quasispecies spectra generated by next-
829 generation sequencing. *Bioinformatics* 31, 886–896.
830 <https://doi.org/10.1093/bioinformatics/btu754>

831 Kearney, M., Maldarelli, F., Shao, W., Margolick, J.B., Daar, E.S., Mellors, J.W., Rao, V., Coffin,
832 J.M., Palmer, S., 2009. Human Immunodeficiency Virus Type 1 Population Genetics and
833 Adaptation in Newly Infected Individuals. *J. Virol.* 83, 2715–2727.
834 <https://doi.org/10.1128/jvi.01960-08>

835 Kim, K., Kim, Y., 2016. Population genetic processes affecting the mode of selective sweeps and
836 effective population size in influenza virus H3N2. *BMC Evol. Biol.* 16, 1–15.
837 <https://doi.org/10.1186/s12862-016-0727-8>

838 Kingman, J.F.C., 2000. Origins of the Coalescent: 1974–1982. *Genetics* 156, 1461–1463.

839 Kingman, J.F.C., 1982. The coalescent. *Stoch. Process. their Appl.* 13, 235–248.
840 [https://doi.org/10.1016/0304-4149\(82\)90011-4](https://doi.org/10.1016/0304-4149(82)90011-4)

841 Knyazev, S., Tsyvina, V., Melnyk, A., Malygina, T., Porozov, Y.B., Campbell, E., Switzer, W.M.,
842 Skums, P., Zelikovsky, A., 2018. CliqueSNV : Scalable Reconstruction of Intra-Host Viral
843 Populations from NGS Reads. *bioRxiv* 1–8. <https://doi.org/10.1101/264242>

844 Langmead, B., Salzberg, S.L., 2013. Fast gapped-read alignment with Bowtie2. *Nat. Methods* 9,
845 357–359. <https://doi.org/10.1038/nmeth.1923>

846 Leviyang, S., Griva, I., Ita, S., Johnson, W.E., 2017. A penalized regression approach to haplotype
847 reconstruction of viral populations arising in early HIV/SIV infection. *Bioinformatics* 33, 2455–
848 2463. <https://doi.org/10.1093/bioinformatics/btx187>

849 Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu, B., Yang, B., Fan,
850 W., 2012. Comparison of the two major classes of assembly algorithms: Overlap-layout-
851 consensus and de-bruijn-graph. *Brief. Funct. Genomics* 11, 25–37.
852 <https://doi.org/10.1093/bfgp/elr035>

853 Lozupone, C.A., Knight, R., 2005. UniFrac : a New Phylogenetic Method for Comparing Microbial
854 Communities UniFrac : a New Phylogenetic Method for Comparing Microbial Communities
855 [see notes, compare to Bray-Curtis]. *Appl. Environ. Microbiol.* 71, 8228–8235.
856 <https://doi.org/10.1128/AEM.71.12.8228>

857 Macalalad, A.R., Zody, M.C., Charlebois, P., Lennon, N.J., Newman, R.M., Malboeuf, C.M., Ryan,
858 E.M., Boutwell, C.L., Power, K.A., Brackney, D.E., Pesko, K.N., Levin, J.Z., Ebel, G.D., Allen,
859 T.M., Birren, B.W., Henn, M.R., 2012. Highly sensitive and specific detection of rare variants
860 in mixed viral populations from massively parallel sequence data. *PLoS Comput. Biol.* 8,
861 e1002417. <https://doi.org/10.1371/journal.pcbi.1002417>

862 Maldarelli, F., Kearney, M., Palmer, S., Stephens, R., Mican, J., Polis, M.A., Davey, R.T., Kovacs,
863 J., Shao, W., Rock-Kress, D., Metcalf, J.A., Rehm, C., Greer, S.E., Lucey, D.L., Danley, K.,
864 Alter, H., Mellors, J.W., Coffin, J.M., 2013. HIV populations are large and accumulate high
865 genetic diversity in a nonlinear fashion. *J. Virol.* 87, 10313–23.
866 <https://doi.org/10.1128/JVI.01225-12>

867 Malhotra, R., Wu, M.M.S., Rodrigo, A., Poss, M., Acharya, R., 2015. Maximum Likelihood de novo
868 reconstruction of viral populations using paired end sequencing data. *arXiv* 1–14.

869 Mancuso, N., Tork, B., Skums, P., Ganova-Raeva, L., Măndoiu, I., Zelikovsky, A., 2011.
870 Reconstructing viral quasispecies from NGS amplicon reads. *In Silico Biol.* 11, 237–249.

