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Summary

Many toxins are short, cysteine-rich peptides that are of great interest as novel thera-
peutic leads and of great concern as lethal biological agents due to their high affinity and
specificity for various receptors involved in neuromuscular transmission. To perform initial
candidate identification for design of a drug impacting a particular receptor or for threat
assessment as a harmful toxin, one requires a set of candidate structures of reasonable ac-
curacy with potential for interaction with the target receptor. In this article, we introduce
a graph-based algorithm for identifying good extant template structures from a library of
evolutionarily-related cysteine-containing sequences for structural determination of target se-
quences by homology modeling. We employ this approach to study the conotoxins, a set of
toxin peptides produced by the family of aquatic cone snails. Currently, of the approximately
six thousand known conotoxin sequences, only about three percent have experimentally char-
acterized three-dimensional structures, leading to a serious bottleneck in identifying potential
drug candidates. We demonstrate that the conotoxin template library generated by our ap-
proach may be employed to perform homology modeling and greatly increase the number of
characterized conotoxin structures. We also show how our approach can guide experimental
design by identifying and ranking sequences for structural characterization in a similar man-
ner. Overall, we present and validate an approach for venom structure modeling and employ
it to expand the library of extant conotoxin structures by almost 300% through homology
modeling employing the template library determined in our approach.

1 Introduction

Toxins have for a long time been considered a rich natural source of therapeutic leads because
of their high specificity and binding affinity for various receptors involved in different biologi-
cal pathways [Zambelli et al., 2016, Verdes et al., 2016]. The drug ziconotide, for example, is a
potent analgesic derived from a toxin produced by the aquatic cone snail species Conus magus
[Miljanich, 2004]. The on-average smaller size of toxins—typically < 100 amino acids along with a
sizeable proportion < 30 amino acids long [Dang, 2019]-means they can be employed with relative
ease in high-throughput in silico screenings to rationally identify candidates for initial scaffolds
interacting with a particular receptor of interest. Indeed, this is a fruitful initial line of inquiry for
improving drug discovery outcomes and productivity [Romano and Tatonetti, 2019]: in one recent
study of note the authors employed a docking approach to identify a-conotoxin BulA, produced
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by species Conus bullatus, as a competitive agonist for the lysophosphatidic acid receptor 6, a G-
protein coupled receptor involved in the development of several cancers [Younis and Rashid, 2017].
However, such an approach is limited by the necessity of possessing a library of at least moderately-
accurate structures of potential toxin candidates [SledZ and Caflisch, 2018]: more structures mean
a larger search space and hence a higher likelihood of identifying good initial leads.

Aside from their therapeutic benefit, toxins such as these also pose a threat to biosecurity. The
high-throughput evaluation of toxin mode of action as well as the diagnosis and decontamination
of disulfide rich toxins, either natural or man-made, is required for public health safety. Rapid ad-
vances in synthetic biology have created challenges in determining the health risks posed by natural
toxins or modified toxins with even higher pathogenicity [Gomez-Tatay and Hernandez-Andreu, 2019].
Thus, in tandem with high-throughput screening for therapeutic design, it is necessary to also be
able to perform high-throughput screening for threat identification and determination of toxin
targets and mechanisms of action. Structural characterization stands as a rate-limiting step for
high-throughput screening for both therapeutic design and toxin threat characterization, as iden-
tified sequences often far outnumber determined structures. For example, only about 3% of se-
quences isolated from cone snail venom have corresponding experimentally-determined structures
[Mansbach et al., 2019].

If the structures of proteins could be rapidly predicted strictly from their sequences, structural
determination would not be a bottleneck; however, structure prediction from sequence still remains
a challenging proposition [Huang et al., 2016]. Ab initio or de novo modeling approaches for obtain-
ing protein structure predictions by modeling essential folding physics are prohibitively expensive
except for small proteins of about 20-62 residues in size [Pitera and Swope, 2003, Ensign et al., 2007,
Voelz et al., 2010, Sborgi et al., 2015]. Even for proteins short enough to be de novo modelled in
isolation, this can become expensive if a large number of different structures are desired. Struc-
ture prediction for a query sequence becomes more tractable when experimentally-resolved struc-
tures are available for evolutionarily related sequences: this is referred to as homology modeling
[Dill and MacCallum, 2012|. For typical proteins (at least 100 amino acids long), a useful rule of
thumb for building a homology model of a protein with unknown structure using a structurally
characterized protein as the template is that both proteins should share at least 25% sequence iden-
tity [Baker and Sali, 2001, Xiang, 2006]. Of note, several protein structure prediction algorithms
use a combination of ab initio and homology modeling approaches. For instance, both I-TASSER
[Yang et al., 2015, Zhang, 2008] and ROSETTA [Bradley et al., 2005, Simons et al., 1997] split up
the query sequence into fragments that will be searched against a library to identify structure frag-
ments (the homology modeling part), followed by assembly of these fragments into a full-length
structural model via molecular dynamics or Monte Carlo simulations using either physics-based or
knowledge-based force fields (the ab initio modeling part).

One challenge in applying homology modeling to toxins is that, due to their on-average smaller
size, the so-called modeling “safe zone” where structural similarity can be inferred requires a higher
sequence identity during structural template selection than the 25% rule of thumb for typical pro-
teins [Krieger et al., 2003, Kong et al., 2004]. This is because at shorter peptide lengths, a sequence
identity of 25% is more likely to have arisen by random chance and not due to any evolutionary
constraints on the structure. A related challenge occurs in constructing suitable template libraries
that contain sufficient information for building accurate homology models for these short peptides.
To apply the homology modeling framework for shorter peptides, a reasonable heuristic instead
becomes that the alignment length and percent identity fall above the phenomenological curve
introduced by Rost [Rost, 1999] (see Eqn. 1 and Fig. S1). The relative steepness of the Rost curve
for alignment lengths of less than fifty amino acids provides an illustration of why, for peptides of
such lengths, it is important to use the actual functional form, rather than a static cutoff, to assess
whether a pairwise alignment contains sufficient information for homology modeling.

In this article, we propose the use of a simple graph-based algorithm for homology mod-
eling of toxins. Graph theory has a long and storied history of usage for sequence-grouping
tasks such as homology detection [Santiago et al., 2018], structure prediction [Bolten et al., 2001,
Pipenbacher et al., 2002, Yan et al., 2011], protein family identification [Abascal and Valencia, 2002,
Enright and Ouzounis, 2000], and even direct homology modeling [Yan et al., 2011]. For large
heterogeneous databases, it can be challenging to identify homologues and a number of sophis-
ticated algorithms have been developed for such purposes; we instead focus on the problem of
homology modeling a set of cysteine-rich toxins known to be evolutionarily related. In our ap-
proach, we employ the number and placement of cysteines within a sequence as a rough initial
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estimate of functional and structural relatedness. We apply our approach to the so-called conotox-
ins, which are small, cysteine-rich peptide toxins produced by the cone snails [Uribe et al., 2018,
Mansbach et al., 2019].

In the following sections, we present our graph-based approach and employ it to construct
sequence graphs and identify good libraries of templates for homology modeling. We demonstrate
that these libraries improve outcomes for structure homology modeling over using the typical
25% flat cutoff and employ them as part of a homology modeling procedure that results in a
significantly expanded library of structures for the conotoxins that will be of use in future high-
throughput studies. In addition, we use the graph-based approach to construct a set of tables
indicating sequences whose experimental or ab initio structural characterization is predicted to be
most valuable in creating a broad structure library by using homology modeling.

2 Results

We initialize the algorithm by separating a set of over 2000 known conotoxin sequences into
databases containing four, six, eight, and ten cysteines respectively. For each database, we con-
struct graphs of sequences in which an edge between two nodes (i.e., sequences) represents a
pairwise alignment that is of sufficient length and percent identity to fall into the safe homology
modeling zone above the Rost curve (cf. Eqn. 1 and Fig. S1). Some portion of the sequences
have known structures, such that the corresponding nodes are annotated with the relevant PDB
ID(s). We employ the graphs thus generated to iteratively add nodes with structures to a library
of templates for homology modeling (see Fig. 1 for a schematic illustration of the procedure). We
term this set of sequences {Lqx}, the set of existing structural library templates (cf. Fig. 2). Nodes
are added to {Lex} in a greedy manner, in order of highest node degree, such that the resulting
library will contain enough templates to homology model as many non-structurally-characterized
sequences as possible but with small sequence overlap and retaining a number of non-library struc-
tures for quality assessment. Since this is approximately the vertex-covering problem of a graph,
we cannot find a globally optimal solution, as that problem is NP-complete [Karp, 1972]. We
halt the procedure once either we have no further nodes with structures to add or there are no
remaining sequences in a given connected component of the graph that are not connected to at
least one library template sequence, such that all sequences in that component may be structurally
characterized by homology modeling. We refer to the set of sequences that may be homology
modeled based on set {Lex} as set {C (Lex}) that are covered by {Lex}. We also perform a sim-
ilar procedure-but without the constraint of structure annotation—on the nodes absent {L.x} to
identify the set {Lp0j} that are of interest for experimental or ab initio structural characterization
such that they cover the remaining set {C (Lpro;})-

In Fig. 2, we present the sequence graphs for sets of conotoxin sequences with four, six, eight,
and ten cysteines respectively. We specifically display the set {Lex} (in orange), which we employ
to predict structures for the set {C (Lex)} (in blue) by homology modeling. We show {Lp.0;} (in
green) whose structural characterization from either experiment or ab initio modeling would lead
to coverage by homology modeling of the set {C (Lproj)} (in magenta) that comprises sequences
with no characterized structure and not covered by set {Lex}.

These figures demonstrate that we are able to characterize a large number (and moderate
proportion) of unknown conotoxin structures, which may be used for high throughput screen-
ing. Specifically, out of the 801 sequences with four cysteines, 61 (7.6% of total) currently have
experimentally-resolved structures. The graph-based approach selected 49 (6.1% of total) of these
structures as comprising the four cysteine template library (set {Lcx}; orange circles in Fig. 2a,
while the unselected structures are represented in black), which allowed for homology modeling of
a further 143 (17.9% of total) sequences (set {C (Lex)}; blue circles in Fig. 2a). This corresponds
to an increase of over 230% for the number of structurally characterized sequences over the origi-
nal 61. In addition, the graph-based approach indicated a further 453 sequences (56.6% of total)
would need to be characterized, experimentally or ab initio, to allow for homology modeling of
the remaining 151 (18.9% of total). Out of the 1,113 sequences with six cysteines, 44 (4.0% of
total) currently have experimentally-resolved structures. The graph-based approach selected 30
(2.7% of total) of these structures as comprising the six cysteine template library, which allowed for
homology modeling of a further 148 (13.3% of total) sequences. This corresponds to an increase of
over 330% for the number of structurally characterized sequences over the original 44. In addition,
the graph-based approach indicated a further 419 sequences (37.6% of total) would need to be
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characterized, experimentally or ab initio, to allow for homology modeling of the remaining 509
(45.7% of total). Out of the 190 sequences with eight cysteines, 2 (1.1% of total) currently have
experimentally-resolved structures and were selected as comprising the entire template library,
which allowed for homology modeling of a further 17 (8.9% of total) sequences. This corresponds
to an increase of 850% for the number of structurally characterized sequences over the original 2.
In addition, the graph-based approach indicated a further 71 (37.4% of total) would need to be
characterized, experimentally or ab initio, to allow for homology modeling of the remaining 101
(53.1% of total). There are no known structures corresponding to ten cysteine sequences so there is
no current coverage. The graph-based approach indicated that 19 of the total 53 sequences (35.8%)
would have to be characterized to allow for homology modeling of the remaining 34 (64.2%). In
Tables 1, 2, and 3, we list all PDB IDS of the structures included in the template set {Lqx} con-
structed for the four and six cysteine sequences, along with their sequences and the name or names
of the corresponding toxins.

In Fig. S2, we present the same sequence graphs used to construct the template libraries, but
we color the nodes by relative sequence length instead of set occupation. A significant proportion
of isolated sequences (nodes with no connections that therefore cannot be homology modeled) are
relatively short (cf. the ring of small red nodes in Fig. S2A and to a lesser extent in Fig. S2B),
which demonstrates that a high proportion of isolated nodes may be characterized well through
rapid ab initio modeling, particularly for the four and six cysteine sequences. Specifically, 372 of
the 453 four cysteine {L,.0;} sequences (82.1%) are isolated nodes with no edges; of these 298
(80.1%) are shorter than 20 amino acids, and 353 (94.9%) are shorter than 30 amino acids in
length. In addition, 239 of the 419 six cysteine {Lp10;} sequences (57.0%) are isolated nodes; of
these 86 (36.0%) are shorter than 20 amino acids, and 163 (68.2%) are shorter than 30 amino acids
in length. Conversely, 41 of the 71 eight cysteine {Lp.0;} sequences (57.7%) are isolated nodes,
and of these only 5 (12.2%) are shorter than 30 amino acids in length; 10 of the 19 ten cysteine
{Lproj} sequences (52.6%) are isolated nodes and of these none are shorter than 30 amino acids in
length.

In Fig. 3, we assess the quality of the template libraries for homology modeling, constructed
using the graph-based approach employing the Rost cutoff, and compared with a set of template
libraries based on a static 25% rule-of-thumb cutoff. In Fig. 3A-B, we constructed homology mod-
els for each structure in a library using the other structures in that library and computed the
root-mean-square deviation (RMSD) between each modeled structure with the corresponding ex-
perimental structure. In Fig. 3C-D, a similar assessment was performed for all structures that were
not included in each template library. As expected, there is a statistically significant improvement
(downwards shift in the distribution, two-tailed Kolmogorov-Smirnov test with p < 0.05) for both
in- and out-of-library structures when using the Rost cutoff as compared to the 25% cutoff, which
verifies the necessity of our approach. For in-library assessment, the mean of the distribution drops
from 4.0 £ 0.7 A to 1.5+ 0.2 A for the four cysteine library and from 3.8 £ 0.6 A to 2.1 +0.2 A
for the six cysteine library, while for out-of-library assessment, the mean of the distribution drops
from 1.74 0.1 A to 1.0 £0.2 A for the four cysteine library and from 1.82 +0.09 A to 1.4 +0.1 A
for the six cysteine library.

To illustrate the reason that a static cutoff is less accurate, in Fig. S3, we display an approxima-
tion of the distribution of minimum percent identity needed to construct a reliable homology model
for a given conotoxin sequence. The minimum required percent identity varies greatly for different
conotoxins: although almost none of the conotoxins are long enough to employ the typical 25%
cutoff, the relatively large width of the distributions even among conotoxins with the same number
of cysteines indicates that choosing a static cutoff is not appropriate. A static cutoff could impact
modeling accuracy by either underestimating the needed percent identity for a short sequence or
by overestimating the needed percent identity for a long one and thus removing from consideration
templates that would otherwise be appropriate, although in the case of a set of short sequences
like the conotoxins the primary source of loss of accuracy is expected to be the former.

In Tables 4 and 5 and Tables S1 and S2, we present and rank the set of conotoxins that are
of greatest interest for experimental characterization, as availability of experimental structures for
these sequences (belonging to set {Lpr0j}) would allow homology modeling of the remainder of the
(nonisolated) sequences (belonging to set {C (Lproj})). We present these in order of greatest graph
degree, since greater degree in the graph corresponds to the ability to cover a greater number of
sequences. Thus, we suggest that experimental structural resolution begin with those sequences
listed at the top of their respective tables and work downwards in order to most rapidly and
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efficiently structurally characterize the sequence space of the conotoxins.

Finally, in Supporting File finalmodels.zip, we attach the set of structures computed by
homology modeling, corresponding to sequences in the set {C (Lex)}, with the four, six, and eight
cysteine library structures used as templates. Because we divided the sequences into subsets based
on the number of cysteines in a sequence, we are able to use keeping the cysteines aligned as an
additional criterion during the homology modeling procedure. The average PROCHECK G-factor,
which is a log-odds score based on the likelihood of observing the given distributions of ¢-¢ and
X1-X2 angles in proteins, is 0.086 4 0.005 for the reported four cysteine models, —0.103 + 0.007
for the reported six cysteine models, and —0.2 4 0.1 for the report eight cysteine models. Since
this score is not a relative measure and values above —0.5 are generally considered acceptable, this
provides evidence that the structures we have computed are physically reasonable. We further
assess the quality of the homology modeling protocol by using it to model each structure in the
library with templates selected from other structures in that library. The distribution of root-
mean-square deviation (RMSD) values of the top three models compared with each experimental
structure is shown in Fig. 4A-B. We see that our method performs well: the average RMSD in
the four cysteine architecture is 2.00 + 0.09 A with at least 80% of the models having less than
3 A RMSD, and the average RMSD in the six cysteine architecture is 2.3 + 0.2 A with 75% of
the models having less than 3 A RMSD. Most of the higher RMSD values are contributed by the
flexible loops and coils. When we look at the RMSD distribution after rejecting those atoms that
cannot be structurally aligned, as in case of loops and coils, the distributions improve significantly
(Fig. S4), with a mean of 1.55 4 0.09 A for the four cysteine architecture and a mean of 1.2 & 0.1
A for the six cysteine architecture, with 100% of the models for both archtiectures having less
than 3.5 A deviations. A second test for validating our method was performed by checking the
distribution of native contacts in the modeled structures (Fig. 4C-D). At least 60% of the native
structures were captured in our models, with the distribution means of 80 & 1% and 81 4 1% for
the four and six cysteine architectures respectively. Two pairs of residues were defined to have a
native contact if the distance between the Ca atoms in the native experimental structure was less
than 8 A, and the pair was at least 4 residues apart (Ca'l~ Cait).

3 Discussion

By employing a straightforward graph-based heuristic approach, we have constructed a set of
template libraries for homology modeling of conotoxins based on the number of cysteines con-
tained in the sequence that may also be used for homology modeling of other short, disulfide-rich,
evolutionarily-related peptides. We demonstrated that libraries constructed to account for the
shorter lengths of the conotoxins produce homology models that are more accurate than libraries
constructed with the typical static 25% cutoff for most proteins. Currently, sufficient informa-
tion is not available to homology model any sequences containing more than eight cysteines, as
experimental characterization has focused preferentially on the shorter conotoxins.