871 Mangul, S., Wu, N.C., Mancuso, N., Zelikovsky, A., Sun, R., Eskin, E., 2014. Accurate viral

872 population assembly from ultra-deep sequencing data. *Bioinformatics* 30, 329–337.
873 <https://doi.org/10.1093/bioinformatics/btu295>

874 Mansky, L.M., 2000. In Vivo Analysis of Human T-Cell Leukemia Virus Type 1 Reverse
875 Transcription Accuracy. *J. Virol.* 74, 9525–9531. <https://doi.org/10.1128/jvi.74.20.9525-9531.2000>

877 McClelland, J., Koslicki, D., 2018. Emdunifrac: Exact linear time computation of the unifrac metric
878 and identification of differentially abundant organisms. *J. Math. Biol.* 77, 935–949.

879 McCrone, J., 2018. Influenza Virus Evolution Within and Between Human Hosts.

880 McCrone, J.T., Woods, R.J., Martin, E.T., Malosh, R.E., Monto, A.S., Lauring, A.S., 2018.
881 Stochastic processes constrain the within and between host evolution of influenza virus. *Elife* 7.
882 <https://doi.org/10.7554/eLife.35962>

883 Neher, R.A., Leitner, T., 2010. Recombination rate and selection strength in HIV intrapatient
884 evolution. *PLoS Comput. Biol.* 6. <https://doi.org/10.1371/journal.pcbi.1000660>

885 Nobre, A.F.S., De Souza Almeida, D., Ferreira, L.C., Ferreira, D.L., Júnior, E.C.S., De Almeida
886 Viana, M.D.N. do S., Silva, I.C., Pinheiro, B.T., Ferrari, S.F., Da Costa Linhares, A., Ishikawa,
887 E.A., Sousa, R.C.M., De Sousa, M.S., 2018. Low genetic diversity of the human T-cell
888 lymphotropic virus (HTLV-1) in an endemic area of the brazilian Amazon basin. *PLoS One* 13,
889 1–9. <https://doi.org/10.1371/journal.pone.0194184>

890 Nurk, S., Meleshko, D., Korobeynikov, A., Pevzner, P.A., 2017. metaSPAdes : a new versatile
891 metagenomic assembler 824–834. <https://doi.org/10.1101/gr.213959.116.4>

892 Pandit, A., de Boer, R.J., 2014. Reliable reconstruction of HIV-1 whole genome haplotypes reveals
893 clonal interference and genetic hitchhiking among immune escape variants. *Retrovirology* 11,
894 56. <https://doi.org/10.1186/1742-4690-11-56>

895 Pérez-Losada, M., Castel, A.D., Lewis, B., Kharfen, M., Cartwright, C.P., Huang, B., Maxwell, T.,
896 Greenberg, A.E., Crandall, K.A., on behalf of the DC Cohort Executive Committee, 2017.
897 Characterization of HIV diversity, phylodynamics and drug resistance in Washington, DC.
898 *PLoS One* 12, e0185644. <https://doi.org/10.1371/journal.pone.0185644>

899 Pérez-Losada, M., Jobes, D. V., Sinangil, F., Crandall, K.A., Posada, D., Berman, P.W., 2010.
900 Phylodynamics of HIV-1 from a phase-III AIDS vaccine trial in North America. *Mol. Biol.*
901 *Evol.* 27, 417–425. <https://doi.org/10.1093/molbev/msp254>

902 Posada-cespedes, S., Seifert, D., Beerenwinkel, N., 2016. Recent advances in inferring viral diversity
903 from high-throughput sequencing data. *Virus Res.*
904 <https://doi.org/10.1016/j.virusres.2016.09.016>

905 Posada, D., Crandall, K.A., 2001. Selecting models of nucleotide substitution: An application to
906 human immunodeficiency virus 1 (HIV-1). *Mol. Biol. Evol.* 18, 897–906.
907 <https://doi.org/10.1093/oxfordjournals.molbev.a003890>

908 Posada, David, Crandall, K.A., Holmes, E.C., 2002. Recombination in Evolutionary Genomics.
909 *Annu. Rev. Genet.* 36, 75–97. <https://doi.org/10.1146/annurev.genet.36.040202.111115>

910 Posada, D, Crandall, K.A., Holmes, E.C., 2002. Recombination in evolutionary genomics. *Annu Rev*
911 *Genet* 36, 75–97. <https://doi.org/10.1146/annurev.genet.36.040202.111115>

912 Prabhakara, S., Malhotra, R., Acharya, R., Poss, M., 2013. Mutant-Bin: Unsupervised haplotype
913 estimation of viral population diversity without reference genome. *ournal Comput. Biol.* 20,
914 453–463.