Next, we employed our libraries to predict a set of structures from sequence using homology
modeling, allowing us to expand the library of known conotoxin structures by about 290% overall,
although a number of sequences remain without any associated structural predictions. We assessed
the quality of these structures through standard techniques to demonstrate they are expected to be
reasonably accurate and therefore may be employed for high-throughput screening of conotoxins
as novel therapeutics for new receptor targets. In addition, our graph-based approach has allowed
us to rank the remaining non-isolated sequences without corresponding characterized structures
in an order that would allow for the most rapid expansion of the conotoxin structure library. We
also note that of those sequences which were isolated in our graphs—that is, had no edges-80%
of those containing four cysteines and 36% of those containing six cysteines were under 20 amino
acids long, marking them as good candidates for a high-throughput ab initio modeling procedure,
rather than necessarily for experimental characterization, as they will likely be tractable but will
not contain any information about other sequences.

One important point about short, disulfide-rich peptides that we have not addressed in this
work is the existence of so-called “disulfide isomers.” Under certain conditions, there is experi-
mental evidence suggesting that some toxins do not exist as a single set of “native” structures but
as a heterogeneous—perhaps metastable—ensemble populated with strikingly different secondary
structures corresponding to differing patterns of cysteine connectivity [Paul George et al., 2018,
Combelles et al., 2008]. Characterizing multiple possible disulfide isomers is outside the purview
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of homology modeling, but it is an important area of future work and sounds a note of caution on
the standard interpretation of structure libraries, which generally assume a single “native” structure
dictated wholly or primarily by the folding propensities of the amino acid sequence.

Overall, the work in this article presents a rational graph-based algorithm that we employ to
expand the repertoire of known conotoxin structures for application in a high-throughput manner
as part of the early stages of drug design. We expect that the libraries, the expanded set of
structures, and the ranking of sequences in terms of degree of connectedness to other sequences
will be valuable resources improving the prospects of conotoxins as novel therapeutic leads and that
our approach may be employed for further characterization of other sets of evolutionarily-related
toxins.
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7 STAR Methods

7.1 Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, S. Gnanakaran (gnana®@lanl.gov)

7.2 Method Detalils

For use in construction of the template libraries, we employed a set of 142 conotoxin structures
downloaded from the PDB [Berman et al., 2000], which we found by searching “conotoxin” on the
PDB. We manually removed several false positives, such as a crystal structure of the acetylcholine-
binding protein that was identified due to the title of the associated paper. We also manually
removed several sequences that were identical to natural conotoxin sequences but modified by
the replacement of disulfide bonds with dicarba bonds. We did not remove redundant sequences
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consisting of multiple characterization methods and in a few cases structural isomers resulting from
different disulfide-bond connections. In future, further work will be done to properly assess the
likelihood of multiple stable or metastable states, but we do not address this consideration further
here.

For use in the analysis detailed in this article, we downloaded a set of 6,255 peptide sequences
from the Conoserver [Kaas et al., 2012] using the Tools > Download Conoserver’s Data com-
mand. We retained only sequences containing four, six, eight, or ten cysteines. We removed
anything with the word “precursor” or “patent” in the name, as precursor sequences contain,
in addition to the mature peptide sequence that folds into the toxin, a signal sequence and N-
and C-terminal pro-regions that are cleaved in the endoplasmic reticulum and Golgi apparatus
[Kaas et al., 2010]. A manual inspection of sequences labeled “patent” revealed that many were
insufficiently characterized—for example, they noted only the cysteine pattern or they mixed pre-
cursor and mature toxin sequences with no indication. We also added to the sequence list any
sequence that corresponded to one of the PDB structures that was not already contained in the
list. Once the set of all sequences was finalized, we split it into four subsets corresponding to the
number of cysteines contained. In the end we retained for analysis a total of 801 unique sequences
containing four cysteines, 1,113 unique sequences containing six cysteines, 190 unique sequences
containing eight cysteines, and 53 unique sequences containing ten cysteines.

7.2.1 Library template selection procedure

For each subset of sequences corresponding to a different number of contained cysteines, we created
an alignment graph as follows. For every sequence we computed a pairwise alignment with every
other sequence, using the PairwiseAligner class in the Align module of the Biopython package
[Cock et al., 2009], in global mode, with a gap-open penalty of -10 and a gap-extend penalty of
-0.5. Employing the networkx Python package [Hagberg et al., 2008|, we constructed a graph
in which nodes represented sequences and we placed an edge between two nodes whenever the
percent identity of the highest-percentage pairwise alignment of the two corresponding sequences
was greater than [Rost, 1999],

Prost = 1 + 4801~ 032(1+exp(~1d55)), (1)

where L is the length of the alignment in numbers of amino acid residues and we set n =5 (%).

We constructed two different template libraries for each subset of sequences, one from the
pairwise alignment graph and one from a static 25%-identity cutoff (with n =5 %). When creating
the graph-based libraries (see also Fig. 1), we first identified all connected components in the graph.
For each connected component, we chose first the sequence with the highest node degree (number
of distinct edges) that corresponded to a structure in the set of 142 structures downloaded from the
PDB, added it to the library, and removed that sequence and all sequences it shared an edge with
from the graph. We continued this procedure until one of two criteria was satisfied: (i) there were
no longer any sequences in the connected component with corresponding structures or (ii) there
were no longer any sequences in the connected component without corresponding structures. These
criteria corresponded to the following two situations, respectively: (i) there were no other structures
available for inclusion in the library or (ii) the entire connected component was able to be homology
modeled based on the structures included in the library up until that point. For construction of
the static sequence-identity cutoff library, sequences within each data set were clustered and a
representative sequence from each cluster chosen by using the sequence_db.filter command of
MODELLER version 9.20 [Sali and Blundell, 1993, Webb and Sali, 2016], which groups sequences
together if their sequence identity is greater than a specified cutoff value. The set of cluster
representatives became a library of structures in which between any pair the sequence identity was
less than the specified cutoff value.

For computation of the homology modeled structures based on the library templates that
were used to assess and compare the quality of the two libraries, we used the align2d command
followed by the automodel procedure from Modeller 9.20 with default parameters. We computed
five models for each sequence from each template (except for itself, in the case of library structures
being modelled based on other library structures). The best homology model was chosen as the
one with the lowest backbone RMSD to the known or experimentally-resolved structure, using
the align command in PyMOL [Schrodinger LLC, 2015] that superimposes two structures via a
structure superposition that is constrained by a prior sequence alignment.
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7.2.2 Homology modeling criteria

After assessing the quality of the template libraries, we used the graph-based libraries to construct
via homology modeling a database of structures for those conotoxin sequences (set {C (Lqx)} shown
in blue in Figs. 2 and S2) that are covered by those libraries (set {Lcx} given in orange in Figs. 2
and S2). The pipeline employed for building these homology-modeled structures is detailed here.
A schematic of this pipeline is given in Fig. 5. The 4C subset included 143 such sequences for which
structures were computed by homology modeling from 49 library structure templates, while the 6C
subset included 148 sequences for which structures were computed by homology modeling from 30
library structure templates. There was only one existing non-isolated library structure template
having 8C architecture, and 17 sequences were modeled from it, while no 10C structures could be
modeled, since to date there are no structures of conotoxins containing 10 cysteines deposited in
the PDB.

Alignment of each of the subject sequences was performed with those sequences that have a
structure present in the template library using BLAST [Altschul et al., 1990]. BLOSUM62 sub-
stitution matrix [Henikoff and Henikoff, 1992] was used with a gap-open penalty of -10 and a
gap-extend penalty of -1. For each sequence, structures were considered possible templates if they
fulfilled the following criteria: (i) sequence identity of > 70%; (ii) > 70% of sequence length cov-
ered; (iii) E-value < 1 x 107°. Additionally, we constrained the cysteines in the sequence to be
aligned in the following manner. If there was a one-position shift in the sequence alignment that
would allow the cysteines to align, the gap penalties at that position were removed to enforce
cysteine alignment. If a greater than one-position shift would be required to allow the cysteines to
align, such a template was not considered.

Structural homology modeling was performed using the MODELLER version 9.20 package
[Sali and Blundell, 1993, Webb and Sali, 2016]. Multiple templates were used to aid in the mod-
elling process for those subjects where more than one sequence satisfied the above-mentioned
criteria. The models were further relaxed by several steps of conjugate gradients and molecular
dynamics with simulated annealing as recommended in the thorough Variable Target Function
Method (VITFM) optimization of MODELLER [Braun and Go, 1985]. Due to the alignment of
cysteines from the template structures, the disulfide bonds could be constrained by patches. Ten
such models were generated for each subject sequence. Subjects 107 and 110 from 4C architecture
and subject 2 from 6C architecture did not correspond to any templates that satisfied all of our
above criteria. Nevertheless, we modeled these sequences based on the best sequence match.

We selected three top models for each subject based on the Discrete Optimized Protein En-
ergy (DOPE) score [Shen and Sali, 2006] and the PROCHECK G-factor [Laskowski et al., 1993].
DOPE, a typical criterion for assessing the quality of a modeled structure, is an atomistic distance-
dependent statistical potential calculated from a large set of refined high resolution PDB struc-
tures. The PROCHECK G-factor is a log-odds score based on observed distributions of the ¢-1,
and x1-x2 values measuring whether the model is physically reasonable or if it contains unusual
stereochemical configurations. In this study, we normalized the DOPE and G-factor scores and
used a combined product of probabilities to sort the structures. The top three models selected
for each subject are reported in Supplementary File finalmodels.zip, along with their DOPE,
G-factor, MODELLER optimization function value (molpdf), GA341 scores [John and Sali, 2003],
and the Ramachandran plots for each of these models. All RMSD calculations were performed
with Pymol [Schrodinger LLC, 2015]. There is only one available non-isolated structure in the 8C
extant library. This was used to model all 17 subject sequences. The best three models for each
sequence along with their assessment scores are reported in the database.

7.3 Quantification and Statistical Analysis

We use the Kolmogorov-Smirnov two-tailed test as implemented in the SciPy package [Oliphant, 2007]
and referred to by the ks2samp command to assess whether we may reject the null hypothesis of
the RMSDs of experimental structures from homology models based on different template libraries
being drawn from the same distribution. We employ a significance level of p = 0.05, meaning that

we reject the null hypothesis if the KS statistic D returned by the test is such that D > a4/ ":‘—mm,

where o = 1.224 for a significance level of p = 0.05, and n and m are the number of samples in
each set respectively. The analysis is referred to in Sec. 2.
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7.4 Data and Software Availability

Data is available as supplementary files and software is available upon request from the corre-
sponding author (see Next Section).

7.5 Supplemental Information

We provide tables of 8C and 10C sequences in order of projected interest for experimental char-
acterization and four supplementary figures. Structures used as template libraries are provided in
the supplementary data folder 1ibraries.zip. Homology modeled structures of conotoxins are
provided in the supplementary data folder finalmodels.zip, along with their scores and the as-
sociated Ramachandran plots. Python, Modeller, and Bash analysis scripts for preparation, graph
construction and further analysis will be provided upon request.
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Figure 1: Schematic of a simple graph-based algorithm for constructing a library of structural
templates for homology modeling. For each connected component in the graph of sequences,
where an edge represents the ability to homology model one sequence based on another, we employ
a greedy approach to find a good library of template structures that cover as much of the sequence
space as possible. For computation of the sequence set {L0;} of interest for experimental or ab
initio characterization, we skip consideration of the structures and run the algorithm on the subset
with structure-associated sequences removed.
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Figure 2: Graph of conotoxins containing (A) four cysteines, (B) six cysteines, (C) eight cysteines
and (D) ten cysteines where nodes are sequences and edges exist between sequences with pairwise
alignments that have high enough length and percent identity to fall above the Rost curve with
n = 5% (Eqn. 1). We show the set {Lex} of sequences added to the template libraries in orange,
the set of sequences corresponding to unselected structures in black, the set of covered sequences
{C(Lex)} that we homology model based on the templates included in the library in blue, and
the set of projected sequences {L0j} in green whose structures are in need of characterization in
order that the rest of the sequences {C(Lpr0;j)} in magenta may be homology modeled based on
some template. The sizes of the nodes corresponds to their degree; that is the number of other
sequences that they can be modeled based on or used to model. Node locations and edge lengths
were chosen for ease of visualization of separate connectec components. Visualization of the graphs
was produced with Gephi 0.9.2 [Bastian et al., 2009].
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Figure 3: Quality of graph-based template library selection criteria. Comparison of root-mean-
square deviation (RMSD) distributions from experimental structures for (A-B) structures within
the libraries, with each structure modeled by selecting from all other templates within the given
library, and (C-D) structures outside the libraries modeled by selecting from all templates within
the given library. For each homology modeled structure, we choose the best fit to experiment.
The distributions produced by the simple 30% cutoff libraries are shown in blue; the distributions
produced by using the graph-based algorithm are shown in orange.
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Figure 4: Quality of modeling criteria. (A-B) Distribution of root-mean-square deviation (RMSD)
for homology models compared with their corresponding experimental structures, without prior
removal of any structural alignment outliers. Each experimental structure present in the library was
modeled by selecting from all other templates in the library. The top three models for each structure
based on combined MODELLER DOPE and PROCHECK G-FACTOR scores are considered here.
(A) Distribution mean = 2.00A, standard deviation = 0.97A. (B) Distribution mean = 2.25A,
standard deviation = 1.20A. (C-D) Distribution of fraction of native contacts present in each of
the homology modeled structures, with respect to the experimental structure. Each experimental
structure present in the library was modeled by selecting from all other templates in the library.
The top three models for each structure based on combined MODELLER DOPE and PROCHECK
G-FACTOR scores are considered here. (C) Distribution mean = 0.797, standard deviation =
0.108. (D) Distribution mean = 0.805, standard deviation = 0.097.
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Schematic of conotoxin structural database generation with 6C group as example
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Figure 5: Schematic of procedure for producing homology modeled structures from library tem-
plates for conotoxin sequences with unknown structure lying in the set {C (Lex)}. Graph inset
of eight cysteine graph is an example. The inset consisting of an example alignment input figure
was created using the alignment obtained from BLAST [Altschul et al., 1990] and visualized with
Aliview [Larsson, 2014].
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Table 1:

List of conotoxins with corresponding PDB struc-

ture IDs [Berman et al., 2000] comprising 4C library. Name or
names of sequences are taken from the Conoserver database
[Kaas et al., 2012]. Multiple names for the same sequence indicate
the same sequence is produced by different species or has different
post-translational modifications.

Name(s) PDB ID Sequence

EpI [sTy15>Y], Epl laOm GCCSDPRCNMNNPDYC

PnIB, PnIB [sTyl5Y] lakg GCCSLPPCALSNPDYC

CnlA 1b45 GRCCHPACGKYYSC

AulB, Ac-AulB, AulB [ribbon isoform] 1mxp GCCSYPPCFATNPDC

ImlI |[R11E] le74 GCCSDPRCAWEC

ImlI [R7L] 1e75 GCCSDPLCAWRC

ImlI [D5N] 1e76 GCCSNPRCAWRC

TIA 21r9 FNWRCCLIPACRRNHKKFC

MrIB, MrIB C-term amidated lieo VGVCCGYKLCHPC

EI 1k64 RDPCCYHPTCNMSNPQIC

GID, GID*, GID*.NH2, GID*[O16P]  lmtq IRDECCSNPACRVNNPHVC

SI 1hje ICCNPACGPKYSC

TXIX 1wet ECCEDGWCCXAAP

GI 1xga ECCNPACGRHYSC

Conkunitzin-S1 1y62 RPSLCDLPADSGSGTKAEKRI-
YYNSARKQCLRFDYTGQGGN-
ENNFRRTYDCQRTCL

PIA, PIA [RIADMA] 1zlc RDPCCSNPVCTVHNPQIC

cMII-6 2ajw GCCSNPVCHLEHSNLCGGAAGG

PIXIVA 2fqc FPRPRICNLACRAGIGHKYPF-

GI (SER12)-benzoylphenylalanine 2fr9 I%ggl%PACGRHYYC

GI (ASN4)-benzoylphenylalanine 2frb ECCYPACGRHYSC

OmIA 2gcz GCCSHPACNVNNPHICG

BulA, BulA[P60O], BulA[P70] 2ns3 GCCSTPPCAVLYC

ImlI [P6A] 2ifi GCCSDARCAWRC

ImlI [P6K], ImI [P6K] deamidated 2ifj GCCSDKRCAWRC

Iml, ImI [C2U,C8U], ImI [C2U,C3U,- 2bypF GCCSDPRCAWRC

C8U,C12U], Iml deamidated, Ac-Im-

I, ImlI [A9S], ImI [C3U,C12U], ImI [P-

60|, ImI [P6APro|, ImI [P6A(S)Pro],

ImI [P6guaPro|, ImI [P6betPro], Iml

[P6fluoPro], ImI [P6fluo(S)Pro|, Iml-

[P6phiPro], ImI [P6phi(S)Pro], ImI -

[P6benzPro|, ImI [P6naphPro], ImI [P-

6phi(3S)Pro|, ImI [P6phi(5R)Pro|

CMrVIA [K6P], CMrVIA [K6P] am- 2ih7 VCCGYPLCHPC

gf\l/ff{i/IA, CMrVIA amidated 2b5p VCCGYKLCHPC

Cyclic MrIA 2j15 NGVCCGYKLCHPCAG

RgIA [P6V] 2juq GCCSDVRCRYRCR

RgIA [D5E] 2jur GCCSEPRCRYRCR

RgIA [Y10W] 2jus GCCSDPRCRWRCR

RglA 2jut GCCSDPRCRYRCR

Pcl6a 2ler SCSCKRNFLCC

Midi 2lu6 CNCSRWARDHSRCC

TxIB 21z5 GCCSDPPCRNKHPDLC

Lil.12, TxID 2m3i GCCSHPVCSAMSPIC

Ar1248 2m62 GVCCGVSFCYPC
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Lola 2md6 EGCCSNPACRTNHPEVCD

LvIA 5xgl GCCSHPACNVDHPEIC

Exendin-4/conotoxin chimera (Ex-4[1- 2naw HGEGTFTSDLSKQMEEEAVRC-

27]/pl14a) FIECLKGIGHKYPFCHCR

Bt1.8 2nay GCCSNPACILNNPNQC

TXIA(A10L) 2uz6 GCCSRPPCILNNPDLC

CnVA 3zkt ECCHRQLLCCLRFV

Cyclic Vel.1 4tt] GCCSDPRCNYDHPEICGGAAGG

GIC 1ul2 GCCSHPACAGNNQHIC

PelA, Btl.4, PeIA[P60]|, PeIA[P130]  5jmeF GCCSHPACSVNHPELC

Pnl0.1 5t6v STCCGYRMCVPC

LsIA, LsIA# 5t90F SGCCSNPACRVNNPNIC

VilXIVA 6efe GGLGRCIYNCMNSGGGLSFIQ-
CKTMCY

Table 2: List of conotoxins with corresponding PDB struc-
ture IDS [Berman et al., 2000] comprising 6C library. Name
or names of sequences are taken from the Conoserver database
[Kaas et al., 2012]. Multiple names for the same sequence indicate
the same sequence is produced by different species or has different
post-translational modifications.