915 Prabhakaran, S., Rey, M., Zagordi, O., Beerenwinkel, N., 2010. HIV-haplotype inference using a
916 constraint-based dirichlet process mixture model. *Mach. Learn. Comput. Biol. NIPS Work.* 1–4.

917 Prabhakaran, S., Rey, M., Zagordi, O., Beerenwinkel, N., Roth, V., 2014. HIV haplotype inference
918 using a propagating dirichlet process mixture model. *IEEE/ACM Trans. Comput. Biol.*
919 *Bioinforma.* 11, 182–191.

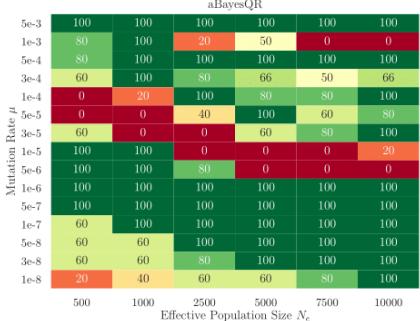
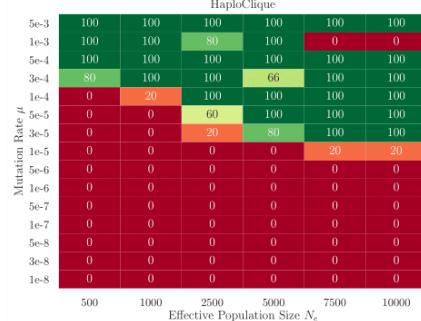
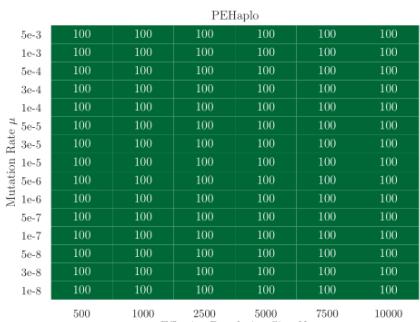
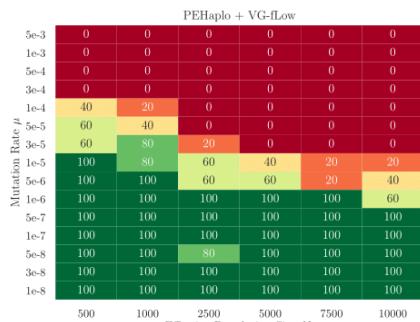
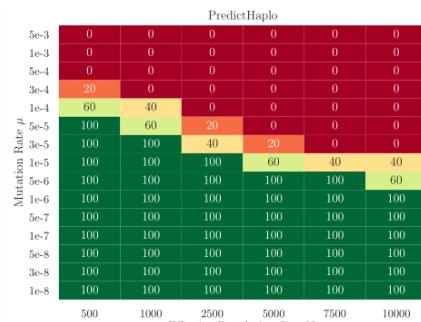
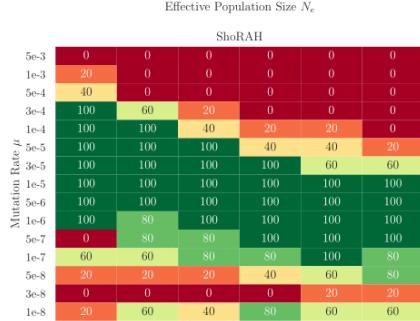
920 Prosperi, M.C.F., Salemi, M., 2012. QuRe: Software for viral quasispecies reconstruction from next-
921 generation sequencing data. *Bioinformatics* 28, 132–133.