Name(s) PDB ID Sequence

conotoxin-GS lag? ACSGRGSRCPPQCCMGLRCGRGNPQKCIG-

PIIIE, PHIE [K9S|, P- ljlo QEEBXLYGKCRRYPGCSSASCCQR

IIIE [S17Y,S18N,S20L)]

MVIIC, S6.6 lomn CKGKGAPCRKTMYDCCSGSCGRRGKC

TVIIA leyo SCSGRDSRCPPVCCMGLMCSRGKCVSIYGE

TxVII 1£3k CKQADEPCDVFSLDCCTGICLGVCMW

TxVIA 1fu3 WCKQSGEMCNLLDQNCCDGYCIVLVCT

EVIA 1glz DDCIKPYGFCSLPILKNGLCCSGACVGVCADL

GIIIB 1gib RDCCTPPRKCKDRRCKPMKCCA

GVIA 1ttl CKSPGSSCSPTSYNCCRSCNPYTKRCY

PIVA 1plp GCCGSYPNAACHPCSCKDRPSYCGQ

EIVA 1pgr GCCGPYPNAACHPCGCKVGRPPYCDRPSGG

PIITA 1r9i QRLCCGFPKSCRSRQCKPHRCC

MVIIA[R10K] 1tt3 CKGKGAKCSKLMYDCCTGSCRSGKC

Am2766 lyz2 CKQAGESCDIFSQNCCVGTCAFICIE

MrIITE 2efz VCCPFGGCHELCYCCD

FVIA 2km9 CKGTGKSCSRIAYNCCTGSCRSGKC

Im23a, Mr23a 2lmz IPYCGQTGAECYSWCIKQDLSKDWCCDF V-
KDIRMNPPADKCP

BullIB 2109 VGERCCKNGKRGCGRWCRDHSRCC

KITIA, KITA [W8dTrp|  2lxg CCNCSSKWCRDHSRCC

Ar1446 2m61 CCRLACGLGCHPCC

cGm9a 2mso SCNNSCQSHSDCASHCICTFRGCGAVNGLP

cBru9a 2msq SCGGSCFGGCWPGCSCYARTCFRDGLP

Mo3964 2mw7 DGECGDKDEPCCGRPDGAKVCNDPWYVCIL-
TSSRCENP

MIVIA 2n7f RDCQEKWEYCIVPILGFVYCCPGLICGPFVCV

cyclic PVIIA 2n8e CRIPNQKCFQHLDDCCSRKCNRFNKCVLP-

conotoxin-muOxi-GVIIJ  2n8h %?NGC%%PGATCGKLRLYCCSGFCDSYTKTC—

CnlIIC 2yen 5]8}%%%%PKGCSSKWCRDHARCC

CcTx 4blqP APWLVPSQITTCCGYNPGTMCPSCMCTNTC
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Regl2i 6bx9
MoVIB 6ceg

CCTALCSRYHCLPCC
CKPPGSKCSPSMRDCCTTCISYTKRCRKYY

Table 3: List of conotoxins with corresponding PDB struc-
ture IDS [Berman et al., 2000] comprising 8C library. Name
or names of sequences are taken from the Conoserver database
[Kaas et al., 2012]. Multiple names for the same sequence indicate
the same sequence is produced by different species or has different
post-translational modifications.

Name(s) PDB ID

G11.1 6cel
RXTA, RXTA [Btr33>W] 2pdl

Sequence

CAVTHEKCSDDYDCCGSLCCVGICAKTIAPCK
GPSFCKADEKPCEYHADCCNCCLSGICAPSTN-
WILPGCSTSSFFKI

Table 4: List of sequences containing four cysteines in order
of interest for experimental characterization, based on degree
(sequence coverage) in alignment graphs (cf. Fig. 2). Name
or names of sequences are taken from the Conoserver database
[Kaas et al., 2012]. Multiple names for the same sequence indicate
the same sequence is produced by different species or has different
post-translational modifications. Node degree corresponds to the
number of sequences with pairwise alignments that are long enough
and have high enough percent identity to be homology modeled
with the given sequence as a template.

Sequence Name(s) Degree (#
Edges)

AAKVKYSNTPEECCSNPPCFATHSEICG  Lil.28 10

GCCSDPRCAYDHPEIC Vel . 1[N9A] 10

GCCSNPVCHLEHSNAC MII [L15A] 8

AALEDADMKTEKGFLSSIVGNLGTV- Pu5.7 7

GNLVGSVCCQITNSCCPED

RAALEDADMKTEKGVLNAIFSNLGD- Pu5.9 6

LGNLVSSVCCKATTSCCPED

AGLTDADLKTEKGFLSGLLNVAGSV- Ltbg 6

CCKVDTSCCSNQ

GCCSNPVCALEHSNLC MII [H9A] 6

VPAEQMMEELCPDMCNRGEGEIICT- Lt14.4

CVLRRHVVSPSIR

TNEGPGRDPAPCCQHPIETCC Calbb )

RPECCTHPACHVSNPELCS Mrl1.8 4

GCCSRPPCIANNPDLC TxIA 4

SPGSTICKMACRTGNGHKYPFCNCR Feld.l 4

GCCSLPPCALNNPDYC PnIA [A10L,sTyl15Y] 4

YAAVVNRASALMAQAVLRDCCSNPP- Ecl.7 4

CAHNIHCA
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NGRCCHPACGKHFSC

NGRCCHPACGKYFSC
GCCSRAACAGIHQELC

GCCSNPVCHLAHSNAC

GCCSHPACSGNNREYCRES
GGCCSHPVCYFNNPQMCR

GGGCCSHPACAANNQDYC
DGCCSSPSCSVNNPDICGG
LDPCCREPPCASTHTDICT
NECCDNPPCKSSNPDLCDWRS
DECCSNPSCAQTHPEVC

GCCSHPACAGNNPHICS

SFRFIPGGIKEIACHRY CAKGIASA-
FCNCPDKRDVVSPRI

VPPEPILEIICPGMCDEGVGKEPFC-
HCTKKRDAVSSRI

GCCSYPPCNVSYPEICG

AANDKASVQIALTVQECCADSACSL-
TNPLIC

TAFGLRLCCKRHHGCHPCGRT
AANAKLFDVGQSCCSAPLCALLYMVIC
TVRDACCSDPRCSGKHQDLC
NLQILCCKHTPACCT
ECPPWCPTSHCNAGTC
GIWCDPPCPKGETCRGGECSDEFNSDV
GMWDECCDDPPCRQNNMEHCPAS
GRCCHPACGGKYFKC
TALTATRECCANPQCWSKNC

GCCSHPVCHARHPELC
DGCCSDPACSVNHPDICGG

PPGCCNNPACVKHRCG
LINTRCCPGQPCCRM
NAAANDKASDVIPLALQGCCSNPVC-
HVDHPELCL
GCCSHPVCHARHPALC

WDVNDCIHFCLIGVVGRSYTECHTMCT
NGRCCHPACAKYFSC
NGRCCHPACGGKYVKC
GCCSYPPCFATNSDYC
DECCAIPLCAKIFPGRCP

AANLMALLQESLCPPGCYPSCTNCR-
YMFP

GCCAIRECRLQNAAYCGGIY
FLTQQSPRDFAKSVMQLLHYNWIDC-
CNYGVSDCCI

APAELILETICPHMCGTGIGEPFCN-
CRNKRDVVSSRII

Acl.lb, CnIH, R1.1, Btl.6-
, Mn1.2, C4.3

Mnl.5

LtTA [A4S]
MII [E11A L15A]
01.3

Crl.6
Gly-AnIB
Ebl1.1, Qcl.18
Lil.4, Sal.12
Qcl.1b, LiC22
Lil.24, Sal.6
Lil.11

Gl4.1

Vcl4.4

Sul.6
Dd1.7, Lil.21

Callb
Sal.7

Lil.16, Sal.3
S5.3, Eb5.5
Cll4c
Call4.1a
Lpl.7

CnlJ

Col.3
PelA[A7V,S9H,V10A,N11R]
Qcl.7

Bul.2
Veb.11

Cnl.6

PelA[A7V,S9H,V10A,N11-
R,E14A]

FIfXIVB

Mn1l.4b

Acl.2

AulA

Pclb

Pul4.6

Cal.2
Lv5.7

Bt14.3
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EIVNIIDSISDVAKQICCEITVQCCVLDEE ~ Vn5.5 1
ECCEDGWCCTAAPLTAP V5.7 1
CCPGWELCCEWDDWW Mr5.7 1
GCCSFPACRKYRPEMCG Sul.2 1
DDCCPDPACRQNHPELCST PuSG1.1 1
APNVKDSKASGSCCDNPSCAVNNSHC  Lil.32 1
YHECCKNPPCRNKHPDLC Sal.16 1
GCCSNPACAGSNAHIC Lil.14 1
GCCVYPPCAVNHPDICRG Qcl.9 1
VMQLRYYNWIDCCFDGDCCN Qc5.3 1
TGCCEYPYCAENNPELCG Col.4 1
SVEGVISTIKDFAVKVCCSVSLKFC- Ts5.5 1
CPTA

SCCSDSDCNANHPDMCS Leo-Al 1
SCCPQEFLCCLYLVK Lp5.1 1
RCCHPACGKNYSC MI[del1G] 1
QTPGCCWNPACVKNRC EIIA 1
QGCCSYPACAVSNPDICGG Qcl.12 1
PECCSDPRCNSTHPELCG Ail.2 1
NIQIICCKHTPKCCT Tx5.5 1
NAWLTPEECCAAPACREMILEFCLA- Pul.5 1
GEAFAAALDGFRRLPYR

KVYCCLGVRDDWCCAGQIQI Lt5i 1
IINWCCLIFYQCCL Sr5.7 1
YCCHPACGKNFDC SIA 1
GILELAKTVCCSATGISICC Tx5.13, Tr5.3, Vi5.1 1
GGCCSRPPCILKHPEIC Qcl.13 1
GCPADCPNTCDSSNKCSPGFP Callda 1
GIRGNCCMFHTCPIDYSRFYCP Vt1.24 1

Table 5: List of sequences containing six cysteines in order of
interest for experimental characterization, based on degree (se-

quence coverage) in alignment graphs (cf. Fig. 2).

Name or

names of sequences are taken from the Conoserver database
[Kaas et al., 2012]. Multiple names for the same sequence indicate
the same sequence is produced by different species or has different
post-translational modifications. Node degree corresponds to the
number of sequences with pairwise alignments that are long enough
and have high enough percent identity to be homology modeled
with the given sequence as a template.

Sequence Name(s) Degree
LPPCCSLNLRLCPAPACKYKPCCKS RIIIJAG6-11 29
QKGLVPSVITTCCGYDPGTMCPPCR- S4.4 28
CTNSCPKKPKKP

QPWLVPSKITNCCGYNTMEMCPTCM- Mn4.2 27

CTYSCRPKKKKP
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DDECEPPGDFCGFFKIGPPCCSGWC-
FLWCA

Malr137, G6.2

20

DCVAGGHFCGFPKIGGPCCSGWCFF- Vn6.8 20
VCA

VCREKGQGCTNTALCCPGLECEGQS-  Mi010 20
QGGLCVDN

ECREQSQGCTNTSPPCCSGLRCSGQ- CaHro1 17
SQGGVCISN

TVDEACNEYCEERNKNCCGRTDGEP-  Vi6.7 15
VCAQACL

ECTRSGGACYSHNQCCDDFCSTATS- Eb6.22 15
TCV

GCTPPGGACGGHAHCCSQSCNILAS- ABVIC 15
TCNA

TVGEECNEYCEQRNKNCCGKTNGEP-  Tr7.4 15
VCAQACL

TATEECEEYCEDEEKTCCCGEEDGEP- Ar6.24 14
VCARFCL

EACYNAGTFCGIKPGLCCSAICLSF- M6.2 13
VCISFDLIDVFSSP

TTEECHEYCEDQNKNCCGLTDGEPR-  Tr7.3 13

CAGMCL

MTMGCTHPGGACGGHYHCCSQSCNT-
AANSCN

MIL3-b (partial)

12

VPEECEESCEEEEKTCCGLENGQPF- Ar6.28 12
CSRICW

DECYPPGTFCGIKPGLCCSERCFPF- Ac6.2 12
VCLSLEF

CLDAGEVCDIFFPTCCGYCILLFCA TxO1 11
DCTPPDGACGFHYHCCSKFCITISSTCN ~ MIL2-a 11
CIDGGEICDIFFPNCCSGWCIILVCA Mr6.8 11
TTAESWWEGECLGWSNGCTHPSDCC-  Mr6.16 11
SNYCKGIYCDL

GCTHPGGACGGHHHCCSLFCNTAAN-  MIL3-f 11
ACN

CLGSGETCWLDSSCCSFSCTNNVCF Vn6.15 11
SIAGRTTTEECDEYCEDLNKNCCGL- Ts6.7 10
SNGEPVCATACL

CLDAGEMCDLFNSKCCSGWCIILFCA Mr6.1 10
GCLEVDYFCGIPFVNNGLCCSGNCV- Pn6.7 10
FVCTPQ

SCGEEGEGCYTRPCCPGLKCIGTAH- Pu6.7 10
GGLCREE

DGCYNAGTFCGIRPGLCCSEFCFLW- MVIA, Cn6.1 10
CITFVDS

NCCNGGCSSKWCRDHARCC SITTA|[del1]
RHGCCKGPKGCSSRECRPQHCC TIIIA

DCGEQGQGCYTRPCCPGLHCAAGAT-
GGGSCQP
CLAGSAPCEFHRGYTCCSGHCLIWVCA

KTTAESWWEGECYGWWTSCSSPEQC-
CSLNCENIYCRAW

Conotoxin-1

Cal6.1d
TsMEKL-03
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KTTAESWWEGECRTWYAPCNFPSQC-
CSEVCSSKTGRCLTW

CTPGGEACDATTNCCFLTCNLATNK-
CRSPNFP

CRPPGMVCGFPKPGPYCCSGWCFAV-
CLPV

WWEGECRGWSNGCTTNSDCCSNNCD-
GTFCKLW

CCSRDCWVCIPCCPNGSA
WWWGGCTWWFGRCSTDSECCSNSCD-
QTYCELYRFPSRY
YECYSTGTFCGINGGLCCSNLCLFF-
VCLTFS

CCSQDCSVCIPCCPN

FPCNPGGCACRPLDSYSYTCQSPSS-
STANCEGNECVSEADW

CTVDSDFCDPDNHDCCSGRCIDEGG-
SGVCAIVPVLN

CYDSGTSCNTGNQCCSGWCIFVSCL
CCSQDCWVCIPCCPN

ECIEGSEPCEVFRPYTCCSGHCIIFVCA
VCVDGGTFCGFPKIGGPCCSGWCIEF-
VCL

GPPCCLYGSCRPFPGCSSASCCRK
CCGVPNAACHPCVCNNTC
DCQEKWDYCPVPFLGSRYCCDGFIC-
PSFFCA
CTPRNGYCYYRYFCCSRACNLTIKRCL

CTPCGPDLCCEPGTTCDTVLHHTHF-
GEPSCSY

CCSQDCRVCIPCCPN

QCTPVGGSCSRHYHCCSLY CNKNIG-
QCLATSYP
VKPCSEEGQLCDPLSQNCCRGWHCV-
LVSCV
CLNDGDDCDTGDDCCSGLCIFDEYF-
SYCDDSDPYYDDYDEYYY
SCGNLHESCSAHRCCPGLKCIGTAH-
GGLCRE

WWDGECRLWSNGCRKHKECCSNHCK-
GIYCDIW

CCGKPNAACHPCVCNGSCS
MGYILPALSQQTCCVRPWCDGACDC-
CVDS
MKLMLSALRQQECCKPSTCDGGCYH-
cC
CIPQFDPCDMVRHTCCKGLCVLIAC-
SKTA
SCGNLHESCSAHRCCPGLMCFTLPT-
PICITW

Vn6.5
ABVIL
Malr193
Vn6.3

Lv3-IP01
Vcb6.26

CnVIA, St6.2

Co3-1P02,
P08, Rt3-IP03,
Ec3-1P03

Cl9.4

Ts3-IP07, Vr3-I-
Ca3-TP02,-

Ar6.19

Tx6.3
Eu3.2

Cal6.1h
Ar6.2

PIIIF [Y17S,N18S,L20S]
OIVA [K15N]
Da6.6, Tx6.6

M16.2
Fla6.15

Ts3.1
Ar6.17

Da6.2

Mi029

Pu6.15 (partial)
VeG52

G4.1
Co3-D01

Lv3-YHO04
Pn6.3

Pu6.17
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STSCMEAGSYCGSTTRICCGYCAYF- SO5 4
GKKCIDYPSN