922 https://doi.org/10.1093/bioinformatics/btr627
923 Prosperi, M.C.F., Yin, L., Nolan, D.J., Lowe, A.D., Goodenow, M.M., Salemi, M., 2013. Empirical
924 validation of viral quasispecies assembly algorithms: state-of-the-art and challenges. *Sci. Rep.*
925 3, 2837. <https://doi.org/10.1038/srep02837>
926 Ratner, L., Haseltine, W., Patarca, R., Livak, K.J., Starcich, B., Josephs, S.F., Doran, E.R., Rafalski,
927 J.A., Whitehorn, E.A., Baumeister, K., 1985. Complete Nucleotide Sequence of the AIDS
928 Virus, HTLV-III. *Nature* 313, 277–84. <https://doi.org/10.1038/313277a0>
929 Ribeiro, R.M., Li, H., Wang, S., Stoddard, M.B., Learn, G.H., Korber, B.T., Bhattacharya, T., Guedj,
930 J., Parrish, E.H., Hahn, B.H., Shaw, G.M., Perelson, A.S., 2012. Quantifying the Diversification
931 of Hepatitis C Virus (HCV) during Primary Infection: Estimates of the In Vivo Mutation Rate.
932 *PLoS Pathog.* 8. <https://doi.org/10.1371/journal.ppat.1002881>
933 Rodrigo, A.G., Felsenstein, J., 1999. Coalescent Approaches to HIV Population Genetics, in: *The
934 Evolution of HIV*. The Johns Hopkins University Press, Baltimore, pp. 233–274.
935 Rosenberg, N.A., Nordborg, M., 2002. Genealogical trees, coalescent theory and the analysis of
936 genetic polymorphisms. *Nat. Rev. Genet.* 3, 380–390. <https://doi.org/10.1038/nrg795>
937 Sanjuán, R., Nebot, M.R., Chirico, N., Louis, M., Belshaw, R., Sanjua, R., Mansky, L.M., 2010.
938 Viral Mutation Rates Viral Mutation Rates. *J. Virol.* 84, 9733–9748.
939 <https://doi.org/10.1128/JVI.00694-10>
940 Schirmer, M., Sloan, W.T., Quince, C., 2014. Benchmarking of viral haplotype reconstruction
941 programmes: An overview of the capacities and limitations of currently available programmes.
942 *Brief. Bioinform.* 15, 431–442. <https://doi.org/10.1093/bib/bbs081>
943 Scholz, M., Ward, D. V., Pasolli, E., Tolio, T., Zolfo, M., Asnicar, F., Truong, D.T., Tett, A.,
944 Morrow, A.L., Segata, N., 2016. Strain-level microbial epidemiology and population genomics
945 from shotgun metagenomics. *Nat. Methods* 13, 435–438. <https://doi.org/10.1038/nmeth.3802>
946 Skums, P., Mancuso, N., Artyomenko, A., Tork, B., Mandoiu, I., Khudyakov, Y., Zelikovsky, A.,
947 2013. Reconstruction of viral population structure from next-generation sequencing data using
948 multicommodity flows. *BMC Bioinformatics* 14, S2. <https://doi.org/10.1186/1471-2105-14-S9-S2>
949 Töpfer, A., Marschall, T., Bull, R.A., Luciani, F., Schö Nhuth, A., Beerewinkel, N., McHardy, A.C.,
950 2014. Viral Quasispecies Assembly via Maximal Clique Enumeration. *PLoS Comput Biol* 10.
951 <https://doi.org/10.1371/journal.pcbi.1003515>
952 Topfer, A., Zagordi, O., Prabhakaran, S., Roth, V., Halperin, E., Beerewinkel, N., 2013.
953 Probabilistic Inference of Viral Quasispecies Subject to Recombination. *J. Comput. Biol.* 20,
954 113–123. <https://doi.org/10.1089/cmb.2012.0232>
955 van der Kuyl, A.C., Cornelissen, M., 2007. Identifying HIV-1 dual infections. *Retrovirology* 4, 1–12.
956 <https://doi.org/10.1186/1742-4690-4-67>
957 Warren, R.L., Sutton, G.G., Jones, S.J.M., Holt, R.A., 2007. Assembling millions of short DNA
958 sequences using SSAKE. *Bioinformatics* 23, 500–501.
959 <https://doi.org/10.1093/bioinformatics/btl629>
960 Yang, X., Charlebois, P., Gnerre, S., Coole, M.G., Lennon, N.J., Levin, J.Z., Qu, J., Ryan, E.M.,
961 Zody, M.C., Henn, M.R., 2012. De novo assembly of highly diverse viral populations. *BMC
962 Genomics* 13. <https://doi.org/10.1186/1471-2164-13-475>
963 Yang, X., Charlebois, P., Macalalad, A., Henn, M.R., Zody, M.C., 2013. V-Phaser 2: variant
964 inference for viral populations. *BMC Genomics* 14, 674. <https://doi.org/10.1186/1471-2164-14-674>
965 Zagordi, O., Bhattacharya, A., Eriksson, N., Beerewinkel, N., 2011. ShoRAH: estimating the
966 genetic diversity of a mixed sample from next-generation sequencing data. *BMC Bioinformatics*
967 12, 119. <https://doi.org/10.1186/1471-2105-12-119>
968 Zagordi, O., Geyrhofer, L., Roth, V., Beerewinkel, N., 2010. Deep Sequencing of a Genetically
969 Heterogeneous Sample: Local Haplotype Reconstruction and Read Error Correction. *J. Comput.*
970 <https://doi.org/10.1007/s00429-010-0710-2>
971