GGCTPCGPNLCCSEEFRCGTSTHHQ- Ca6.2 4
TYGEPACLSY

FAVIFTCTPPGSHCTGHSDCCSDFC- Co6.1 4
STMSDVCQ

CIEQFDPCEMIRHTCCVGVCFLMACI King-Kong 1
CLGFGEACLMLYSDCCSYCVALVCL Ep6.1
TCSPAGEVCTSKSPCCTGFLCTHIG- LvVIA 2

GMCHH

CTPSGGACYVASTCCSNACNLNSNKCV M1 4
CCGVPNAACHPCVCTGKC PelVA 4
ATDCIEAGNYCGPTVMKICCGFCSP- Ac6.5 4
FSKICMNYPQN

GCTPRNGACGYHSHCCSNFCHTWAN-  LvVID 3
VCL

DVCELPFEEGPCFAAIRVYAYNAKT- Cal9.1d 3
GDCEQLTYGGCEGNGNRFATLEDC-

DNACARY

GCGYLGEPCCVAPKRAYCHGDLECN-  Mr2 3
SVAMCVN

ECTPPEGACNHPSHCCEDFCDRGRN- At6.7 3
RCM

KFCCDSNWCHISDCECCY Tx3h 3
WWEGDCTDWLGSCSSPSECCYDNCE-  Lt7b 3
TYCTLW

CRSSGSPCGVTSICCGRCYRGKCT SVIA 3
CKAESEACNIITQNCCDGKCLFFCL- Pné.5 3
QIPE

CTPPSGYCYHPYYCCSRACNLTRKRCL — At6.2 3
CKSPGTPCSRTMRDCCTSCLSYSKKCR  G6.12 3
PCKTPGRKCFPHQKDCCGRACIITICP  P2a 3
CVPYEGPCNWLTQNCCDELCVFFCL Gm6.3 3
SKQCCHLPACRFGCTPCCW Mr3.4 3
CCKYGWTCWLGCSPCGC PuIVB 2
EINLHALGTRCCSWDVCDHPSCTCC Vr3-T05 2
CCHWNWCDHLCSCCGS Mr3.8 2
CAGIGSFCGLPGLVDCCSGRCFIVCLP Bt6.4, ErVIA 2
CCQAACSPWLCLPCC Eu3.3, Bt3.3 2
CTQSSEFCDVIDPDCCSGVCMAFFCI Vc6.40 2
CIPFLHPCTFFFPDCCNSICAQFICL VeVIC 2
CTVNGVVCDPGNHNCCSGSCLDDED-  Pu6.23 2
TPVCGIHVEIQHVHMLS

CCDDSECDYSCWPCCMF Gm3-WP04 2
DAINVAPGTSITRTETDQECIDTCK- Di6.11 P
QEDKKCCGRSNGVPTCAKICL

CLAPQRWCSMHDDSLHDDNCCKTCI- Pu6.20 2
ILWCS

CIVGTPCHVCRSQSKSCNGWLGKQR- Im9.11 2

YCGYC

CNNRGGGCSQHPHCCSGTCNKTFGVCL  VxVIA, MgJ42
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CCDRPCSIGCVPCCLP

YWTECCGRIGPHCSRCICPGVVCPKR

WFGHEECTYWLGPCEVDDTCCSASC-
ESKFCGLW

QCEDVWMPCTSSHWECCSLDCEMY C-
TQI

QCPYCVVHCCPPSYCQASGCRPP
QGCCNVPNGCSGRWCRDHAQCC
TCSSSSDCPTGQECCPDKLDEPEGS-
CANECIIT
SCSDDWQYCEYPHDCCSWSCDVVCS
TCNTPTRYCTLHRHCCSLHCHKTIH-
ACA

TTSTRKCKGPLVFCPENHECCSKFC-
DFIDIPLRYCSTP

MTKHCTPPEVGCLFAYECCSKICWR-
PRCYPS

VCCPFGGCHELCLCCD
RCCISPACHDDCICCIT
RCCISPACHEECYCCQ
VSIWFCASRTCSTPADCNPCTCESG-
VCVDWL

QCLPPLSLCTMDDDECCDDCILFLC-
LVTS

STDDCSTAGCKNVPCCEGLVCTGPS-
QGPVCQPLA
GCCDPQWCDAGCYDGCC

GCWLCLGPNACCRGSVCHDYCPS

GCSDFGSDCVPATHNCCSGECFGFE-
DFGLCT

STDCNGVPCQFGCCVTINGNDECRE-
LDC

RCCTWQECDGNCHCCQ
RCCVHPACHDDCICCIT
WWGENDCSWTGPCTVNAECCLGVCD-
ETC

GCCHPSTCHVRKGCSRCCS
SSDEECVGLSGYCGPWNNPPCCSWW-
ECEVYCAVPGPSF
SCCNAGFCRFGCTPCCY
TCDPYYCNDGKVCCPEYPTCGDSTG-
KLICVRVTD

TCLEIGEFCGKPMMVGSLCCSPGWC-
FFICVG

CGGYSTYCEVDSECCSDNCVRSYCTLF
GCCCNPACGPNYGCGTSCSRPSEP

TRGCKSKGSFCWNGIECCGGNCFFA-
CvVy

CFESWVACESPKRCCSHVCLFVCT

WREGSCTSWLATCTDASQCCTGVCY-
KRAYCALWE

Ca3-VP01, Cp3-VP05
Bu25
RVIIA

Mr6.29

Vc7.4
MIIIA
Pu6.37

Vc6.12
Pu6.30

Br7.9
ABVIE

MrIITF
S3-105
S3-Y01

Lt9a variant 2
Ar6.5

Vn6.18

Qc3-YDGO1

Cal6.4c
Pu6.25

Mr6.23

Cp3-H02
Bt3-103, Vx3-103
Tx7.31

Tx3g, Vt3-SRO1
Mi034

Tx3e, Vt3-TP01, Ec3-TP01-2
Im6.7

Pc6b

TxVIIA
S1.7
Cl6.6b

Pn6.6
TxMEKL-022/TxMEKL-021
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YCSDSGGWCGLDPELCCNSSCFVLC C16.8 1
YCSDDWQPCSHFYDCCKWSCNNGYCP  Ve6.25 1
CCDDSECSYSCWPCCY TxMMSK-02, Cp3-WP03, - 1
Vi3-WP04, S3-WP01, Rt3-
WPO1
WRVDSECISFWGSCTVDADCCFNSC- Tx7.30 1
DETYGYC
CCDWPCTIGCVPCCLP TsMMSK-021
CCFWPMCRGCDCCYL Lv3-D02
CCGPTACLAGCKPCCY Tx3-KP03

CESYGKPCGIYNDCCNACDPAKKTCT
VQPSECKLPAAKGPCKGKYRKVYFN-
NFKKQCRMFTYGGCGGNGNKFRNA-
KECYHKCAYGV

Conotoxin-3

conkunitzin-G1

e

VCCSFGSCDSLCQCCD Mr3.16 1
CCLWPECGGCVCCYL Lv3-V02 1
TRGCKTKGTWCWASRECCLKDCLFV-  Cl6.10 1
CVY

CCSVSICQSPPVCECCA S3-E03 1
CCVVCNAGCSGNCCS Ts3-SGNO1 1
SCSGSGYGCKNTPCCAGLTCRGPRQ- Vn6.16

GPICL

RCCIWPECGSCVCCL Cp3-V08 1
SCGNLHEMCNYHLPCCRPWRCRASR-  Pu6.13 1
TGTRCLNKPRYRPV

RDCRPVGQYCGIPYEHNWRCCSQLC-  PulA 1
AIICVS

GCCGSFACRFGCVPCCV MrIIIA 1
GCCHLLACRMGCTPCCW Tx3-TP01 1
GCCIEPLCYQYDCDCCRYL Cp3-D03 1
ECSSPDESCTYHYNCCQLYCNKEEN- LtVIB 1
VCLENSPEV

ECRGYNAPCSAGAPCCSWWTCSTQT-  Vc6.10 1
SRCF

GCCPIGPCMQSVCSPCCP Vr3-SP01 1

GMWGKCKDGLTTCLAPSECCSGNCE-
QNCKMW

TxMEKL-011, LeD51

GVWSECSDWLAGCSSPSECCSEKCD- G6.8 1
TFCRLW

GWDTPAPCRYCQWNGPQCCVYYCSS-  Cal6.3a 1
CNYEEAREEGHYVSSHLLERQ

DECCEPQWCDGACDCCS LtIIIA 1
KFILHALGQWQCCTMQWCDKACYCCE V3.4 1
DDCTTYCYGVHCCPPAFKCAASPSC- Cal6.5a 1
KQT

KTCQRRWDFCPGSLVGVITCCGGLI- Om6.6 1
CFLFFCV

LCPDYTEPCSHAHECCSWNCYNGHC-  Gla(3)-TxVI 1
TG

MQGKISSEQHPMFDPIEGCCTQSCT- Lt3.6 1
TCFPCCLI

DCCSMSACVPPPACECC Mi3-E04 1
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DCCPLPACPFGCNPCCGWPALLSGP-
HQVMNNE
DCCGVKLEMCHPCLCDNSCKNYGK

DAMQKSKGSGSCAYISEPCDILPCC-
PGLKCNEDFVPICL

NPKLSKLTKTCDPPGDSCSRWYNHC-
CSKLCTSRNSGPTCSRP

QCADLGEECYTRFCCPGLRCKDLQV-
PTCLLA

QCCDSNSCEYPKCLCCN

CVEDGDFCGPGYEECCSGFCLYVCI
QKCCGKGMTCPRYFRDNFICGCC

QQCCPPVACNMGCEPCC
RCCGEGASCPVYSRDRLICSCC
RCCISPACNDTCYCCQD
CPNTGELCDVVEQNCCYTYCFIVVCPI
RCCTGKKGSCSGRACKNLKCCA

APWTVVTATTNCCGITGPGCLPCRC-
TQTC

Mr020

PIVE
LtVIA

LiCr95
Ar6.10

Tx3-L02, Vr3-L01, Vt3-LO1-
, $3-1.02

Pu6.2

CullIG

TxMMSK-04, Vt3-EP01
CnllIE

Vr3-Y02, Vt3-Y01, Ts3-YO01
Mr6.2

SxIITA
Ad.4
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A Supplemental Information
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Figure S1: Rost’s phenomenological curve (Eqn. 1) of minimum percentage identity for homology
modeling as a function of pairwise alignment length with n = 5% padding as employed in this work.
As the length of the alignment decreases, the minimum percent identity for homology modeling

increases, and there is a particularly rapid increase below alignments of about 25 amino acids,
where a fairly large proportion of toxins reside.