972 Biol. 17, 417–428. <https://doi.org/10.1089/cmb.2009.0164>
973 Zanini, F., Brodin, J., Thebo, L., Lanz, C., Bratt, G., Albert, J., Neher, R.A., 2015. Population
974 genomics of intrapatient HIV-1 evolution. *Elife* 4, 1–26. <https://doi.org/10.7554/eLife.11282>
975

976
977
978

Appendix



979
980
981
982
983

Figure S1. Plots showing percentage of datasets analyzed by a tool within our time limit. From green to red, full completion of a dataset (green) to no completion (red) is indicated for each set.

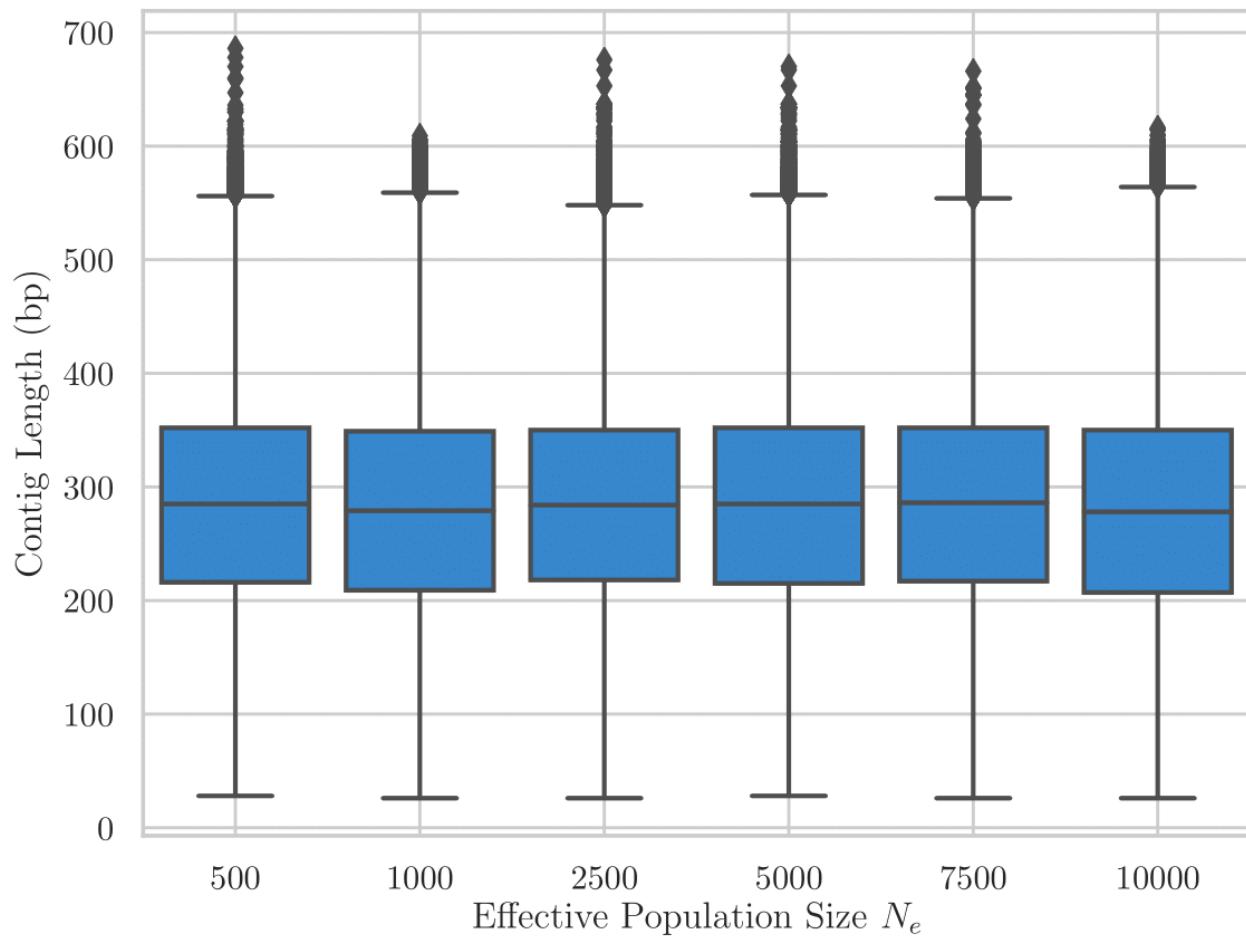
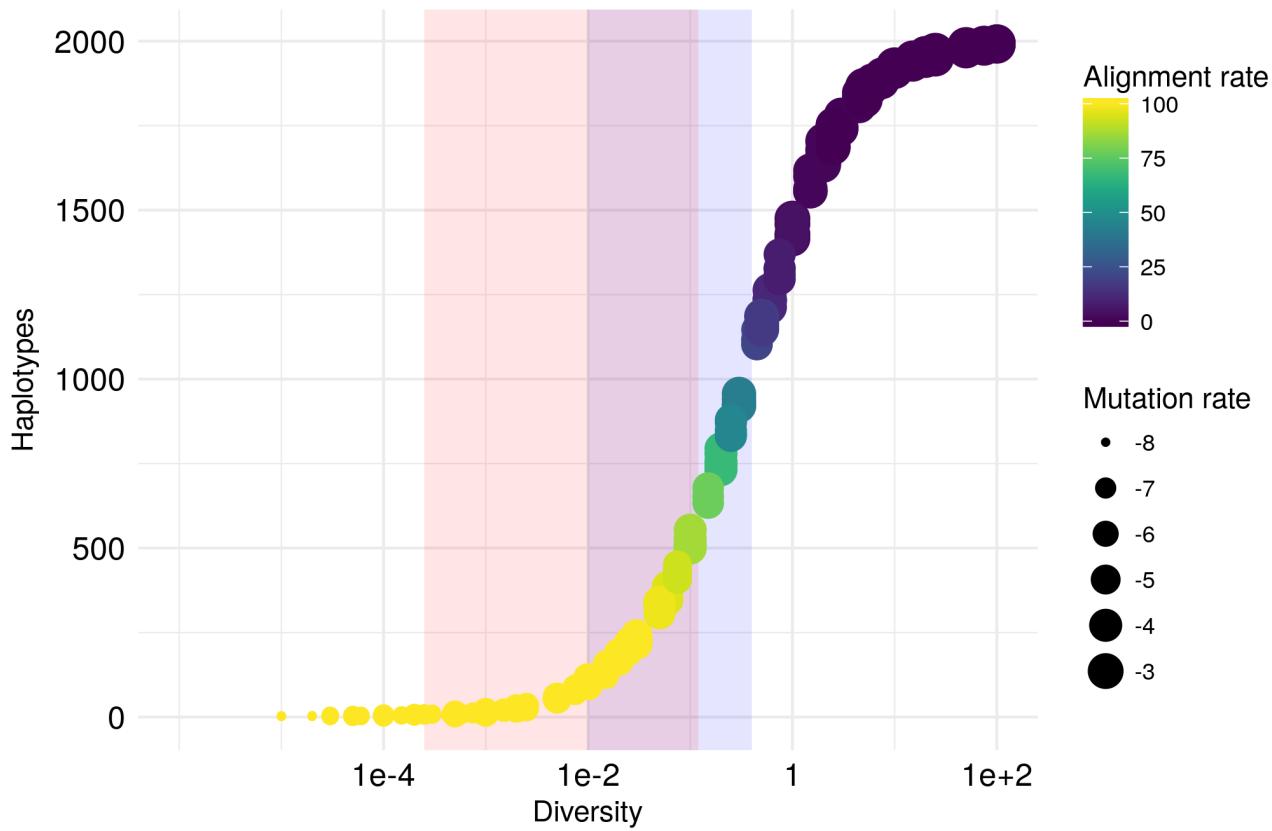


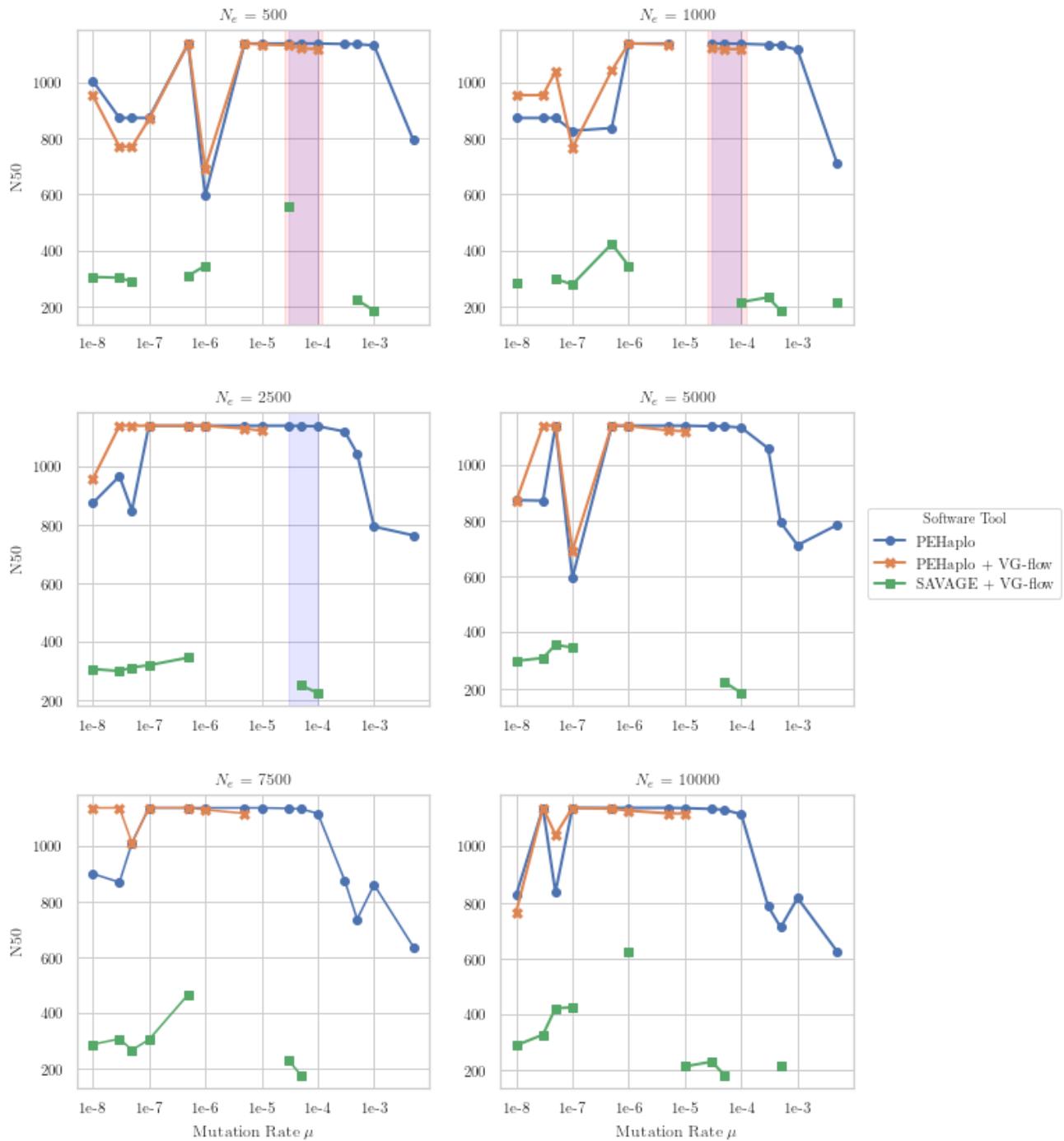
Figure S2. The length distribution of haplotypes obtained by HaploClique for each effective population size.