Table S1: List of sequences containing eight cysteines in or-
der of interest for experimental characterization, based on de-
gree (sequence coverage) in alignment graphs (cf. Fig. 2). Name
or names of sequences are taken from the Conoserver database
[Kaas et al., 2012]. Multiple names for the same sequence indicate
the same sequence is produced by different species. Node degree
corresponds to the number of sequences with pairwise alignments
that are long enough and have high enough percent identity to be
homology modeled with the given sequence as a template.

Sequence Name(s) Degree (#
Edges)

TDVCKKSPGKCIHNGCFCEQDKPQG- Call2.1p2 28

NCCDSGGCTVKWWCPGTKGD

GHVPCGKDGRKCGYHADCCNCCLSG- R11.10 18

ICKPSTSWTGCSTSTVQLTR

QCTPKNQICEEDGECCPNLECKCFT- Vrl5b 14

RPDCQSGYKCRP

CFPPGVYCTRHLPCCRGRCCSGWCR- Cpl.1 10

PRCFPRY
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QCTQQGYGCDETEECCSNLSCKCSG- Capl5a 9
SPLCTSSYCRP

SCDSEFSSEFCEQPEERICSCSTHV- Gla-MrlII, Eul2.4 9
CCHLSSSKRDQCMTWNRCLSAQTGN
SRCFPPGIYCTPYLPCCWGICCGTC- Em11.8 8
RNVCHLRF

DKWGTCSLLGKGCRHHSDCCWDLCC-  Mrll.1 6
TGKTCVMTVLPCLFLSLIVRWT

TCSLPGDGCIRDFHCCGHMCCQGNK-  Pull5 6
CVVTVRRCFNFPY

YDAPYCSQEEVRECQDDCSGNAVRD-  Cal22d 5
SCLCAYDPAGSPACECRCVEPW

GTCSGRGQECKHDSDCCGHLCCAGI- Tx11.3 5
TCQFTYIPCK

GTCSYLGEGCKRDSDCCGHFCCGGK-  Vell.d 5
TCVITARPCKV

RGVCSTPEGSCVHNGCICQNAPCCH- Call2.2¢ 4
PSGONWANVCPGYLWDKN

TCSDLGQACVHESDCCAQMCCLNKK-  Vell.l 3
CAMTMPPCNFY

CLSEGSPCSMSGSCCHKSCCRSTCT- Epll.12 2
FPCLIP

TCSNKGQQCGDDSDCCWHLCCVNNK-  M11.2 p
CAHLILLCNL

RCSDDTGATCSNRFDCCESMCCIGG- Im11.14 1
HCVISTVGCP

CRLEGSSCRRSYQCCHKSCCIRECK- Vill.5 1
FPCRWV

TRSFADLPDDWGMCSDIGEGCGQDY-  Vcll.6 1
DCCGDMCCDGQICAMTFMACMF

CLRDGQSCGYDSDCCRYSCCWGYCD-  Imll.1 1
LTCLIN

CNGRGEWCSTHRSCCDSGDVCCITT- Pull.9 1
PVGPICTRGCSGRIIPQRRGAQLRHFF
CRAEGTYCENDSQCCLNECCWGGCG-  BtX, Sx11.2 1
HPCRHP

CTSEGYSCSSDSNCCKNVCCWNVCE- Lt11.3 1
SHCRHPGKR

CRSGKTCPRVGPDVCCERSDCFCKL- Mr15.2 1
VPARPFWRYRCICL

DCPTSCPTTCANGWECCKGYPCVRQ-  Del3b 1
HCSGCNH

EGGYVREDCGSDCMPCGGECCCEPN-  Mi045 1
SCIDGTCHHESSPN

SCRNEGAMCSFGFQCCKKKCCMSHC-  Vt11.3 1
TDFCRNP

WPRLYDSDCVRGRNMHITCFKDQTC-  Mr22.1 1

GLTVKRNGRLNCSLTCSCRRGESC-
LHGEYIDWDSRGLKVHICPKPWF

MCLSLGQRCGRHSNCCGYLCCFYDK- Bt11.4 1
CVVTAIGCGHY
ASICYGTGGRCTKDKHCCGWLCCGG- Call.3 1

PSVGCVVSVAPC
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A) 4 Cysteines B) 6 Cysteines

Shorter

Figure S2: Graph of conotoxins containing (A) four cysteines, (B) six cysteines, (C) eight cysteines
and (D) ten cysteines where nodes are sequences and edges exist between sequences with pairwise
alignments that have high enough length and percent identity to fall above the Rost curve with
n = 5% (Eqn. 1). Colors show the relative sequence lengths of each graph, but the color scale
of each graph is independent of the others. The sizes of the nodes corresponds to their degree;
that is the number of other sequences that they can be modeled based on or used to model. Node
locations and edge lengths were chosen for ease of visualization of separate connectec components.
Visualization of the graphs was produced with Gephi 0.9.2 [Bastian et al., 2009].
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Table S2: List of sequences containing ten cysteines in order of in-
terest for experimental characterization, based on degree (sequence
coverage) in alignment graphs (cf. Fig. 2) Name of sequences are
taken from the Conoserver database [Kaas et al., 2012]. Node de-
gree corresponds to the number of sequences with pairwise align-
ments that are long enough and have high enough percent identity
to be homology modeled with the given sequence as a template.

Sequence Name(s) Degree (#
Edges)

DRDVQDCQVSTPGSKWGRCCLNRVC- Cp20.1 19

GPMCCPASHCYCVYHRGRGHGCSC

LHCYEISDLTPWILCSPEPLCGGKG- Lt15.6 5

CCAQEVCDCSGPACTCPPCL

YNRQCCIDKTYDCLKKYRGRENTFA- Ve2l.1 2

SVCQQEAAVYCGAWDEAEGCCYGY-
SHCMSMYAQQSGLDVAHNGCKDRK-

CDNP
QCTLVNNCDRNGERACNGDCSCEGQ-  Ac8.1 2
ICKCGYRVSPGKSGCACTCRNA
GCSGTCRRHRDGKCRGTCECSGYSY-  CaS8c 2
CRCGDAHHFYRGCTCTC

TCDPTPDCRTTVCETDTGPCCCPHG-  Pul9.1 1
YNCQTTNSCGRRACVLVCPHNCPP
SGSTCTCFTSTNCQGSCECLSPPGC- G8.3 1
YCSNNGIRQRGCSCTCPGT

GCTRTCGGPKCTGTCTCTNSSKCGC-  GVIIIA 1
RYNVHPSGWGCGCACS

GCTISCGYEDNRCQGECHCPGKTNC- Tx8.1 1
YCTSGHHANKGCGCAC
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Figure S3: Distributions of approximate minimum percentage identity cutoffs for the conotoxins
containing A) four, B) six, C) eight, and D) ten cysteines. We assume for demonstration purposes
that any alignment is the length of the peptide itself. We employ Rost’s curve (see Eqn. 1 and Fig.
S1) with a padding of n = 5%. The distribution shifts significantly downward as the number of
cysteines and concomitantly the overall length of the peptides under consideration increases. Note
too the presence in panels A) and B) of a bin going up to 100%, which demonstrates the existence
of peptides so short among the conotoxins that it is impossible to reliably predict their structure
via homology modeling, which comprise a large proportion of the isolated nodes in the graphs (cf.
Fig. S2)
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Figure S4: Distribution of root-mean-square deviation (RMSD) for homology models compared
with their corresponding experimental structures, after refinement involving rejection of structural
alignment outliers. Each experimental structure present in the library was modeled by selecting
from all other templates in the library. The top three models for each structure based on combined
MODELLER DOPE and PROCHECK G-FACTOR scores are considered here. (A) Distribution
mean 7& 1.55A, standard deviation = 0.92A. (B) Distribution mean = 1.17A, standard deviation
= 0.67A.
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