984
985
986
987



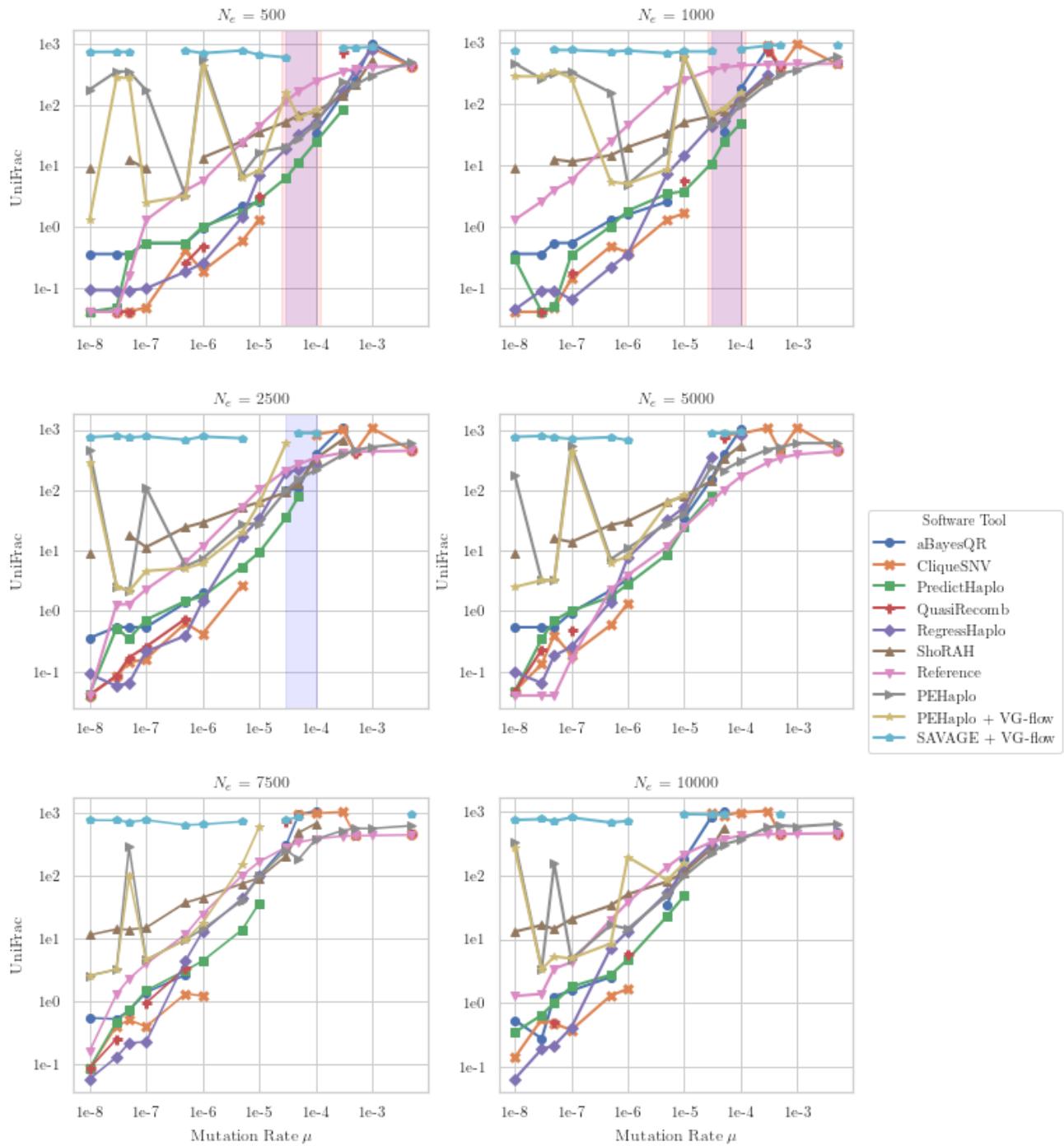
988
989
990
991

Figure S3. Number of true haplotypes estimated from the coalescent-based simulated data across levels of underlying intra-patient genetic diversity. Intra-host HIV-1 and HCV diversity levels are highlighted shaded light blue and shaded light red regions, respectively.



992
993
994
995
996
997

Figure S4. Reference-based and *de novo* haplotype callers: variation of recall values with mutation rate (log-scaled) for all considered N_e . The shaded light blue and red regions correspond to HIV-1 and HCV diversity levels, respectively. For all pairs of parameters μ and N_e , we report the mean estimates of recall over all valid outputs produced by each software tool for five haplotype populations. If a tool did not produce any output for some pair of parameters, we included a gap in the corresponding plot.



998
999
000
001
002
003
004
005

Figure S5. Reference-based and *de novo* haplotype callers: variation of UniFrac distances (EMD) with mutation rate (log-scaled) for all considered N_e . The shaded light blue and red regions correspond to HIV-1 and HCV diversity levels, respectively. For all pairs of parameters μ and N_e , we report the mean estimates of UniFrac distances over all valid outputs produced by each software tool for five haplotype populations. If a tool did not produce any output for some pair of parameters, we included a gap in the corresponding plot. The values for *de novo* tools are usually higher than for *reference-based* tools.